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Torsional Design of Round HSS Members— 
A Critical Review
BO DOWSWELL

ABSTRACT

Shear yielding is the controlling limit state for most round HSS members subjected to torsion; however, buckling is a limit state that can 
reduce the torsional strength of members with high diameter-to-wall thickness (D/t) ratios. The purposes of this paper are to summarize 
the available research on the torsional performance of round HSS members and evaluate the applicable provisions in the AISC Specifica-
tion. A historical review of the available research revealed 125 experimental tests from seven projects, leading to evolving design methods 
over the last century. An evaluation of the AISC Specification provisions indicated an appropriate reliability level for the yielding limit state; 
however, the target reliability for buckling is met only for long specimens. A new equation is proposed to predict the buckling strength of 
intermediate-length members.

Keywords:  round HSS, torsion, D/t ratio, shear yielding, buckling.

INTRODUCTION

For most round HSS members subjected to torsion, shear 
yielding is the controlling limit state; however, buck-

ling is a limit state that can reduce the torsional strength 
of members with high diameter-to-wall thickness, D/t, 
ratios. Many of the available design equations for the buck-
ling strength of round hollow structural members are based 
on research related to thin-walled cylindrical shells such 
as tanks, silos and airplane components. The geometries, 
fabrication methods, and imperfections for these structures 
can be dramatically different from those of round HSS 
members. Also, much of the experimental research used 
materials such as aluminum, brass, and rubber, which have 
different material behaviors compared to steel. The pur-
poses of this paper are to summarize the research on the 
torsional performance of round HSS members and compare 
the available experimental results to the applicable provi-
sions in the AISC Specification for Structural Steel Build-
ings (2022), hereafter referred to as the AISC Specification.

AISC SPECIFICATION SECTION H3

The nominal torsional strength of an HSS member is cal-
culated using Equation  H3-1 from AISC Specification 
Section H3.1.

	 Tn = FcrC� (H3-1)

The available torsional strength is ϕTTn (LRFD) or Tn/ΩT 
(ASD), as applicable. For round HSS members, the critical 
shear stress is the largest value from Equations H3-2a and 
H3-2b but not exceeding the shear yield stress, 0.6Fy.
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where
C	 = torsional constant, in.3

D	 = outside diameter, in.

L	 = member length, in.

t 	 = design wall thickness, in.

ϕT	 = 0.90 (LRFD)

ΩT	= 1.67 (ASD)

SECTION PROPERTIES

The polar moment of inertia of a round cross section is 
(Holland, 1970; Seaburg and Carter, 1997)
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As discussed in AISC Specification Section H3.1 Com-
mentary, the torsional constant can be defined as the polar 
moment of inertia divided by the radius at the mid-thickness.

	

C = 2J
D t
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D t( )2 t
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2 t

−
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π
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(2)

where
Di	 = inside diameter, in.

Dm	= mean diameter, in.

R	 = outside radius, in.

Ri	 = inside radius, in.

EUROCODE 3, PART 1-6

The design equations in Eurocode 3, Part 1-6 (CEN, 2007), 
are applicable to both clamped and pinned end conditions. 
The effects of both inelastic buckling in the transition zone 
and geometric imperfections are considered explicitly. The 
nominal stress is:

	 n = yτ τχ 	 (3)

When λ ≤ λp

	 χ = 1.0	 (4)

When λp < λ ≤ λr

	
= 1.0 0.6 p

r p
χ

λλ
λ λ

−
−

−
	

(5)

When λ > λr

	
= 2λ

χ ατ

	
(6)

Where the shear yield stress is:

	
y =

Fy
3

τ
	

(7)

the nondimensional slenderness is:

	
= y

cr

τ
τ

λ
	

(8)

The limiting slenderness parameter for compact elements 
is:

	 p = 0.4λ 	 (9)

and the limiting slenderness parameter for noncompact ele-
ments is:

	 r = 2.5λ ατ 	 (10)

where the imperfection reduction factor, ατ, is selected 
from Table 1 based on the fabrication quality class.

The critical buckling stress is:

	
cr = 0.75EC

t

R
τ τ ω 	

(11)

The dimensionless length parameter is:

	
= L

Rt
ω

	
(12)

For medium-length cylinders, which are defined by 10  ≤ 
ω ≤ 8.7R/t,

	 C = 1.0τ 	 (13)

For long cylinders, which are defined by ω > 8.7R/t,

	
C = 1

3

t

R
ωτ

	
(14)

HISTORICAL REVIEW

The Specification requirements are based on the theoretical 
equations that were derived for the elastic critical buckling 
stresses by various researchers. The equations were derived 
for tubular sections with length-to-diameter ratios that are 
categorized as short, moderate-length, and long cylinders.

Schwerin (1924)

Schwerin (1924) developed Equation 15 to predict the criti-
cal stress of round HSS members in torsion.

Table 1.  Ovalization Tolerances and Imperfection Reduction Factors in Eurocode 3, Part 1-6 (CEN, 2007).

Quality Class Description ααττ

ρρmax

D ≤≤ 20 in. 20 in. << D << 49 in. D ≥≥ 49 in.

Class A Excellent 0.75 0.014 0.007 + (49 − D)/4143 0.007

Class B High 0.65 0.020 0.010 + (49 − D)/2900 0.010

Class C Normal 0.50 0.030 0.015 + (49 − D)/1933 0.015
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Lunquist (1932)

Based on experimental tests on duralumin cylinders, Lun-
quist (1932) proposed a critical buckling stress of

	

cr = ksE
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(18)

where
c	 = constant that was determined empirically to be 1.35

ks	= coefficient that varies with the L/R ratio

The research showed that the number of buckling waves 
increases with an increase in the R/t ratio and decreases with 
increase in the L/R ratio. The specimens in Figure 2 show 
the effect of the L/R ratio. Small geometric imperfections 
caused minor buckling distortions below the buckling failure 
load without significantly affecting the strength. Although 
the short cylinders had a significant post-buckling strength 
increase, long cylinders had negative post-buckling strength.

Donnell (1935)

Donnell (1935) derived the differential equations of equi-
librium in a simpler form than previous researchers by 
neglecting several items that would be included in an exact 
analysis. Many terms in the equilibrium conditions and the 
term relating the change in curvature to the change in the 
radius of the buckled shape were neglected. Additionally, 
the variation in length of the circumferential fibers along 
the thickness was neglected. For long cylinders where  
n = 2, many studies have shown that Donnell’s approximate 
solution is about 10% higher than that of an exact analy-
sis (Chen, 2016) and the experimental buckling stresses 
averaged about 75% of those calculated with the proposed 
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Donnell (1935) showed that Equation 15 is accurate only 
for longer members and noted that the value in the second 
parenthesis is approximately unity, resulting in Equation 16.
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Sezawa and Kubo (1931)

Sezawa and Kubo (1931) believed that the equations devel-
oped by Schwerin (1924) were incorrect due to “certain 
misconceptions.” Sezawa and Kubo derived theoretical 
equations for long cylinders, which showed that the end 
conditions have a negligible influence on the critical buck-
ling stress. The buckled shapes were characterized by two 
waves that formed a helical curve with a 27.5° angle from 
the longitudinal axis of the cylinder as shown in Figure 1. 
With n = 2 (two circumferential buckling waves), the load 
was minimized to determine the critical stress according 
to Equation 17, which is applicable only when L/D ≥ 2. For 
steel, Poisson’s ratio, ν, is 0.3.
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Fig. 1.  Buckled shape for n = 2.
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design equation. For short and moderately long cylinders 
with simply supported edges Donnell’s theoretical approxi-
mation of the critical buckling stress is 7:
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Substituting ν = 0.3 into Equation 20 and multiplying by 
0.6 to get a lower-bound curve results in Donnell’s proposed 
design equation:
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(20)

L/R = 0.87

L/R = 2.0

L/R = 3.0

Fig. 2.  Buckled specimens from Lundquist (1932).
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Sturm (1948)

Sturm (1948) simplified a theoretical solution for graphi-
cal representation according to Equation 27. Coefficient KD 
is plotted against the L/D ratio in Figure 3. The family of 
curves, which are based on the D/t ratio, show that the num-
ber of buckling waves (labeled N in Figure 3) is dependent 
on both the L/D and D/t ratio. However, for practical geom-
etries of HSS members used in steel structures, the buckled 
shape is characterized by only two waves.
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(27)

where
KD = coefficient that varies with the L/D and D/t ratios

Sturm (1948) also derived a theoretical solution for the 
circumferential stress caused by initial geometric imper-
fections, which were assumed to be identical to the buck-
led shape. For typical round HSS member geometries, the 
geometric imperfections caused only a 6% stress increase 
compared to a perfectly round section.

Timoshenko and Gere (1961) and Flugge (1973)

Timoshenko and Gere (1961) and Flugge (1973) developed 
Equation  28 for the elastic shear buckling stress of infi-
nitely long cylinders by solving the differential equations of 
equilibrium of the buckled shape.
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When ν = 0.3, Equation 28 simplifies to:
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Gerard (1962) and Schilling (1965)

Based on the experimental results summarized by Batdorf 
et al. (1947), Gerard (1962) recommended a reduction factor 
of 0.85 to account for the lower strength caused by imperfec-
tions in intermediate-length shells. Schilling (1965) applied 
this reduction to Equation 26, resulting in Equation 30.
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(30)

By setting Equation  30 equal to the shear yield stress, 
τy, Schilling (1965) determined the transition point between 

Batdorf, Schildcrout, and Stein (1947)

According to the theoretical derivation by Batdorf et al. 
(1947), the elastic critical stress of a thin-walled cylinder 
loaded in torsion is:
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(21)

The value for ks was determined by successive cal-
culations to minimize the critical stress. For simply sup-
ported intermediate-length cylinders, ks is calculated with 
Equation 22.

	 ks = 0.85Z w	 (22)

The length ratio, now known as Batdorf’s parameter, is:
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When ν = 0.3, Equation 23 simplifies to:
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Substituting Equations 22 and 23 into Equation 21 results 
in Equation 25.
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When ν = 0.3, Equation 25 simplifies to:

	

Fcr = 1.25E
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For long cylinders, the buckled configuration was the 
same as that described by Sezawa and Kubo (1931), where 
two circumferential waves formed a helical curve along the 
cylinder. The critical stress of long cylinders, which was 
found to be dependent on the R/t ratio, deviated from that 
of short cylinders at approximately Z  = 10(R/t)2. Due to 
simplifications in the derivation based on the assumption 
that n2 is much greater than 1, Batdorf et al. (1947) noted 
that Equation 26 may be accurate only in the approximate 
range, 100 ≤ Z ≤ 10(R/t)2.
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transition region were developed. The equations were based 
on recommendations by Felton and Dobbs (1967) for alu-
minum members. For intermediate-length members, elastic 
buckling is defined by the range
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The elastic critical buckling stress is calculated with 
Equation H3-2a. The inelastic transition zone is defined by 
the range
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(34)

buckling and yielding. He noted that the shear yielding limit 
state is applicable when
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and shear buckling is applicable when
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Sherman (1975)

Sherman (1975) recommended using Equations H3-2a and 
H3-2b for hot-formed intermediate-length and long mem-
bers, respectively. Due to the rounded stress-strain curves 
for cold-formed members, equations defining an inelastic 

Fig. 3.  KD versus L/D for various D/ t ratios (Sturm, 1948).



ENGINEERING JOURNAL / THIRD QUARTER / 2024 / 125 

where long cylinders are defined by the range

	

L

D
> 1.09

D

t 	
(43)

To account for inelastic effects in long cylinders, a tor-
sional parameter, αt, was introduced.
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For elastic buckling, which is defined by the range αt ≤ 1.5, 
Equation 42 was rewritten as

	 cr = 0.524 t yτ τα 	 (45)

The inelastic transition zone is defined by the range 1.5 < 
α < 9 and the buckling stress is:

	 cr = y 0.813 + 0.068 t 1.5( )αττ − 	 (46)

when α > 9, the limit state is shear yielding.

Zhang and Han (2007)

Based on a theoretical analysis, Zhang and Han (2007) 
showed that the number of buckling waves and the 
post-buckling strength decreases with increasing values of 
Z (and increasing length, L). A sensitivity analysis, which 
used an initial imperfection shape that was identical to 
the buckled shape, showed that even small imperfections 
reduce the buckling load, and the imperfection direction 
(inward or outward) has no effect on the reduction. The 
buckling reduction factor, α, is plotted against the normal-
ized imperfection ratio, δo/t, in Figure 4.

Devi and Singh (2021)

A parametric study by Devi and Singh (2021) was based on 
finite element models of steel HSS members with a yield 
stress of 56.1 ksi. For the nonslender members that failed 
by shear yielding, the maximum torsional moments from 
the finite element models were accurately predicted using 
AISC Specification Equation H3-1 with Fcr = 0.6Fy. How-
ever, the strengths were overpredicted by AISC Specifi-
cation Equations  H3-1 and H3-2 for the slender sections 
that failed by buckling. In this case, the mean model-to- 
calculated ratio was only 0.91.

DISCUSSION

General Comments

Low values of Batdorf’s parameter, Z, which is defined 
according to Equation 23, are typical of short shell struc-
tures such as tanks and silos. Almost all HSS structural 

The inelastic buckling stress in the transition zone is:
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The limit state is shear yielding when
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For long members, elastic buckling is defined by the range
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The elastic critical buckling stress is calculated with 
Equation H3-2b. The inelastic transition zone is defined by 
the range
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The inelastic buckling stress in the transition zone is:
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The limit state is shear yielding when
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Ellinas, Supple, and Walker (1984)

For elastic buckling, Ellinas et al. (1984) recommended 
Equation 30 for intermediate-length cylindrical members, 
which have length-to-diameter ratios in the range
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Equation  42, which was developed by multiplying Equa-
tion 29 by a reduction factor of 0.73 to account for imperfec-
tions, was recommended for long cylinders.
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The range defined by NASA (1965) is equivalent to:

	

6.66
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(50)

AISC Specification

AISC Specification Equation  H3-2a is for intermediate- 
length members. Intermediate-length members are defined 
by

	

L

D
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D

t
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(51)

AISC Specification Equation H3-2b was developed using 
Equation 28, which is for infinitely long cylinders. Accord-
ing to AISC Specification Section H3.1 Commentary, the 
theoretical value for the constant is 0.73; however, this is 
based on ν = 3. Equation 29 shows that the theoretical con-
stant should be 0.716 for ν = 0.3. Long members are defined 
by

	

L

D
> 4.20

D
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(52)

Because the critical shear stress is defined as the largest 
value from Equations H3-2a and H3-2b, with a maximum 
value of 0.6Fy, the applicability range for each equation is 
defined by the crossover point where the two equations are 
equal. Therefore, Equations 51 and 52 are not required for 
design. In Figure 5, Fcr versus L/D is plotted using Equa-
tions H3-2a and H3-2b. The curves for D/t = 50, 75, and 100 

members will be either long or intermediate length, with 
Z > 2,000.

Definition of Intermediate Length

According to Batdorf et al. (1947), Equation  22, which 
was developed for intermediate-length cylinders, is appli-
cable in the approximate range, 100 ≤ Z ≤ 10(R/t)2. 
Gerard (1962) recommended a range of applicability of  
50 ≤ Z ≤ 10(1 − ν2)(R/t)2, Schilling (1965) recommended 
a range of 50  ≤ Z  ≤ 9(R/t)2, and Ziemian (2010) recom-
mended 100 ≤ Z ≤ 19.2(1 − ν2)(D/t)2. The range defined by 
NASA (1965) was adjusted to include an imperfection fac-
tor, resulting in 50 ≤ 0.59Z ≤ 78(1 − ν2)(R/t)2. Gerard’s range 
is equivalent to:
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The range defined in Ziemian (2010) is equivalent to
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The range defined by Eurocode 3, Part 1-6 (CEN, 2007), 10 
≤ ω ≤ 8.7R/t, is equivalent to
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Fig. 4.  Buckling reduction factor, α, versus the normalized imperfection ratio, δo/t (adapted from Zhang and Han, 2007).
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δo can be defined with Equation 54 using the maximum and 
minimum diameters of the ovalized shape.

	

o = Dmax D

2

= D Dmin

2

δ

−

−

	

(54)

where
Dmax	= major axis dimension of the ovalized shape

Dmin	= minor axis dimension of the ovalized shape

In their research, Chen and Sohal (1988) used an ovaliza-
tion parameter, ρ, of 1%, where the ovalization parameter is:

	

= Dmax Dmin

D

= 4 o

D

−ρ

δ
	

(55)

are shown in green, blue, and red, respectively. The hori-
zontal lines represent Equation H3-2b and the curved lines 
represent Equation H3-2a. The maximum of the two curves 
for each D/t ratio is shown with the solid lines. The graphs 
show that intermediate-length members can have signifi-
cantly more strength than long members.

Cross-Sectional Tolerances

The initial out-of-roundness was defined by Chen and Sohal 
(1988) with Equation 53, which results in the ovalized shape 
shown in Figure 6.

	 = o cos2δδ θ	 (53)

where
θ	 = angle from the major axis of the ovalized shape

δo	= �maximum initial radial deviation from the nominal 
shape

Fig. 5.  Graph of AISC Specification Equations H3-2.

Fig. 6.  Ovalization distortion.
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Seide et al. (1960) noted that the experimental buckling 
loads can be as much as 40% lower than the theoretical 
small-deflection solutions. The average experimental-to-
calculated ratio was 0.84, and the authors recommended 
a “design” reduction factor of 0.75 for intermediate-length 
cylinders.

Based on the work of Batdorf et al. (1947) and Timosh-
enko and Gere (1961), NASA (1965) published reduction 
factors “to approximate the lower limit of most data.” It was 
determined that the appropriate reduction factors for Equa-
tions 26 and 29 are 0.67 and 0.59, respectively.

Imperfections were considered in AISC Specifica-
tion Equation  H3-2b by reducing the constant from 0.73 
(or 0.716) to 0.60, resulting in a reduction factor of 0.82 
(or 0.84). According to AISC Specification Section  H3.1 
Commentary, Equation H3-2a includes a 15% reduction to 
account for initial imperfections. However, it appears that 
the 0.85 constant in Equation 22 was erroneously assumed 
to be a reduction for imperfections. The 0.85 constant was 
calculated theoretically, and the resulting Equation  26 is 
different from Equation  H3-2a only because ν  = 3 was 
used in Equation  H3-2a instead of ν  = 0.30. Batdorf et 
al. (1947) showed that Equations 26 and H3-2a provide a 
reasonable upper-bound solution compared to the experi-
mental results that were available at the time. Accordingly, 
Schilling (1965) recommended that the theoretical critical 
stress should be reduced by 15%, resulting in a coefficient 
of 0.85 × 1.25 = 1.06, as provided in Equation 30.

For the shapes listed in the 16th Edition Steel Construc-
tion Manual (AISC, 2023), the highest D/t ratio is 74.5 for a 
pipe section with D = 26.0 in. and t = 0.349 in. For this shape 
the ASTM A53/A53M tolerance is δo = D/200, resulting in 
a maximum permissible δo/t = 74.5/200 = 0.373. With a rea-
sonable lower-bound length of 97.5  in., Z  = 2,000. From 
Figure 4 with Z = 2,000, the buckling reduction factor, α = 
0.85 at δo/t = 0.22 and α = 0.82 at δo/t = 0.373. Equation 56 
results in similar values, with α = 0.88 at δo/t = 0.22 and α = 
0.84 at δo/t = 0.373.

Post-Buckling Strength

As noted previously by Lunquist (1932), although short cyl-
inders had a significant post-buckling strength increase, 
long cylinders have negative post-buckling strength. This 
conclusion was verified by Budiansky (1969), Yamaki 
(1974), and Zhang and Han (2007).

EXPERIMENTAL COMPARISONS

A review of the available research on the torsional strength 
of round hollow steel cylinders revealed 125 experimental 
tests from seven previously published research projects. A 
total of 106 of the specimens had an ultimate failure mode of 
buckling. Many of these specimens buckled in the inelastic 

This results in δo = D/400. Based on the applicable ASTM 
tolerances, this value is significantly lower than the maxi-
mum deviations allowed for these members:

•	 For 2.00  in. diameter and larger ASTM A500/A500M 
(2021) and A1085/A1085M (2015a) HSS shapes, the 
outside diameter does not vary more than ±0.75%, 
rounded to the nearest 0.005  in., from the specified 
outside diameter. This results in a maximum δo for 
symmetrical ovalization of D/267.

•	 For 2.00  in. diameter and larger ASTM A53/A53M 
(2020), A501/A501M (2014), and A618/A618M (2015b) 
HSS shapes, the outside diameter does not vary more 
than ±1% from the specified outside diameter. This 
results in a maximum δo for symmetrical ovalization of 
D/200.

Table 1 lists the ovalization tolerances, ρmax, specified in 
Eurocode 3, Part 1-6 (CEN, 2007), based on the fabrication 
quality class. Class C ovality tolerance is the most reason-
able representation of the ASTM pipe and HSS diameter 
tolerances.

Effect of Imperfections

Nash (1957) showed that the buckling strength of 
intermediate-length cylinders subjected to torsion is 
reduced by geometric imperfections. For long cylin-
ders, the buckling mode with n = 2 described by Sezawa 
and Kubo (1931), Batdorf et al. (1947), Sturm (1948), and 
Schmidt and Wintersetter (2004) is as a helical ovalization 
of the cross section as shown in Figure  1. For this case, 
the buckled cross-sectional shape is similar to the initial 
out-of-roundness imperfection in Figure 6. However, for the 
current manufacturing methods for HSS members that use 
linear weld seams, the initial imperfection is expected to be 
at a constant rotational location along the length instead of 
forming a helical curve. Although the use of spiral weld-
ing is increasing, it is primarily used for shapes with larger 
diameters.

Loo (1955) used large-deflection theory to determine 
the effect of initial geometric imperfections on the buck-
ling of cylindrical shells subjected to torsion. For the con-
dition with no geometric imperfection, the results were in 
close agreement with those of Donnell (1935), which were 
based on small-deflection theory. The pattern of the initial 
geometric imperfection was assumed to correspond to the 
buckled shape. The buckling reduction factor, α, defined 
by Equation 56, was developed using trial-and-error to best 
represent the theoretical reductions in buckling stress over a 
wide range of geometries. The dimensionless length param-
eter, ω, is defined according to Equation 12.
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Wu, He, Ghafoori, and Zhao (2018)

Wu et al. (2018) tested eight round HSS sections that failed 
by shear yielding before buckling distortion occurred at 
large rotation angles. The diameters were 3.50, 4.00, and 
4.50 in., and the tensile yield strengths were between 41.2 
and 58.0 ksi. Additional tests were conducted on specimens 
that were reinforced with carbon-fiber reinforced polymer 
(CFRP) composites.

Discussion

For the 19 specimens that failed by yielding, the maximum 
experimental torsional moment, Te, was greater than the 
calculated torsional yield moment, Ty = 0.6σyC, where σy 
is the measured uniaxial yield stress in tension. The spec-
imens tested by Popplewell and Coker (1895) sustained 
moments of 2.5Ty at large rotations; however, experimen-
tal measurements indicated that the proportional limit aver-
aged 0.927Ty.

For designing according to the AISC Specification, the 
critical stress can be defined by either Equation H3-2a or 
H3-2b. Therefore, the experimental data is plotted in Fig-
ure 7 using the controlling slenderness parameter, λ, which 
corresponds to the equation resulting in the highest critical 
stress. For Equation H3-2a, the slenderness parameter is:
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For Equation H3-2b, the slenderness parameter is:
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Figure 7 shows the AISC Specification nominal strength 
(without ϕ) curve for Te/Ty versus λ. The LRFD available 
strength (including ϕ) curve is shown with the dashed line. 
For the calculation of λ and Ty for the experimental data 
points, the measured dimensions and material properties 
were used in lieu of the nominal values. The AISC curve 
predicts the data trend accurately; however, for λ greater 
than about 1.5, most of the data points are below the nomi-
nal curve and several are well below the LRFD available 
strength curve.

RELIABILITY ANALYSIS

The resistance factor required to obtain a specific reliability 
level is (Galambos and Ravinda, 1978):

	 =CR Re RVRϕ ρ βα−
	 (59)

where
CR	= correction factor

VR	= coefficient of variation

range. The remaining 19 specimens failed by yielding with 
no post-yield buckling. Several of the researchers tested 
multiple materials; however, only the steel specimens were 
included in the database used in this paper. The details of 
all test specimens are listed in Table A1 of Appendix A, and 
the experimental results are listed in Table A2.

Popplewell and Coker (1895)

Popplewell and Coker (1895) tested five hollow mild steel 
shafts with a tensile yield stress of 34.8 ksi. The specimens 
had very large rotations at failure. Because the torsional 
strengths at the failure rotations were almost three times the 
first-yield moments, the strengths used in this paper are the 
first-yield values. Supplementary tension and double-shear 
tests were also conducted.

Seely and Putnam (1919)

Seely and Putnam (1919) tested six hollow cylinders that 
were machined from solid round bars to form the desired 
inner diameter. The bars had outer diameters of 1.88 and 
3.75 in. Soft, mild, and medium steels were tested, with ten-
sile yield points of 28.4 ksi, 33.0 ksi, and 46.8 ksi, respec-
tively. All specimens failed by shear yielding.

Bridget, Jerome, and Vosseller (1934)

Bridget et al. (1934) tested nine round HSS specimens with 
diameters between 0.625 and 2.875 in. The steel specimens 
had tensile yield stresses between 36.0 and 57.7 ksi. All 
specimens failed by buckling.

Donnell (1935)

Donnell (1935) tested 30 steel round HSS members 
between 1.88  in. and 27.0  in. diameter that were propor-
tioned for buckling well below the elastic shear yielding 
limit. The specimens were fabricated by rolling thin plates 
to the appropriate diameter and soldering at the longitu-
dinal seam, which were lapped approximately z  in. The 
research showed that small-diameter specimens can be used 
to accurately predict the behavior of much larger members.

Stang, Ramberg, and Back (1937)

Stang et al. (1937) tested 63 chromium-molybdenum steel 
round HSS members between s and 2.5 in. diameter. The 
tensile yield stresses varied from 67.7 to 110 ksi. The speci-
mens failed by either elastic “two-lobe” buckling with n = 2 
or inelastic buckling.

Schmidt and Winterstetter (2004)

Schmidt and Winterstetter (2004) tested four specimens of 
approximately 8 in. diameter and 24 ksi tensile yield stress. 
All of the specimens failed by buckling.
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where
VG	= coefficient of variation for the geometric properties

VM	= coefficient of variation for the material properties

VP	= �coefficient of variation for the test-to-predicted 
strength ratios

The author was unable to locate statistical data regarding 
deviations from the nominal diameter. However, for mem-
bers meeting the required ASTM tolerances, any diameter 
variation results in only a 1% worst-case strength reduc-
tion. Historically, the effect of initial imperfections has been 
addressed with a reduction factor. Therefore, the diameter is 
considered a deterministic quantity. Also, the effect of length 
variation was assumed to be negligible. For these conditions, 
ρG and VG are dependent only on the wall thickness, t.

Osterhof and Driver (2011) used ρt = 1.00 and Vt = 0.050 
for the wall thickness characteristics of HSS members. The 
slightly more conservative values from Dowswell (2021) 
were used for the calculations in this paper: ρt = 0.994 and 
Vt = 0.050.

The material characteristics for modulus of elasticity 
are ρE = 1.04 and VE = 0.026 (Schmidt and Bartlett, 2002). 
Liu et al. (2007) determined the material characteristics 
for yield stress of round HSS members: for A500 Grade B,  
ρF  = 1.36 and VF  = 0.07; for A53 Grade B, ρM  = 1.59,  
VM = 0.11.

αR	= separation factor

β	 = reliability index

ρR	= bias coefficient

Galambos and Ravinda (1973) proposed a separation fac-
tor, αR, of 0.55. For L/D = 3.0, Li et al. (2007) developed 
Equation 60 for calculating the correction factor.

	 CR = 1.40 − 0.156β + 0.0078β2	 (60)

Based on AISC Specification Section  B3.1 Commen-
tary, the target reliability index, βT, is 2.6, which results in  
CR = 1.05. The coefficient of variation and bias coefficient 
are calculated using the statistical parameters of the spe-
cific joint. The bias coefficient is:

	 ρR = ρMρGρP� (61)

where
ρG	= bias coefficient for the geometric properties

ρM	= bias coefficient for the material properties

ρP	= �bias coefficient for the test-to-predicted strength 
ratios; mean value of the professional factor cal-
culated with the measured geometric and material 
properties

The coefficient of variation is:

	 VR = VM
2 +VG2 +VP2 	 (62)

Fig. 7.  Graph of AISC Specification equations with experimental data.
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The statistical parameters for the geometric and material 
properties for buckling of intermediate-length members are 
listed in the fourth column of Table 2. Substituting Equa-
tions H3-2b and 2 into Equation H3-1, the buckling strength 
of long members is:
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Equation 68 is linear with respect to E. The derivative of 
Tc with respect to t is:
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The statistical parameters for the geometric and material 
properties for buckling of long members are listed in the 
fifth column of Table 2.

AISC Specification Equations

Because the reliability functions are separated into three 
groups (yielding, buckling of intermediate-length mem-
bers, and buckling of long members), each group was ana-
lyzed separately. Statistical parameters for test-to-predicted 
strength ratios, ρP and VP, as well as the number of speci-
mens, N, within each group are listed in Table 3.

From Table  3, ρP  = 1.00 when the AISC Specifica-
tion equations  are used with all specimens. However, an 
observation of the statistical parameters for buckling of 
intermediate-length members reveals the inaccuracy of 
Equation H3-2a. Using ϕ = 0.90 resulted in β = 4.06 for the 
specimens with a predicted failure mode of yielding, and 
β = 1.71 for the intermediate-length specimens with a pre-
dicted failure mode of buckling. Because 1.71 is below the 
target reliability index, Equation 70 is proposed to replace 
Equation H3-2a.

For the 19 specimens with low wall slenderness param-
eters, where the maximum value for (D/t)(Fy/E) is 0.0551, 
the ultimate experimental torsion resulted in large inelastic 
rotation angles. Therefore, for these specimens, the propor-
tional limit on the torsion-rotation curve was used for the 
experimental yield torsion.

The reliability analysis must be based on the three equa-
tions for yielding, buckling of intermediate-length mem-
bers, and buckling of long members. For a first-order 
multivariate analysis, the mean and variance of Tc can be 
approximated with Equations 63 and 64, respectively (Ben-
jamin and Cornell, 1970).

	 Tcm f X1m ,X2m ,...,Xnm( )≈ 	 (63)
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where
Tc	 = critical torsional strength

Tcm	= mean value of the critical torsional strength

Xi	 = uncorrelated variables affecting Tc

Substituting Equation 2 into Equation H3-1 and setting Fcr 
equal to 0.6Fy, the critical torsion for the limit state of yield-
ing is:

	 Tc = 0.3 FyDm
2 tπ 	 (65)

Because Equation 65 is linear with respect to both Fy and 
t, the statistical parameters for the geometric and material 
properties are used without manipulation as listed in the 
third column of Table 2.

Substituting Equation H3-2a and Equation 2 into Equa-
tion  H3-1, the buckling strength of intermediate-length 
members is:
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Equation 66 is linear with respect to E. The derivative of 
Tc with respect to t is:

Table 2.  Reliability Functions

Yielding

Buckling

Intermediate Long

Material
ρρM ρF = 1.36 ρE = 1.04 ρE = 1.04

VM VF = 0.07 VE = 0.026 VE = 0.026

Geometric
ρρG ρt = 0.994 (ρt)9/4 = 0.987 (ρt)5/2 = 0.985

VG Vt = 0.050 (9/4)(Vt) = 0.113 (5/2)(Vt) = 0.125
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For the remaining groups, β always exceeded βT, with 
the 76 yielding specimens resulting in β = 4.12 and all 49 
buckling specimens resulting in β = 2.98. Figure 8 shows 
the proposed nominal strength (without ϕ) curve for Te/Ty 
versus λ. The LRFD available strength (including ϕ) curve 
is shown with the dashed line.
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The statistical parameters for test-to-predicted strength 
ratios using the proposed equation are listed in Table  3. 
With ϕ = 0.90, Equation 70 results in β = 2.64 for the 39 
intermediate-length specimens with a predicted failure 
mode of buckling. At the target reliability index (βT = 2.6), 
ϕ = 0.910. The revised range for intermediate-length mem-
bers is defined by Equation 71.

Table 3.  Statistical Parameters for Test-to-Predicted Strength Ratios

All Yielding

Buckling

All Intermediate Long

AISC 
Specification

N 125 84 41 36 5

ρρP 1.00 1.02 0.967 0.944 1.14

VP 0.170 0.112 0.254 0.266 0.0717

Proposed 
equation

N 125 76 49 39 10

ρρP 1.12 1.02 1.27 1.28 1.23

VP 0.217 0.115 0.246 0.266 0.187

N = number of specimens

Fig. 8.  Graph of proposed equations with experimental data.
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ASTM (2021), Standard Specification for Cold-Formed 
Welded and Seamless Carbon Steel Structural Tubing 
in Rounds and Shapes, ASTM 500/500M, ASTM 
International, West Conshohocken, Pa.

Batdorf, S.B., Schildcrout, M., and Stein, M. (1947), Critical 
Stress of Thin-Walled Cylinders in Torsion, NACA 
Technical Note No. 1344, July.

Benjamin, J.R. and Cornell, C.A. (1970), Probability, 
Statistics and Decision for Civil Engineers, McGraw-Hill.

Bridget, F.J., Jerome, C.C., and Vosseller, A.B. (1934), 
“Some New Experiments on Buckling of Thin-Wall 
Construction,” Transactions of the American Society of 
Mechanical Engineers, Applied Mechanics Division, 
Vol. 56.

Budiansky, B. (1969), “Post-Buckling Behavior of Cylinders 
in Torsion,” Theory of Thin Shells, F.I. Niordson, ed.,  
Springer-Verlag.

CEN (2007), Eurocode 3—Design of Steel Structures—Part 
1-6: Strength and Stability of Shell Structures, Comite 
Européen de Normalisation, Brussels, Belgium.

Chen, D.H. (2016), Crush Mechanics of Thin-Walled Tubes, 
CRC Press.

Chen, W.F. and Sohal, I.S. (1988), “Cylindrical Members 
in Offshore Structures,” Thin-Walled Structures, Vol. 6, 
pp. 153−285.

Devi, S.V. and Singh, K.D. (2021), “The Continuous Strength 
Method for Circular Hollow Sections in Torsion,” 
Engineering Structures, Vol. 242.

Donnell, L.H. (1935), “Stability of Thin-Walled Tubes under 
Torsion,” NACA Technical Report No.  479, National 
Advisory Committee for Aeronautics.

Dowswell, B. (2021), “Analysis of the Shear Lag Factor 
for Slotted Rectangular HSS Members,” Engineering 
Journal, AISC, Vol. 58, No. 3.

Ellinas, C.P., Supple, W.J., and Walker, A.C. (1984), Buckling 
of Offshore Structures—A State-of-the-Art Review, Gulf 
Publishing Company.

Felton, L.P. and Dobbs, M.W. (1967), “Optimum Design of 
Tubes for Bending and Torsion,” Journal of the Structural 
Division, ASCE, No. ST 4, August. 

Flugge, W. (1973), Stresses in Shells, 2nd Ed., Springer- 
Verlag.

Galambos, T.V. and Ravinda, M.K. (1973), Tentative Load 
and Resistance Factor Design Criteria for Steel Buildings, 
Research Report No. 18, September, Department of Civil 
and Environmental Engineering, Washington University, 
St. Louis, Mo.

CONCLUSIONS

A historical review of the available research on the torsional 
strength of round HSS members revealed 125 experimen-
tal tests from seven projects, leading to evolving design 
methods over the last century. Theoretical and experimen-
tal research indicated two failure modes—yielding and 
buckling. To consider the effect of length, members with 
a buckling failure mode were further divided into long and 
intermediate-length members.

The experimental research showed that members with 
low wall slenderness parameters, (D/t)(Fy/E), have signif-
icant inelastic strength. However, the large inelastic rota-
tion angles required to realize this additional strength make 
the upper limit, Fcr = 0.6Fy, for AISC Specification H3-1 
appropriate based on typical serviceability considerations. 
Both the theoretical and experimental research indicated 
that imperfections can significantly reduce the buckling 
strength.

An evaluation of the AISC Specification provisions 
revealed inconsistent reliability indices that are dependent 
on the predicted failure mode and the member geometry. 
The reliability level for the yielding limit state is appropri-
ate; however, the target reliability for buckling is met only 
for long specimens. For intermediate-length members, the 
target reliability index can be met if AISC Specification 
Equation H3-2a is replaced with Equation 70.
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APPENDIX A

Table A-1.  Specimen Details

Specimen
D  
in.

L  
in.

t  
in.

E  
ksi

σσy  
ksi Specimen

D  
in.

L  
in.

t  
in.

E  
ksi

σσy  
ksi

Popplewell and Coker (1895) Donnell (1935) continued

36 0.500 5.00 0.0935 27,744 34.8 18 5.67 12.0 0.00205 31,300 —b

37 0.500 5.00 0.0935 27,744 34.8 19 3.75 12.0 0.00201 31,300 —b

38 0.500 5.00 0.0935 27,744 34.8 20 1.88 12.0 0.00201 31,300 —b

39 0.501 5.00 0.0920 27,744 34.8 21 1.88 24.0 0.00284 31,300 —b

40 0.501 5.00 0.0925 27,744 34.8 22 1.88 30.0 0.00201 31,300 —b

Seely and Putnam (1919) 23 0.319 4.53 .00192 31,300 —b

L1 2.88 8.25 0.125 29,000a 28.4 24 0.319 7.81 .00192 31,300 —b

L2 2.63 8.25 0.188 29,000a 28.4 25 0.319 12.4 .00192 31,300 —b

M1 0.750 3.25 0.125 29,000a 33.6 26 0.319 13.1 .00192 31,300 —b

M2 0.625 3.25 0.0625 29,000a 33.6 27 0.319 15.8 .00190 31,300 —b

M3 0.563 3.25 0.0313 29,000a 33.6 28 0.319 21.4 .00199 31,300 —b

H1 0.625 3.25 0.0625 29,000a 45.8 29 0.319 29.5 .00192 31,300 —b

Bridget et al. (1934) 30 0.319 53.5 .00192 31,300 —b

A 1.88 5.32 .00204 31,400 37.7 Stang et al. (1937)

C 3.75 5.32 0.00295 30,600 48.6 A1 0.750 19.0 0.0304 29900 84.0

D 1.88 11.32 0.00204 27,060 53.3 A2 0.750 19.0 0.0303 29900 84.0

E 1.88 5.32 0.00295 30,600 48.6 A3 0.751 60.0 0.0302 29900 84.0

F 3.75 1.32 0.00204 31,400 57.7 B1 1.001 19.0 0.0381 28800 89.0

G1 1.88 5.32 0.00395 29,600 36.0 B2 1.001 19.0 0.0380 28800 89.0

G2 1.88 5.32 0.00395 29,600 36.0 B3 1.001 19.0 0.0380 28800 89.0

G3 1.88 5.32 0.00395 29,600 36.0 C1 1.128 19.0 0.0479 29000 93.0

G4 1.88 5.32 0.00395 29,600 36.0 C2 1.127 19.0 0.0480 29000 93.0

Donnell (1935) C3 1.127 60.0 0.0480 29000 93.0

1 27.0 85.8 0.0115 31,300 —b D1 1.503 19.0 0.0580 29100 99.0

2 5.88 .469 .00193 31,300 —b D2 1.503 19.0 0.0580 29100 99.0

3 5.88 .375 .00193 31,300 —b D3 1.503 19.0 0.0581 29100 99.0

4 5.88 .290 .00193 31,300 —b D4 1.503 19.0 0.0581 29100 99.0

5 5.67 6.00 0.00292 31,300 —b D5 1.503 48.0 0.0581 29100 99.0

6 5.67 6.00 0.00280 31,300 —b E1 2.004 19.0 0.0652 28700 108

7 3.75 6.00 0.00288 31,300 —b E2 2.004 19.0 0.0652 28700 108

8 3.75 6.00 0.00288 31,300 —b E3 2.004 19.0 0.0653 28700 108

9 1.88 6.00 0.00292 31,300 —b E4 2.005 48.0 0.0652 28700 108

10 5.67 6.00 0.00217 31,300 —b F1 1.377 19.0 0.0382 28800 81.0

11 5.67 6.00 0.00217 31,300 —b F2 1.377 19.0 0.0382 28800 81.0

12 3.75 6.00 0.00213 31,300 —b F3 1.385 45.0 0.0381 28800 81.0

13 3.75 6.00 0.00213 31,300 —b G1 1.498 19.0 0.0349 29000 69.2

14 1.88 6.00 0.00205 31,300 —b G2 1.499 19.0 0.0349 29000 69.2

15 5.67 12.0 0.00268 31,300 —b G3 1.498 45.0 0.0349 29000 69.2

16 3.75 12.0 0.00280 31,300 —b H1 1.510 19.0 0.0528 28800 78.6

17 1.88 12.0 0.00280 31,300 —b (Table A-1 continues on the next page)
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Table A-1.  Specimen Details (continued)

Specimen
D  
in.

L  
in.

t  
in.

E  
ksi

σσy  
ksi

Specimen D  
in.

L  
in.

t  
in.

E  
ksi

σσy  
ksi

Stang et al. (1937) continued Stang et al. (1937) continued

I1 1.510 19.0 0.0685 28600 67.7 H2 1.511 19.0 0.0527 28800 78.6

I2 1.510 19.0 0.0687 28600 67.7 S1 1.250 19.0 0.0338 28400 87.8

J1 1.503 19.0 0.0845 28800 82.2 S2 1.251 19.0 0.0338 28400 87.8

J2 1.503 19.0 0.0845 28800 82.2 T1 1.503 19.0 0.0352 28200 93.8

J3 1.503 47.0 0.0845 28800 82.2 T2 1.503 19.0 0.0352 28200 93.8

K1 1.502 19.0 0.0928 28800 110 T3 1.503 60.0 0.0352 28200 93.8

K2 1.503 19.0 0.0925 28800 110 U1 1.505 19.0 0.0501 28800 103.8

L1 1.500 19.0 0.1259 28500 96.0 U2 1.506 19.0 0.0501 28800 103.8

L2 1.499 19.0 0.1258 28500 96.0 U3 1.508 60.0 0.0501 28800 103.8

L3 1.500 45.0 0.1258 28500 96.0 V1 2.500 19.0 0.0341 30200 75.0

M1 1.630 19.0 0.0495 27300 90.5 V2 2.506 19.0 0.0336 30200 75.0

M2 1.631 19.0 0.0495 27300 90.5 V3 2.501 60.0 0.0340 30200 75.0

N1 1.753 19.0 0.0509 27600 96.8 Schmidt and Winterstetter (2004)

N2 1.752 19.0 0.0509 27600 96.8 1 7.87 7.86 0.0418 29,153 23.9

N3 1.752 45.0 0.0507 27600 96.8 2 7.89 7.85 0.0266 29,443 24.4

O1 1.626 19.0 0.0359 27500 93.0 3 7.89 15.7 0.0420 29,153 23.9

O2 1.625 19.0 0.0358 27500 93.0 4 7.87 15.7 0.0267 29,443 24.4

O3 1.628 60.0 0.0357 27500 93.0 Wu et al. (2018)

P1 1.751 19.0 0.0356 27600 105 1-1 3.50 14.2 0.120 30,755 58.0

P2 1.752 19.0 0.0354 27600 105 1-2 3.50 14.2 0.120 30,755 58.0

P3 1.751 60.0 0.0354 27600 105 2-1 4.00 16.1 0.119 30,143 44.4

Q1 2.005 19.0 0.0361 27600 99.1 2-2 4.00 16.1 0.119 30,143 44.4

Q2 1.998 60.0 0.0360 27600 99.1 3-1 4.50 18.1 0.143 29,566 45.9

R1 1.124 19.0 0.0316 29000 95.2 3-2 4.50 18.1 0.143 29,566 45.9

R2 1.124 19.0 0.0317 29000 95.2 4-1 4.50 18.1 0.166 29,853 41.2

R3 1.124 60.0 0.0317 29000 95.2 5-1 4.50 18.1 0.201 30,266 53.9
a  The modulus of elasticity was not measured for these specimens. 29,000 ksi is the nominal value.
b  The yield stress was not measured for these specimens.
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Table A-2.  Experimental Results

Specimen

Experimental AISC Specification Proposed

Te  
kip-in. FM

Tc  
kip-in. FM Te//Tc

Tc  
kip-in. FM Te//Tc

Popplewell and Coker (1895)

36 0.475a Y 0.507 Y 0.937 0.507 Y 0.937

37 0.425a Y 0.507 Y 0.838 0.507 Y 0.838

38 0.425a Y 0.507 Y 0.838 0.507 Y 0.838

39 0.425a Y 0.505 Y 0.842 0.505 Y 0.842

40 0.425a Y 0.507 Y 0.839 0.507 Y 0.839

Seely and Putnam (1919)

L1 21.2a Y 25.3 Y 0.839 25.3 Y 0.839

L2 28.9a Y 29.8 Y 0.968 29.8 Y 0.968

M1 1.61a Y 1.55 Y 1.042 1.55 Y 1.042

M2 0.662a Y 0.626 Y 1.057 0.626 Y 1.057

M3 0.273a Y 0.279 Y 0.977 0.279 Y 0.977

H1 0.836a Y 0.854 Y 0.979 0.854 Y 0.979

Bridget et al. (1934)

A 0.0550 B 0.0511 I 1.08 0.0353 I 1.56

C 0.217 B 0.271 I 0.801 0.187 I 1.16

D 0.0360 B 0.0302 I 1.19 0.0209 I 1.73

E 0.106 B 0.114 I 0.929 0.0789 I 1.34

F 0.160 B 0.243 I 0.657 0.168 I 0.951

G1 0.178 B 0.213 I 0.837 0.147 I 1.21

G2 0.196 B 0.213 I 0.921 0.147 I 1.33

G3 0.186 B 0.213 I 0.874 0.147 I 1.27

G4 0.184 B 0.213 I 0.865 0.147 I 1.25

Donnell (1935)

1 12.8 B 16.1 I 0.797 11.1 I 1.15

2 0.960 B 0.631 I 1.52 0.436 I 2.20

3 1.02 B 0.705 I 1.45 0.488 I 2.09

4 1.40 B 0.802 I 1.75 0.554 I 2.53

5 0.286 B 0.428 I 0.669 0.296 I 0.968

6 0.268 B 0.389 I 0.689 0.269 I 1.00

7 0.202 B 0.247 I 0.817 0.171 I 1.18

8 0.218 B 0.247 I 0.882 0.171 I 1.28

9 0.096 B 0.107 I 0.894 0.0742 I 1.29

10 0.162 B 0.219 I 0.738 0.152 I 1.07

11 0.146 B 0.219 I 0.666 0.152 I 0.963

12 0.0840 B 0.125 I 0.670 0.0867 I 0.969

13 0.106 B 0.125 I 0.845 0.0867 I 1.22

14 0.0460 B 0.0485 I 0.949 0.0335 I 1.37

15 0.206 B 0.249 I 0.826 0.172 I 1.20

(Table A-2 continues on the next page)
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Table A-2.  Experimental Results (continued)

Specimen

Experimental AISC Specification Proposed

Te  
kip-in. FM

Tc  
kip-in. FM Te//Tc

Tc  
kip-in. FM Te//Tc

Donnell (1935) continued

16 0.128 B 0.164 I 0.780 0.113 I 1.13

17 0.0640 B 0.069 I 0.926 0.0478 I 1.34

18 0.0900 B 0.136 I 0.659 0.0943 I 0.954

19 0.0600 B 0.0778 I 0.771 0.0538 I 1.12

20 0.032 B 0.0328 I 0.975 0.0227 I 1.41

21 0.048 B 0.0504 I 0.952 0.0349 I 1.38

22 0.0200 B 0.0207 I 0.964 0.0143 I 1.39

23 0.00520 B 0.00364 I 1.43 0.00359 I 1.45

24 0.00339 B 0.00364 I 0.932 0.00273 I 1.24

25 0.00381 B 0.00314 I 1.21 0.00266 L 1.43

26 0.00341 B 0.00305 I 1.12 0.00266 L 1.28

27 0.00319 B 0.00272 I 1.17 0.00259 L 1.23

28 0.00301 B 0.00291 L 1.04 0.00291 L 1.04

29 0.00327 B 0.00266 L 1.23 0.00266 L 1.23

30 0.00320 B 0.00266 L 1.20 0.00266 L 1.20

Stang et al. (1937)

A1 1.25 B 1.25 Y 1.00 1.25 Y 1.00

A2 1.24 B 1.24 Y 1.00 1.24 Y 1.00

A3 1.26 B 1.24 Y 1.01 1.24 Y 1.01

B1 3.16 B 2.96 Y 1.07 2.96 Y 1.07

B2 3.17 B 2.96 Y 1.07 2.96 Y 1.07

B3 3.19 B 2.96 Y 1.08 2.96 Y 1.08

C1 4.95 B 4.90 Y 1.01 4.90 Y 1.01

C2 4.98 B 4.90 Y 1.02 4.90 Y 1.02

C3 5.07 B 4.90 Y 1.03 4.90 Y 1.03

D1 11.7 B 11.3 Y 1.04 11.3 Y 1.04

D2 11.8 B 11.3 Y 1.04 11.3 Y 1.04

D3 11.7 B 11.3 Y 1.03 11.3 Y 1.03

D4 11.6 B 11.3 Y 1.02 11.3 Y 1.02

D5 11.4 B 11.3 Y 1.01 11.3 Y 1.01

E1 23.4 B 24.9 Y 0.940 24.9 Y 0.940

E2 22.8 B 24.9 Y 0.912 24.9 Y 0.912

E3 23.2 B 25.0 Y 0.931 25.0 Y 0.931

E4 23.1 B 25.0 Y 0.924 25.0 Y 0.924

F1 5.74 B 5.23 Y 1.10 5.23 Y 1.10

F2 5.73 B 5.23 Y 1.10 5.23 Y 1.10

F3 5.75 B 5.28 Y 1.09 5.28 Y 1.09

G1 5.40 B 4.87 Y 1.11 4.87 Y 1.11

Table A-2 continues on the next page
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Table A-2.  Experimental Results (continued)

Specimen

Experimental AISC Specification Proposed

Te  
kip-in. FM

Tc  
kip-in. FM Te//Tc

Tc  
kip-in. FM Te//Tc

Stang et al. (1937) continued

G2 5.39 B 4.88 Y 1.11 4.88 Y 1.11

G3 5.54 B 4.87 Y 1.14 4.87 Y 1.14

H1 8.89 B 8.31 Y 1.07 8.31 Y 1.07

H2 8.77 B 8.30 Y 1.06 8.30 Y 1.06

I1 12.1 B 9.08 Y 1.34 9.08 Y 1.34

I2 11.7 B 9.11 Y 1.29 9.11 Y 1.29

J1 17.5 B 13.2 Y 1.33 13.2 Y 1.33

J2 17.5 B 13.2 Y 1.33 13.2 Y 1.33

J3 17.4 B 13.2 Y 1.32 13.2 Y 1.32

K1 19.9 B 19.1 Y 1.04 19.1 Y 1.04

K2 19.9 B 19.1 Y 1.04 19.1 Y 1.04

L1 23.5 B 21.5 Y 1.09 21.5 Y 1.09

L2 22.7 B 21.5 Y 1.06 21.5 Y 1.06

L3 22.2 B 21.5 Y 1.03 21.5 Y 1.03

M1 10.8 B 10.5 Y 1.03 10.5 Y 1.03

M2 11.2 B 10.6 Y 1.06 10.6 Y 1.06

N1 14.5 B 13.5 Y 1.08 13.5 Y 1.08

N2 14.3 B 13.4 Y 1.06 13.4 Y 1.06

N3 14.2 B 13.4 Y 1.06 13.4 Y 1.06

O1 7.78 B 7.96 Y 0.978 7.96 Y 0.978

O2 7.87 B 7.92 Y 0.993 7.92 Y 0.993

O3 7.96 B 7.62 L 1.05 7.62 L 1.05

P1 9.71 B 10.4 Y 0.937 9.00 I 1.08

P2 9.49 B 10.3 Y 0.919 8.89 I 1.07

P3 9.17 B 7.79 L 1.18 7.79 L 1.18

Q1 12.4 B 13.1 Y 0.949 11.0 I 1.12

Q2 11.6 B 8.90 I 1.30 8.72 L 1.33

R1 3.38 B 3.38 Y 1.00 3.38 Y 1.00

R2 3.50 B 3.39 Y 1.03 3.39 Y 1.03

R3 3.62 B 3.39 Y 1.07 3.39 Y 1.07

S1 4.16 B 4.14 Y 1.01 4.14 Y 1.01

S2 4.15 B 4.14 Y 1.00 4.14 Y 1.00

T1 6.58 B 6.70 Y 0.981 6.70 Y 0.981

T2 6.54 B 6.70 Y 0.975 6.70 Y 0.975

T3 6.30 B 6.70 Y 0.940 6.70 Y 0.940

U1 10.3 B 10.4 Y 0.991 10.4 Y 0.991

U2 10.3 B 10.4 Y 0.989 10.4 Y 0.989

U3 10.4 B 10.4 Y 0.994 10.4 Y 0.994

(Table A-2 continues on the next page)
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Table A-2.  Experimental Results (continued)

Specimen

Experimental AISC Specification Proposed

Te  
kip-in. FM

Tc  
kip-in. FM Te//Tc

Tc  
kip-in. FM Te//Tc

Stang et al. (1937) continued

V1 13.5 B 14.7 Y 0.918 14.1 I 0.952

V2 13.1 B 14.5 Y 0.900 13.7 I 0.952

V3 9.59 B 11.4 I 0.838 9.34 L 1.03

Schmidt and Winterstetter (2004)

1 59.0 B 57.8 Y 1.02 57.8 Y 1.02

2 43.3 B 37.8 Y 1.15 37.8 Y 1.15

3 59.0 B 58.4 Y 1.01 58.4 Y 1.01

4 41.5 B 37.7 Y 1.10 37.4 I 1.11

Wu et al. (2018)

1-1 66.4a Y 74.7 Y 0.888 74.7 Y 0.888

1-2 66.4a Y 74.7 Y 0.888 74.7 Y 0.888

2-1 66.4a Y 74.9 Y 0.886 74.9 Y 0.886

2-2 66.4a Y 74.9 Y 0.886 74.9 Y 0.886

3-1 106a Y 117 Y 0.904 117 Y 0.904

3-2 106a Y 117 Y 0.904 117 Y 0.904

4-1 124a Y 121 Y 1.02 121 Y 1.02

5-1 204a Y 189 Y 1.08 189 Y 1.08
a � For these specimens, the ultimate experimental torsion resulted in large inelastic rotation angles. The proportional limit 

on the torsion-rotation curve was used for the experimental torsion.
Tc	 = calculated torsional moment, kip-in.
Te	 = experimental torsional moment, kip-in.
FM:	Failure mode
B:	 Buckling
I:		 Buckling of an intermediate-length member
L:	 Buckling of a long member
Y:	 Yield
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Lateral-Torsional Buckling Modification Factors in  
Steel I-Shaped Members: Recommendations  
Using Energy-Based Formulations
NAMITA NAYAK, P.M. ANILKUMAR, and LAKSHMI SUBRAMANIAN

ABSTRACT

Lateral torsional buckling (LTB) is of concern in long-span flexural members, particularly in the negative flexure regions of continuous-span, 
steel I-shaped members and during construction. While the elastic critical LTB capacity of a simply supported I-shaped member subjected 
to uniform moment has a closed-form solution, most LTB modification factors for beams subjected to moment gradients in the literature 
are empirical and work well only for specific loading and boundary conditions. This paper investigates the suitability of the different LTB 
modification factors in literature and design specifications for various loading and boundary conditions, accomplished via comparisons with 
analytical solutions using the Rayleigh-Ritz method and numerical solutions from finite element analyses. The analytical LTB modification 
factors are derived for doubly symmetric I-shaped members with different combinations of ideal flexural and torsional boundary conditions 
(simply supported and fixed) and subjected to different loading scenarios. The validity of the LTB modification factors determined using the 
Rayleigh-Ritz method and other formulae in the literature are also assessed for realistic intermediate restraint conditions, which are neither 
fully pinned nor fixed, by examining laterally continuous beams. Demonstrating that current design specifications for elastic critical LTB 
modifications are overly conservative for beams with complete or partial warping fixity, the authors recommend practical and simple alter-
natives to design such beams.

Keywords:  lateral torsional buckling, LTB modification factor, Rayleigh-Ritz method, warping restraints, continuous beams.

INTRODUCTION

This paper investigates the elastic critical lateral tor-
sional buckling (LTB) capacities of doubly symmetric, 

steel I-shaped members loaded at their centroidal axes, con-
sidering a spectrum of loading and boundary conditions. 
The classical solution for the elastic critical lateral torsional 
buckling capacity was first proposed by Timoshenko (1936) 
for simply supported, doubly symmetric, I-shaped members 
subjected to uniform moment, which is used worldwide as 
the elastic critical lateral torsional buckling capacity. Sev-
eral empirical formulae for LTB modification factors have 
since been developed to account for the enhancement in 
the flexural capacities of beams with nonuniform moments 
within the unbraced spans (such as Salvadori, 1956; Nether-
cot and Rockey, 1972; Kirby and Nethercot, 1979; Serna et 

al., 2006; Wong and Driver, 2010). Design codes and speci-
fications (BS 5950-1, 2000; AASHTO, 2020; AISC, 2022) 
employ these modification factors with or without elastic 
lateral effective length factors. The British standard recom-
mends using an effective length based on the restraint con-
ditions at the ends of the unbraced segments. While AISC 
Specification (2022) Equation F2-4 stipulates the use of a 
full unbraced length instead of an effective unbraced length 
by defining the unbraced length as the distance between 
lateral braces, its Commentary discusses using an effec-
tive length factor based on the end restraints as per Ziemian 
(2010). Similarly, the AASHTO Specification Commentary 
(2020) explores using an effective length factor in rehabili-
tation design or extraordinary circumstances, which may be 
calculated based on Nethercot and Trahair (1976) and Zie-
mian (2010). The recommendation of K = 1.0 in the Ameri-
can specifications (AASHTO, 2020; AISC, 2022) can lead 
to significantly conservative estimates of elastic critical 
LTB capacities of I-shaped members, whose ends are tor-
sionally fixed (both twist and warping are fixed). This is 
true irrespective of the in-plane flexural boundary condi-
tions. Such beams are practically found in cases such as 
rigid beam-column joints or in typical moment connection 
details. However, using an elastic effective length factor, 
K (as suggested in the AISC and AASHTO Specification 
Commentaries), along with the current equations for the 
LTB modification factors (Cb) may lead to inaccurate esti-
mates of the flexural capacities of I-shaped members.
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An inaccurate estimation of Cb, and thereby, the elastic 
critical buckling capacities, affects the entire beam design 
curve. For example, the AISC Specification beam design 
curve consists of three parts: the plateau for short unbraced 
lengths (Lb < Lp) with the maximum cross-section capac-
ity, an elastic LTB curve for long unbraced lengths (Lb > 
Lr), and an inelastic LTB equation that is a linear interpola-
tion between the maximum cross-section capacity and the 
elastic LTB curves. The inelastic and elastic LTB design 
capacities in the AISC and AASHTO Specifications are 
scaled by Cb for nonuniform moment loading conditions, 
limited by the maximum cross-section capacity. Such scal-
ing often leads to an extended plateau length several times 
larger than Lp, and a greatly enhanced inelastic LTB capac-
ity. Hence, an inaccurate estimation of Cb may result in 
either overly conservative or unconservative estimates of 
the beam capacities in a significant portion of the beam 
design space. Subramanian and White (2017a) also noted 
that the extended plateau resulting from scaling the flexural 
capacity by Cb in the inelastic LTB region tends to overes-
timate the true strengths even for beams which are free to 
warp at their ends (K = 1.0). Although the available litera-
ture provides numerous formulations for estimating Cb, the 
existing equations are generally fit to the results of numeri-
cal parametric studies for specific loading and boundary 
conditions.

The objective of this study is to evaluate the appropri-
ateness of the existing Cb factors in design specifications 
and literature for ideal boundary conditions, including fork 
boundary conditions (flexurally and torsionally simply 
supported), fully fixed (flexurally and torsionally) condi-
tions, and flexurally simply supported and torsionally fixed 
boundary conditions. More practical conditions, including 
laterally continuous beams, are also subsequently examined. 
The loading conditions include linear moment gradients, a 
concentrated load at mid-span, and uniformly distributed 
loads. The available empirical equations are compared with 
analytical solutions using the Rayleigh-Ritz method and 
finite element (FE) simulations. The Rayleigh-Ritz method 
is an energy-based approach, wherein the LTB capacity 
is obtained by minimizing the total potential energy of 
the system. Although the energy method has been previ-
ously used by others (Timoshenko, 1936; Galambos and 
Surovek, 2008; Yoo and Lee, 2011) to calculate the elas-
tic critical buckling moments, those studies were limited to 
simply supported I-shaped members and cantilever beams 
subjected to concentrated loads. This work seeks to estab-
lish accurate formulations for predicting the elastic critical 
moment of steel I-shaped members for standard loading and 
end-restraint conditions, while also defining the specific 
conditions for which the available commonly used equa-
tions are most suitable. The results from the Rayleigh-Ritz 
method are also compared with FE test simulations. The 

comparisons with the literature and FE simulations also 
help identify practical design scenarios where one must 
exercise caution when using the existing equations in the 
design specifications and the recommendations in the com-
mentaries for LTB resistances.

Following the studies on beams with ideal boundary 
conditions, this paper looks at practical design conditions 
with laterally continuous beams. In beams with intermedi-
ate lateral braces, the critical lateral spans are restrained 
by their adjoining segments. A correct estimate of the flex-
ural capacity of such beams depends on the effective length 
of the critical unbraced span and the appropriate Cb fac-
tor. While the effective lateral length factor, K, for the ideal 
boundary conditions, may be taken as 1.0 for torsionally 
simply supported conditions, and 0.5 for torsionally fixed 
conditions, the appropriate K for laterally continuous beams 
is determined using other methods.

White (2008) and White and Jung (2008) briefly 
described the evolution of the AISC Specification beam 
design equations, which are largely a fit to a vast body of 
experimental data. They explained that the current coef-
ficient in the equation for Lp (AISC Specification Equa-
tion F4-7) may be taken as devoid of any implicit effective 
length factors. They further cautioned that employing K = 
1.0, as outlined in the AISC Specification, is conservative 
for several design conditions and recommended using the 
effective length proposed by Nethercot and Trahair (1976) 
and Galambos (1998). Nethercot and Trahair first pro-
posed a method to estimate the elastic effective length fac-
tor for laterally continuous beams, akin to the method for 
braced columns. They stipulated that the restraints to the 
critical span from the immediately adjoining segments are 
functions of the loading in both the critical and restrain-
ing segments, and the far-end boundary conditions. Later, 
Subramanian et al. (2018) discussed the effect of inelastic-
ity in the critical segments, leading to a consideration of 
Kinelastic in interpreting experimental test data. They dem-
onstrated an improved reliability when the plateau length, 
Lp, was reduced to a coefficient of 0.63 instead of 1.1, and 
the anchor point for the elastic stresses, FL, was decreased 
to 0.5Fyc, as recommended in Kim (2010) and Subramanian 
and White (2017b).

More recently, John and Subramanian (2019) proposed 
modifications to the original method by Nethercot and 
Trahair (1976), noting that the restraint also depends on 
whether the adjoining segment braces the critical span at 
the location of the maximum or the minimum moment 
within the critical span. Additionally, John and Subrama-
nian discussed situations where the farther segments fur-
ther influence the restraints from the spans immediately 
adjoining the critical span. They also observed conditions 
where the critical lateral span may be identified incor-
rectly. This paper examines the various Cb formulations for 
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rts

2 =
IyCw

Sx �

where
Cb	= �LTB modification factor for nonuniform moment 

diagrams

Lb	= lateral unbraced length, in.

Sx	 = �elastic section modulus taken about the major axis 
of the cross section, in.3

c	 = 1.0 for doubly symmetric I-sections

ho	 = distance between the flange centroids, in.

Table 1 provides expressions for LTB modification factors 
from the literature, commonly derived from a fit to the data 
from finite element or finite difference methods for moment 
gradients. These equations are derived for specific loading 
conditions but are, however, usually applied to all loading and 
boundary conditions. For example, the equation proposed by 
Salvadori (1956), incorporated in the AASHTO Specifica-
tion, applies to members with linear bending moment dia-
grams between the two braced points. While this equation 
is simple to use and yields good results for bending in sin-
gle curvature, it is significantly conservative when applied 
to beams with double curvature. Similarly, Nethercot and 
Rockey (1972) provided the LTB modification factors for 
beams with warping-fixed boundary conditions subjected to 
a concentrated load at mid-span and a uniformly distributed 
load (Ziemian, 2010); however, the in-plane boundary con-
ditions in the warping-fixed cases were not specified.

Serna et al. (2006) found that the equations provided 
in the AISC Specification and the British standard (BS 
5950-1, 2000) are unconservative for warping-fixed condi-
tions. They proposed an alternate equation, where the LTB 
modification factor is a function of the torsional boundary 
conditions. Wong and Driver (2010) opined that the equa-
tion proposed by Serna et al. (2006) overestimates the elas-
tic critical LTB capacity, and they proposed the Cb factor 
presented in Table 1. The equation developed by Wong and 
Driver (2010) fits the numerical data considering the effect 
of moment gradients in beams whose ends are free to warp.

The British standard BS 5950-1 (2000) employs a LTB 
modification coefficient similar to the AISC Specifica-
tion with different coefficients for the bending moments at 
quarter-, mid-, and three-quarter span locations. The Brit-
ish standard further recommends using an effective length 
factor, K, of 1.0 and 0.7 for warping-free and fixed bound-
ary conditions, respectively. While the AISC Specification 
recommends using the Cb factor (Equation F1-1) proposed 
by Kirby and Nethercot (1979), several other Cb factors 
are presented in the Commentary. These equations include 
Wong and Driver’s (2010) equation (AISC Specification 
Commentary Equation  C-F1-2b) for nonlinear moment 
diagrams, and the Cb factor proposed by Yura and Helwig 

laterally continuous beams by applying the effective length 
factors from both the Nethercot and Trahair (1976) method 
and the modified methods suggested by John and Subrama-
nian (2019).

These exhaustive comparisons of the LTB modification 
factors for ideal boundary conditions and laterally continu-
ous beams with partial restraint conditions lead the authors 
to recommend design methods better suited for a broader 
range of beam design conditions.

EVALUATION OF Mcr USING EXISTING DESIGN 
CODES AND EMPIRICAL FORMULAE

Timoshenko (1936) derived the elastic critical LTB capac-
ity for flexurally and torsionally simply supported, dou-
bly symmetric, I-shaped members subjected to a uniform 
moment. The AISC Specification Commentary discusses 
using an elastic effective length instead of the full unbraced 
length to enhance the elastic critical buckling moment by 
using the method prescribed in Ziemian (2010), which con-
siders the lateral and torsional boundary conditions in the 
beams. This modified elastic critical LTB capacity, Mocr, 
may be written as given in Equation 1 by considering the 
effective length KL for the different flexural and torsional 
boundary conditions. This basic critical moment equation 
is typically modified for different loading and boundary 
conditions by multiplying the expression for Mocr with the 
LTB modification factor, Cb. Some of the commonly used 
expressions for Cb are listed in Table 1.

	
Mocr =

2EIy
KL( )2

2EIw
KL( )2 +GJππ ⎛

⎝⎜
⎞
⎠⎟ �

(1)

where
E	 = Young’s modulus of elasticity, ksi

G	= elastic shear modulus, ksi

Iy	= minor axis moment of inertia, in.4

Iw	= warping constant, in.4

J	 = St.-Venant torsional constant, in.4

L	 = lateral unbraced length, in.

The American specifications use Equation 2 (AISC Speci-
fication Equation  F2-4 and AASHTO Specification Equa-
tion A6.3.3) to estimate the elastic critical LTB stress of an 
I-shaped member. This equation is similar to Timoshenko’s 
solution for a flexurally and torsionally simply supported, 
doubly symmetric, I-shaped member (with K  = 1.0) sub-
jected to uniform moment.

	

Fcr = Cb
2E

Lb
rts

2 1+ 0.078
Jc

Sxho

Lb
rts

2⎛
⎝⎜

⎞
⎠⎟⎛

⎝⎜
⎞
⎠⎟

π

�

(2)
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Table 1.  Review of LTB Modification Factors, Cb, from the Literature

Source Equation Remarks

Salvadori (1956)  
AISC Specification (2022) 
Equation C-F1-1  
AASHTO Specification 
(2020)* Equation A6.3.3.7

Cb = 1.75 + 1.05
M1

M2
+ 0.30

M1

M2

2

2.30
⎛
⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞
⎠
⎟ ≤

M1—smaller moment at the end of the 
unbraced length
M2—larger moment at the end of the 
unbraced length
The ratio of M1 to M2 is positive for double 
curvature and negative for single curvature 
bending

Nethercot and Rockey 
(1972)  
Ziemian (2010)

1.35a

1.13b

Cb = 1.92 0.42
L

EIw
GJ

2

+ 1.85
L

EIw
GJ

ππ−
⎛
⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞
⎠
⎟

c

Cb = 1.64 0.41
L

EIw
GJ

2

+ 1.77
L

EIw
GJ

⎛
⎝
⎜

⎛
⎝
⎜

⎞
⎠
⎟

⎞
⎠
⎟− ππ

d

a � Flexurally and torsionally simply 
supported with a concentrated load at 
mid-span

b � Flexurally and torsionally simply 
supported with a uniformly distributed 
load

c � Flexurally and torsionally fixed with a 
concentrated load at mid-span

d � Flexurally and torsionally fixed with a 
uniformly distributed load

Kirby and Nethercot (1979)  
(AISC Specification 
Equation F1-1)

Cb = 12.5Mmax

2.5Mmax + 3.0MA + 4.0MB + 3.0MC

Mmax—absolute value of the maximum 
moment in the unbraced segment
MA, MB, MC—absolute values of the 
moments at the quarter-, mid-, and three-
quarter points of the unbraced segment

British standard 
(BS 5950-1, 2000)

Cb = Mmax

0.20Mmax + 0.15M2 + 0.50M3 + 0.15M4
2.27≤

Mmax—absolute value of the maximum 
moment in the unbraced segment
M2, M3, M4—absolute values of the 
moments at the quarter-, mid-, and three-
quarter points of the unbraced segment

Serna et al. (2006)
Cb =

kA1 +
1 k( )

2
A2

2

+
1 k( )

2
A2

A1

−−⎡

⎣⎢
⎤

⎦⎥
⎢ ⎥

A1 = Mmax
2 + 9kM2

2 + 16M3
2 + 9kM4

2

17 + 18k( )Mmax
2

A2 = Mmax + 4M1 + 8M2 + 12M3 + 8M4 + 4M5

37Mmax

k = 1 (lateral bending and warping are free)

= 0.5 (lateral bending and warping 
are prevented)  

Mmax—maximum bending moment
M1, M5 are the bending moment at brace 
locations
M2, M3, M4—moments at the quarter-, 
mid-, and three-quarter points of the 
unbraced segment

Wong and Driver (2010)  
(AISC Specification 
Commentary Equation 
C-F1-2b)

Cb = 4Mmax

Mmax
2 + 4MA

2 + 7MB
2 + 4MC

2
2.50≤

Mmax—absolute value of the maximum 
moment in the unbraced segment
MA, MB, MC—absolute values of the 
moments at the quarter-, mid-, and three-
quarter points of the unbraced segment

*	The moment modification factor in AASHTO Specification (2020) is expressed in the form of compression flange stresses at the brace locations.
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And the potential of external force is equal to:

	
V = 1

2
Mx 2 u( )

0

L
dz∫ ϕ ″⎡⎣ ⎤⎦

�
(5)

The total potential of the system can hence be written as:

	

= 1

2
EIy u( )2 + EIw ( )2 +GJ ( )2

0

L
dz

+ 1

2
Mx 2 u( )

0

L
dz⎡⎣ ⎤⎦

⎡
⎣

⎤
⎦∏ ϕϕ

ϕ

″ ″

″

′∫

∫
�

(6)

where
Mx	= �bending moment about the major principal axis

u′′	 = �second derivative of the lateral deflection of the 
centroidal axis u

ϕ′	 = �first derivative of the twist ϕ
ϕ′′	 = �second derivative of ϕ

The potential energy is a function of the loading condi-
tions (the bending moment M) and the unknown coefficients 
of the displacement functions (u and ϕ). These unknowns are 
calculated by applying the Rayleigh-Ritz technique to Equa-
tion 6 by minimizing the system’s potential energy (δΠ = 0).

Derivation of the elastic critical LTB capacity of a 
simply supported beam with fork boundary conditions 
subjected to uniform moment

The elastic critical LTB capacity for the doubly symmet-
ric I-shaped member in Equation  1 is derived using the 
Rayleigh-Ritz approach described here.

The boundary conditions for a simply supported beam 
are given by

	 u = u = = 0 at z == 0 and z = L″″ ϕ ϕ � (7)

The assumed displacement functions satisfying the above 
boundary conditions are:

	
u = Asin

z

L
, = Bsin

z

L

ππ ϕ
�

(8)

(AISC Specification Commentary Equation C-F1-5) (Yura, 
1995; Yura and Helwig, 2010) for beams with reverse curva-
ture continuously braced at their top flanges.

While the AISC Specification offers several equations 
that consider the moment gradient and the effect of bracing, 
there needs to be more discussion on the range of support 
and loading conditions for which the equations are appli-
cable. Given the differences in the existing Cb formulae, 
particularly for end conditions with warping restraints, a 
general theoretical model based on the Rayleigh-Ritz for-
mulation is presented in this paper to assess the accurate 
Cb for each loading and boundary condition. The frequent 
assertion in literature that using the Cb expressions derived 
for warping-free conditions is conservative when used in 
beams with warping restraint is also examined in this paper.

ELASTIC CRITICAL LTB CAPACITY USING  
THE RAYLEIGH-RITZ FORMULATION

This section provides the elastic critical LTB solutions 
obtained using the Rayleigh-Ritz method for beams with 
ideal boundary conditions subjected to different load-
ing conditions. The standard case of a doubly symmetric 
I-beam with fork boundary conditions (flexurally and tor-
sionally simply supported) subjected to uniform moments is 
shown in Figure 1. The traditional assumptions while deriv-
ing the LTB equation (Timoshenko, 1936) for I-shaped 
members are not stated here for brevity.

According to the principle of virtual work, the total 
potential, ∏, of a system may be determined by summing 
the elastic energy of the system, U, and the potential of 
the external forces, V. The total potential of the system is 
constant.

	 =∏ U +V � (3)

The total elastic strain energy of the beam is given by:

	
U = 1

2
EIy u( )2 + EIw ( )2 +GJ ( )2

0

L
dz⎡⎣ ⎤⎦″ ″∫ ϕ ϕ′

�
(4)

Mo Moz

v
L

y

z

u
Lx

ϕ

vx

u

	 (a)  In-plane displacement	 (b)  Out-of-plane displacement	 (c)  Twist of  
			   cross section

Fig. 1.  Displacement of a simply supported doubly symmetric I-shaped member subjected to uniform moment.
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All critical moments are observed to be multiples of the 
basic critical moment, Mocr, in Equation 1 with the corre-
sponding K listed in Table 3 (1.0 for torsionally simply sup-
ported conditions and 0.5 for torsionally fixed conditions). 
The LTB modification factor, Cb, presented in Table 3, is 
the ratio of Mcr to Mocr. The derivations for several cases 
listed in Table 3 are presented in Nayak et al. (2023). The 
derivations for loading types 6 and 9 are also presented in 
the appendix of this paper. The derivations for other cases 
are mathematically repetitive and can be obtained using the 
shape functions and boundary conditions listed in Table 2. 
They are not shown in this paper.

COMPARATIVE STUDIES WITH NUMERICAL 
RESULTS AND THE LITERATURE

The elastic critical LTB capacities calculated using the 
LTB modification factors derived in Table 3 are compared 
with the results from the elastic buckling analyses using FE 
simulations in SABRE2 (White et al., 2021). SABRE2 is a 
structural analysis and design software that employs beam 
elements with 7 degrees of freedom at each node, includ-
ing the warping degree of freedom. The solutions from 
SABRE2 are also verified with several studies using elastic 
buckling analyses in ABAQUS (2022). Following a mesh 
convergence study, each beam unbraced segment is mod-
eled with eight elements. The boundary conditions used are 
presented in Figure 2.

The results for two wide-flange sections (W16×40 and 
W30×90) of 6.0 m (19 ft 8 in) length are presented in this 
paper for the validation studies. Table  4 compares the 
critical elastic critical LTB capacities calculated using 
the LTB modification factors, Cb, established using the 
Rayleigh-Ritz method, Mcr,energy, and the elastic critical 
LTB capacities from the finite element analyses (FEA), 
Mcr,FEA, for the two sections for the 16 different cases that 
make use of results from the nine loading types chosen in 
Table 2. The results for a broader range of wide-flange sec-
tions are similar and do not add value to this paper. Cases 
1–11 in Table 4 are flexurally and torsionally simply sup-
ported (twist restrained, warping free), while Cases 12–14 
are flexurally simply supported in-plane, but torsionally 
fixed (twist and warping restrained). Cases 15 and 16 are 
modeled with both flexurally and torsionally fixed bound-
ary conditions.

Figure 3 compares the elastic critical LTB capacities esti-
mated using the empirical Cb equations given in the AISC 
Specification and in BS 5950-1 and those obtained from 
the energy method, with the elastic critical LTB capaci-
ties obtained from the FE simulations for the W16×40 and 
W30×90 sections, respectively. The values reported for the 
energy method employ K = 0.5 for conditions with warping 
fixity (Cases 12–16). In reporting the values for the AISC 

The bending moment at any section along the length of the 
beam is Mx = M.

The total potential energy calculated using Equation 6 is 
given by

	
=U +V =

4EIyA
2

4L3 +
4EIwB

2

4L3 +
2GJB2

4L

2MAB

2L
Π

ππππ −

� (9)

Differentiating the total energy with respect to the 
unknowns A and B, the following equations are obtained.

	 A
=

4EIyA

2L3

2MB

2L
− ππΠ

∂
∂

�
(10)

	 B
=

4EIwB

2L3 +
2GJB

2L

2MA

2L
Π πππ

−
∂
∂

�
(11)

The total potential being constant, Equations 10 and 11 
are equated to zero.

2EIy
L2 M

M
2EIw
L2 +GJ

A

B
= 0

−

−
π

π

⎪
⎨
⎪

⎪⎧ ⎫
⎬
⎪⎩ ⎭

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎢ ⎥
⎢ ⎥

⎥⎢ ⎥

The solution for the elastic critical lateral torsional 
moment, Mcr, can be obtained by evaluating the determi-
nant of this matrix. Equation 12 is the same as the classical 
buckling solution derived by Timoshenko (1936), with an 
effective length factor, K, of 1.0.

	
Mcr =

2EIy
L2

2EIw
L2 +GJππ ⎛

⎝⎜
⎞
⎠⎟ �

(12)

The different loading and boundary conditions studied in 
this paper are listed in Table 2. The in-plane boundary con-
ditions and loading are illustrated through the images, and 
the warping restraint is described in the text. The transverse 
loads are applied at the centroidal axes, precluding instabil-
ity from load-height effects.

Table  3 lists the elastic critical LTB capacities for the 
nine different loading and ideal boundary conditions 
listed in Table 2. These expressions are derived using the 
energy method. The cross-sectional twist is restrained at 
both beam ends in all cases in this paper. The assumed dis-
placement functions listed in the last column of Table 2 sat-
isfy the corresponding boundary conditions. The number 
of terms shown in the displacement functions is based on 
convergence studies for each case. The critical buckling 
load or moment is thus obtained by minimizing the poten-
tial energy given by Equation 6, using the same procedure 
outlined for a beam subjected to uniform moment (loading 
type 1).
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Table 2.  Assumed Displacement Functions for the Ideal Loading and Boundary Conditions Studied in This Paper

Loading 
Type Loading Condition

Boundary Condition

Displacement Functions
In-Plane 
Flexural Warping

1
M M Simply 

supported
Free

u = Asin
z
L

π

= Bsin
z
L

πϕ

2a
M βM Simply 

supported
Free

u = Asin
z
L

+Bsin
2 z
L
ππ

= Csin
z
L

πϕ

3b
P Simply 

supported
Free

u = Asin
z
L

+Bsin
2 z
L
ππ

= Csin
z
L

πϕ

4b w Simply 
supported

Free

u = Asin
z
L

+Bsin
2 z
L
ππ

= Csin
z
L

πϕ

5
M M Simply 

supported
Fixed

u = A 1 cos
2 z
L
π−⎛

⎝
⎞
⎠

πϕ = B 1 cos
2 z
L

−⎛
⎝

⎞
⎠

6b
P Simply 

supported
Fixed

u = A 1 cos
2 z
L

+B 1 cos
4 z
L
ππ −− ⎛

⎝
⎛
⎝

⎞
⎠

⎞
⎠

= C 1 cos
2 z
L
π

ϕ −⎛
⎝

⎞
⎠

7b w Simply 
supported

Fixed

u = A 1 cos
2 z
L

+B 1 cos
4 z
L
ππ −− ⎛

⎝
⎛
⎝

⎞
⎠

⎞
⎠

= C 1 cos
2 z
L
πϕ −⎛

⎝
⎞
⎠

8b P
Fixed Fixed

u = A 1 cos
2 z
L

+B 1 cos
4 z
L
ππ −− ⎛

⎝
⎛
⎝

⎞
⎠

⎞
⎠

= C 1 cos
2 z
L
πϕ −⎛

⎝
⎞
⎠

9b w 
Fixed Fixed 

u = A 1 cos
2 z
L

+B 1 cos
4 z
L
ππ

−−⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

= C 1 cos
2 z
L
π

−ϕ ⎛
⎝

⎞
⎠

a  β is positive for single curvature and negative for reverse curvature.
b  The transverse loads are applied at the centroidal axes.
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Table 3.  Elastic Critical LTB Capacities and LTB Modification Factor  
Obtained for the Different Cases Considered in Table 2 Using the Energy Method

Loading 
Type K Elastic Critical LTB Capacity Cb Mcr Mocr

1 1.0 Mcr =
2EIy
L2

2EIw
L2 +GJ

π π⎛
⎝
⎜

⎞
⎠
⎟ 1.00

2 1.0 Mcr = 1

0.50 1+( ) 2 + 0.18 1( ) 2

2EIy
L2

2EIw
L2 +GJ

β β−

ππ ⎛
⎝
⎜

⎞
⎠
⎟

⎡⎣ ⎡⎣⎤⎦ ⎤⎦

1

0.50 1+( ) 2 + 0.18 1( ) 2⎡⎣⎡⎣ ⎤⎦⎤⎦ ββ −

3 1.0 Mcr = 1.42
2EIy
L2

2EIw
L2 +GJππ ⎛

⎝
⎜

⎞
⎠
⎟ 1.42

4 1.0 Mcr = 1.15
2EIy
L2

2EIw
L2 +GJ

⎛
⎝
⎜

⎞
⎠
⎟

ππ
1.15

5 0.5 Mcr =
2EIy

0.5L( )2

2EIw
0.5L( )2 +GJππ ⎡

⎣
⎢

⎤

⎦
⎥ 1.00

6 0.5 Mcr = 1.07
2EIy
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a

Loading type 1-4
at shear center, a
ux = uy = uz = 0 (pin end)
θz = 0 (pin end)
ux = uy = 0 (roller end)
θz = 0 (roller end)
warping free

Loading type 5-7
at shear center, a, at the ends
ux = uy = uz = 0 
θy = θz = 0 
warping fix

Loading type 8-9
at shear center, a, at the ends
ux = uy = uz = 0 
θ θ θx = y = z = 0 
warping fix

Fig. 2.  Boundary conditions used in FE simulations.
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warping-fixed support conditions. However, their direction 
on the appropriate effective length to use in their equations 
is ambiguous. Hence, an effective length factor of 1.0 is 
used here, even for cases with warping-fixed end conditions 
in their expressions for Cb. Using the full lateral unbraced 
length (K  = 1.0) rather than an effective lateral length  
(K  = 0.5) in their equations yields more realistic results, 
preventing grossly unconservative calculations. However, 
in other comparative studies, the critical moment is esti-
mated using K = 1.0 for flexurally and torsionally simply 
supported boundary conditions and K = 0.5 for torsionally 
fixed end conditions irrespective of the in-plane flexural 
boundary conditions.

Specification, a value of K = 1.0 is used in all cases, as per 
the current definition of Lb. Additionally, the AISC Speci-
fication Cb is also used with the correct effective length 
factor K = 0.5, for Cases 12–16, as proffered in the AISC 
Specification Commentary. Similarly, an effective length 
factor of 0.7 is employed in estimating the elastic critical 
LTB capacity while using BS 5950-1 for warping-fixed 
conditions.

Figure 4 compares the elastic critical LTB capacities esti-
mated using the empirical equations in the literature and the 
energy-based solutions, with the elastic critical LTB capaci-
ties obtained from the FE simulations for the two sections. 
Nethercot and Rockey’s (1972) equations were derived for 
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Fig. 3.  Comparison of Mcr obtained from FEA with the Rayleigh-Ritz method and  
equations given in the design standards for 6 m (19 ft 8 in) long I-shaped members.
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Fig. 4.  Comparison of Mcr obtained from FEA with the Rayleigh-Ritz method  
and empirical equations in literature for 6 m (19 ft 8 in) long I-shaped members
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particularly true for the beams subjected to reverse 
curvature (Cases 6–9  in Figure  3). The elastic critical 
LTB capacity of a simply supported beam, calculated 
using the British standard (BS 5950-1, 2000) and the 
AISC Specification (2022) equations are nearly equal, 
and the maximum conservative strength estimations are 
0.81 and 0.80 times Mcr,FEA, respectively, for Case 8 with 
an end moment ratio (β) of −0.75.

The following conclusions are drawn from Figures  3 
and 4:

1.	The calculated elastic critical LTB capacities for 
beams in the design code and specifications are 
typically conservative for torsionally simply supported 
end conditions, and the conservatism increases with 
an increase in the gradation of the moment. This is 

Table 4.  Comparison of the LTB Capacities Obtained from the Energy Method with FE Solutions

Case 
Study No.

Boundary Condition

Bending Moment Diagram

W16××40 W30××90

Flexure Warping Mcr,FEA//Mcr,energy Mcr,FEA//Mcr,energy

1
Simply 

supported
Free

β = +1

0.97 0.98

2
Simply 

supported
Free

β = +w

0.97 0.98

3
Simply 

supported
Free

β = +2

0.97 0.98

4
Simply 

supported
Free

β = +4

0.96 0.97

5
Simply 

supported
Free

β = 0

0.95 0.97

6
Simply 

supported
Free

β = −4

0.93 0.95

7
Simply 

supported
Free

β = −2

0.92 0.94

8
Simply 

supported
Free

β = −w

0.94 0.96

(Table 4 continues on the next page)
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the true K of 0.5 for warping fixed conditions in the AISC 
Specification, such as in conditions with rigid beam-
column joints, the strengths may be unconservatively 
estimated by up to 1.8 times the true strengths.

3.	Figures 4(a) and (b) show that Salvadori’s equation, 
although derived for linear moment gradients, 
conservatively estimates the elastic critical LTB 
capacity with a ratio of Mcr/Mcr,FEA equal to 0.82 for 
Case  8 (with β equal to −0.75). Wong and Driver’s 
equation underestimates the strength, with the smallest 
value of Mcr/Mcr,FEA equal to 0.85 for simply supported 
beams with reverse curvature bending (Cases 8 and 9). 
Conversely, Wong and Driver’s equation overestimates 
the strength in beams with warping-fixed end conditions, 

2.	The equations in the design code and specifications are 
overly conservative for beams with warping fixed at 
both beam ends (by 40–70%), when the comparisons use 
a K of 0.7  in the British standard and 1.0  in the AISC 
Specification equations. The British standard predicts 
elastic critical LTB capacities as low as 0.6 times those 
of the FE solutions for flexurally and torsionally fixed 
beams subjected to a uniformly distributed load (Case 
16 in Figure 3). Similarly, the AISC Specification elastic 
critical LTB capacity is significantly conservative for 
beams with warping-fixed conditions (such as Case  15 
in Figure  3), with a strength underestimation of up to 
0.4−0.5 times the true solutions.

	 On the other hand, if the comparison is made by including 

Table 4.  Comparison of the LTB Capacities Obtained from the Energy Method with FE Solutions (continued)

Case 
Study No.

Boundary Condition

Bending Moment Diagram

W16××40 W30××90

Flexure Warping Mcr,FEA//Mcr,energy Mcr,FEA//Mcr,energy

9
Simply 

supported
Free

β = −1

0.96 0.97

10
Simply 

supported
Free 0.93 0.94

11
Simply 

supported
Free 0.95 0.96

12
Simply 

supported
Fixed 0.98 0.98

13
Simply 

supported
Fixed 0.98 0.98

14
Simply 

supported
Fixed 0.99 0.99

15 Fixed Fixed 0.97 0.97

16 Fixed Fixed 0.98 0.98
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while exploiting the enhanced strengths from smaller 
effective lengths, and will be examined subsequently in 
this paper for laterally continuous beams.

6.	Table  4  indicates that the LTB capacities estimated 
using the Rayleigh-Ritz method (denoted as the energy 
method) compare well with the FE results, with a 
maximum overestimation of 9% of Mcr,FEA for a simply 
supported beam with moment gradient factor β equal 
to −0.5 (Case  7). These studies show that the energy 
formulations are most beneficial when applied to simply 
supported beams subjected to reverse curvature and for 
beams with warping fixed at their ends.

Impact of Cb on the limiting plateau length and the 
inelastic flexural strength

Having shown that the AISC Specification elastic critical 
LTB capacity is either overly conservative or unconserva-
tive for warping-fixed conditions depending on the assumed 
K, the import of applying the AISC Specification equations 
using K = 1 and 0.5, and Cb as per Equation F1-1 on the 
inelastic flexural strength and the plateau length is now 
examined. Figures 5(a) and (b) plot the normalized design 
strengths (Mn/Mp) for the flexurally and torsionally fixed 
beams with a concentrated load at the mid-span (Case 15, 
Table 4), and a uniformly distributed load (Case 16, Table 4) 
for the W16×40 section. The cross-section Lp is 1.7 m (5 ft 
7 in), and Lr = 7.0 m (23 ft). These figures show the AISC 
Specification design strengths modified with the Cb as per 
Equation F1-1 and K = 1.0 and 0.5, and the design strengths 
estimated using the Cb factor derived using the energy 
method with a K = 0.5. On the other hand, the equations for 
Cb in the AASHTO Specification (Equations  6.10.8.2.3-7 
and A6.3.3.7) recommend using an LTB modification fac-
tor of unity for cases where the compression flange stresses 
or the bending moments at the braced locations are zero. 
The AASHTO Specification commentary discusses that 
this would be conservative only in rare cases (in bridge 
girders) where the span is simply supported with no inter-
mediate cross-frames. Figure 5 shows that using the AISC 
Specification Cb and K = 1.0 for warping fixed conditions 
is already on the safe side. Hence, the comparative study 
only includes the AISC Specification with the understand-
ing that the use of the AASHTO Specification (with K = 1.0 
and Cb = 1.0) will lead to still more conservative estimates 
of the beam capacity.

These plots further show that using a Cb factor as per 
the AISC Specification equation with an effective length 
factor of 1.0 results in a smaller plateau length and conser-
vative estimates of design strengths when compared with 
the beam strengths estimated using the Cb factors derived 
from the energy method. It is important to note that the 
results presented in the paper are not specific to the two 

with the largest Mcr/Mcr,FEA ratio being 1.35 (in Cases 
15 and 16), using K  = 0.5. On the other hand, using  
K = 1.0 in Wong and Driver’s equation for warping-fixed 
conditions will result in 50–70% conservative estimates 
of the true capacities. The excessively unconservative 
or conservative estimates of Cb shows the limitation 
of Wong and Driver’s equation in warping-fixed end 
conditions.

4.	The Nethercot and Rockey solutions estimate values 
of Cb greater than 3 for beams with warping fixity 
at their ends. Using K  = 0.5 will make the equations 
unconservative, with the maximum value of the  
Mcr/Mcr,FEA ratio equaling 3.19. Hence, these Cb factors 
are used along with an Mcr for an effective length factor 
of 1.0 rather than 0.5 to make the comparisons presented 
here more realistic. Figures  4(a) and (b) show that the 
solutions by Nethercot and Rockey (1972), derived for 
beams subjected to concentrated loads at their mid-spans 
and uniformly distributed loads, provide a reasonable 
estimate of Mcr for Cases 10 and 11 and Cases 13 and 
14. All four of these cases are simply supported in-plane. 
Cases 10 and 11 are torsionally simply supported, while 
Cases 13 and 14 are torsionally fixed.

	 The elastic critical LTB capacities for warping-fixed 
beams subjected to concentrated loads at their mid-spans 
are the same despite the difference in their in-plane 
flexural boundary conditions (i.e., in Cases 13 and 15). 
Consequently, ascribing the same LTB modification 
factor to Case 15 as Case 13 appears acceptable. However, 
the moment capacity of a flexurally and torsionally 
fixed beam subjected to a uniformly distributed load 
(Case 16) significantly differs from that of a flexurally 
simply supported and warping-fixed beam with the same 
loading scenario (Case 14). Therefore, using the same Cb 
for Cases 14 and 16 results in significantly conservative 
estimates of flexural strengths, with a ratio of Mcr/Mcr,FEA 
of 0.55, suggesting that Nethercot and Rockey’s equations 
for LTB modification factors for warping-fixed cases are 
better suited for in-plane simply supported boundary 
conditions, and are significantly conservative for Case 16, 
where the I-beam is flexurally fixed in-plane (resulting in 
reverse curvature, and torsional bracing at the location of 
the maximum moment within the unbraced span).

5.	The equations by Serna et al. (2006) predict strengths 
that are typically smaller than the FEA results (up to 
0.93 times Mcr,FEA for simply supported beams with 
reverse curvature bending with β  = −1, Case  9) and 
are unconservative (by approximately 10% of the FE 
solution) for a fully fixed beam subjected to a uniformly 
distributed load (Case  16). These equations, however, 
appear to provide the best estimates of Cb for the wide 
range of ideal loading and boundary conditions, even 
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Nethercot and Trahair (1976) were the first to suggest a 
method to estimate the effective length factor for beams, 
analogous to the buckling of braced columns, by account-
ing for the restraints from the adjacent spans. John and 
Subramanian found that the Nethercot and Trahair (N&T) 
method sometimes predicts significantly conservative or 
unconservative effective length factors. John and Subrama-
nian contended that (1) the critical lateral span may receive 
restraint from segments further away from the immediate 
adjoining segments (the extended restraint effect); (2) the 
restraint received from the adjoining segment also depends 
on whether the brace is at the location of the maximum or 
the minimum moment within the critical span [resolved by 
the load and boundary condition effect (LBC)]; and (3) there 
are situations where the N&T method may incorrectly iden-
tify the critical lateral span and, thereby, the critical buck-
ling load (resolved by an iteration of the N&T method). 
Three practical cases with laterally continuous spans are 
shown in Figure 6, for which the use of the appropriate Cb 
is discussed in this paper. The LBC interaction method pro-
posed by John and Subramanian (2019) (referred to as J&S 
in this paper) is used in Cases I and II, while their iteration 
method is used in Case III.

In calculating Mcr, the different Cb formulations are 
combined with different K estimates. The Cb values from 
the proposed solutions and Serna et al. (2006) (previously 
shown to be the best estimates of Cb for a wide range of 
ideal boundary conditions) are used along with the elas-
tic effective length factors derived using the classical N&T 
method and the modified method from J&S.

Figure  6 shows the loading and bending moment dia-
grams for the three cases discussed here. The beam is sim-
ply supported in-plane, and the lateral spans are marked 
as I, II, and III. The example discussed here considers a 
W30×90 beam section with a critical span length, L, of 6 m 

cross-sections shown, and any doubly symmetric hot-rolled 
section will produce similar results.

Using an inaccurate Cb along with K = 0.5 modifies the 
design strength curves such that the plateau lengths are 3.0 
and 1.25 times those of the design curves obtained using the 
energy-based Cb factors for Cases 15 and 16, respectively. 
Furthermore, using an elastic K also inappropriately ampli-
fies the inelastic LTB capacity.

Although the current AISC Specification equations 
sometimes lead to excessively conservative estimates of 
the flexural strengths when K is taken as 1.0 for warp-
ing fixed conditions, the degree of conservatism is such 
that such a simplification may not be suitable for design 
purposes. Conversely, using an effective length factor of  
K = 0.5 and the Cb factor from the current AISC Specifica-
tion will result in highly unconservative estimates of flex-
ural strengths. Therefore, any recommendation to use an 
effective length factor with the current Cb equations must 
be treated with caution.

APPLICABILITY OF THE LTB MODIFICATION 
FACTORS TO CONTINUOUS BEAMS

LTB modification factors are hitherto derived for ideal 
boundary conditions, which are simply supported and fixed 
flexurally and torsionally. However, even a single-span 
simply supported girder may have multiple lateral braces. 
The critical lateral span in such conditions receives partial 
restraint from its adjacent segments, and hence, the bound-
ary conditions for the critical lateral span lie between the 
ideal simply supported and fixed conditions. In investigat-
ing the appropriate Cb, one must also use an appropriate 
effective lateral length factor, K. The K calculations in lat-
erally continuous beams are more complex than those dis-
cussed with ideal boundary conditions.
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Fig. 5.  Comparison of the design flexural strengths predicted using the Cb factors in AISC Specification  
Equation F1-1 and the energy method for warping-fixed conditions for W16×40 section.



154 / ENGINEERING JOURNAL / THIRD QUARTER / 2024

1.	The flexural strengths calculated using Cb from the 
energy method and Serna et al., are conservative by 
17–32% if K is taken as 1.0. The more conservative 
predictions are for Cases II and III, where the critical 
spans are braced by their adjoining segments at the 
locations of their maximum bending moments.

2.	In Case I, where the adjacent span braces the smaller end 
moment location of the critical span, the N&T method, 
when used with the Cb from the energy method and 
Serna et al., estimates the elastic critical LTB capacities 
reasonably well. However, in Case II, with the larger 
end moment at the brace location, the estimated Mcr 
using the N&T method is conservative, with a ratio of  
Mcr/Mcr,FEA equal to 0.87 for Cb from the energy method 
and 0.90 for Cb from Serna et al. In Case III, the estimated 
strengths exceed the FE solutions by 17% and 26% due to 
the incorrect identification of the critical span, as noted 
by John and Subramanian (2019).

3.	The modified effective lengths proposed by John and 
Subramanian, along with the Cb from the energy method, 
predict the elastic critical LTB capacities with an error of 
less than 6% of the FE solutions across all cases.

(19 ft 8 in). The critical lateral span for this beam geometry 
in Case I is span I, and in Case II is span II. The critical 
lateral spans are marked by the hatched bending moment 
diagrams. The N&T method suggests that span II is critical 
in Case III, while span III is identified as the critical span 
using the iteration method (J&S) and FE test simulations. 
The difference in the critical spans identified by the two 
methods in Case III may be attributed to the restraint span 
II would receive at one end from span I, thereby enhanc-
ing its buckling strength. The increased elastic critical LTB 
capacity of span II will also result in greater restraint to the 
critical segment, span III.

Figure  7 shows the design flexural capacities for the 
example case by combining each of the two Cb formula-
tions (from Serna et al., 2006, and the Cb evaluated using 
the energy method) with three different elastic effective 
length factors (K = 1, K from the N&T method, and K from 
the J&S method). The strengths are normalized by the true 
strengths from the FE test simulations. These calculations 
use the appropriate K in the Cb equations by Serna et al. 
instead of the binary values of 0.5 and 1.0 provided by the 
authors.

The following conclusions are drawn from Figure 7:
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Fig. 7.  Comparison of flexural strengths of the laterally continuous beams  
in Figure 6 using various Cb factors for W30×90, with L = 6 m (19 ft 8 in.)
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1.	The current equations in the AISC Specification (2022) 
and the British standard for Cb work well for flexurally 
and torsionally simply supported beams bending in single 
curvature, and are mildly conservative for such beams 
bending in reverse curvature. They are conservative by 
less than 10% when the beams are subjected to single 
curvature, and by less than 20% when they are subjected 
to reverse curvature bending.

2.	AISC Specification Equation F1-1 is conservative by up to 
268% for beams that are torsionally fixed and flexurally 
either simply supported or fixed, and loaded by a mid-span 
concentrated load and a uniformly distributed load (i.e., 
Cases 13–16). The equation is conservative for a beam 
with warping fixed at its ends and subjected to uniform 
moment at the ends (Case 12) by up to 72%. This is true 
if the full unbraced length (K = 1.0) is used. Further, the 
equations are excessively unconservative by up to 84% if 
an effective length factor of 0.5 is used as suggested in 
AISC Specification Section F1 Commentary. This would 
not be an ideal design solution for beams with laterally 
unbraced beams with moment connections at their ends, 
such as in rigid beam-column joints.

3.	An inaccurate Cb results in falsely exaggerated plateau 
lengths and inelastic LTB capacities, especially 
when used together with an effective length factor, as 
discussed in the commentary of the AISC and AASHTO 
specifications.

4.	The efficiency of the Cb factor is further examined using 
different K factors for laterally continuous beams. The 
energy method best predicts the moment modification 
factor, Cb, for ideal boundary conditions, although the Cb 
formulation from Serna et al. (2006) produces compar
able results. However, when used in laterally continuous 
beams, one also must rely on empirical formulations to 
calculate the elastic effective length factor, K. For such 
beams, where the calculations combine an empirical K 
with a Cb, the authors find that the Cb from the energy 
method and Serna et al. when used along with the K 
from John and Subramanian (2019) produce similar 
results. The comparable predictions may be attributed 
to the approximate nature of the calculation methods 
for K. Recognizing the impracticality of the rigorous 
calculations involved in using the Rayleigh-Ritz approach 
for design, the authors recommend using the equations 
by Serna et al. for Cb along with effective length factors 
calculated using the methods by John and Subramanian.

Although the paper only presents the energy-based solu-
tions for a few select cases, similar displacement shape 
functions may be used for other loading conditions to obtain 
the corresponding expressions for the LTB capacities. This 
offers a more rigorous approach to formulating the LTB 

4.	In lieu of a rigorous formulation from the Rayleigh-Ritz 
method, the authors suggest using the Cb from Serna et al. 
(2006) in conjunction with the K from the J&S method, 
which best predicts the strengths of laterally continuous 
beams, with an error of less than 2%.

DISCUSSIONS ON PRACTICAL LOADING  
AND BOUNDARY CONDITIONS

The paper presents the behavior of I-shaped members sub-
jected to transverse loads through the shear center. Many 
practical loading scenarios on I-section members in steel 
construction involve top flange loading, whereas gan-
try girders are typically loaded at their bottom flanges. A 
transverse load on an unbraced top flange reduces the elas-
tic critical moment, while the load on an unbraced bottom 
flange increases the buckling moment. In such cases where 
the top flange is not braced, the load height effect must be 
considered in addition to the LTB modification factor, as 
also discussed in the AISC Specification Commentary. 
However, the presence of a concrete slab or deck precludes 
the tipping effect due to top flange loading. Members with 
ideal boundary conditions, such as simply supported and 
fixed flexurally and torsionally, are studied in this paper. 
The detailing of the beam-to-beam or beam-to-column 
connections dictates the warping fixity at the beam ends. 
For example, a simple shear connection is often torsionally 
simply supported at its ends. However, when a steel beam is 
encased into a concrete column, the column offers complete 
fixity against twisting and warping. Similarly, a moment 
connection offers significant restraint to warping and par-
tially restrains in-plane and out-of-plane bending. Likewise, 
the secondary beams in a building often provide full or par-
tial restraints to the primary beams at discrete locations, 
leading to the conditions of laterally continuous spans dis-
cussed in this paper. It is clearly important to be cognizant 
of the various in-plane and out-of-plane restraints that steel 
detailing provides and apply design equations accordingly.

CONCLUSIONS

This paper reviews the expressions for the LTB modifica-
tion factor Cb for elastic lateral torsional buckling (LTB) 
of doubly symmetric I-shaped members in design codes 
and literature for different loading conditions, and differ-
ent flexural and torsional boundary conditions. The paper 
includes combinations of ideal simply supported and fixed 
boundary conditions for flexure and torsion, as well as 
intermediate restraint conditions modeled using laterally 
continuous beams. The empirical equations for Cb are com-
pared with analytical solutions derived by the authors using 
the Rayleigh-Ritz approach and finite element (FE) solu-
tions. The key findings are summarized here:
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Mocr	 Elastic critical lateral torsional moment of beam 
subjected to uniform moment, kip-in.

Mp	 Plastic moment, kip-in.

P	 Magnitude of the transverse concentrated load, 
kips

Pcr	 Elastic critical buckling load, kips

U	 Elastic strain energy of the system

V	 Potential of the external forces

u	 Lateral/out-of-plane deflection, in.

w	 Magnitude of the uniformly distributed load, kip/
in.

wcr	 Elastic critical buckling load, kip/in.

Π	 Total potential of the system

ϕ	 Twist of the cross section

β	 Ratio of end moments, negative for reverse 
curvature bending 
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APPENDIX: DERIVATION OF THE Cb FACTOR 
USING THE RAYLEIGH-RITZ METHOD

Loading type 6: simply supported beam with fork 
boundary conditions subjected to a concentrated load at 
the mid-span centroidal axis

The boundary conditions for a simply supported beam are 
given by

	 u = u″ = = = 0 at z = 0 and z = Lϕ ϕ″ � (13)

The assumed displacement functions satisfying the above 
boundary conditions are
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The bending moment at any section along the length of the 
beam for a concentrated load P,
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The total potential energy calculated using Equation  6 is 
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Differentiating the total energy with respect to the 
unknowns A, B, and C, the following equations are obtained.

A

4EIyA

2L3

4 + 2( )PC
16

=∏ ππ
−∂

∂ �
(17)

8 4EIyB

L3B
=∏ π

∂
∂

�
(18)

Kirby, P.A. and Nethercot, D.A. (1979), Design for Struct
ural Stability, John Wiley & Sons, New York, N.Y.

Nayak, N., Anilkumar, P.M., and Subramanian, L. (2023), 
“Rayleigh-Ritz Formulation for Moment Modification 
Factors on Lateral-Torsional Buckling of I-Beams,” 
Proceedings of the Annual Stability Conference, SSRC, 
Charlotte, N.C., pp. 1–20.

Nethercot, D.A. and Rockey, K.C. (1972), “A Unified 
Approach to the Elastic Lateral Buckling of Beams,” 
Engineering Journal, AISC, Vol. 9, No. 3, pp. 96–107.

Nethercot, D.A. and Trahair, N.S. (1976), “Lateral Buckling 
Approximations for Elastic Beams,” Structural Engineer, 
Vol. 54, No. 6, pp. 197–204.

Salvadori, M.G. (1956), “Lateral Buckling of I-Beams,” 
Transactions of the American Society of Civil Engineers, 
ASCE, Vol. 120, No. 1, pp. 1,165–1,177.

Serna, M.A., López, A., Puente, I., and Yong, D.J. (2006), 
“Equivalent Uniform Moment Factors for Lateral- 
Torsional Buckling of Steel Members,” Journal 
of Constructional Steel Research, Vol.  62, No.  6, 
pp. 566–580.

Subramanian, L., Jeong, W.Y., Yellepeddi, R., and White, 
D.W. (2018), “Assessment of I-Section Member LTB 
Resistances Considering Experimental Test Data and 
Practical Inelastic Buckling Design Calculations,” 
Engineering Journal, AISC, Vol. 55, No. 1, pp. 15–44.

Subramanian, L. and White, D.W. (2017a), “Reassessment 
of the Lateral Torsional Buckling Resistance of Rolled 
I-Section Members: Moment Gradient Tests,” Journal of 
Structural Engineering, Vol. 143, No. 4, pp. 04016203.

Subramanian, L. and White, D.W. (2017b), “Reassessment 
of the Lateral Torsional Buckling Resistance of I-Section 
Members: Uniform-Moment Studies,” Journal of Struc
tural Engineering, Vol. 143, No. 3, pp. 04016194.

Timoshenko, S.P. (1936), Theory of Elastic Stability, 1st Ed., 
McGraw-Hill, New York, N.Y.

White, D.W. (2008), “Unified Flexural Resistance Equations 
for Stability Design of Steel I-Section Members: 
Overview,” Journal of Structural Engineering, Vol. 134, 
No. 9, pp. 1,405–1,424.

White, D.W. and Jung, S. (2008), “Unified Flexural 
Resistance Equations for Stability Design of Steel 
I-Section Members: Uniform Bending Tests,” Journal of 
Structural Engineering, Vol. 134, No. 9, pp. 1,450–1,470.

White, D.W., Tougay, O., Slein, R., and Jeong, W.Y. (2021), 
SABRE2, http://www.white.ce.gatech.edu/sabre.

Wong, E. and Driver, R.G. (2010), “Critical Evaluation of 
Equivalent Moment Factor Procedures for Laterally 
Unsupported Beams,” Engineering Journal, AISC, 
Vol. 47, No. 1, pp. 1–20.



158 / ENGINEERING JOURNAL / THIRD QUARTER / 2024

The total potential energy calculated using Equation  6 is 
given by
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Differentiating the total energy with respect to the 
unknowns A, B and C, the following equations are obtained.
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The total potential being constant, Equations 26–28 are 
equated to zero.
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The solution for the elastic critical buckling load, wcr, 
can be obtained by evaluating the determinant of the above 
matrix.
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Now, the elastic critical lateral torsional buckling capac-

ity can be estimated using the expression Mcr = wcrL
2
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The LTB modification factor, Cb, is estimated by tak-
ing the ratio of Mcr given in Equation  28 and Mocr for 
warping-fixed condition (Equation  1) with effective 
unbraced length 0.5L, resulting in a value of 1.77.
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The total potential being constant, Equations 17–19 are 
equated to zero.
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The solution for the elastic critical buckling load, Pcr, 
can be obtained by evaluating the determinant of the above 
matrix.
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Now from the elastic critical lateral torsional buckling 

moment can be estimated using the expression Mcr = LPcr
4

	
Mcr = 1.42

2EIy
L2

2EIw
L2 +GJ

⎛
⎝⎜

⎞
⎠⎟

π π

�
(21)

The LTB modification factor, Cb, is estimated as the ratio 
of Mcr given in Equation 21 and Mocr (Equation 1) resulting 
in a value of 1.42.

Loading type 9: flexurally and torsionally fixed beam 
subjected to uniformly distributed load along the 
centroidal axis

The boundary conditions for a flexurally and torsionally 
fixed beam are given by

	 u = u = = = 0 at z = 0 and z = L′′ ϕ ϕ � (22)

The assumed displacement functions satisfying the above 
boundary conditions are
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The bending moment at any section along the length of the 
beam for a uniformly distributed load w per unit length,
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Tensile Coupon Testing and Residual Stress 
Measurements of High-Strength Steel  
Built-Up I-Shaped Sections
KARA STALL, ANDREA CULHANE, LIKUN SUN, RACHEL CHICCHI CROSS, and 
MATTHEW STEINER

ABSTRACT

High strength structural steels (with yield stresses greater than 65 ksi) may have notably different material characteristics when compared to 
structural steels conventionally used in building construction [i.e., ASTM A992/A992M (2022) or A572/A572M Gr. 50 (2021)]. This paper pres-
ents findings from an experimental program that investigated the material characterization of ASTM A656/A656M Gr. 80 (2024) plate steel. 
The results obtained were compared to conventional ASTM A572/A572M Gr. 50 steel. Two types of testing were performed for this work: 
tensile coupon testing and residual stress testing. The tensile coupon testing was carried out for both the A656/A656M Gr. 80 and A572/
A572M Gr. 50 plate material. The A656/A656M Gr. 80 plate material showed more variation between the two different plate thicknesses in 
both mechanical behavior and microstructure due to differences in steel production. The 0.375 in. thick plate exhibited a clear yield plateau 
with an ultimate/yield stress ratio similar to the Gr. 50 material. In contrast, the 0.5 in. plate did not have a yield plateau and reached lower 
ultimate strain. The residual stress testing was performed using a sectioning technique for one A572/A572M Gr. 50 and five A656/A656M 
Gr. 80 built-up sections that were fabricated from 0.5 in. and 0.375 in. plate material. Residual stresses obtained from measurements were 
compared to previously published predictive models. The ECCS model (ECCS, 1984) and BSK99 (Boverket, 2003) models were found to be 
reasonable predictors of residual stresses for all specimens except the one section fabricated from 0.5 in. thick Gr. 80 plate. When compar-
ing the Gr. 50 and Gr. 80 specimens of the same cross-sectional geometry, the residual stresses were similar, implying that cross-sectional 
geometry is more prevalent than the nominal yield stress in determining residual stresses in built-up I-sections.

Keywords:  high strength structural steel, mechanical properties, residual stress, built-up sections.

INTRODUCTION

H igh-strength structural steel (HS3) is being classified 
as any structural grade of steel with a yield stress, Fy, 

greater than or equal to 65  ksi (450  MPa). These higher 
strengths can be achieved through alloying, quenching 
and tempering, or thermo-mechanically controlled pro-
cessing. Implementation of these high-strength steels has 

become increasingly popular in international markets, 
such as Europe and Asia; however, the United States has 
been slower to adopt their use. In 2019, the AISC Ad Hoc 
Task Group on High-Strength Steel published a final report 
(AISC, 2019) that discussed the benefits of HS3, paths for-
ward for implementation into the AISC Specification for 
Structural Steel Buildings (AISC, 2022), hereafter referred 
to as the AISC Specification, and possible barriers that 
could block adoption of HS3 in the U.S. market.

Currently, select rolled shapes can be produced up to a 
yield stress of 80 ksi [ASTM A913/913M, Gr 80 (2019)] and 
plate material can be produced up to approximately 130 ksi. 
Although U.S.-based steel producers are capable of produc-
ing these HS3 products, a lack of guidance and standards 
has seemingly kept designers from implementing HS3 into 
their building designs, which has in turn limited the produc-
tion of the material. This work is the beginning of a U.S.-
based effort to study and promote the use of high-strength 
steel in buildings through better understanding of its behav-
ior and realizing the potential of these materials.

One of the primary advantages of using HS3 in build-
ing applications is a potential reduction in steel tonnage 
when compared to the more conventional steel grades 
being used today. A higher yield strength may allow section 
sizes to be reduced and lead to material cost savings, faster 
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erection times, reductions in foundation size, and reduced 
carbon emissions. ArcelorMittal has reported weight sav-
ings of 30% for columns that use Gr. 80 high-strength steel 
relative to conventional Gr. 50 steel. It also demonstrated 
potential fabrication cost savings of up to 46% when rolled 
high-strength steel shapes can be used in lieu of Gr.  50 
built-up members that may be needed for very large loads 
(ArcelorMittal, 2019).

The mechanical properties of conventional (low carbon 
and/or high strength-low alloy) structural steel vary from 
HS3. A previous study completed by Ban et al. (2011) found 
that as the yield strength of the steel increased, the length 
of its yield plateau decreased until it completely disap-
peared in ultra-high-strength steels. This study also con-
cluded that the value of ultimate strain decreased, and the  
yield/tensile ratio approached a value of 1.0 as the strength of 
the material increased. This can be seen in Figure 1, where 
an increase in material strength is generally accompanied 
by shorter strain-hardening regions, rupture at lower strain 
values, and a reduction in ductility. For some materials, an 
increase in material strength may also be accompanied by 
an elimination of the yield plateau within the stress-strain 
curve. However, the modulus of elasticity is unchanged; 
thus, to be utilized most effectively, HS3 should be used for 
force-controlled members instead of deflection-controlled 
members. It is important to note that while higher yield 
materials tend to see a reduction in ductility, this is due 
to specific processing choices and, if desired, higher yield 
materials can be produced with similar ductility properties 
to more conventional strength steels.

Residual stresses are formed in built-up sections due to 
uneven cooling during rolling of the individual plates and 
uneven heating during the welding process. Because resid-
ual stresses can greatly influence the behavior of a member, 
researchers have studied the stress distribution within steel 

sections, but work is needed to further evaluate built-up 
high-strength steel sections.

Several studies have been completed to investigate resid-
ual stresses in high-strength steel built-up members, and 
a summary of their results can be found in Table 1. Early 
research work by Rasmussen and Hancock (1995) found 
the average compressive stresses in the flanges and webs of 
S690 built-up sections to be 0.2Fy and 0.05Fy, respectively. 
A study by Beg and Hladnik (1996) found that compres-
sive residual stresses in the flanges of 700 MPa (100 ksi) 
built-up members ranged from 0.09–0.14Fy. Studies by Ban 
et al. (2013) and Wang et al. (2012) conducted on 460 MPa 
(65 ksi) built-up I-sections found that average compressive 
residual stresses in the flanges increased as the sections 
became more compact. Testing completed by Liu (2017) 
found that residual stresses in S690 (100 ksi) built-up sec-
tions were “proportionally less” when compared to the 
residual stresses in S355 (50  ksi) members. This finding 
was also observed by Schaper et al. (2022), who studied 
residual stresses in cross sections fabricated from S355 
(50 ksi) and S690 (100 ksi) steel material. They found that 
the cross-sectional geometry has a much larger influence 
on the residual stresses than the material strength. Specifi-
cally, they found that narrower flanges led to higher com-
pressive residual stresses, and thinner flanges caused larger 
tensile stresses at the mid-point of the flanges.

Another study was completed by Simoes da Silva et al. 
(2021), and results were published in a report by STROnger 
steels in the Built Environment (STROBE.) This study mea-
sured residual stresses in the flanges and webs of built-up 
I-shaped sections consisting of S690 (100  ksi) and S460 
(65 ksi) steel material. Results from this study found that 
maximum tensile stresses in the flanges were compara-
ble to European Convention for Constructional Steelwork 
(ECCS, 1984) recommended values, but the measured 
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Fig. 1.  Comparison of stress-strain relationships for different steel grades (NSC, 2015).
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Table 1.  Residual Stress Values from Literature

Reference Specimen

Steel 
Strength 

MPa

Specimen Thickness 
(nominal)

Average 
Compression Stress

Peak 
Tension 
Stress

Web 
mm

Flange 
mm

Web 
MPa

Flange 
MPa

Flange 
MPa

Rasmussen and Hancock (1995) N/A 690 8 8 32 135 NR

Beg and Hladnik (1996)
B

700
10 12

NR
73

NR
D 10 12 123

Ban et al. (2013)

RI1-460

460

10 10 233.9 276.6 277.5

RI2-460 10 10 208.4 206.5 317.1

RI3-460 14 14 123.7 93.0 254.9

RI4-460 10 10 213.8 163.8 337.0

R15-460 12 12 65.2 50.9 153.6

RI6-460 10 12 74.9 80.4 135.8

RI7-460 10 12 91.4 78.0 189.9

RI8-460 10 10 142.2 190.6 301.2

Wang et al. (2012)

R-H-3

460

11 21 69.9 187.7 477.9

R-H-5 11 21 108.1 124.7 414.0

R-H-7 11 21 60.3 89.7 336.3

Liu (2017)

C1R-A

690

6 10 98.1 206.1 357

C2R-A 6 10 75.9 214.1 452

C3R-A 10 16 138.0 138.0 368

C4R-A 10 16 133.4 120.3 354

Wang (2018)

B2

690

6 10 116 157 400

B4 6 16 68 67 111

B6 6 10 126 138 453

Schaper et al. (2022)
1fy 460 8 20 45.9 59.8 329

3-1fy 460 8 20 46.1 104.2 329

Simoes de Silva (2021)

C1 690 8 8 170 42 336

C2 690 8 8 235 156 336

C3 690 8 16 150 116 484

C4 690 8 16 112 85 237

B1 460 8 16 101 75 228

B2 690 8 16 80 63 277

B3 460 10 16 20 83 118

B4 460 8 16 107 57 310

B5 690 8 16 69 53 357

B6 460 9 15.5 160 32 113

B7 690 8 16 72 83 339

BC-1 690 8 16 87 72 145

NR = Not reported
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average compressive stresses were higher than the ECCS 
values. The higher compressive stresses were attributed to 
the measured tensile residual stresses at the flange tips due 
to the plates being flame cut during the fabrication process.

This paper focuses on the stress-strain behavior and 
residual stresses of built-up I-shape sections using ASTM 
A656/A656M Gr. 80 (2024) material, hereafter referred to 
as A656-80, relative to conventional ASTM A572/A572M 
Gr.  50 (2021) material, hereafter referred to as A572-50. 
A656 steel is commonly used for applications such as con-
struction equipment, crane booms, heavy vehicle frames, 
and rail cars; while it may be useful in building applica-
tions, it is not currently included as a listed material in the 
AISC Specification (AISC, 2022). A656-80  material was 
used due to material availability at the time of the study and 
even though it is not typically used for building applications, 
it does have a comparable yield/tensile ratio and elongation 
value when compared to A913/A913M Gr. 80 steel, hereaf-
ter referred to as A913-80. Both A656 and A913 materials 
are high-strength low-alloy products, but A913 is specifi-
cally produced by quenching and self-tempering. A656 also 
has a thickness limit of 1 in. for its Gr. 80 material.

TENSILE COUPON TESTING

A total of 48 coupon tests were performed in this experi-
mental program. The test matrix is shown in Table 2, which 
shows a combination of A572-50 and A656-80 plate in 
thicknesses of 0.375 in. and 0.5 in. The coupon specimens 
and testing protocols conformed to the ASTM A370-20 
specification (ASTM, 2020) for subsize specimens. Each 
of the coupons were cut with a waterjet cutting machine in 
both the longitudinal and transverse directions relative to 
the rolled direction of the plate. The coupons were unfor-
tunately returned unmarked, so the differentiation of roll-
ing direction could not be determined. However, the data 
collected was very similar, so it is presumed that there was 
little to no difference between the longitudinal and trans-
verse coupons.

A hydraulic-controlled Material Testing Systems (MTS) 
machine with wedge grips and an axial load capacity of 
22 kips was used to perform the tensile coupon tests. An 
extensometer with a gage length of 1 in. was attached to the 
coupon specimens during testing to collect strain data. To 
avoid any possible damage to the extensometer at rupture, 
the testing program was set to be force controlled during 
the elastic region and then shifted to displacement con-
trolled during the inelastic region. The testing program for 
the A656-80 coupons started as force controlled at 1 kip/
min up to a maximum of 5 kips, and then switched to dis-
placement controlled at a rate of 0.1 in/min to a maximum 
of 0.5  in. The testing program for the A572-50 coupons 
used the same force and displacement loading rates as the 
A656-80 tests with maximums of 3.5  kips and 0.65  in., 
respectively. Figure 2 shows the tensile coupon test setup 
with the extensometer attached at the center of the tensile 
specimen.

Tensile Coupon Testing Results

Table 3 reports the average modulus of elasticity, E, yield 
stress, Fy, yield strain, εy, tensile stress, Fu, tensile strain, 
εu, and strain at fracture, εf, measured for each of the plate 
material types and thicknesses. The 2% offset method was 
used to calculate the yield stress of each coupon. The stan-
dard deviation among the 12 tests for each category is pro-
vided in parentheses. As expected, the modulus of elasticity 
was comparable among the four-test series. The ratio Fy/
Fu provides an indication of the material overstrength; the 
80  ksi material exhibited ratios closer to 1.0. The strain 
hardening region, as demonstrated by the ratio εu/εy, was 
shorter for the 80  ksi material. The Gr.  80 material also 
exhibits lower ductility overall, as evidenced by the ratio 
εf/εy.

Figure 3 shows full stress-strain curves for each series 
of the material types and thicknesses that were tested. The 
graph presents the stress-strain curves for each of the 12 
tests per material and thickness type. In order to avoid dam-
aging the extensometer during testing, it was removed from 

Table 2.  Tensile Coupon Test Matrix

Plate Material and Thickness Number of Tests

A572-50_0.375 in. 12 (6L and 6T)

A572-50_0.5 in. 12 (6L and 6T)

A656-80_0.375 in. 12 (6L and 6T)

A656-80_0.5 in. 12 (6L and 6T)

L = Longitudinal direction, T = Transverse direction
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Fig. 2.  Tensile coupon test setup.

Table 3.  Measured Material Properties from Tensile Coupon Testsa

Plate Material
E 

ksi
Fy 

ksi
Fu 

ksi
εεy 

%
εεu 

%
εεf 

% Fy//Fu εεu//εεy εεf//εεy

50 ksi 0.375 in.
28695 
(460)

63.2 
(1.00)

72.6 
(0.84)

0.42 
(6.8E-3)

15.5 
(1.09)

28.4 
(1.17)

0.87 36.9 67.6

50 ksi 0.5 in.
28282 
(579)

58.1 
(0.73)

71.8 
(0.60)

0.41 
(6.8E-3)

17.8 
(0.57)

30.6 
(0.89)

0.81 43.4 74.6

80 ksi 0.375 in.
29058 
(959)

98.9 
(0.89)

110.4 
(0.51)

0.55 
(7.8E-3)

12.2 
(0.33)

22.9 
(0.58)

0.90 22.2 41.6

80 ksi 0.5 in.
27846 
(443)

83.9 
(0.59)

92.1 
(1.33)

0.50 
(6.7E-3)

8.36 
(0.35)

19.4 
(1.03)

0.91 16.7 38.8

a  Standard deviation among coupon test results is listed in parentheses
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these materials were produced by different steel producers. 
Table 4 shows the mill-certified chemical compositions for 
each of the plate materials that were tested. Comparing the 
A656-80 0.5 in. plate to the A656-80 0.375 in. plate, there 
are differences, but no major outliers, in the minor alloy-
ing elements added to provide higher strength and greater 
toughness. The microstructures of the two Gr.  80 plates, 
however, are significantly different from each other and 
explain the variation in mechanical behavior.

Analyses of Steel Microstructures

Samples from each plate along each of the three primary 
directions (rolling, transverse, plate normal) were sectioned 
and prepared to a mirror finish using standard metallo-
graphic techniques, then etched (2% nitric acid in metha-
nol) to reveal both the ferritic grain boundaries and carbides 
under optical microscopy. The 0.375 in. Gr. 80 plate exhib-
its a nearly homogenous microstructure of both equiaxed 

the specimen at approximately 10–15% elongation of the 
coupon. Strains beyond approximately 10–15% were calcu-
lated based on the recorded displacement of the test frame.

It can be seen from Figure 3 that there was not a signifi-
cant deviation in recorded stress among each test within the 
series. The strain at rupture was more variable within each 
test series. The A572-50 plate material produced very simi-
lar behavior for both the 0.5 in. and 0.375 in. plate material, 
while the A656-80 curves have a much more significant 
variation between the two thicknesses. The A656-80 0.5 in. 
plate exhibited almost no yield plateau, and its yield stress 
was much lower than the 0.375 in. plate. In contrast, despite 
its high strength, the A656-80 plate with 0.375 in. thickness 
behaved like more conventional steels with an established 
yield plateau and with comparable ductility and ultimate/
yield stress ratios.

The differences between the Gr. 80 stress-strain curves for 
the 0.375 in. and 0.5 in. materials can be attributed largely 
to microstructural differences between the two plates, as 

Fig. 3.  Measured engineering stress-strain curves for each plate type.
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Table 4.  Plate Chemical Compositions

A572-50  
0.375 in. PL  

%

A572-50  
0.5 in. PL (1)a  

%

A572-50  
0.5 in. PL (2)a  

%

A656-80  
0.375 in. PL  

%

A656-80  
0.5 in. PL  

%

C 0.04 0.06 0.06 0.06 0.07

Mn 0.8 0.82 0.83 1.45 1.48

P 0.01 0.012 0.014 0.014 0.013

S 0.002 0.007 0.006 0.004 0.003

Si 0.05 0.02 0.02 0.02 0.1

Al 0.023 0.038 0.039 0.028 0.043

Cu 0.08 0.13 0.13 0.1 0.02

Ni 0.03 0.05 0.05 0.05 0.01

Cr 0.08 0.07 0.09 0.06 0.04

Mo 0.02 0.02 0.02 0.09 —

Sn 0.005 0.03 0.03 0.006 0.001

Ti 0.001 0.002 0.002 0.106 0.07

V 0.002 0.002 0.003 0.007 0.003

Nb 0.047 0.024 0.026 0.034 0.032

N 0.008 0.007 0.008 0.0109 0.0048

B 0.0003 0.0001 0.0001 0.0007 0.0002

Ca 0.002 0.0026 0.0023 0.0007 0.0014

Zr 0.0003 — — — —

Sb — 0.001 0.001 — 0.001
a � A572-50 0.5 in. plate material came from two different heats and, thus, the two different chemistries shown in the table 

for this plate type. All other plate types were from a single heat.

and acicular ferrite with a fine grain size and a uniform 
distribution of carbides (Figure  4). In contrast the 0.5  in. 
Gr. 80 plate presents a more conventional rolled microstruc-
ture with larger ferrite grains found in bands and elongated 
along the rolling direction (RD), interspersed with lamellar 
pearlite colonies (dark regions) in addition to the smaller 
carbides. Based upon these microstructures, it is clear that 
the two plates, sourced from different suppliers, were likely 
produced via different methods. The refined polygonal fer-
rite grains, acicular ferrite, and fine dispersed precipitates 
of the 0.375 in. Gr. 80 plate are consistent with what would 
be expected to be produced via a thermo-mechanically 
controlled process (TMCP) or similar processing route 
(Sampath, 2005). The 0.5 in. Gr. 80 plate with the banded 
structure of elongated grains and pearlitic colonies appears 
to have been controlled rolled and differs from the 0.5 in. 
Gr. 50 plate primarily in having a smaller grain size and a 
narrower grain size distribution (Figure 5). Consistent with 
the mechanical behavior in Figure 3, the microstructure of 
the 0.375  in. Gr.  80 would be expected to exhibit both a 

higher yield strength and improved toughness compared to 
the microstructure of the 0.5 in. Gr. 80 plate.

Results from the microstructure analysis leads to the 
important conclusion that just knowing the yield strength 
of the material and its chemical composition may not be 
enough to accurately predict the material behavior. It will 
become increasingly important to understand how differ-
ent rolling processes will affect the microstructure of the 
steel and ultimately material behavior, especially if differ-
ent processes will result in such a large difference in mate-
rial properties.

RESIDUAL STRESS TESTING

Experimental Test Specimens

Six built-up I-shaped specimens were fabricated from 
0.375 in. and 0.5 in. thick Gr. 50 and Gr. 80 plate material 
in order to measure residual stresses. The plates were cut 
to size using waterjet cutting and then fillet-welded using 
automated welding collaborative robots. Five different 
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comparison between the conventional Gr. 50 material and 
the higher strength material.

Table 5 and Figure 6 display the section properties and 
dimensions of each built-up section using the naming con-
vention “I nominal yield strength–b/t ratio–h/t ratio.” The 
ratios, b/t and h/t, reflect the slenderness of the flange and 
web elements, respectively, by calculating the width, b or h, 
divided by the thickness, t. The cross-sectional slenderness 

cross sections were fabricated using Gr.  80 steel and one 
section was fabricated with Gr. 50 steel in order to provide 
a comparison between the two materials. These sections 
and others are to be subjected to stub column testing in the 
future. The cross sections used in this study were admit-
tedly small due to plate availability and limitations with the 
testing equipment available to apply adequate compressive 
load during column testing. Yet, they provide a valuable 

	 (a)  0.375 in. Gr. 80	 (b)  0.5 in. Gr. 80	 (c) 0.375 in. Gr. 50

Fig 5.  Microstructural cross sections of the plates 
(RD = rolling direction, TD = transverse direction, ND = normal direction).

	 (a)  0.375 in.	 (b)  0.5 in.

Fig. 4.  Psuedo-3D microstructural reconstructions of the. Gr. 80 plates  
(RD = rolling direction, TD = transverse direction, ND = normal direction).
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the lengths shown in Table 5, which conform to the SSRC 
Guide. A 12  in. test piece was then marked at the center 
of each specimen as shown in Figure 7. The test piece was 
then marked into 0.5‑in.‑wide strips along the top and bot-
tom flanges and the web. Using a mill, holes were drilled 
into each test strip, 1 in. from each end, which provided a 
gauge length of 10 in.

Initial measurements between the holes were taken using 
a gauge similar to a Wittemore strain gauge, shown in Fig-
ure 8. This gauge has a tolerance of 0.0001 in. and a nomi-
nal gauge length of 10 in. When taking measurements, the 
gauge is used to measure the reference bar before and after 
each set of measurements. If the reference bar measure-
ments vary by more than 0.001  in, then the temperature 
has changed, and the measurement set would need to be 
repeated.

After the collection of all initial measurements, the spec-
imens were cut down using a waterjet. The waterjet was 

limiting ratios, λrf and λrw, shown in Table 5 were calcu-
lated from AISC Specification Table B4.1a. It is important 
to note that the applicability of these equations have not 
yet been evaluated for Gr. 80 steel but will be explored in 
the future stub column testing of these specimens. Efforts 
were made to select cross-sections of various slenderness 
ratios relative to the slenderness limiting ratios. The Gr. 50 
specimen had the same cross section as one of the Gr. 80 
specimens.

Residual Stress Measurement Procedure

Residual stress testing was performed on six specimens and 
was completed using the sectioning technique outlined in 
Technical Memorandum No.  6 of the Structural Stability 
Research Council (SSRC) Guide to Stability Design (Zie-
mian, 2010). This common sectioning approach assumes 
for simplicity that transverse stresses in the specimen are 
negligible. The residual stress specimens were fabricated to 

Table 5.  Specimen Section Properties

Specimen Name(a)
Fy 
ksi

Length 
in.

b  
in.

h 
in.

t 
in. b//t h//t λλrf

(b) λλrw
(c)

I 80-5.3-32 80 48 2 12 0.375 5.3 32.0 10.2 28.4

I 80-9.3-28 80 43.5 3.5 10.5 0.375 9.3 28.0 10.6 28.4

I 80-10.7-21.3 80 36 4 8 0.375 10.7 21.3 10.6 28.4

I 80-10.7-32 80 48 4 12 0.375 10.7 32.0 10.2 28.4

I 80-4-24 80 48 2 12 0.5 4.0 24.0 10.6 28.4

I 50-10.7-32 50 48 4 12 0.375 10.7 32.0 13.0 35.9
a  Specimen naming convention: I “steel grade” – “b/ t ratio” – “h/ t ratio”
b  λrf limiting ratios were calculated from AISC Specification Table B4.1a for Case 2 (flanges of I-shaped built-up sections).
c  λrw limiting ratios were calculated from AISC Specification Table B4.1a for Case 5 (webs of I-shaped built-up sections).

h

t

t
t

b

1/4
1/4

b

Fig. 6.  Geometric dimensions.
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Due to limitations with the waterjet nozzle, the test strips 
at the flange-web interface were L-shaped, as shown in Fig-
ure  10, with an approximate thickness of 1  in. The final 
gauge length measurements were first taken when the strips 
were in this configuration. The excess material (weld and 
web) was then removed using a vertical band saw and mill, 
and measurements were taken again. Both sets of results 
are presented.

Residual Stress Results

The residual stress results that are presented in this section 
have been compared with previously published predictive 
models. The comparison models chosen for this work are 

used to minimize the amount of heat and stress that would 
be added to the specimen. The test piece was first cut from 
the full-length specimen, and then the test piece was cut 
down into its three main components (top flange, bottom 
flange, and web). Each component was then cut into its 
marked 0.5 in. strips. Figure 9 shows a fully sectioned test 
piece. Once the test piece had been fully sectioned into the 
0.5 in. strips, all pieces were dried off and left overnight to 
come to room temperature. The final gauge length measure-
ments were taken and followed the same procedure that was 
used for the initial measurements. The change in deforma-
tion recorded from the measurements was then converted 
into stresses using Hooke’s law.

SPECIMEN

TEST PIECE

Fig. 7.  Residual stress sectioning method schematic (Ziemian, 2010).

Fig. 8  Gauge to measure strain.
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Fig. 9.  Fully sectioned specimen I 80 9.3-28R.

Fig. 10.  L-shaped sections at flange-web interface.
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being removed from the flange test strips. The values in 
black are the measured values after removal. Table 7 pres-
ents key residual stress values for each specimen with a 
comparison to the corresponding values from the predictive 
models in Table 6. The tensile stress in the flanges is pro-
vided as a peak value, while the compressive stress values 
are taken as an average of all values recorded over the width 
of the flange or web.

Figure  13 presents the predictive model comparison 
results for specimen I80-10.7-21.3R. Overall, the compres-
sive stresses in the flanges were most accurately predicted 
by the ECCS (1984) model, while the peak tensile stress 
in the flange was closest to the Y.SUN (Sun, 2019) model 
for the top flange, F1, and the ECCS and BSK 99 (Bover-
ket, 2003) models for the bottom flange, F2. The transition 
zone slopes fall somewhere between the ECCS and BSK 
99 models.

Figure  13(c) presents the results for the compressive 
residual stresses in the web of specimen I80-10.7-21.3. The 
stresses measured were fairly uniform along the full depth 
of the web, at a measured value of approximately 10  ksi 
(12.5% of nominal Fy). These stresses are most accurately 
predicted by the BSK 99 (Boverket, 2003) model. Due to 
the size of the strain gauge, measurements were unable to be 
taken close enough to the flange-web interface to measure 
results in the tensile stress region of the web, so no compari-
son can be made to the predictive models in that region. The 
results for specimens I80-10.7-32R and I50-10.7-32R closely 

predictive models by the ECCS (1984); the Swedish regula-
tions BSK 99 (Boverket, 2003); and a proposed numerical 
model completed by Sun et al. (2019), called the Y.SUN 
model in this study. A summary of these three models can 
be found in Table 6. Each of these predictive models fol-
low a residual stress distribution pattern that is presented 
in Figure 11.

Measured residual stress values for each of the six speci-
mens are shown in Figure 12. Values in gray are the mea-
sured residual stress values prior to the excess web material 

Table 6.  Residual Stress Predictive Models for Welded I-Sections

Predictive Model
Peak Tensile 

Residual Stresses
Peak Compressive 
Residual Stresses a b c d

ECCS (ECCS, 1984) 1.0Fy 0.25Fy 0.05bf 0.15bf 0.075h 0.05h

BSK 99 (Boverket, 2003) 1.0Fy From equilibrium 0.75tf 1.5tf 1.5tw 1.5tw
Y. SUN (Sun, 2019) 0.8Fy From equilibrium 0.225bf 0.15bf 0.075h 0.225h

Note: bf = flange width, h = clear distance between flanges, tw = web thickness, tf = flange thickness

a ab

f fc

d
c

f ft

fwc

fwt

Fig. 11.  General residual stress pattern  
for welded I-shaped sections (ECCS, 1984).

Table 7.  Peak and Average Residual Stress Values vs. Predictive Models

Specimen

Web Compression Stress (ksi) Flange Compression Stress (ksi) Flange Tensile Stress (ksi)

Measured

Predicted Value

Measured

Predicted Value

Measured

Predicted Value

ECCS BSK 99 ECCS BSK 99 ECCS BSK 99

I 80-5.3-32 21.2 20 21.8 11.9 20 21.7 61.9 80 80

I 80-9.3-28 16.6 20 11.9 11.1 20 11.3 51.9 80 80

I 80-10.7-21.3 9.2 20 9.5 18.3 20 9.5 74.7 80 80

I 80-10.7-32 8.9 20 9.9 19.4 20 9.5 71.2 80 80

I 80-4-24 12.3 20 31.0 9.6 20 31.2 14.5 80 80

I 50-10.7-32 13.0 12.5 6.0 11.9 12.5 6.2 54.2 50 50
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	 (a)  I80-5.3-32R	 (b)  I80-9.3-28R	 (c)  I80-10.7-32R

          
	 (d)  I80-10.7-21.3R	 (e)  I I80-4-24R	 (f)  I50-10.7-32R

Fig. 12.  Residual stress measurements (all stress values are ksi).
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Figure  15 shows the comparison of residual stresses 
between the I80-10.7-32R and I50-10.7-32R specimens. 
These two specimens are of equal dimensions and section 
properties, and the only difference between the two is the 
steel grade. Comparing these two specimens allows for a 
comparison between the 50  ksi and 80  ksi materials and 
their influence on residual stresses.

Figures 15(a) and (b) present the residual stresses in the 
top (F1) and bottom (F2) flanges, respectively. The maxi-
mum tensile stress in the flange for the 80  ksi section is 
approximately 70 ksi, or 0.875Fy, while the maximum ten-
sile stress in the 50 ksi section is 54 ksi, which is approx-
imately equal to Fy. The average compressive stresses in 
the flanges are 20 ksi and 12 ksi for the 80 ksi and 50 ksi 
sections, respectively. These stresses equate to 0.25Fy for 
both materials. Figure 15(c) depicts the residual stresses in 
the web for the two sections. The average web compressive 
stress in the 80 ksi section is approximately 10 ksi (0.125Fy), 
and the average in the 50 ksi section is 13 ksi (0.26Fy).

A comparison of the residual stress values in each sec-
tion shows that the flange compressive stresses increased 
proportionally to the increase in yield strength of the mate-
rial. However, the maximum tensile stress in the flange and 
compressive stress in the web did not increase proportional 
to the increase in yield strength for the 80 ksi material. This 
comparison shows that the residual stresses among differ-
ent material grades are generally not proportional to yield 

match these presented results and are excluded for brevity. 
All other residual stress results not presented in this paper 
can be found in Clark (2022).

Figure 14 depicts the results and predictive model com-
parison for specimen I80-4-24R. This specimen is the only 
one that was fabricated with 0.5 in. thick flanges and web, 
and its results differ from the trends observed in the other 
specimens. Figures 14(a) and (b) show the results for the top 
(F1) and bottom (F2) flanges, respectively. The compres-
sive stresses in the flanges are much lower than all three 
of the predictive models. The peak tensile stresses are sig-
nificantly different from the models as well, with very little 
tensile stress recorded.

The web compressive stresses are shown in Figure 14(c). 
The compressive stresses in the web were uniform and were 
measured to be approximately 12 ksi, which is lower than 
all three of the predictive models. The closest match for the 
stresses in the web is the ECCS (1984) model; however, the 
measured values are about 50% lower than what this model 
predicts. These differences between the recorded values 
and predictive models for this specimen may be attributed 
to the very compact flange (b/t = 4.0). Differences may also 
be attributed to the production process for this plate, as the 
0.5 in. plate was produced by a different manufacturer than 
the 0.375  in. plate. More testing is needed to understand 
this specimen’s anomaly in results relative to the other test 
results.
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	 (b)  Flange 2 (F2) results	 (c)  Web results

Fig. 13.  Specimen I80-10.7-21.3R residual stress predictive model comparison.
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	 (b)  Flange 2 (F2) results	 (c)  Web results

Fig. 14.  Specimen I80-4-24R residual stress predictive model comparison.
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Fig. 15.  Specimen I80-10.7-32R and specimen I50-10.7-32R comparison.
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understand the anomaly in results relative to the other test 
results. Further experimental testing and detailed analyti-
cal studies are needed for other material grades and larger 
cross sections to fully understand its behavior as compres-
sion members in buildings.
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stress, but are more influenced by cross-sectional geometry, 
as was determined in Schaper et al. (2022).

Results from this study found that the maximum tensile 
residual stress in the flanges was typically in the 0.75-1.0Fy 
range, for all specimens except I80-4-24R. The Schaper 
et al. (2022) study found, however, through a comparison 
of S460 (65  ksi) and S690 (100  ksi) steel, that the max-
imum tensile residual stress in the flanges was anywhere 
from 0.2-0.7Fy. It is worth noting that the specimens stud-
ied in the Schaper study were thermal cut, which resulted 
in tensile residual stresses at the flange tips and could be 
the cause of the reduced residual stresses at the flange/web 
interface.

SUMMARY AND CONCLUSIONS

Two different assessments were completed as part of this 
work using 50 and 80  ksi material—tensile coupon tests 
and residual stress measurements. Tensile coupon test-
ing was performed on 48 dog bone coupons, and average 
stress-strain curves were generated for each of the plate 
materials and thicknesses. All coupons that were tested had 
a modulus of elasticity of approximately 29,000  ksi. The 
A572-50  material performed as expected with the curves 
for each plate thickness being almost identical, while the 
A656-80 material showed some unanticipated variation 
between the two thicknesses that can likely be attributed 
to their different material compositions and manufactur-
ing process. The stress-strain curve for the A656-80 0.5 in. 
plate material showed almost no yield plateau and had a 
yield stress that was significantly lower than the A656-80 
0.375 in. plate.

Six built-up I-sections underwent residual stress testing, 
and the results of these tests were compared to three previ-
ously published residual stress predictive models. Results 
showed that the ECCS model was the best predictor of 
residual stresses in the flanges of sections with larger b/t 
ratios (b/t = 10.7). The ECCS model also proved to be the 
best comparison for the 50 ksi material as well. For sections 
with slightly smaller b/t ratios (b/t = 9.3), the BSK99 model 
was the best predictor, while none of the models showed to 
be good predictors of sections with the smallest b/t ratios 
(b/t = 5, 4.3). A comparison of the Gr. 50 and Gr. 80 sec-
tions showed that residual stresses of built-up I-shapes are 
controlled more by cross-sectional geometry than by the 
nominal stress of the material.

Future Work

The specimens outlined in this work will be subjected to stub 
column testing in order to evaluate the cross-sectional slen-
derness limits and local buckling behavior of high-strength 
steel sections under compressive load. Additional resid-
ual stress studies using the 0.5  in. plate is warranted to 
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