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ABSTRACT

This paper explores the manual calculation of the elastic lateral-torsional buckling resistance of prismatic singly symmetric I-section mem-
bers having a variation in the bending moment between the brace points. The paper shows that the quarter-point moment gradient factor, 
Cb, equation in the AISC Specification (2016), as modified by its Commentary, is inaccurate for reverse-curvature bending of singly symmet-
ric I-section members. The modified equation cannot accurately represent the behavior for reverse-curvature bending of singly symmetric 
members in general because it is blind to the sign of the bending moment. That is, it does not recognize the influence of different patterns of 
compression and tension in the different size flanges. Furthermore, the AISC Specification Commentary (ASC) calculation exhibits substan-
tial discontinuities in its Cb values as a function of the loading considered. This is due to the application of a modifier, termed Rm, creating 
a step-function behavior that gives substantially conservative results in certain situations and substantially unconservative results in other 
cases.

In addition, the paper explains that the Cb equations in the current AASHTO Specifications (2020) provide some accounting for the differ-
ent patterns of compression in the separate flanges for cases involving moment reversal. However, these equations are based only on the 
moments at the ends and at the middle of the unbraced length. Hence, they are limited in their ability to capture the influence of nonlinear 
variations in moment along the unbraced length. Furthermore, the AASHTO procedure uses Cb = 1.0 when the moment within the unbraced 
length is larger than the maximum brace point moment, causing compression in the flange under consideration (in single- or reverse-
curvature bending). This practice can result in substantial conservatism. AASHTO recommends other methods such as the ASC approach 
in these cases. Lastly, the AASHTO Cb values can exhibit substantial discontinuities as a function of the loading considered. This is due to 
changes in the governing flange in the AASHTO procedure. This attribute also produces substantially conservative results in certain cases.

To rectify the limitations of the ASC and AASHTO methods, the paper recommends a modified form of an alternative quarter-point Cb equa-
tion proposed by Wong and Driver (2010). For singly symmetric cases involving moment reversal, the terms in the quarter-point equation are 
replaced by the ratio of the moments to the corresponding elastic buckling moment based on Cb = 1, considering which flange is in compres-
sion at each of the locations where the moments are sampled. The studies show that the Wong and Driver equation, with this modification, 
provides substantially improved accuracy compared to the existing AASHTO and ASC equations for reverse-curvature bending with slightly 
less calculation effort. In addition, the paper demonstrates the accuracy of the direct application of the Wong and Driver equation for single-
curvature bending cases.

Keywords: lateral-torsional buckling, moment gradient, singly symmetric I-section members.

INTRODUCTION

Singly symmetric welded I-section members are widely 
employed for optimized member designs due to their struc-
tural efficiency. In the AISC Specification for Structural 
Steel Buildings (2016) and the AASHTO LRFD Bridge 
Design Specifications (2020), the lateral-torsional buckling 

(LTB) resistance of unbraced lengths subjected to moment 
gradient is determined by multiplying the LTB resistance 
for uniform bending by the moment gradient factor Cb. The 
resistance is capped by the “plateau strength” of the mem-
ber in flexure (equal to the plastic moment, Mp, for compact 
web I-section members, and equal to the yield moment of 
the compression flange multiplied by the bending strength 
reduction factor, RpgMyc, for slender-web members).

To determine the LTB resistance accurately under 
moment gradient loading, it is important to calculate an 
accurate Cb. The Cb factor is influenced generally by:

1. The shape of the moment diagram between the braced 
points.

2. The extent of the monosymmetry of the cross section.

3. The length-to-depth ratio and cross-section dimensions, 
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which influence the relative contribution of the St. Venant 
and warping torsional stiffnesses to the LTB resistance.

4. The elevation of the applied load relative to the mid-
height of the web.

5. The degree of lateral, rotational, and warping restraint 
at the ends of the unbraced lengths (including continuity 
with and buckling interaction with adjacent unbraced 
segments).

Steel design specifications typically simplify their calcu-
lation procedures by considering only item 1 or items 1 and 
2 in the calculation of Cb and by considering items 2 and 
3 in the base calculation of the elastic LTB resistance. For 
slender-web members, AISC (2016) and AASHTO (2020) 
set the St. Venant torsion constant, J, to zero to account 
for the influence of web distortion. Transverse load-height 
effects typically are neglected. Helwig et al. (1997) pro-
vide a thorough discussion of when this simplification is 
and is not appropriate. In addition, warping and minor-axis 
rotations are assumed unrestrained at the ends of member 
unbraced lengths, and the influence of continuity with adja-
cent unbraced lengths (typically referred to as interaction 
buckling) is neglected. For this reason, this paper evalu-
ates manual Cb calculations that consider only the influence 
of item 1 for single-curvature bending, and include both 
items 1 and 2 for reverse-curvature bending. Comparisons 
are made to benchmark elastic LTB numerical solutions 
that account for items 1, 2, and 3. These benchmark solu-
tions are conducted with any transverse loads applied at the 
mid-height of the web. Helwig et al. show that this posi-
tion, rather than the shear center, is the proper transverse 
load location for the development of base Cb equations that 
neglect load height. Helwig et al. find, for single-curvature 
bending cases, that the degree of monosymmetry does not 
affect the Cb values and also that the base Cb values derived 
for doubly symmetric members work well when the load 
position is defined at the web mid-height rather than the 
shear center. Downward transverse loads applied at a loca-
tion above the web mid-height cause destabilizing effects, 
and downward transverse loads applied at a location below 
the web mid-height cause stabilizing effects. Helwig et al. 
recommend a simple adjustment to the base Cb equations 
that gives a coarse approximation of load height effects, and 
they discuss in detail when these effects need or do not need 
to be included in design calculations.

Studies of the moment gradient factor, Cb, often have 
emphasized cases where the entire span is unbraced and 
subjected to applied transverse loads and the end moments 
are based on ideally pinned or fixed boundary conditions. 
While it is important to predict the LTB resistance in these 
cases, there is at least some bracing within the span in 
many situations. The moment diagrams within the individ-
ual unbraced lengths tend to be close to linear when only 

a few intermediate braces are provided. Furthermore, the 
moment diagrams for vertical members such as columns 
commonly are close to being linear. In addition, fixed end 
conditions are rare in practice, typically occurring only due 
to symmetry of the loading and the geometry. In this study, 
a broad range of loadings are considered, producing both 
linear and near-linear moment diagrams as well as a range 
of end moments relative to the moments from transverse 
loading. The loading cases studied encompass and expand 
upon the loadings considered in the prior studies by Helwig 
et al. (1997) and Wong and Driver (2010).

While the AASHTO (2020) Cb equations apply to both 
doubly and singly symmetric I-section members, the AISC 
Specification (2016) provides only one equation for Cb and 
references its Commentary for the handling of single sym-
metry. This paper shows that the current AASHTO and 
AISC Specification Commentary (ASC) predictions of the 
LTB resistance for singly symmetric I-section members 
subjected to moment reversal are often poor. To address 
this problem, the paper investigates and demonstrates a 
modification of the Wong and Driver (2010) Cb equation 
that results in a significant improvement in the accuracy of 
the LTB assessment for a complete range of doubly and sin-
gly symmetric member design situations while maintaining 
simplicity of the calculations. In addition to addressing the 
challenges for reverse-curvature bending, the paper demon-
strates the accuracy of the direct application of this equa-
tion for single-curvature bending cases. These gains are 
achieved with effectively no change in the overall calcula-
tion effort relative to the current methods.

BACKGROUND

Calculations of Cb for singly symmetric I-section members 
typically involve modifications or extensions of Cb equations 
developed for doubly symmetric members. Therefore, it is 
essential to understand several particulars of Cb estimates 
for doubly symmetric members when considering predic-
tions involving single symmetry. Wong and Driver (2010) 
evaluated a broad range of approaches recommended in the 
literature for the calculation of Cb for doubly symmetric 
I-section members. They proposed a new quarter-point Cb 
formula that maintains simplicity of the design calculations 
and provides measurable improvements in overall accuracy 
relative to other methods in the literature, including the 
AISC (2016) and AASHTO (2020) Cb equations. Figure 1 
compares the result from the Wong and Driver Cb equation 
to the corresponding AISC and AASHTO equations for 
the basic case of linear moment diagrams. The AASHTO 
equation, discussed subsequently, uses a maximum cap of 
2.3 and was originally developed as a lower-bound fit to 
solutions from Salvadori (1956) for linear moment diagram 
cases. However, other references [e.g., Ziemian (2010)] have 
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employed a larger cap of 2.5 or 2.56 with this equation. The 
AASHTO equation with a cap of 2.5 is shown to provide 
an appropriate lower bound of benchmark Cb values for a 
comprehensive range of cases in Slein et al. (2021) and is 
thus employed in Figure  1. Wong and Driver (2010) also 
suggest a maximum cap of 2.5 on their equation, although 
they state that their equation produces good results without 
this limit. Slein et al. confirm this is the case. For linear 
moment diagrams, the Wong and Driver equation gives a 
maximum value of 2.41.

Figure  2 plots the ratio of the Wong and Driver equa-
tion and AISC Specification Equation F1-1 to the AASHTO 
equation for linear moment diagram cases. This paper dem-
onstrates that the AASHTO equation with a maximum limit 
of 2.5 provides the most accurate (largest) lower bound of 
the equations considered for these types of moment dia-
grams. The Wong and Driver quarter-point equation pro-
vides a reasonable conservative estimate for this case. One 
can observe that the AISC equation, which is also a quarter-
point formula, gives results as much as 5.0% conservative 

0.0
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Fig. 1. Comparison of Wong and Driver, AISC, and AASHTO Cb values versus the ratio  
of the smaller to larger end moments, M1/M2, for linear moment diagram cases.

Fig. 2. Ratio of Cb values from Wong and Driver and AISC to the AASHTO lower-bound Cb estimate  
versus the ratio of the smaller-to-larger end moments, M1/M2, for linear moment diagram cases.
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= 0.5+ 2

Iy.opp
Iy

2⎛
⎝⎜

⎞
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(1b)

for singly symmetric members subjected to reverse- 
curvature bending, in which

Iy  =  weak-axis moment of inertia of the entire 
section, in.4 (mm4)

Iy.opp  =  moment of inertia of the flange on the 
opposite side of the web mid-height from 
the direction of the transverse loading, in.4 
(mm4)

Equation 1b is the same as Equation C-F1-4 in the ASC 
but with Iy.Top labeled as Iy.opp. As stated in the ASC, Equa-
tion C-F1-4 was developed by focusing on gravity loading 
on horizontal beams. The ASC indicates that for general 
cases, such as columns subjected to transverse loads, the 
“top” flange is defined as the flange on the opposite side of 
the web mid-height from the direction of the transverse load-
ing. The notation Iy.opp is employed in this study to avoid any 
confusion regarding the reference to the “top” and “bottom” 
flanges.

In the ASC procedure, when the unbraced length is sub-
jected to reverse-curvature bending, Cb is first calculated 
from the ASC Equation C-F1-3 and Equation 1b. It is then 
applied to the separate elastic LTB resistances under uni-
form bending, Mcr1, corresponding to flexural compression 
in each of the flanges to estimate the maximum moment, 
causing flexural compression in the given flange, at incipi-
ent elastic LTB. The corresponding elastic buckling load 
ratio may be written as:

 
eLTB = min

CbMcr1.top

Mmax.top
,
CbMcr1.bot

Mmax.bot
γ

⎛
⎝⎜

⎞
⎠⎟  

(2)

where the subscripts top and bot designate the “top” and 
“bottom” flanges of the section, as defined in the preced-
ing text. It should be observed that Equation 2 is based on 
equating γeLTB Mmax.top to CbMcr1.top for the top flange and 

even for single-curvature bending (corresponding to a posi-
tive ratio of the smaller-to-larger end moments, M1/M2). For 
reverse-curvature bending cases, the AISC estimate can 
be as much as 12% conservative relative to the AASHTO 
lower-bound estimate.

Furthermore, Wong and Driver show that the AISC equa-
tion overestimates the Cb values from refined benchmark 
solutions for unbraced lengths containing a concentrated 
transverse load at the mid-length combined with restrain-
ing end moments as shown in Figure 3 when 0.6 < β < 1.1, 
where β is the ratio of the actual end moments to the end 
moments for a fixed-end beam. They find that the largest 
unconservative error occurs for the case with β = 1.0. For 
this case with β = 1.0, the quarter-point Equation F1-1 in the 
AISC Specification gives Cb  = 1.92, whereas benchmark 
solutions in this research range from 1.69 to 1.72, depend-
ing on the relative contributions from St. Venant and warp-
ing torsion. The proposed Wong and Driver formula gives 
Cb = 1.41, whereas the AASHTO procedure conservatively 
gives Cb = 1.0 for this problem.

While these improvements are relatively minor, they are 
measurable, and they provide specific reference points indi-
cating that the Wong and Driver equation may also serve as 
a more appropriate base than the AISC Specification Equa-
tion F1-1 for the estimation of moment gradient effects in 
the context of singly symmetric I-section members.

The following subsections summarize the particulars of 
the AISC Specification Commentary (ASC), AASHTO, 
recommended, and benchmark calculations of Cb consid-
ered in this paper for singly symmetric I-section members. 
Appendix B provides a specific design example illustrating 
the relative efficiency of the ASC, AASHTO, and recom-
mended calculations.

AISC Specification Commentary (ASC) Procedure

The AISC Specification Commentary (ASC) procedure 
uses the equation:

 
Cb =

12.5Mmax

2.5Mmax + 3MA + 4MB + 3MC
Rm 3.0≤⎛

⎝⎜
⎞
⎠⎟   

 (AISC Spec. Comm. Eq. C-F1-3)

where
MA, MB, MC =  absolute value of the moments at the quar-

ter, middle, and three-quarter point loca-
tions, respectively, of the unbraced length, 
kip-in. (N-mm)

Mmax =  absolute value of maximum moment 
within the unbraced length, Lb, kip-in. 
(N-mm)

RM =  1.0 (1a)

for doubly symmetric members and for singly symmetric 
members subjected to single-curvature bending, and

βPL/8βPL/8

βPL/8βPL/8

P

0.6 < β < 1.1

Fig. 3. Cases from Wong and Driver where the  
AISC Cb equation overpredicts benchmark solutions.
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purposes of this paper, the AASHTO procedure is expressed 
entirely in terms of member moments:
For unbraced lengths where Mmid/M2 > 1.0, or when M2 = 0,

 Cb = 1.0 (3)

Otherwise,

 
Cb = 1.75 1.05

M1

M2
+ 0.3 M1

M2

2

2.5
⎛
⎝⎜

⎞
⎠⎟ ≤−

 
(4)

where
Mmid =  the moment at the middle of the unbraced length 

taken as positive when it causes compression 
and negative when it causes tension in the flange 
being considered, kip-in. (N-mm)

M0 =  the actual moment at the brace point opposite to 
the one corresponding to M2, taken as positive 
when it causes compression and negative when it 
causes tension in the flange under consideration, 
kip-in. (N-mm)

M1 =  the equivalent moment at the brace point oppo-
site to the one corresponding to M2, calculated as 
the intercept of the most critical assumed linear 
moment variation passing through M2 and either 
Mmid or M0, whichever produces the smaller value 
of Cb, kip-in. (N-mm); M1 is calculated as follows:

• When the variation in the moment along the 
entire unbraced length is concave in shape cor-
responding to the flange in compression (i.e., 
the stress in the flange under consideration is 
a smaller compressive value or a larger tensile 
value at the mid-length, compared to a value 
obtained as the average of the end moments),

 M1 = M0 (5)

• Otherwise, the moment diagram is defined as 
convex in shape, and

 M1 = 2Mmid M2 M0− ≥  (6)

M2 =  the largest moment at either end of the unbraced 
length causing compression in the flange under 
consideration, taken as a positive value kip-in. 
(N-mm), except as noted in the following text; if 
the moment is zero or causes tension in the flange 
under consideration at both ends of the unbraced 
length, M2 is taken as zero

The AASHTO method amounts to fitting a line from the 
maximum end moment through the mid-point of the moment 
diagram if the moment diagram is convex, and to fitting a 
line through both end points of the diagram if the diagram 
is concave. The actual maximum limit of 2.3 in AASHTO 
(2020) is increased to 2.5 in Equation 4 as discussed in the 
Background section of this paper.

γeLTB Mmax.bot to CbMcr1.bot for the bottom flange. For single-
curvature bending, only the direction of bending causing 
compression in the single compression flange is considered.

In the ASC procedure, the Cb value calculated from ASC 
Equation C-F1-3 applies in all cases when evaluating the 
elastic LTB resistance corresponding to flexural compres-
sion in the “critical flange,” which is defined as the flange 
having the largest Mmax/Mcr1 in Equation 2.

It can be observed that ASC Equation C-F1-3 is blind to 
the sign of the bending moment. The values input to ASC 
Equation C-F1-3 are all absolute values of the moments at 
the corresponding locations. In addition, the Rm factor does 
not include any consideration of the sign or the shape of the 
moment diagram along the unbraced length. As such, the 
ASC Cb calculation does not account for different patterns 
of compression and tension in the different size flanges for a 
general case involving moment reversal. The single ASC Cb 
value is applied to the two distinct member LTB resistances 
for uniform positive and negative bending, Mcr1.top and Mcr1.

bot. However, the Cb modifier being applied to these resis-
tances does not account for where and to what extent the 
different flanges are being placed in flexural compression. 
As a result, the final solution for the LTB resistance has 
limited accounting for these effects.

Equation  1b for the Rm factor was derived consider-
ing only moment diagrams for fixed-fixed and propped 
cantilever members that have no lateral bracing through-
out their entire span. Helwig et al. (1997) state that ASC 
Equation C-F1-3 is quite conservative for cases with linear 
moment diagrams in reverse-curvature bending and smaller 
values of Iy.opp/Iy. They refer to Kitipornchai et al. (1986) for 
more accurate Cb estimates in these situations. For linear 
moment diagrams, the AASHTO procedure gives accurate 
to moderately conservative calculations relative to the more 
complex equations presented by Kitipornchai et al. It is 
submitted that accurate solutions for near linear moment 
diagram cases are important to the design efficiency in 
many situations. This is because, when a member has at 
least some lateral bracing within its span, the shape of the 
moment diagram becomes relatively close to linear within 
each unbraced length. Furthermore, the moment diagrams 
for column members are typically close to being linear.

AASHTO Procedure

The AASHTO procedure is presented in terms of elastic 
flange stresses in Article 6.10.8, and in terms of moments in 
Article A6.3.3. For noncomposite prismatic I-section mem-
bers, the stresses in a given flange are simply the moments 
divided by the elastic section modulus to the flange; there-
fore, the same result is obtained whether the demands are 
written as flange stresses or as moments. As such, for the 
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For reverse-curvature bending cases, the AASHTO pro-
cedure applies Equations  3 through 6 separately to cal-
culate a different Cb for each flange. Nonlinear moment 
diagrams are always concave on one flange and convex on 
the other in these cases. The corresponding elastic buckling 
load ratio is:

 
eLTB = min

Cb.topMcr1.top

Mmax.top
,
Cb.botMcr1.bot

Mmax.bot
γ

⎛
⎝⎜

⎞
⎠⎟  

(7)

For single-curvature bending, only the direction of bend-
ing causing compression in the single compression flange 
is considered.

If Equations 5 and 6 are substituted into Equation 4, the 
resulting calculation can be written more directly as:

 
Cb = 1.75 1.05

M0

M2
+ 0.3 M0

M2

2

2.5
⎛
⎝⎜

⎞
⎠⎟

− ≤
 

(8)

for a concave moment diagram, and

 
Cb = 3.10 3.30

Mmid

M2
+1.2 Mmid

M2

2

2.5≤− ⎛
⎝⎜

⎞
⎠⎟  

(9)

for a convex moment diagram.

For reverse-curvature bending, the Cb value for the flange 
that governs the calculation of γeLTB in Equation 7 is consid-
ered as the “governing” Cb.

Clearly, the AASHTO procedure has a major limitation 
in that, when the maximum moment causing compression in 
the flange under consideration occurs within the unbraced 
length instead of at one of the ends, it simply uses Cb = 1. 
The AASHTO Commentary suggests that other methods 
such as the ASC procedure should be considered for the 
calculation of Cb in these cases.

One advantage of the AASHTO procedure is that it only 
requires the end moments and the moment at the middle of 
the unbraced length for its calculations; therefore, it may be 
considered as being simpler to apply. The end moments typ-
ically are readily available from a structural analysis. The 
quarter-point formulas require the moments at the quarter- 
and mid-points as well as the maximum moment within the 
unbraced length, requiring some additional work. However, 
the subsequent strength design checks also require the cal-
culation of the maximum positive and negative moments 
within the unbraced length in any case; therefore, it can be 
argued that the quarter-point formulas are not significantly 
more difficult to apply.

Recommended Procedure

For singly symmetric cases, the recommended moment 
gradient factor calculation directly applies the quarter-point 
formula developed by Wong and Driver:

 
Cb =

4Mmax

M 2
max + 4M 2

A + 7M 2
B + 4M 2

C   
 (AISC Spec. Comm. Eq. C-F1-2b)

However, for singly symmetric sections subjected to 
reverse-curvature bending, the Wong and Driver equation 
is modified to the following form:

 

Cb =
4

M
Mcr1 max

M
Mcr1

2

max

+ 4 M
Mcr1

2

A

+ 7 M
Mcr1

2

B

+ 4 M
Mcr1

2

C

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎞
⎠⎟

⎞
⎠⎟   

 (10)

where
Mcr1 =  base elastic critical moment corresponding to the 

cross section at the location under consideration 
(i.e., location A, B, C, or the location of the maxi-
mum M/Mcr1), based on uniform bending caus-
ing moment producing compression in the flange 
subjected to compression at this location, kip-in. 
(N-mm)

In the recommended procedure, the elastic buckling load 
ratio is estimated simply as:

 

eLTB = Cb
M
Mcr1 max

γ
⎛
⎝

⎞
⎠  

(11)

where Cb is calculated from ASC Equation C-F1-2b for 
single-curvature bending and from Equation 10 for reverse-
curvature bending. It should be observed that Equation 11 
is derived by equating γeLTBM to CbMcr1 at the location 
where M/Mcr1 is maximum. For single-curvature bend-
ing, only the direction of bending causing compression in 
the single compression flange is considered. For reverse- 
curvature bending, (M/Mcr1)max is taken as the largest value 
of M/Mcr1.top from all the cross sections where the top flange 
is in compression, and M/Mcr1.bot from all the cross sections 
where the bottom flange is in compression, inclusive. This 
is equivalent to the use of the ASC-based Equation 2, but 
with a more accurate Cb.

For reverse-curvature bending cases, Equation  10 
in corporates essential information about the shape of the 
moment diagram and the demands versus a corresponding 
base capacity in uniform bending at the different sampling 
points throughout the unbraced length. The simplicity of 
the Cb calculation is improved relative to the current meth-
ods, because Mcr1.top and Mcr1.bot need to be calculated in all 
the procedures, and the calculations of Rm in the ASC pro-
cedure and multiple Cb values in the AASHTO procedure 
are avoided.
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A major advantage of the recommended method is that 
it provides comparable or greater accuracy in capturing the 
results from benchmark Cb calculations in all cases, com-
pared to the ASC and AASHTO approaches, while main-
taining essentially the same degree of simplicity as these 
procedures. The recommended method solves the problem 
of sharp discontinuities in the ASC and AASHTO Cb esti-
mates, where the ASC solution gives either significantly 
conservative or unconservative results, and where the 
AASHTO solution gives significantly conservative results. 
These attributes are investigated in detail in the following 
sections of the paper.

Calculation of Benchmark Cb Values

The most rigorous method of determining the elastic LTB 
resistance is via an elastic buckling analysis based on the 
same thin-walled open-section (TWOS) beam theory 
that the AISC Specification flexural resistance equations 
are based upon. This research employs a general-purpose 
TWOS frame finite element developed by Jeong (2014) to 
generate a large dataset of converged benchmark solutions. 
The torsionally and flexurally simply supported unbraced 
lengths considered in this study are analyzed using 32 ele-
ments, although eight elements within the unbraced length 
are sufficient to obtain converged results within 1% of the 
analytical solution in all cases. The reader is referred to 
Jeong (2014) and White et al. (2021) for various validation 
studies demonstrating the efficacy of this finite element.

The first step of the computational solution is to deter-
mine the first (lowest) eigenvalue from an elastic linear 
buckling analysis conducted for a given finite element 
model of a selected physical beam. This eigenvalue is 
precisely the benchmark γeLTB. Given this eigenvalue, the 
moment gradient factor for the top flange, when the top 
flange is subjected to flexural compression, is:

 
Cb.top =

eLTBMmax .top

Mcr1.top

γ

 
(12)

and the moment gradient factor for the bottom flange, when 
the bottom flange is subjected to flexural compression, is:

 
Cb.bot = eLTBMmax .bot

Mcr1.bot

γ

 
(13)

The governing Cb is the one corresponding to the critical 
flange, which is defined as the flange that has the largest 
Mmax/Mcr1. This converged numerically generated value of 
Cb may be taken as the “exact” moment gradient factor cor-
responding to flexural compression in the critical flange.

PARAMETRIC STUDY DESIGN— 
LOADING CASES

As noted in the Introduction and Background, design 
expressions for Cb should be accurate for near-linear 
moment diagrams as well as for highly nonlinear moment 
diagram cases. This objective is addressed in this study by:

1. Directly evaluating the performance of the different 
methods for a complete range of linear moment diagram 
cases.

2. Varying the “nonlinearity” of the moment diagrams as 
a direct function of the ratio of the moments due to the 
transverse loads to the maximum end moments on the 
unbraced lengths.

Figure  4 shows the parametric variations selected for 
linear moment diagram cases in this study. In these cases, 
the “right-hand” end of the unbraced length is subjected to 
the moment MR and the “left-hand” end is subjected to the 
moment ML = α MR. The reader should note that “left-” and 
“right-hand” end are actually immaterial in these studies, 
because if the reader walks around to the opposite side of 
the member being considered and views the member from 
there, the “left” end becomes the “right” and vice versa. 
These moments are equilibrated by the shear forces applied 
at the ends of the unbraced length, and it is assumed that 
any other loadings within the unbraced length are negli-
gible. For doubly symmetric members, one need only 
consider values of α between −1.0 and 1.0, as considered 
previously in Figures 1 and 2. However, for singly symmet-
ric members, it is important to consider reverse-curvature 
bending cases in which the inflection point is located at 
various locations throughout the unbraced length; further-
more, both sections with a larger as well as a smaller “top” 
flange should be addressed. The variation in the relative 
flange sizes is captured in this study by the monosymmetry 
parameter:

 

=
Iy.top
I y

1

1+
Iy.bot
I y.top

≅ρ

 

(14)

where
Iy =  weak-axis moment of inertia of the entire cross 

section, in.4 (mm4)

Iy.bot =  moment of inertia of the bottom flange about an 
axis in the plane of the web, in.4 (mm4)

Iy.top =  moment of inertia of the top flange about an axis 
in the plane of the web, in.4 (mm4)

The maximum and minimum limits on ρ of 0.9 and 0.1 
employed in this work are the same as in the AISC Specifi-
cation Equation F13-2. Values of ρ = 0.1, 0.3, 0.5, 0.7, and 
0.9 are considered.
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Regarding practical cases involving “nonlinear” moment 
diagrams, two types of transverse loading are considered 
within the unbraced lengths in this research:

1. A concentrated load, P, applied at the web mid-height 
and middle of the unbraced length.

2. A uniformly distributed load, w, applied throughout the 
unbraced length.

These loadings encompass all of the loading cases consid-
ered by Helwig et al. (1997) as well as the majority of the 
loading cases studied by Wong and Driver. However, in this 
research, loadings that involve a small deviation from the 
basic linear moment diagrams are emphasized in addition to 
loadings that are more akin to transversely loaded members 
that do not have any bracing within their entire span. This is 
accomplished by varying two parameters,

 
= ML

MR
α

 
(15)

and

 
= Mss

MR  
(16)

where Mss is the maximum “simply supported” moment 
associated with a given transverse loading, located at the 
middle of the unbraced length. For the first transverse load-
ing case,

 
Mss =

PLb
4  

(17)

and for the second loading case,

 
Mss =

wLb
2

8  
(18)

The following values of α and ξ are considered for the 
nonlinear moment diagram cases:

• α values of + 1.0, + 0.5, 0, −0.5, and −1.0.

• ξ values ranging from −2.0 to + 2.0 for each of these α 
values, with Δξ taken as 0.1.

Fig. 4. Linear moment diagrams considered in this study.
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These combinations of α and ξ produce the moment dia-
grams illustrated in Figure  5. The “base” linear moment 
diagrams corresponding to ξ  = 0 are indicated by the 
dashed lines in each of the plots, and the moment diagrams 
corresponding to nonzero transverse loads for ξ = 2.0, 1.0, 
−1.0, and −2.0, applied in addition to the end moments, are 
indicated by the solid lines.

Simply supported unbraced lengths with zero end 
moments are not considered in this study. The specified 
loadings produce a range of cases combined with applied 
end moments that are considered sufficient to validate the 
application of the Cb design expressions, which were devel-
oped originally for doubly symmetric I-section unbraced 
lengths, to singly symmetric I-section members subjected 
to single-curvature bending. Given the validations shown 
here, the specific single-curvature bending cases investi-
gated in Helwig et al. (1997) and the wider range of single-
curvature bending cases investigated by Wong and Driver 
are considered as further validation of use of the Cb design 
expressions for doubly and singly symmetric members 
subjected to single-curvature bending. The current study 
focuses on cases where there is always a nonzero moment 
of some sign at one or both ends of the unbraced length.

In addition to simply supported unbraced lengths, Helwig 
et al. (1997) considered fixed-fixed and propped cantilever 
beams with uniformly distributed transverse load as well 
as a single concentrated transverse load at their mid-span. 
These loading cases correspond to the following specific 
(α, ξ) combinations:

• For the transverse concentrated load cases, (α, ξ) = (1.0, 
−2.0) for the fixed-fixed beams and (0.0, −1.33) for the 
propped cantilever beams.

• For the uniformly distributed transverse load cases, (α, 
ξ) = (1.0, −1.5) for the fixed-fixed beams and (0,0, −1.0) 
for the propped cantilever beams.

Wong and Driver considered a wider range of loadings, 
but only for doubly symmetric beams, and with an emphasis 
on (1) beams with no bracing within their entire span and 
(2) loadings in which the end moments are small compared 
to the simply supported moments. In addition to their cases 
that fit within the range of the loadings studied in this work, 
they studied:

• Simply supported beams with a concentrated transverse 
load applied at a variable location between the beam end 
and the mid-span (referred to as their loading type 6).

• Simply supported beams with two concentrated 
transverse loads applied at a variable equal distance from 
the end supports (referred to as their loading type 7).

• Concentrated transverse loads applied at the third 
points of the unbraced length, combined with equal 

and opposite variable end moments (referred to as their 
loading type 11).

• Concentrated transverse loads applied at the third points 
of the unbraced length, combined with zero moment at 
one end and a variable applied moment at the opposite 
end of the unbraced length (referred to as their loading 
type 12).

The authors submit that the two transverse loading cases 
combined with the α and ξ values considered in this study, 
plus the additional cases from Wong and Driver, gives a 
comprehensive assessment of the behavior of the different 
Cb design expressions for all types of loadings on both dou-
bly and singly symmetric I-section members. The loadings 
considered in the current study produce practical moment 
diagrams for cases where there are one or more braced 
points within the span as well as for cases in which there is 
no bracing within the entire span.

Wong and Driver also considered several loading cases 
in which concentrated moments are applied to the member 
within the unbraced length. They demonstrated that none 
of the available Cb equations are sufficient to evaluate the 
LTB resistance for beams subjected to these types of load-
ings. These types of loadings are considered as appropriate 
candidates for the direct application of computational tools 
such as SABRE2 (White et al., 2021).

As noted previously, Helwig et al. (1997) showed that the 
web mid-height, rather than the shear center, is the proper 
transverse load position for development of base Cb equa-
tions that neglect load height. For instance, members with a 
very large “top” flange have a shear center close to the top 
flange. There is a definite destabilizing effect of downward 
transverse loads applied “high” on the cross section—say, 
at this shear center location—and a stabilizing effect of 
downward transverse loads applied “low” in the cross sec-
tion (but relative to the web mid-height, not relative to the 
shear center). Helwig et al. found that if the load position is 
defined at the web mid-height rather than the shear center, 
the degree of monosymmetry does not affect the Cb values. 
In addition, they found that the base Cb values derived for 
doubly symmetric members work well for single-curvature 
bending cases. Furthermore, it can be stated that:

• For cases where significant end moments are applied to 
the unbraced length, particularly when these moments 
cause single-curvature bending, the influence of the 
height of the applied loads within the unbraced length 
tends to be relatively small. Simply stated, this is because 
the portion of the moment coming from the transverse 
loading is small in these cases.

• In addition, regarding load-height effects, it should be 
understood that in many situations involving transverse 
loads, the application of the load itself involves “tipping 
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 (a) α = 1.0, CL∗ (f) α = 1.0, UDL∗

 (b) α = 0.5, CL (g) α = 0.5, UDL

 (c) α = 0.0, CL (h) α = 0.0, UDL

 (d) α = −0.5, CL (i) α = −0.5, UDL

 (e) α = −1.0, CL (j) α = −1.0, UDL

Fig. 5. Nonlinear moment diagrams considered in this study (CL = concentrated load; UDL = uniformly distributed load).
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are reduced without changing the flange thickness to pro-
duce the targeted singly symmetric I-sections. For ρ = 0.1 
and 0.3, the top flange width is reduced to bf.top  = 8.65 
and 13.57  in., respectively. Similarly, for ρ = 0.7 and 0.9, 
the bottom flange width is reduced to bf.bot  = 13.57 and 
8.65 in., respectively. The overall maximum web depth to 
flange width, h/bf is therefore 60/8.65 = 6.94 in this study, 
which is allowed by the AISC Specification (with a reduced 
girder tension field action web shear resistance), and is only 
slightly larger than the largest h/bf allowed by AASHTO 
for bridge girders. Helwig et al. appear to reduce the flange 
widths and thicknesses proportionally to vary ρ in their 
research. This requires a minimum flange width of 6.94 in. 
for their girders, giving a maximum h/bf of 8.53.

In addition to the effect of the monosymmetry factor, 
the LTB resistance of both doubly and singly symmetric 
I-section members is influenced significantly by the nondi-
mensional factor

 
W =

Lb

ECw

GJ

π

 
(19)

where Cw and J are the warping and St. Venant torsion con-
stants of the cross section, respectively. The factor W is a 
measure of the contribution of the warping rigidity rela-
tive to the St. Venant torsional rigidity to the elastic LTB 
resistance.

The elastic LTB moment of a singly symmetric I-section 
beam may be expressed analytically as:

 

Mcr =Cb
2EIy
Lb
2 2
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(20)

where the coefficient of monosymmetry, βx, may be approx-
imated by the equation

 
x = 0.9ho f

I yc
Iyt

1ρβ −⎛
⎝⎜

⎞
⎠⎟  

(21)

(Ziemian, 2010). An exact expression for βx consistent with 
the thin-walled open-section FEA model employed in this 
research is presented by Ziemian. Equation  20 for Mcr is 
employed with the exact calculation of βx in the evaluation 
of all the Cb estimates considered in this paper.

In the previous equations, ho is the distance between 
flange centroids, ρf is defined as:

 

f =
1

1+
Iyc
Iyt

ρ

 

(22)

and Iyc and Iyt are the moments of inertia of the compres-
sion and tension flanges, respectively, about an axis in the 
plane of the web. In addition, the warping constant may be 
written as:

restraint” from the loading mechanism (e.g., from 
decking), which tends to nullify the influence of any load 
height. Helwig et al. provide a thorough discussion of this 
behavioral attribute.

All of the solutions generated in this research are based on 
loads applied at the web mid-height.

PARAMETRIC STUDY—MEMBER GEOMETRIES

The I-section geometries for the current study are gener-
ated from the base doubly symmetric cross section shown 
in Figure 6. This cross section is similar to the base doubly 
symmetric girder cross section employed by Helwig et al. 
(1997). The web of the base cross section considered in this 
research is 60  in. × 0.5  in., which qualifies as a noncom-
pact web but has a slenderness close to the AISC Specifi-
cation noncompact web limit of 5.7 E F/ y  = 137 for Fy = 
50 ksi. The section employed by Helwig et al. had ho (the 
distance between the flange centroids) = 60 in. and a web 
thickness of tw = 0.736 in., which satisfies the AISC Speci-
fication compact-web requirements for the base cross sec-
tion. The flanges of the base cross section considered in 
this research are 18 in. × 1.5 in., which satisfy the compact 
flange requirements. The flanges considered by Helwig et 
al. were 12 in. × 1 in. The larger base 18 in. × 1.5 in. flanges 
employed in this study allow for the variation in the ρ fac-
tor (Equation 14), by reducing the flange widths, without 
producing excessively narrow flanges relative to the section 
depth.

As stated at the beginning of the discussion of the load-
ing cases for the parametric study, ρ factors of 0.1, 0.3, 
0.5 (the base doubly symmetric I-section), 0.7, and 0.9 are 
considered in this work. In this study, the flange widths 

b f.bot = 18 in.

t f.bot = 1.5 in.

t w = 0.5 in.

b f.top = 18 in.

t f.top = 1.5 in.

h = 60 in.

Fig. 6. Base doubly symmetric I-section  
employed in the current studies.
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 Cw = ho2Iyc fρ  (23)

Therefore, the different terms in Equation  20 may be 
approximated as follows:

 

x = 0.9ho

Iyc
Iyt

1

Iyc
Iyt

+1
β

−

 

(24)
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and
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=
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Considering these equations, it can be observed that for a 
given singly symmetric cross section, there is one J value, 
one Cw value, one Cw/Iy value, and one W value irrespective 
of which flange is in compression. That is, the selected sin-
gly symmetric cross sections with ρ = 0.1 and 0.9 have the 
same J, Cw, Cw/Iy, and W values. Also, the singly symmetric 
cross sections with ρ  = 0.3 and 0.7 have the same J, Cw, 
Cw/Iy, and W values, but these are different from the values 
for ρ = 0.1 and 0.9. The coefficient of monosymmetry, βx, 
is influenced by which flange is in flexural compression. 
Furthermore, it can be observed in general that the nondi-
mensional parameters Iyc/Iyt and W have a substantial influ-
ence on the elastic LTB resistance. By inference, it can be 
expected that these parameters may also have an impact on 
the moment gradient factor, Cb.

Considering the behavior associated with Equations 20 
through 26, one can conclude that W needs to be varied over 
a comprehensive range, in addition to the variation of ρ, to 
fully evaluate the ability of design expressions to capture 
benchmark Cb values obtained from converged numerical 
solutions. In the current study, this is achieved by varying 
Lb/ho as well as by varying the St. Venant torsion constant J 
via the selected cross-section dimensional variations.

The values of Lb/ho considered in this research are 5, 10, 
20, and 30. Further, one additional suite of parametric study 
beams is considered with Lb/ho = 10 and with J taken equal 
to zero. For J = 0, the thin-walled open-section beam theory 
solution for the compression flange stress at elastic LTB is 
essentially independent of Lb/ho. The assumption of J = 0, 
which is applied in the AISC and AASTHO Specifications 
when the web classifies as slender, effectively gives W = ∞, 
while Lb/ho = 30 with a finite J (calculated from AASHTO 
Equation A6.3.3-9 in this work) gives representative practi-
cal minimum values for W. The W values considered in the 
current study, as a function of Lb/ho and finite or zero J, are 
summarized in Table 1.

RESULTS

Figures 7 through 12 present sample results from this study 
as plots of the benchmark and estimated Cb values versus 
the independent variables ρ, α, and ξ, all for members with 
Lb/ho = 10. The unbraced length to depth ratio Lb/ho = 10 is 
selected for the plots in these figures because this is a rep-
resentative intermediate value of Lb/ho.

Figure 7 summarizes the results for the linear moment 
cases (ξ  = 0). This is followed by Figures  8 through 12, 
which summarize the results for nonlinear moment cases 
with a uniformly distributed transverse load. Slein et al. 
(2021) show plots that parallel Figures  8 through 12 for 
nonlinear moment cases involving members subjected to a 
transverse concentrated load at the middle of the unbraced 
length. Each of the figures are arranged into five plots to 
convey the physical behavior, and the predictions of this 
behavior by the Cb design expressions, for different ρ, α, 
and ξ values.

Table 1. Range of W Values Considered in the Current Parametric Study

Lb//ho
J  

(in.4)
W  

(ρρ == 0.1 & 0.9)
W  

(ρρ == 0.3 & 0.7)
W  

(ρρ == 0.5)

10 0.0 ∞ ∞ ∞
5 > 0 1.57 2.50 3.03

10 > 0 0.786 1.25 1.51

20 > 0 0.393 0.626 0.758

30 > 0 0.262 0.417 0.504
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 α α

 (a) ρ = 0.1 (b) ρ = 0.3

 α

 (c) ρ = 0.5

 α α

 (d) ρ = 0.7 (e) ρ = 0.9

Fig. 7. Governing Cb values for linear moment cases (ξ = 0.0), Lb/ho = 10.
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 ξ ξ

 (a) ρ = 0.1, α = 1.0 (b) ρ = 0.1, α = 0.5

 ξ

 (c) ρ = 0.1, α = 0.0

 ξ ξ

 (d) ρ = 0.1, α = −0.5 (e) ρ = 0.1, α = −1.0

Fig. 8. Governing Cb values for members with ρ = 0.1 and Lb/ho = 10, subjected to a uniformly  
distributed transverse load: α = 1.0, 0.5, 0.0, −0.5, and −1.0; ξ ranging from −2.0 to 2.0.
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 ξ ξ

 (a) ρ = 0.3, α = 1.0 (b) ρ = 0.3, α = 0.5

 ξ

 (c) ρ = 0.3, α = 0.0

 ξ ξ

 (d) ρ = 0.3, α = −0.5 (e) ρ = 0.3, α = −1.0

Fig. 9. Governing Cb values for members with ρ = 0.3 and Lb/ho = 10, subjected to a uniformly  
distributed transverse load: α = 1.0, 0.5, 0.0, −0.5, and −1.0; ξ ranging from −2.0 to 2.0.
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 ξ ξ

 (a) ρ = 0.5, α = 1.0 (b) ρ = 0.5, α = 0.5

 ξ

 (c) ρ = 0.5, α = −0.0

 ξ ξ

 (d) ρ = 0.5, α = −0.5 (e) ρ = 0.5, α = −1.0

Fig. 10. Governing Cb values for members with ρ = 0.5 and Lb/ho = 10, subjected to a uniformly  
distributed transverse load: α = 1.0, 0.5, 0.0, −0.5, and −1.0; ξ ranging from −2.0 to 2.0.
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 ξ ξ

 (a) ρ = 0.7, α = 1.0 (b) ρ = 0.7, α = 0.5

 ξ

 (c) ρ = 0.7, α = 0.0

 ξ ξ

 (d) ρ = 0.7, α = −0.5 (e) ρ = 0.7, α = −1.0

Fig. 11. Governing Cb values for members with ρ = 0.7 and Lb/ho = 10, subjected to a uniformly  
distributed transverse load: α = 1.0, 0.5, 0.0, −0.5, and −1.0; ξ ranging from −2.0 to 2.0.
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 ξ ξ

 (a) ρ = 0.9, α = 1.0 (b) ρ = 0.9, α = 0.5

 ξ

 (c) ρ = 0.9, α = 0.0

 ξ ξ

 (d) ρ = 0.9, α = −0.5 (e) ρ = 0.9, α = −1.0

Fig. 12. Governing Cb values for members with ρ = 0.9 and Lb/ho = 10, subjected to a uniformly  
distributed transverse load: α = 1.0, 0.5, 0.0, −0.5, and −1.0; ξ ranging from −2.0 to 2.0.
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solutions, labeled as Cb exact, to the Cb obtained from the 
design expressions (i.e., Cb exact/Cb) for all of the cross sec-
tions and W values considered in this study. Emphasis is 
given to having an unbiased, evenly distributed sampling 
throughout the design space of which Figures  7 through 
12 are a subset. The main box of the boxplots conveys the 
25th percentile, median, and 75th percentile values for  
Cb exact/Cb, and the upper and lower whiskers convey the 
maximum and minimum Cb exact/Cb in each of the data sets. 
As discussed in the previous section, W is varied in this 
work by considering Lb/ho values of 5, 10, 20, and 30, and 
by analyzing members with Lb/ho = 10 taking J = 0. Fig-
ure  13 corresponds to the linear moment cases (ξ  = 0.0), 
while Figure 14 corresponds to all the nonlinear moment 
cases, both concentrated transverse load at the middle of 
the unbraced length and uniformly distributed transverse 
load throughout the unbraced length.

The plots in Figures 13 and 14 are arranged in five col-
umns corresponding to ρ = 0.1, 0.3, 0.5, 0.7, and 0.9, and 
the rows correspond to Lb/ho ranging from the maximum of 
30 at the bottom of the array down to Lb/ho = 5 in the next 
to top row of the array. As discussed previously, Lb/ho = 30 
gives the smallest values of W (Equation 25) for the selected 
member cross sections, and Lb/ho = 5 gives the largest finite 
values of W. The range of W values corresponding to each 
row of the plot arrays is summarized on the right-hand side 
of the figure. The specific W values for the different cases 
also are summarized in Table 1. The top row of the array of 
plots in Figures 13 and 14 corresponds to the idealized case 
in which the St. Venant torsion constant, J, is taken equal to 
zero. This gives an effective W value of infinity.

Tables  2 and 3 summarize the statistics for Cb exact/Cb 
corresponding to all of the data from the box plot arrays of 

In Figure 7, each of the five plots corresponds to a dif-
ferent ρ value, ρ = 0.1, 0.3, 0.5, 0.7, and 0.9. Values of ρ 
less than 0.5 correspond to a smaller “top” flange, values 
of ρ greater than 0.5 correspond to a larger “top” flange, 
and ρ  = 0.5 corresponds to doubly symmetric cross sec-
tions. The horizontal axis in each of these plots corresponds 
to the variation in α from −5.0 to 1.0 as illustrated in Fig-
ure 4. Values of α ranging from 0.0 to 1.0 correspond to 
single-curvature bending. This attribute is highlighted by 
the annotation in the upper-right corner of the plots.

Each of Figures 8 through 12 corresponds to a specific 
ρ value (i.e., ρ = 0.1, 0.3, 0.5, 0.7, or 0.9). The five plots in 
each of these figures correspond to different end moment 
ratios (α) (i.e., α = 1.0, 0.5, 0.0, −0.5, and −1.0). The ratio of 
the simple-span moment to the maximum end moment, ξ, is 
varied from −2.0 to 2.0 on the horizontal axis of these plots. 
The moment diagrams produced by these ranges of α and ξ 
are illustrated in Figure 5.

For the members subjected to uniformly distributed 
transverse load (Figures 8 through 12), the following cases 
correspond to single-curvature bending:

• For α = 1.0, ξ > −1.0

• For α = 0.5, ξ > −0.729

• For α = 0.0, ξ > −0.25

These cases are highlighted by the annotation in the upper-
right corner of the plots, where applicable. All of the other α 
and ξ values correspond to reverse-curvature bending. All 
the cases in Figures 8 to 12 parts (d) and (e), corresponding 
to α = −0.5 and −1.0, involve reverse-curvature bending.

Figures 13 and 14 show arrays of boxplots for the ratio 
of the benchmark Cb values from the converged FEA 

Table 2. Cb exact//Cb Statistics, Linear Moment Cases, All Sections and All Values of W

Value Recommended ASC AASHTO Recommended (ASC)

Max 1.70 5.16 2.33 1.84

Mean 1.10 1.38 1.12 1.13

Min 0.920 0.608 0.892 0.930

COV 0.104 0.569 0.180 0.112

Table 3. Cb exact//Cb Statistics, Nonlinear Moment Cases—Uniformly Distributed Transverse Load and Concentrated 
Transverse Load at the Middle of the Unbraced Length, All Sections and All Values of W

Value Recommended ASC AASHTO Recommended (ASC)

Max 3.26 5.13 12.43 3.01

Mean 1.11 1.24 1.55 1.11

Min 0.769 0.454 0.722 0.666

COV 0.191 0.344 0.577 0.204
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Figures 13 and 14. The dispersion in the ASC and AASHTO 
data is substantial. The ASC Cb exact/Cb data is essentially 
tri-modal. That is, the Cb exact/Cb ASC values coalesce largely 
into three groups: results for Rm > 1.0, results for Rm < 1.0, 
and results for Rm = 1.0. Furthermore, the Cb exact/Cb AASHTO 
data is essentially bimodal, coalescing largely into two 
groups: results where Cb AASHTO is simply taken equal to 
1.0 and results where Cb AASHTO is greater than 1.0. From an 
overall perspective, the recommended method clearly out-
performs both of the current methods. However, even for 
the recommended method, there are some cases where the 
converged numerical benchmark Cb exact values are over-
predicted. These are discussed further in the following sec-
tions. First, it is important to explain the overall behavior of 
each of the expressions for Cb.

One additional column is added to Tables  2 and 3 to 
address the question of how the quarter-point equation 
given by the AISC Specification Equation F1-1 performs 
if applied in the same way that the Wong and Driver for-
mula, ASC Equation C-F1-2b, is adapted in Equation  10. 
This column is labeled “Recommended (ASC).” One can 
observe that the Wong and Driver equation offers some 
minor improvement in the overall statistics relative to the 
AISC Specification Equation F1-1.

Behavior of the ASC Cb Equations

The ASC design expressions (ASC Equation C-F1-3 and 
Equation 1) exhibit the following behavior with variations 

Fig. 13. Boxplots of Cb exact/Cb for linear moment cases.
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 When ξ < 0.0, the transverse loading is “upward”; 
therefore, Iy.opp  = Iy.bot  = 0.9Iy and Rm  = 2.118 from 
Equation 1b.

• For the reverse-curvature bending cases with ρ  = 0.3, 
Iy.top = 0.3 Iy:

 When ξ > 0.0, the transverse loading is “downward”; 
therefore, Iy.opp  = Iy.top  = 0.3Iy and Rm  = 0.680 from 
Equation 1b.

 When ξ < 0.0, the transverse loading is “upward”; 
therefore, Iy.opp  = Iy.bot  = 0.7Iy and Rm  = 1.479 from 
Equation 1b.

in the independent variable ρ for the members considered 
in this study:

• For all single-curvature bending cases, Rm  = 1.0 from 
Equation 1a.

• For the reverse-curvature bending cases with ρ  = 0.1, 
Iy.top = 0.1 Iy:

 When ξ > 0.0, the transverse loading is “downward”; 
therefore, Iy.opp  = Iy.top  = 0.1 Iy and Rm  = 0.520 from 
Equation 1b.

Fig. 14. Boxplots of Cb exact/Cb for nonlinear moment cases—concentrated transverse  
load at the middle of the unbraced length and uniformly distributed transverse load.
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• For the reverse-curvature bending cases with ρ  = 0.7, 
Iy.top = 0.7Iy:

 When ξ > 0.0, the transverse loading is “downward”; 
therefore, Iy.opp  = Iy.top  = 0.7Iy and Rm  = 1.479 from 
Equation 1b.

 When ξ < 0.0, the transverse loading is “upward”; 
therefore, Iy.opp  = Iy.bot  = 0.3Iy and Rm  = 0.680 from 
Equation 1b.

• For the reverse-curvature bending cases with ρ  = 0.9, 
Iy.top = 0.9Iy:

 When ξ > 0.0, the transverse loading is “downward”; 
therefore, Iy.opp  = Iy.top  = 0.9Iy and Rm  = 2.118 from 
Equation 1b.

 When ξ < 0.0, the transverse loading is “upward”; 
therefore, Iy.opp  = Iy.top  = 0.1Iy and Rm  = 0.520 from 
Equation 1b.

In the limit ξ = 0.0, there is no transverse load, and there-
fore, one can infer that there is no gravity load direction and 
that Rm should be taken equal to 1.0. However, it is common 
that the self-weight moments in horizontal members may be 
small compared to the moments from the applied loads. In 
these cases, there is indeed a gravity load direction, but the 
moment diagrams are linear for all practical purposes. The 
results plotted in Figure 7 are based on this situation. The 
gravity direction is taken as downward, and the “top” flange 
is taken as the “opposite” flange in this case.

The variations of Rm with ρ and ξ are summarized in 
Table 4. These results are important toward understanding 
the various discontinuities in the ASC Cb curves shown in 
Figures 7 through 12.

Generally, discontinuities in the ASC Cb values can 
occur where:

1. The moment diagram changes from single-curvature 
to reverse-curvature bending. The values of α and ξ 

corresponding to this occurrence are highlighted, and 
the horizontal position on the plots where this occurs are 
clearly marked in Figures 8 through 12. The following 
are examples of these situations:

• Considering Figure 7(a), where ξ = 0 but it is assumed 
that there is a small downward transverse load on 
the members, the unbraced length goes into reverse-
curvature bending when α = ML/MR becomes negative. 
As such, Rm changes from 1.0 for positive α to 0.520 
for negative α. This causes an abrupt downward shift 
of the ASC Cb curve for negative α.

• A similar discontinuity occurs in Figure 7(d), where Rm 
changes from 1.0 for positive α to 1.479 for negative α, 
causing an abrupt upward shift in the ASC Cb curve for 
negative α.

• Considering Figure  11(a), Rm changes from 1.0 for  
ξ  > −1.0 to 0.680 for ξ  < −1.0, causing an abrupt 
downward shift in the ASC Cb values for ξ < −1.0.

 A number of other similar discontinuities appear 
throughout Figures 8 through 12.

2. The unbraced length is subjected to reverse-curvature 
bending, due to the values of the end moments (i.e.,  
α  = 0.5 or −1.0), and the direction of the transverse 
loading changes from positive ξ (downward), to negative ξ 
(upward). The following are examples of these situations:

• Considering Figure  8(d), Rm changes from 0.520 for  
ξ > 0.0 to 2.118 for ξ < 0.0. The magnitude of the shift 
in the ASC Cb curve in this case is limited by the cap 
of 3.0 in the ASC Equation CF1-3.

• Considering Figure  11(d), Rm changes from 1.479 for 
ξ > 0.0 to 0.680 for ξ < 0.0. The ASC Cb curve shifts 
in the opposite direction with increasing ξ in this 
case because the top flange is larger than the bottom 
flange, rather than smaller, while the variation in the 

Table 4. Values of Rm as a Function of ρρ and ξξ

ρρ == Iy.top//Iy ξξ Iy.opp//Iy Rm

0.1 ≥0.0 0.1 0.520

0.1 <0.0 0.9 2.118

0.3 ≥0.0 0.3 0.680

0.3 <0.0 0.7 1.479

0.5 All values 0.5 1.000

0.7 ≥0.0 0.7 1.479

0.7 <0.0 0.3 0.680

0.9 ≥0.0 0.9 2.118

0.9 <0.0 0.1 0.520
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to Wong and Driver (2010) for additional solutions involv-
ing simply supported beams.

For the concentrated transverse load cases, shown in 
Slein et al. (2021), the fixed-fixed and propped cantilever 
end conditions correspond to ξ = −2 and −1.33 for α = −1.0 
and 0.0, respectively. For the uniformly distributed load 
cases shown in Figures 8 through 12, the fixed-fixed and 
propped cantilever end conditions correspond to ξ = −1.5 
and −1.0 in plots (a) and (c), respectively. One can observe 
that the predictions by the ASC equations are relatively 
accurate for these specific load cases.

Behavior of the AASHTO Cb Equations

Different values are calculated for Cb.top and Cb.bot in the 
AASHTO procedure (see Equation  7). This practice is 
aimed at accounting for the different patterns of compres-
sion and tension in the separate flanges for cases involving 
moment reversal. However, due to the different Cb.top and 
Cb.bot values calculated using this approach, this method 
produces a discontinuity in the governing Cb value when 
there is a change in the flange governing the calculation of 
γeLTB. This behavior does not occur with the other methods 
evaluated in this study. For the other methods (i.e., the ASC 
method, the recommended method, and the benchmark 
calculations from elastic linear buckling analysis), the Cb 
curves are continuous at any α or ξ values where there is a 
change in the governing flange.

This behavior of the AASHTO equations appears at  
α  = −3.45 in Figure  7(a), at ξ  = −0.74 in Figure  9(e), at  
ξ = −0.66 in Figure 10(d), and at ξ = + 0.74 in Figure 11(e).

The AASHTO procedure also gives a sharp discontinu-
ity in its Cb value at any ξ where the maximum moment 
within the unbraced length becomes larger than the maxi-
mum end moment of the same sign. At these values of 
ξ, the AASHTO method switches from a calculation of  
Cb  > 1 based on Equation  9 to the simplistic estimate of 
Cb = 1. This occurs at ξ = −1.66 in Figure 8(e), at ξ = −1.58 
in Figure 9(c), at ξ = −1.06 in Figure 9(d), at ξ = −1.52 in 
Figure 10(b), at ξ = −1.07 in Figure 10(c), at ξ = −1.16 in 
Figure 11(b), and at ξ = −0.80 in Figure 11(c).

These discontinuities occur across a broad range of ρ, α, 
and ξ values, and it can be observed that, generally, they 
are appropriate and a part of the ability of the AASHTO 
method to account for the different patterns of compression 
and tension in the separate flanges in unbraced lengths sub-
jected to reverse-curvature bending. That is, the AASHTO 
Cb curves tend to follow the trends in the increasing or 
decreasing values of the benchmark solutions. However, 
the physical behavior captured by the benchmark solutions 
does not involve any discontinuities in the Cb values. As 
such, any solution having sharp discontinuities will exhibit 
inaccuracies at these locations. In the case of the AASHTO 

loading direction from downward to upward is the 
same. Again, the magnitude of the shift in the ASC Cb 
curve is limited by the maximum cap of 3.0 in the ASC 
Equation C-F1-3.

 Again, a number of other similar discontinuities appear 
throughout Figures 8 to 12.

Slein et al. (2021) also discuss the attributes of the calcula-
tions producing discrete changes in the slope of the ASC 
and other Cb curves in Figures  7-12, plotted versus α  = 
ML/MR.

Clearly the discontinuities in the ASC Cb values as a 
function of α and ξ are nonphysical. For ρ values signifi-
cantly different than 0.5, these discontinuities can introduce 
both substantial conservatism and unconservatism into the 
ASC LTB predictions. The largest conservatism in the ASC 
calculations tends to occur for cases where there is only a 
minor amount of reverse-curvature bending causing com-
pression on the smaller flange. However, the Rm calculation 
(Equations 1) gives a substantial indiscriminant reduction 
in the Cb value without considering the actual pattern of ten-
sion and compression within the smaller flange. The larg-
est unconservatism in the ASC calculations tends to occur 
for cases where there is only a minor amount of reverse-
curvature bending causing compression on the larger 
flange. However, the Rm calculation (Equations 1) gives a 
substantial indiscriminant increase in the Cb value without 
considering the actual pattern of tension and compression 
within the larger flange. Nevertheless, one can observe 
that the discontinuities in the ASC Cb values do follow the 
trends in the benchmark Cb exact curves to some extent for 
cases subjected to significant transverse loads and signifi-
cant simply supported moments, Mss (Equations 17 and 18). 
This is evidenced by the larger ASC Cb predictions, due to 
larger Rm for negative ξ values, in Figures 8 and 9, and the 
smaller ASC Cb predictions, due to smaller Rm for negative 
ξ values, in Figures 11 and 12.

It should be noted that as a check of the benchmark thin-
walled open-section beam theory solutions from SABRE2 
(White et al., 2021) employed in this paper, as well as to 
check the intended application of the ASC Cb expressions, 
the authors analyzed all the cases corresponding to loadings 
applied at the web mid-height from Helwig et al. (1997). 
A close match was obtained with the original solutions by 
Helwig et al. The difference in the accuracy of the results 
for the broader studies conducted in this work versus the 
original studies by Helwig et al. appears to be due to the 
fact that only simply supported, fixed-fixed and propped 
cantilever beams were considered in the development of the 
ASC Rm factor by Helwig et al. As stated previously, the 
solutions in this paper focus on loadings involving a more 
general variation of the end moments. The reader is referred 
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method, these inaccuracies are always conservative for 
the plots shown in this work. Nevertheless, the simplistic 
AASHTO solution of taking Cb = 1.0 when the maximum 
moment within the unbraced length is larger than the maxi-
mum end moment of the same sign is a critical flaw that 
is acknowledged in the AASHTO Commentary. This flaw 
makes the AASHTO method overly conservative for spans 
that have a limited number of intermediate brace points. 
These situations may exist in short-span bridges and in 
longer-span bridges during construction.

Behavior of the Recommended Cb Calculations

Considering Figures 7 through 12, one can observe that the 
recommended Cb calculation procedure does not exhibit any 
discontinuities in its value as a function of ρ, α, or ξ. The 
recommended Cb predictions generally follow the trends in 
the benchmark solutions quite well. The result from the rec-
ommended Cb calculations tends to be conservative in the 
vicinity of the largest benchmark and estimated Cb values. 
This is an attribute of the calibration of the ASC Equation 
C-F1-2b by Wong and Driver. As presented in detail in the 
subsequent discussions, members with large contributions 
from St. Venant torsion relative to the warping torsion tend 
to have smaller Cb exact values. These cases are encountered 
at larger Lb/ho for a given member cross section and for 
heavy column type members, which generally have large 
St. Venant torsional rigidity, GJ, compared to their warping 
rigidity, ECw. In essence, these are cases with the small-
est W values (see Equation  25). Since the design expres-
sions only account for variations in the moment along the 
unbraced length, and do not account for this significant 
attribute of the elastic LTB behavior, they need to be cali-
brated to give accurate results for practical situations hav-
ing the smallest W.

At the opposite extreme, singly symmetric members with 
(1)  the St. Venant torsion constant idealized as zero (such 
that there is no assistance from St. Venant torsion in resisting 
elastic LTB), (2) ρ = 0.1 (i.e., a small “top” flange), and (3) a 
moment diagram producing compression within the larger 
flange within the span but where the smaller flange loaded 
in maximum compression at one or both braced points gov-
erns [corresponding to the moment diagrams for ξ = −1.5 
in Figure 5(f), or for ξ = −1.2 in Figure 5(g)], the Cb exact 

values are a whopping 12.43 and 12.83, respectively! For 
these cases, the recommended calculations give Cb = 3.94 
and 3.95, respectively. The latter of these cases corresponds 
to the largest Cb exact/Cb Rec of 3.26 for the recommended 
calculations shown in Figure 14(a) and listed in Table 3. The 
ASC equations take on their maximum value of 3.0 for this 
case, resulting in Cb exact/Cb ASC = 12.83/3.0 = 4.28, whereas 
the AASHTO procedure gives only Cb = 1.3 for this case, 
resulting in Cb exact/Cb AASHTO = 12.83/1.3 = 9.87 (the first of 
these cases gives the largest conservatism of the AASHTO 

calculations of Cb exact/Cb AASHTO = 12.43/1.0 = 12.43).
Therefore, the recommended procedure tends to be con-

servative at large Cb values for members with unbraced 
lengths having large values of W. Nevertheless, an esti-
mated Cb of 3.95 will often place the LTB resistance, Mn, at 
the “plateau” strength. Hence there is limited need for more 
liberal estimates of these very large Cb values. The reader 
can observe from Figure  8 that for the singly symmetric 
cross sections targeted in this study, Lb/ho = 10, and with 
similar moment diagrams compared to those just discussed, 
the largest benchmark Cb exact values are between 5.0 and 
7.3, and these trends are captured conservatively by the rec-
ommended Cb calculations.

There is a specific unusual case for J = 0 (W = ∞) and 
ρ = 0.9 where there is an extreme sensitivity in the calcula-
tion of the governing elastic LTB resistance and the recom-
mended equations exhibit a minimum Cb exact/Cb Rec of 0.769 
[see Figure  14(u) and Table  3]. This case is discussed in 
detail in the following section.

Consideration of Cases with the Smallest Cb exact//Cb for 
the Different Cb Design Expressions

By far, the most important attribute of all structural design 
procedures is that they do not result in situations in which 
structural capacities are significantly overestimated. There-
fore, it is most important that the subject design calculations 
be scrutinized for any situations where Cb exact/Cb is signifi-
cantly less than 1.0.

Figure  15(a) provides a plot from the complete set of 
studies conducted in this research that exhibits the small-
est values of Cb exact/Cb specifically for linear moment dia-
grams for all the considered design estimates. Figures 15(b) 
through 15(d) show the specific worst-case loadings, their 
moment diagrams, other pertinent parameters, and the cor-
responding Cb design estimates. For these cases, Lb/ho = 30 
and ρ  = 0.9, resulting in the minimum values for W (see 
Table 1). A small downward distributed load, corresponding 
to ξ = 0.01, is considered. This makes the moment diagrams 
slightly nonlinear. In the cases labeled in Figure 15(a), the 
ASC procedure significantly overestimates the benchmark 
solution by applying Rm = 2.118 for α < 0. This gives a pre-
dicted ASC Cb equal to the ASC maximum limit of 3.0. The 
specific cases labeled in Figure 15(a) are as follows:

• The smallest Cb exact/Cb ASC = 0.608 occurs for negative 
α values close to zero (i.e., where there is only a 
minor amount of reverse-curvature bending causing 
compression in the larger top flange). This is labeled as 
Case 1 in Figure 15(a). The specific parameters and Cb 
values for this case are shown in Figure 15(b).

• Cb exact/Cb ASC also becomes quite small at larger negative 
α values, leading to Cb exact/Cb ASC = 0.624 at α = −5). 
This is labeled as Case 2 in Figure 15(a) and the specific 
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parameters and Cb values are summarized for this case in 
Figure 15(c).

• The recommended and the AASHTO Cb calculations 
both follow the benchmark Cb exact trends in Figure 15(a). 
However, they both tend to slightly overshoot the 
Cb exact values for cases with α < −1.0. The smallest 
Cb exact/Cb AASHTO of 0.892 occurs at α  = −1.7, where 
Cb AASHTO starts to reduce below its maximum limit of 
2.5. This is labeled as Case  3 in Figure  15(a), and the 
specific parameters and Cb values are summarized for 
this case in Figure 15(d). It should be noted that lowering 
the cap on Cb AASHTO from 2.5 to 2.3 would only shift 
the point at which Cb AASHTO starts to reduce below the 
maximum limit to α = −2.2 in Figure 15(a), and would 
result in an improvement in the smallest Cb exact/Cb AASHTO 
to only 0.914.

• The recommended method has the smallest unconser-
va tive error of all the considered design procedures 
in Figure  15(a), correctly following the trends in 
the benchmark Cb exact curve but giving a smallest 
Cb exact/Cb Rec of 0.920 at α = −1.5. This specific case is 
not illustrated in Figure 15, but it is very similar to the 
case in Figure 15(d). This amount of unconservatism for 
the most extreme case of large ρ and small W values is 
considered acceptable.

Figure 15 can be compared to Figure 7(e) to gain a per-
spective of the influence of the extreme value of Lb/ho = 30 
compared to the intermediate value of Lb/ho  = 10 for this 
problem. One can observe that in Figure  7(e), the recom-
mended Cb calculation is always slightly conservative com-
pared to the benchmark Cb exact values.

Figure 16 provides a plot from the complete set of stud-
ies conducted in this research and documented in Slein et 
al. (2021). This figure shows Case 4, a concentrated trans-
verse load case exhibiting the smallest values of Cb exact/Cb 
from the ASC calculations for the nonlinear moment dia-
grams considered. The specific parameters and Cb values 
for Case 4 are detailed in Figure 16(b). In Figure 16, again 
Lb/ho  = 30 and ρ  = 0.9, resulting in the minimum values 
for W. The following observations can be gleaned from this 
figure:

• The ASC method properly scales down its Cb values 
by Rm  = 0.520 for negative ξ values. This results in 
substantial conservatism between ξ = 0.0 and −0.5 and 
produces Cb values less than 1.0 for ξ < −0.7.

• However, for ξ > 0, the ASC method improperly scales 
up its Cb values by Rm = 2.118, with a maximum cap on 
its Cb of 3.0. This results in the minimum Cb exact/Cb ASC 
of 0.454 at ξ = 0.7, which is labeled as Case 4. This case 
is particularly worrisome since Cb exact is only 1.22, while 
Cb ASC is 2.67.

• It can be observed that the recommended and the 
AASHTO Cb calculations both provide a reasonably 
accurate estimate of the benchmark Cb exact values 
throughout the range −2.0 < ξ < 2.0 for this problem, with 
the recommended procedure giving a highly accurate 
prediction of the shape of and the values from the Cb exact 
curve.

Figure 16(a) may be compared to the corresponding pre-
dictions for Lb/ho  = 10 [see Slein et al. (2021)] to gain a 
perspective of the influence of Lb/ho = 30 compared to more 
intermediate length-to-depth ratios for this problem. For 
Lb/ho = 10, the recommended Cb calculation is accurate to 
slightly conservative compared to the benchmark Cb exact val-
ues for all of the studied ξ values.

Figure 17 shows another example from the studies con-
ducted in this research that exhibits small values of Cb exact/Cb 
from the ASC procedure for nonlinear moment diagrams. 
This plot corresponds to Lb/ho = 30, ρ = 0.3, and α = −1.0. 
Considering Figure 17(a), the ASC procedure appropriately 
scales down its Cb value by Rm = 0.680 for ξ > 0, although 
this leads to significantly conservative estimates for small ξ 
values. However, its use of Rm = 1.479 for negative ξ results 
in a low Cb exact/Cb ASC of 0.650 at ξ = −1.4. This specific 
loading and geometry is labeled as Case 5 and is detailed 
in Figure 17(b). Again, the fact that Cb exact is only 1.27 but 
Cb ASC is significantly larger at 1.95 is troubling. It should be 
noted that this problem is equivalent to Lb/ho = 30, ρ = 0.7, 
equal but opposite end moments corresponding to α = −1.0, 
and a downward load corresponding to ξ = +1.4.

Figure  17(a) may be compared to the corresponding 
predictions for Lb/ho = 10 [see Slein et al. (2021)] to gain 
a perspective of the influence of the extreme Lb/ho  = 30 
compared to more intermediate length-to-depth ratios for 
this problem. Again, for Lb/ho = 10, the recommended Cb 
calculation is accurate to slightly conservative compared to 
the benchmark Cb exact values for all of the studied ξ val-
ues. The Cb exact for Lb/ho = 10 increases significantly for 
increasing ξ values starting from the local minimum Cb exact 

at ξ = −2.0.
Figure 18 highlights another case (Case 6) similar to that 

of Case 5 in Figure 17, but where the Cb exact/Cb ASC is par-
ticularly small at ξ  = −2.0. This is due to a smaller ρ of 
0.1 in this problem. The Cb ASC for Case 6 is 2.79, whereas 
Cb exact is only 1.30. In addition, one can observe that the 
AASHTO predictions are quite conservative for ξ < −0.7 in 
Figure  18(a). Furthermore, the recommended calculations 
range from highly accurate, to slightly conservative, to 
slightly overestimating the benchmark solutions in this plot.

Figure 18 can be compared to the corresponding predic-
tions for Lb/ho = 10 [see Slein et al. (2021)] to gain a perspec-
tive of the influence of the extreme Lb/ho = 30 compared to 
intermediate length-to-depth values for this problem. For 
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 a

 (a) Cb versus α (b) Case 1 parameters and Cb values

 (c) Case 2 parameters and Cb values (d) Case 3 parameters and Cb values

Fig. 15. Cases exhibiting smallest Cb exact/Cb for the ASC, AASHTO, and recommended procedures for linear moment:  
Lb/ho = 30, ρ = 0.9 (Cb exact/Cb ASC = 0.608 at α = 0, Cb exact/Cb AASHTO = 0.892 at α = −1.7, Cb exact/Cb Rec =0.920 at α = −1.5).

 ξ

 (a) Cb versus ξ (b) Case 4 parameters and Cb values

Fig. 16. Worst-case Cb exact/Cb for ASC procedure, nonlinear moment—Case 4: concentrated  
transverse load, Lb/ho = 30, ρ = 0.9, a = –0.5 (Cb exact/Cb ASC = 0.454 at ξ = 0.7).



ENGINEERING JOURNAL / FOURTH QUARTER / 2022 / 265

 ξ

 (a) Cb versus ξ (b) Case 5 parameters and Cb values

Fig. 17. Illustration of small Cb exact/Cb for ASC procedure, nonlinear moment—Case 5: concentrated  
transverse load, Lb/ho = 30, ρ = 0.3, α = −1.0 (Cb exact/Cb ASC = 0.650 at ξ = −1.4).

 ξ

 (a) Cb versus ξ (b) Case 6 parameters and Cb values

Fig. 18. Example small Cb exact/Cb for ASC procedure, nonlinear moment—Case 6: concentrated  
transverse load, Lb/ho = 30, ρ = 0.1, α = −1.0 (Cb exact/Cb ASC = 0.466 at ξ = −2.0).

 ξ

 (a) Cb versus ξ (b) Case 7 parameters and Cb values

Fig. 19. Worst-case Cb exact/Cb for AASHTO procedure, nonlinear moment—Case 7: Lb/ho = 30,  
ρ = 0.9, α = −0.5, distributed transverse load (Cb exact/Cb AASHTO = 0.722 at ξ = −0.4).
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Lb/ho = 10, the recommended method gives accurate to con-
servative predictions for all the cases.

Figure  19 highlights Case 7, which has the smallest  
values of Cb exact/Cb from the AASHTO procedure for the 
nonlinear moment diagrams considered. Figure 19(a) cor-
responds to Lb/ho = 30, ρ = 0.9, α = −0.5, and uniformly 
distributed transverse load. The AASHTO calculations 
provide a reasonable capture of the benchmark solutions 
in Figure 19(a). However, at the Case 7 value of ξ = −0.4, 
where Cb AASHTO starts to reduce below the value of 2.35, 
due to a change in location of the moment causing the maxi-
mum compression on the smaller bottom flange from the 
left-hand end to the interior of the span, Cb exact/Cb AASHTO = 
0.722. Changing the maximum cap on the AASHTO results 
to Cb = 2.3 does little to change this overestimation of the 
benchmark solution.

It should be noted that Case 7 is equivalent to Lb/ho = 30, 
ρ = 0.1, α = −2.0, and a downward load corresponding to 
ξ = +0.8. In fact, for any of the cases presented in Figures 7 
through 21, an equivalent case is produced by:

• Negating the moment diagram.

• Setting ρ to (1 − ρ).

• Setting ξ to −ξ/α.

• Setting α to 1/α.

The parameters ρ = 0.1, α = −2.0, and ξ = +0.8 are rep-
resentative of a potential unbraced length adjacent to an 
interior support in a continuous-span girder with a smaller 
top flange, large negative moment at the interior support on 
the left-hand end, downward distributed load, and a smaller 
positive moment equal to one-half of the maximum negative 
end moment at the right-hand end of the unbraced length. 
Appendix B illustrates calculations for a similar bridge 
girder having Lb/ho = 15, ρ = 0.229, α = −2.0, and ξ = +0.5.

Figure 19 can be compared to Figure 12(d) to gain a per-
spective of the influence of the extreme Lb/ho = 30 compared 
to the more intermediate value of Lb/ho = 10 for this prob-
lem. One can observe that in Figure 12(d), the maximum 
ove-estimation of the benchmark solution by the AASHTO 
result (at ξ = −0.3) is slightly smaller than in Case 7.

Figure 20 highlights Case 8, which exhibits the smallest 
values of Cb exact/Cb from the recommended method for the 
nonlinear moment diagrams considered. This figure cor-
responds to a very different set of loadings and geometry 
compared to those discussed in the preceding text. Fig-
ure 20 corresponds to Lb/ho = 10, but with J taken equal to 
zero, which makes the benchmark solution essentially inde-
pendent of Lb/ho. In Case 8, where α = 0.0 (zero moment 
at the left-hand end), the unbraced length is subjected to 
a concentrated transverse load at its mid-length such that, 
given ξ = −0.5, the entire left half of the unbraced length is 
subjected to zero moment while the right half is subjected 
to a linearly varying moment from zero at the mid-span to 
a maximum value at the right-hand support. For this case, 
the unbraced length is in single-curvature bending with the 
flexural compression occurring in the larger top flange. As 
such, Cb Rec is relatively large at 2.83. The ASC calcula-
tions give a Cb ASC of 3.0. However, for decreasing ξ val-
ues infinitesimally smaller than −0.5, the unbraced length 
is subjected to reverse-curvature bending with larger and 
larger compression in the member’s small bottom flange 
on its left half. This results in a dramatic reduction in the 
Cb values for decreasing ξ slightly less than −0.5. Both the 
recommended and ASC Cb methods capture this substantial 
sensitivity in the LTB resistance.

In the benchmark solution for this problem, the elastic 
LTB resistance starts to reduce significantly with decreas-
ing ξ values for ξ  < −0.4. It appears that the behavior is 
such that the tension added to the small bottom flange at ξ = 
−0.4 helps stiffen that flange against lateral displacement, 

 ξ

 (a) Cb versus ξ (b) Case 8 parameters and Cb values

Fig. 20. Worst-case Cb exact/Cb for recommended procedure, nonlinear moment—Case 8: Lb/ho = 10, J = 0,  
ρ = 0.9, α = 0.0, concentrated transverse load at the middle of the unbraced length (Cb exact/Cb Rec = 0.769 at ξ = −0.5).
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resulting in a larger LTB resistance, although the larger top 
flange is seeing larger flexural compression for this case. 
The buckling mode for ξ = −0.5 shows substantially larger 
lateral movement of the bottom flange within the left-
half of the beam compared to the result for ξ = −0.4 (see 
Figure 21).

The sensitivity at ξ = −0.5 for this problem results in a 
Cb exact/Cb Rec = 0.769. It should be noted that Cb exact/Cb ASC = 
0.725 at this value of ξ.

Figure 20(a) may be compared to the corresponding con-
centrated transverse load plot with J included [see Slein et 
al. (2021)] to gain a perspective of the influence the extreme 
assumption of J  = 0. With J included, the recommended 
procedure gives a reasonably accurate characterization 
of Cb exact for the entire range of the ξ values. The ideal-
ized elastic LTB solution assuming J = 0 is a common one 
employed in the ASC and AASHTO Specifications for 
slender-web members. This idealization is employed to 
provide some accounting for the potential reductions in 
the LTB resistance of these types of members due to web 
distortion. However, there is always some influence from 
St. Venant torsion, which tends to make the elastic LTB 
predictions assuming J  = 0 slightly conservative. As can 
be seen from the minimum whisker for the recommended 

method in Figures  14(u) and 14(v), the consideration of a 
relatively large but finite W value measurably reduces the 
unconservative errors shown in Figure 20. The minimum 
Cb exact/Cb Rec in Figure  14(v) is 0.836. In addition, for  
Lb/ho = 5, the LTB resistance will tend to be in the inelas-
tic buckling range, which tends to further reduce the effect 
of potential overestimation of the benchmark elastic LTB 
resistance for the locally sensitive Case 8 in Figure 20.

Consideration of Cb Design Estimates for  
Long Heavy Column Members

The authors submit that the targeted doubly symmetric 
girder cross sections based on Figure 6, and the singly sym-
metric girder cross sections obtained after reducing the 
flange widths from the base values specified in this figure, 
combined with a maximum Lb/ho = 30, provide reasonable 
minimum W values (see Table 1) representative of practi-
cal steel beam and girder designs. However, for heavy col-
umn sections, smaller W values are possible. Based on the 
synthesis in Figures 13 and 14, it is clear that the smallest 
benchmark Cb exact values are obtained in cases where W 
is the smallest. As such, Slein et al. (2021) show additional 
studies investigating the behavior for W14×873 members 
with Lb/d = 30 as a representative extreme case of a long 

  
 (a) ξ = −0.4 (b) ξ = −0.5

Fig. 21. Buckling mode shapes for Lb/ho = 10, J = 0, ρ = 0.9, α = 0.0, concentrated transverse load, with ξ = −0.5  
versus ξ = −0.4; applied loads are indicated by black arrows, reactions are indicated by grey arrows.

 (a) Linear moment (b) Nonlinear moment

Fig. 22. Boxplots of Cb exact/Cb considering W14×873 members.
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heavy column to investigate the behavior of the Cb design 
estimates for this practical extreme.

Figure  22 shows boxplots for linear and nonlinear 
moment studies of the W14×873 members. For the linear 
moment studies, the AASHTO procedure clearly gives the 
best accuracy, while the recommended method provides a 
mean Cb exact/Cb Rec of 1.03 and a COV of 0.034. The AISC 
Specification Equation F1-1 calculation is, on average, 9% 
conservative and has the largest COV of 0.055. The recom-
mended method provides the best accuracy for the nonlinear 
moment cases, giving a mean Cb exact/Cb Rec of only 1.05 and 
a COV of 0.084. The AISC Specification Equation F1-1 has 
a similar mean of 1.06 in these cases but a higher COV of 
0.125. However, the recommended calculation never gives 
a Cb exact/Cb Rec less than 0.972, whereas Cb exact/Cb AISC is as 
small as 0.884.

SUMMARY AND CONCLUSIONS

This paper has presented a comprehensive evaluation of the 
results from the moment gradient factor (Cb) equations in 
the AISC (2016) Specification Commentary (ASC) and the 
AASHTO (2020) Specifications for prismatic singly sym-
metric I-section members. The investigation reveals that the 
ASC procedure produces both grossly conservative as well 
as significantly unconservative results in numerous practi-
cal situations. The causes of this behavior lie in the fact that 
the ASC quarter-point Cb equation is blind to the sign of the 
bending moment. The ASC calculation does not recognize 
the influence of different patterns of compression and ten-
sion in the different size flanges of a singly symmetric I- 
section member subjected to moment reversal. Furthermore, 
the ASC calculation exhibits substantial discontinuities in 
its Cb values as a function of the loading considered. This 
is due to its Rm factor. In recent developments, Reichenbach 
et al. (2020) recommend additional conditions on the appli-
cation of Rm in the ASC Cb equation for members under 
reverse-curvature bending. These recommendations are 
considered in Appendix A. This modified ASC procedure 
gives improved results for a limited subset of specific cases 
but continues to show significant errors in general.

The Cb equations in the AASHTO Specifications provide 
some accounting for the different patterns of compression 
and tension in the separate flanges of singly symmetric 
I-section members subjected to moment reversal. However, 
these equations are based only on the moments at the ends 
and at the middle of the unbraced length. Hence, they are 
limited in their ability to capture the influence of nonlinear 
variations in moment along the unbraced length. In addi-
tion, the AASHTO procedure uses Cb  = 1.0 in situations 
where the corresponding moment within the unbraced 
length is larger than the maximum brace point moment, 
causing compression in the flange under consideration. 
Furthermore, the AASHTO calculation can give significant 

discontinuities in the calculated Cb as a function of the 
loading considered. This is due to changes in the govern-
ing flange in its procedure and can produce substantially 
conservative results in certain cases.

To rectify the limitations of the current ASC and 
AASHTO methods, a modified form of an alternative 
quarter-point Cb equation proposed by Wong and Driver 
(2010) is recommended. For cases involving moment rever-
sal within the unbraced length of singly symmetric mem-
bers, the moment terms in the Wong and Driver equation 
are replaced by the ratio of the moments to the correspond-
ing elastic buckling moment based on Cb = 1 (i.e., M/Mcr1), 
considering the flange that is in compression at each of 
the locations where the moments are sampled. The studies 
show that the Wong and Driver equation, with this modifi-
cation, provides substantially improved accuracy compared 
to the current AASHTO and ASC methods. With respect to 
the current ASC equations:

• For singly symmetric members where the moment 
diagrams are close to linear, the recommended approach 
gives Cb values that are, on average, 25% larger than 
the ASC Equation CF1-3, and with a tighter COV on 
Cb exact/Cb (0.104 vs. 0.569).

• For singly symmetric members with nonlinear moment 
diagrams, due to transverse loading with the unbraced 
length, the recommended approach gives Cb values that 
are on average 12% larger than the ASC Equation C-F1-3, 
again with a tighter COV on Cb exact/Cb (0.191 vs. 0.344).

• Unconservative Cb exact/Cb values, illustrated by a 
specific example to be as small as 0.466, corresponding 
to Cb exact = 1.30 while Cb ASC = 2.79, are avoided.

In addition, substantial conservatism of the AASHTO 
provisions, particularly for single-curvature cases where 
Cb AASHTO is taken equal to 1.0 when Cb exact is significantly 
larger than 1.0, is eliminated.

These improvements are achieved with a small reduction 
in the overall calculation effort relative to the current meth-
ods since the calculations of Rm in the ASC procedure and 
multiple Cb values in the AASHTO procedure are avoided. 
This aspect of the recommended method is highlighted by 
a practical design example in Appendix B.

In addition, the present studies show that the recom-
mended equations do not require any cap on the maximum 
value of Cb obtained from the application of the actual and 
modified Wong and Driver quarter-point equations. As 
illustrated in the Background section of this paper and dem-
onstrated further by Slein et al. (2021), the recommended 
equations show moderate improvements relative to the cur-
rent AISC and AASHTO equations in benchmark solutions 
for doubly symmetric I-sections. Therefore, the Wong and 
Driver quarter-point equation, with the recommended mod-
ification to address singly symmetric I-section members 
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subjected to reverse-curvature bending, can be recom-
mended as a simple single approach that can be applied to 
all routine situations involving moment gradient loading on 
I-section member unbraced lengths.

Lastly, the studies presented in the paper indirectly and 
independently confirm the findings from Helwig et al. 
(1997) that the web mid-height serves as the appropriate 
reference position on the cross-section profile from which 
load-height effects should be calculated, where appropri-
ate. In all the studies conducted in this research, the trans-
verse loads are applied at the web mid-height. The authors 
observed that this load position through the depth of the 
cross section clearly results in the best correlation between 
benchmark solutions and the predictions from the Cb equa-
tions targeted at singly symmetric I-section members. Fur-
thermore, the studies in this paper provide independent 
confirmation of the benchmark results collected by Wong 
and Driver for specific doubly symmetric member cases.

As noted in the Introduction to the paper, the consid-
eration of load-height effects, where appropriate, is an 
advanced topic that is commonly not addressed directly 
within design specifications. Readers are referred to 
Helwig et al. for detailed consideration of load-height 
effects. The practical Cb equation modifications recom-
mended by Helwig et al. are considered applicable with the 
recommended base Cb equations presented in this paper. In 
addition, as discussed in the Introduction to the paper, the 
degree of lateral, rotational, and warping restraint provided 
at the ends of unbraced lengths, including continuity with 
and buckling interaction with adjacent unbraced segments, 
is not considered in the evaluation of the Cb procedures in 
this paper. Software such as SABRE2 (White et al., 2021), 
which has been employed to generate the benchmark solu-
tions presented in this paper, provides one advanced option 
that allows these attributes to be readily addressed. Other 
general loading and boundary condition effects such as 
discussed by Wong and Driver (e.g., members with con-
centrated applied moments within their lengths), unbraced 
cantilevers with fixed supports or with flexible back-spans, 
etc., where manual estimates can become more challenging, 
can be readily addressed by modern computational meth-
ods such those as provided in SABRE2.

APPENDIX A

Recent Improvements to the ASC Method  
in the Literature

Reichenbach et al. (2020) recently recommended additional 
conditional requirements for the application of Rm in the 
ASC Cb equation for members under reverse-curvature 
bending. Reichenbach et al. specify in their Equation  10 

that Rm should be taken equal to 1.0 for cases in which both 
−0.5  < Msmall/Mlarge  < 0 and xinf  < 0.375Lb, where Msmall 
and Mlarge are the smaller and larger end moments on the 
unbraced length, and xinf is the distance between the inflec-
tion point and the braced end corresponding to Msmall.

Therefore, in the modified approach recommended by 
these authors,

 Rm = 1.0  (A-1a)

for (1)  doubly symmetric members; (2)  singly symmet-
ric members subjected to single-curvature bending; and 
(3)  singly symmetric members subjected to reverse-
curvature bending when both the ratio of the end moments 
is between 0 and −0.5, exclusive, and the inflection point is 
located within 0.375Lb of the braced end with the smallest 
end moment in magnitude, inclusive. Otherwise,

 
Rm = 0.5+ 2

Iy.opp
Iy

2⎛
⎝⎜

⎞
⎠⎟

 

(A-1b)

The ratio of Msmall/Mlarge is directly related to the 
term α. The limit −0.5 < Msmall/Mlarge < 0 corresponds to  
−0.5 < α < 0 and α < −2.0. In the parametric study cases 
presented in the current paper, α ranges between −1.0 and 
1.0 for nonlinear moment diagrams and between −5.0 and 
1.0 for linear moment diagram cases. For the linear moment 
diagram cases (e.g., see Figure 7), the results are plotted at a 
small increment in α such that the plots are effectively con-
tinuous; however, the nonlinear moment diagram cases are 
evaluated at α = −1.0, −0.5, 0.0, 0.5, and 1.0. As such, when 
the modifications to Rm recommended by Reichenbach et 
al. are applied to the studies in this paper, there is no change 
in the results for the nonlinear moment diagram cases. 
Furthermore, for the linear moment diagram cases, the 
0.375Lb limit on the inflection point location corresponds to  
Msmall/Mlarge = −0.6, so the condition on the inflection point 
is always satisfied. Therefore, in effect, only the limits on 
α apply.

To evaluate the performance of the modified procedure 
recommended by Reichenbach et al. (2020) in the limit of 
linear moment diagrams, Figure  A-1 is considered. This 
figure is an adaptation of Figure 15 in which the AASHTO 
results are replaced by the results from the modified ASC 
method recommended by Reichenbach et al. (2020), labeled 
as ASC*. Figure  A-1 shows improvements by neglecting 
Rm when −0.5 < α < 0 and α < −2.0; however, for −2.0 < 
α < 0.5, the ASC* procedure uses the same Rm as the ASC 
method, resulting in Cb exact/Cb ASC* as small as 0.710, or a 
40.8% overestimation. Furthermore, it is important to note 
that there are two discrete shifts in Cb ASC* instead of the 
one discrete shift in Cb ASC in Figure 15(a).

In Figure A-1(a), the behavior of Rm as a function of α in 
the ASC* method is as follows:
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• For α ≥ 0, Rm = 1.0 due to single-curvature bending.

• For −0.5 < α < 0, Rm = 1.0 since −0.5 < Msmall/Mlarge < 
0. The particulars for α = −0.49, labeled as Case 11, are 
shown in Figure A-1(d).

• For −1.0 < α ≤ −0.5, Rm = 2.118 since Msmall/Mlarge < −0.5. 
The particulars for α  = −0.51, labeled as Case  10, are 
shown in Figure A.-1(c).

• For −2.0 < α ≤ −1.0, Rm = 2.118 since Msmall/Mlarge is less 
than −0.5 (note that left end moment now has the larger 
magnitude). The particulars for α  = −1.99, labeled as 
Case 9, are shown in Figure A-1(b).

• For α < −2.0, Rm = 1.0 since −0.5 < Msmall/Mlarge < 0.

These cases demonstrate that the recommendations by 
Reichenbach et al. (2020) do improve the results within a 
portion of the design space; however, the results are still 
highly inaccurate elsewhere.

Figure A-2 is an adaptation of Figure  16, where again 
the results for the AASHTO methodology are replaced 
with the results based on the ASC* method recommended 
by Reichenbach et al. (2020). Figure A-2(a) shows that the 

updated ASC methodology fixes the unconservative error 
illustrated in Figure 16(a). However, it does not fix the con-
servative error. In the plot in Figure A-2(a), Rm is included 
once the inflection point moves within 0.375Lb from the 
location of Msmall. This occurs at ξ < −0.050. This inclu-
sion of Rm results in Cb exact/Cb ASC* values as large as 2.11. 
Figure A-2(b) shows the particulars for Case 12, exhibiting 
the largest error.

Figure A-3(a) has the same loadings as Figure A-2(a), but 
ρ is changed from 0.9 to 0.1. In Figure A-3(a), the updated 
methodology fixes the conservative errors, but it does not 
fix the unconservative errors. Figure A-3(b) shows the worst 
case, Case 13, where Cb exact/Cb ASC* = 0.497, with the ASC* 
procedure overpredicting by more than a factor of 2.0.

Based on the results illustrated in Figures A-1, A-2, and 
A-3, it is apparent that further adjustments would be needed 
to the ASC* procedure to limit the large conservative and 
unconservative errors still exhibited. The recommended 
adaptation of the Wong and Driver procedure presented 
in the current paper avoids the complexities of the various 
conditional tests associated with the ASC* method while 
maintaining simplicity of the calculations and giving an 
accurate estimate of the benchmark Cb.

  
 α

 (a) Cb versus α (b) Case 9 parameters and Cb values

  
 (c) Case 10 parrameters and Cb values (d) Case 11 parameters and Cb values

Fig. A-1. Cases exhibiting smallest Cb exact/Cb for the ASC, ASC* (Reichenbach et al., 2020) and recommended procedures for linear 
moment: Lb/ho = 30, ρ = 0.9 (Cb exact/Cb ASC = 0.608 at α = 0, Cb exact/Cb ASC* = 0.710 at α = –1.99, Cb exact/Cb Rec =0.920 at α = −1.5).
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 ξ

 (a) Cb versus ξ (b) Case 12 parrameters and Cb values

Fig. A-2. Partially improved performance of Cb exact/Cb for the modified ASC procedure recommended by Reichenbach et al. (2020), 
nonlinear moment—Case 12: concentrated transverse load, Lb/ho = 30, ρ = 0.9, α = –0.499 (Cb exact/Cb ASC* = 2.11 at ξ = –0.051).

  
 ξ

 (a) Cb versus ξ (b) Case 12 parrameters and Cb values

Fig. A-3. Worst-case Cb exact/Cb for the modified ASC procedure recommended by Reichenbach et al. (2020),  
nonlinear moment—Case 13: concentrated transverse load, Lb/ho = 30, ρ = 0.1, α = −0.499 (Cb exact/Cb ASC* = 0.497 at ξ = −2.0).
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APPENDIX B

Reverse-Curvature Bending Design Example

The following example design calculations consider a two-
span continuous bridge girder with equal span lengths. The 
focus of the calculations is on determining the distributed 
load the girder can safely support during construction, con-
sidering the LTB limit state. It is assumed that the girder 
is braced at the abutments, at the pier section, and at each 
mid-span location. It is assumed that form supports distrib-
ute a portion of the load to the bottom flange; therefore, 
mid-height loading is assumed as in the example presented 
by Helwig et al. (1987).

The girder cross section is the same as the cross section 
considered in example design calculations by Helwig et al. 
(1987), except all the dimensions are scaled by a factor of 
1.5. This gives a 12 in. × 1.5 in. top flange, an 18 in. × 1.5 in. 
bottom flange, and a 60 in. × 0.75 in. web. The span length 
of the girder is taken as 150 ft, giving an unbraced length 
of Lb = 75 ft.

Load and resistance factors are not included in the 
calculations.

This problem has some similarity to the Case 7 example 
shown in Figure  19, except the monosymmetry is not as 
severe in this problem (ρ = 0.229) and the length-to-depth 
ratio of the unbraced length is smaller (Lb/ho  = 15). Fig-
ure B-1 shows the moment diagram for the right-hand span, 
with the pier section located on the left-hand end of the 
span. The unbraced length under consideration is the one 
subjected to reverse-curvature bending adjacent to the pier. 
The maximum negative and positive moments as well as 
the quarter-point moments are labeled in the figure. The 
moment diagram in the subject unbraced length corre-
sponds to α = −2.0 and ξ = +0.5.

The following calculations are the same for the three 
methods being evaluated:
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The calculations for the three primary methods evaluated 
in the paper are presented in the following subsections and 
are compared to a converged numerical benchmark solution 
of the distributed load the girder can safely support during 
construction of γe.exact(1 kip/ft) = 1.38 kip/ft from SABRE2 
(White et al., 2021).

ASC and ASC* Procedures

For the ASC* procedure, the updated exclusion criteria for 
the calculation of Rm,

Msmall/Mlarge < −0.5   xinf < 0.375Lb from Msmall

Fig. B-1. Moment diagram and cross-section properties for an example bridge girder  
during construction having Lb/ho = 15, ρ = 0.229, α = −2.0, and = +0.5.
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are violated for this example. Therefore, Rm is calculated 
using Equation  1b and the ASC* method gives the same 
result as the ASC method:

Rm = 0.5+ 2
Iy.top
I y

2

= 0.604
⎛
⎝⎜

⎞
⎠⎟

Cb =
12.5Mmax

2.5Mmax + 3MA + 4MB + 3MC
Rm = 1.59 3.0≤

Using Equation  2, considering the largest moment and 
the base elastic buckling capacities associated with each 
flange, the elastic buckling load ratio is calculated as

eLTB = min
CbMcr1.top

Mmax.top
,
CbMcr1.bot

Mmax.bot
= 0 0.89γ

⎛
⎝⎜

⎞
⎠⎟

wcr = eLTB (1 kip/ft) = 0 0.89 kip/ftγ

The resulting distributed load the girder can safely support 
during construction through the ASC and ASC* procedure 
is highly conservative, at 64% of the benchmark solution. 
Note that if Rm were taken equal to 1.0, the resulting dis-
tributed load the girder can safely support is estimated as 
1.47 kip/ft, or approximately 6.5% larger than the bench-
mark solution.

AASHTO Procedure

For reverse-curvature bending cases, the AASHTO proce-
dure requires assessment of the concavity or convexity the 
moment diagram with respect to each flange. Using Equa-
tions 8 and 9, the moment gradient factors for each flange 
are calculated as

Cb.bot = min 1.75 1.05
M0

M2
+ 0.3 M0

M2

2

, 2.5 = 2.35
⎡

⎣
⎢

⎤

⎦
⎥−

⎛
⎝⎜

⎞
⎠⎟

Cb.top = min 3.10 3.30
Mmid

M2
+1.2 Mmid

M2

2

,2.5 = 2.5
⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢⎢

⎤

⎦
⎥⎥

Using Equation  7, considering the respective moment 
gradient factor, largest moment, and elastic buckling capac-
ity in each flange, the elastic buckling load ratio is calcu-
lated as

e.AASHTO = min
Cb.topMcr1.top

Mmax.top
,
Cb.botMcr1.bot

Mmax.bot
= 1.40γ ⎛

⎝⎜
⎞
⎠⎟

wcr = eLTB (1 kip/ft) = 1.40 kip/ftγ

The resulting distributed load the girder can safely sup-
port through the AASHTO procedure is slightly unconser-
vative, 1.4% larger than the benchmark solution.

Recommended Procedure

The recommended procedure considers the ratios of the 
moment demands to the critical elastic moment of the 
flange in compression, either Mcr1.top or Mcr1.bot, along the 
length of the member.

Cb =
4

M
Mcr1 max

M
Mcr1

2

max

+ 4 M
Mcr1

2

A

+ 7 M
Mcr1

2

B

+ 4 M
Mcr1

2

C

= 2.24

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎛
⎝⎜

⎛
⎝⎜

⎛
⎝⎜

⎞
⎠⎟

⎞
⎠⎟

⎞
⎠⎟

⎞
⎠⎟

Using Equation 11, the elastic buckling load ratio is calcu-
lated as

e.Recommended =
Cb
M
Mcr1 max

= 1.26γ
⎛
⎝

⎞
⎠

wcr = eLTB (1 kip/ft) =1.26 kip/ftγ

The resulting distributed load the girder can safely support 
through the recommended procedure is slightly conserva-
tive, at approximately 91% of the benchmark solution.
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ABSTRACT

Transportation facilities are crucial civil engineering structures, which are vulnerable to increasing risks of potential explosive loadings. The 
structural members of older facilities were typically made of steel and built up from angles and plates joined together with rivets, rather than 
directly rolled in steel mills. Most existing blast mitigation design approaches were made for military or petrochemical facilities in rural areas 
with significant stand-off distances. However, transportation facilities, which are located in congested major cities, with structural mem-
bers exposed to pedestrians and passengers, are subject to the risks of potential close-range or near-contact detonations. Recently, new 
approaches were developed to address the potential progressive collapse of high-rise buildings in urban environment, but the approaches 
do not address the localized deformations or failures on column flange or web elements that are common in close-range or near-contact 
detonations. For this reason, the existing approaches are not appropriate to the blast mitigation design of the urban transportation struc-
tures. Instead, a high-fidelity, nonlinear, explicit finite element analysis is suggested. Typical practicing structural engineers do not have 
opportunities for education or training for such analysis due to technical challenges, cost, and time constraints. The main goal of the present 
research is to provide practical guides of the nonlinear, explicit finite element analyses for close-in or near-contact detonation problems 
that can be followed by practicing structural engineers and to provide simple design charts that can be used as a preliminary tool without 
performing the analyses. To accomplish the goal, more than 200 parametric study models were built for nonlinear, explicit finite element 
analysis of built-up steel columns subjected to close-in detonations. Characteristics of the steel materials for the built-up columns were 
investigated and incorporated in the numerical models. The models were determined so that they can cover practical ranges of columns, 
stand-off distances, and charge weights. The analysis results were presented on contour graphs using novel performance-based damage 
criteria. The graphs and design methodology presented in this study can be used as an efficient and practical tool to quickly assess blast 
resistance of built-up steel columns in transportation structures.

KEYWORDS: steel column, close-in detonation, near-contact detonation, blast, performance-based, built-up, transportation, security.

INTRODUCTION

Transportation passengers, vehicles, structures, and facili-
ties have been targeted by terrorists for the past century, 
and more frequent occurrences have been observed in 
recent years (e.g., Jenkins, 1997; Jenkins and Gersten, 
2001). Public- and private-sector buildings were frequent 
targets of blast attacks as well (Marchand and Alfawakhiri, 
2004). Many transportation structures, such as bridges, 
bus terminals, rail stations, or rail tunnels, have been 
designed and built in such a way that their essential struc-
tural skeletons are exposed to the general public without 

any architectural coverings. Due to the congested nature of 
a typical urban environment, where major transportation 
facilities are located, it is difficult, or even impossible to 
maintain significant stand-off distances around each struc-
tural member or component elements to protect structural 
members (Williamson and Winget, 2005; FEMA, 2007). 
Thus, urban transportation structures are prone to poten-
tial blast attacks in close proximity. Close-range blast loads, 
frequently referred to as near-contact charges, even with a 
small charge weight, could result in a column failure. The 
failure of either a single column or a group of columns could 
lead to a progressive collapse of a structure and devastating 
consequences, including significant casualties as well as 
economic, functional, and social losses (NYPD, 2009).

For the design of structures to resist blast loadings, there 
are several approaches available in public resources (e.g., 
ASCE, 2010; DOD, 2014; U.S. Army, 1986; Gilsanz et al., 
2013). However, none of the approaches are applicable to 
structures subjected to close-in (or near-contact) detonations 
because these approaches were developed mainly for struc-
tures with greater stand-off distances, such as rural military 
or petrochemical facilities. There are some blast-resistant 
design approaches developed for bridges (e.g., Davis et al., 
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2017; Winget et al., 2005; Baylot et al., 2003); however, 
application of these approaches to transportation facilities 
or urban building structures is limited or not appropriate.

For structures subjected to far-field detonations, the blast 
pressure, which is initially a spherical shape, becomes 
almost uniform when it reaches the surface of a target 
structure. The entire length of a structural member is 
engaged to resist the blast pressure, and subject to bend-
ing failures, after forming plastic hinges. However, for 
structures subjected to close-in detonations, the loading is 
intensely amplified within a small area and damages a tar-
get structural member severely and locally; its amplitude 
then decays much more quickly. The resulting damages 
are mostly localized deformations to the members, such 
as bulging, puncturing (breaching), or severing, which are 
not typical modes of failure observed in civil engineering 
structures. The local deformations cause weakening of the 
member due to a change of stress flow path, substantial sec-
tion property loss, or component instability. When the local 
damage is excessive to a column member, the column may 
eventually collapse under the presence of gravity loads. The 
column collapse involves mostly vertical downward crush-
ing, but no significant lateral deformations. Publicly avail-
able experimental evidences of the failure modes of steel 
members subjected to close-in detonations are found in lim-
ited literature (e.g., Krishnappa et al., 2014; Remennikov 
and Uy, 2014; Mazurkiewicz et al., 2015).

For long-span suspension bridges, steel cellular towers 
were often used as the major gravity load supporting struc-
tures. The steel towers are potentially subjected to close-in 
detonations due to close proximity to a roadway. The main 
type of blast load is generated from a large-truck Vehicle-
Borne Improvised Explosive Device (VBIED) potentially 
detonated a few feet away from the tower’s surface. For the 
steel towers, blast mitigation design approaches were devel-
oped and provided in the Bridge Security Design Manual 
by Davis et al. (2017).

For transportation facilities, such as rail and subway 
tunnels and stations, steel columns are often used as the 
major gravity load carrying structures. The steel columns 
are potentially subjected to close-in detonations due to 
close exposure to passenger traffic. Man-Portable Impro-
vised Explosive Devices (MPIEDs) are more common in 
transportation facilities because vehicular accessibility to 
underground tunnels and stations is limited (NYPD, 2009). 
In order to be carried by hand, historically the charge 
weights attempted for transportation facilities and buildings 
have been relatively lighter than for other targets (Jenkins, 
1997; NYPD, 2009). However, light charge weights can be 
lethal when detonated in close proximity or near-contact, as 
quoted from FEMA (2007):

…protection of primary vertical load-carrying mem-
bers by designing architectural or structural features 

that can keep an explosive even a few feet away can 
make a big difference. For portable devices, a few 
inches or a couple of feet may be critical…

Both steel towers of a suspension bridge and steel col-
umns in a transportation facility are critical load-carrying 
members potentially subjected to close-in detonations, 
although the order of magnitudes in charge weights, stand-
off distances, and overall dimensions are significantly 
different between them. However, the behavior of steel col-
umns subjected to close-in detonations can be significantly 
different from the bridge towers due to geometric differ-
ences. For example, a typical wide-flange steel column has 
the three-sided flow boundary formed by the web and the 
two flanges where blast pressure can be amplified, while a 
typical bridge tower has a flat surface on all sides. No pub-
lished blast evaluation or mitigation design approaches are 
available for steel columns subjected to close-in (or near-
contact) detonations.

Recently, blast analysis and design approaches were 
developed for high-rise buildings in urban settings to 
account for progressive collapse, such as Sideri et al. 
(2017). In the literature, the approach focused on far-field 
detonations, which were generated from a large vehicle, or 
VBIED, located on a nearby street. The approach assumed 
a uniform blast pressure applied to each of the lower-level 
column members, which were modeled with stick models or 
beam elements. Some of the columns subjected to the uni-
form pressure experienced a bending failure, engaging the 
entire member length. The gravity loads applied to the failed 
columns were redistributed to adjacent columns, which in-
turn caused failures of more columns. The approach is not 
directly applicable to the transportation facility columns in 
this study because (1) the localized deformations or failure 
modes that are dominant in near-contact detonations, such 
as bulging, puncturing (breaching) or severing, cannot be 
addressed in the stick models or beam elements used in the 
literature, and (2)  the nature of loading from the far-field 
detonations used in the literature is substantially different 
from the close-range or near-contact detonations that are 
prevalent in the present study.

The analysis of steel columns subjected to close-field 
detonations is a complex problem, where published experi-
mental data are extremely limited for a few selected mem-
bers (e.g., Krishnappa et al., 2014; Remennikov and Uy, 
2014; Mazurkiewicz et al., 2015). Thus, typically high fidel-
ity explicit nonlinear finite element analyses (FEAs) are 
required for evaluation or mitigation design of structures 
subjected to close-in detonations, as suggested by literature 
(e.g., ASCE, 2011; Krauthammer, 2008; Davis et al., 2017). 
The members are generally modeled with shell or plate 
models to account for the geometric features of component 
elements, such as flanges and web. Although there are a few 
published studies for close-in detonations using numerical 
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simulations (e.g., Krishnappa et al., 2014; Remennikov and 
Uy, 2014; Mazurkiewicz et al., 2015; Ngo et al., 2015; Shin 
et al., 2014), they did not cover a wide range of shapes or 
suggest any practical evaluation or mitigation means or 
methods for general structural engineers to use. Also, their 
focus was placed mainly on a few standard hot-rolled steel 
shapes and not built-up shapes, which are more common 
in historic transportation facilities. In addition, most struc-
tural engineers do not have direct access to high-fidelity, 
explicit, nonlinear FEA due to technical difficulties, the  
time-consuming nature of analyses, and budgetary con-
cerns. These challenges, along with other reasons, have 
discouraged state or local agencies, which have jurisdiction 
over transportation facilities, from performing urgent and 
necessary security hardening projects. In addition, concerns 
about quality controls have been raised in the engineering 
community due to a lack of guidance, standards, specifica-
tions, or codes for close-in (or near-contact) detonations.

The present study focuses on built-up, wide-flange-
shaped steel columns, subjected to extremely close-in 
detonations with relatively smaller charge weights. The 
objective of this study is to (1) perform a series of compre-
hensive numerical studies and present the resulting patterns 
on charts, (2)  present the details of a numerical method 
that can be followed by general structural engineers, and 
(3) suggest practical design approaches based on the charts 
that can be used without the numerical tool.

The numerical studies use complex high-fidelity, 
ex plicit, nonlinear FEA method, while the suggested design 
approaches use simple design charts that are suitable for use 
in the preliminary blast-resistant design and/or for cost esti-
mate purposes of existing built-up transportation structural 
members. To accomplish this, performance-based damage 
criteria are suggested, which are then used to develop a 
series of design curves and graphs in this study. The condi-
tions and limitations required to use the design curves and 
graphs are specified for preliminary designs. With the devel-
oped graphs, structural engineers can determine whether or 
not each structural member under consideration is subject 
to failure for a set of given design parameters, including a 
column size, charge weight, and stand-off distance. For the 
situation where a column is subject to failure, practical blast 
mitigation design strategies are also suggested.

PARAMETERS AFFECTING  
BLAST RESISTANT STRENGTH

Standard wide-flange steel shapes (W-shapes) in AISC 
Steel Construction Manuals (AISC, 1927, 1934, 1946, 
1963, 2017) have been traditionally popular structural mem-
bers for buildings and transportation facilities. A typical 
W-shape is composed of two parallel, flat-flange elements 

and one perpendicular web element, connecting the flanges 
to form a capital letter I or H shape.

The most controlling factors that affect the resistance of a 
steel column subjected to close-in blast loads are a stand-off 
distance, a charge weight, and a column size. Traditionally, 
the stand-off distance has been defined as the distance from 
the surface of a structure to the explosive center. However, 
in this study, the stand-off distance (SOD) is defined as the 
clear distance between the structure and the explosive, or 
the distance from the center of a column to the nearest face 
of the explosive. This is because the web element is most 
affected in W-shape columns, and the distance is signifi-
cantly affected by the explosive dimensions. A comparison 
of the traditional and clear stand-off distances is shown in 
Figure 1.

In this study, six different SODs, of which the maximum 
is not more than a few column depths, were considered 
for each column. This is because, practically, an architect 
would not likely use more than a few column depths as a 
cladding radius to cover up each column for aesthetical, 
functional, or space-use reasons. The six SODs were used 
for all columns in the parametric study: 0.2X, 0.4X, 0.6X, 
0.8X, 1.0X, and 1.2X. The X is a fixed and common number 
for all the columns, but for security reasons and concerns, 
the value X is unrevealed in this study. The architectural 
covering would be a light-gage metal cladding, sheetrock, 
gypsum board, plywood, or other material, which do not 
have enough stiffness to significantly reduce the effects of 
blast loads considered in this study so as not to damage the 
column as fragments. Instead, it would function as fire-
proofing or simply an aesthetical cover. For the purpose of 
this study, it was assumed that the covering radius simply 
provides a clear SOD, as seen in Figure 1. It is known that 
the smaller the SOD, the more the damage to a column.

In this study, the charge weight (CW) is defined as the 
TNT charge weight. Due to limitations in vehicular acces-
sibility to underground transportation facilities, such as rail 
or subway stations and tunnels, this study focused on typi-
cal CWs of the MPIED, which are light enough to be car-
ried by pedestrians in bags without relying on other means 
of transportation. For each of the columns investigated, five 
different CWs were used in the parametric study: 0.12Y, 
0.23Y, 0.44Y, 0.86Y, and 1.32Y. The Y is also a fixed and 
common number for all the columns, but for security rea-
sons and concerns, the value Y is undisclosed in this study. 
The CWs are within comparable ranges to the physical 
weight of a 1 ft column length. It is known that the larger 
the CW, the more the damage to a column.

In addition, the position of the explosive is assumed to 
face the web directly (0° case in Figure 1). This is because 
the detonation pressure from the position is trapped most 
in the area surrounded by the three flat components of 
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members listed in the 15th edition AISC Steel Construc-
tion Manual, six different uniformly dispersed shapes were 
chosen for the study to cover a wide but practical size range 
of built-up columns, as summarized in Table  1. The size 
designations in parentheses in Table 1 represent sizes in the 
SI unit system per AISC (2017).

The maximum size of the built-up shapes used for the 
present study was limited to the built-up shape equivalent 
to standard W14×426 because it is not common to observe 
built-up shapes with cover plates thicker than 3 in. (76 mm). 
For equivalent cross-sectional properties of a built-up 
shape, the thickness and width of the cover plates were 
closely matched with the flange thickness and width of the 
equivalent standard W-shape; the thickness and width of 
the web plate were closely matched with the web thickness 
and depth of the same equivalent standard W-shape. Two 
sample pairs of standard and equivalent built-up shapes are 
graphically exemplified in Table 1.

For the four larger shapes in Table 1, angles are not con-
sidered in the section property calculations because the 
angles are used as connection elements to hold the cover 
and web plates together. For the two lighter shapes, how-
ever, the thickness and width of the angles’ horizontal legs 
are closely matched with the flange thickness and width 
of each equivalent W-shape because there are no sepa-
rate cover plates for these shapes. For each column shape, 
six different SODs and five different CWs were applied, 
resulting in a total of 30 different models per column. Alto-
gether, 180 blast analysis models were built to cover the six 

the column (two flanges and web). The reflective pres-
sure within the region escalates to a much larger magni-
tude, which damages the column most significantly. The 
damages from the position could often lead to puncturing 
a hole on the web, which can be fatal to the column. Simi-
lar observations and discussions are also found in literature 
(e.g., Mazurkiewicz et al., 2015; Krishnappa et al., 2014). 
Other positions, such as an angle to face flanges directly 
(90° case in Figure 1) and a skew angle (45° case in Fig-
ure 1), are not considered in this study because the detona-
tion pressures from these positions tend to wash out around 
the column surface, resulting in much less amplitudes and 
damages than the 0° case. The same analysis approaches 
can be taken as the 0° case in this study, for the analysis of 
the 90° or 45° cases.

Presently each standard W-shape is hot-rolled from a 
steel mill as a single member. In the early 1900s, however, 
built-up shapes were prevalent in steel construction when 
major transportation facilities were built in the United 
States, such as commuter rail and subway stations. The 
built-up shapes resemble the standard wide-flange shapes, 
but they were composed of four L-shaped angles, one web 
plate, and, in some cases, two cover plates, joined together 
with rivets. This study focused on the built-up wide-flange 
shapes, of which geometries are equivalent to standard 
W14 series wide-flange steel members listed in the AISC 
Steel Construction Manual (AISC, 2017). These shapes and 
series are very common as steel columns in buildings and 
transportation facilities. Out of all 38 W14 standard steel 

Fig. 1. Definitions of clear and traditional stand-off distances.
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on the 20th century, in which the historical changes of the 
mechanical properties of the steel materials were investi-
gated in building construction.

Based on the various editions of the AISC Steel Con-
struction Manuals (AISC, 1927, 1934, 1946, 1963, 2017), 
other AISC documents (AISC, 1953; Brockenbrough and 
Schuster, 2018), and American Manufacturer (1900), his-
toric changes of structural steel are summarized in Table 2.

In the first third of the 20th century, a majority of struc-
tural steel shapes in buildings were manufactured per 
ASTM A9 (1936). During the second third of the century, 
the minimum yield stress slightly increased, along with 
the frequent changes to the ASTM standards. In the last 
third of the century, ASTM A36 (2014) steel became the 
popular material specification for steel shapes and plates. 
The AISC Steel Construction Manuals (AISC, 1927, 1934, 
1946, 1963, 2017) have evolved accordingly, reflecting the 
changes of preferred steel materials, since 1927. Through-
out the century, the minimum tensile strength has not been 
changed significantly, nor the minimum percent elongation.

When the stress-strain diagram for the ASTM A9 steel 
(Camp and Francis, 1920) is compared to the recent ASTM 
A36 steel (Salmon et al., 2008), it is apparent that the over-
all stress-strain relationships of the two steel materials are 
similar, as shown in Figure 2.

Comparing the stress-strain curves and the mechani-
cal properties of the preferred structural steel materials in 

different columns with the variations of CW and SOD. For 
the first 180 models, column service loads were not consid-
ered. However, the column service loads were accounted 
for later in additional 180 models.

NUMERICAL MODELS FOR  
CLOSE-IN DETONATIONS

For high-fidelity analyses of close-in detonations, the 
Ansys/Autodyn program (Ansys, 2015) was used. A thor-
ough, but practical investigation was made for historic steel 
materials to be used in the analyses. Each steel member was 
modeled for explicit nonlinear FEA, while detonation was 
simulated through computational fluid dynamics analyses. 
Both the solid and fluid analyses were fully coupled so that 
the blast pressure could be exerted onto the column model 
(Century Dynamics, 2005).

Steel Material for Built-Up Transportation 
Facility Columns

It is a daunting task to cover the wide variety of steel mate-
rials used for the currently active transportation infrastruc-
tures in the United States because they have been built 
over the past few centuries. However, most transportation 
facilities, such as commuter rails and subways, were built 
within the last 100 years. Thus, the focus has been made 

Table 1. Dimensions of Built-Up Shapes Used for Parametric Study

Equivalent AISC  
Standard Shapes

Components of Built-Up Shapes

(4) Angles Web Plate (2) Cover Plates

W14×43
(W360×64)

L32×32×2
(L89×89×12.7)

PLc×13
(PL7.94×330)

—

W14×99
(W360×147)

L7×4×w
(L178×102×19.1)

PL2×14
(PL12.7×356)

—

W14×176
(W360×262)

L4×4×w
(L102×102×19.1)

PLd×122
(PL22.2×318)

PL14×15s
(PL31.8×397)

W14×257
(W360×382)

L4×4×w
(L102×102×19.1)

PL18×122
(PL28.6×318)

PL1d×16
(PL47.6×406)

W14×342
(W360×509)

L4×4×w
(L102×102×19.1)

PL12×122
(PL38.1×318)

PL22×16a
(PL63.5×416)

W14×426
(W360×634)

L4×4×w
(L102×102×19.1)

PL1d×122
(PL47.6×318)

PL3×16s
(PL76.2×422)
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Table 2, and without substantial experimental data available 
for built-up transportation structural members, it would be 
practically reasonable to assume that the behavior of struc-
tural steel materials in historic transportation facilities are 
similar to ASTM A36. This assumption is consistent with 
the material selection for blast analyses of over 50-year-old 
steel bridge towers in the Bridge Security Design Manual 
(Davis et al., 2017). The ASTM A36 steel was used through-
out the analyses in the present study.

Material Models

In accordance with UFC 3-340 (DOD, 2014), static yield 
stress from typical tensile coupon tests may be increased 
using two factors to compute dynamic yield stress for struc-
tural steel subject to blast loading. The first factor is the 
average strength increase factor to use the average yield 
stress in blast resistant design, as opposed to the minimum 
yield stress used in conventional structural steel design. The 
factor is a constant value of 1.1 for steel with a minimum 

Fig. 2. Uniaxial tensile stress-strain relationships between ASTM A9 and A36 steel.

Table 2. History of Preferred Structural Steel Used for Buildings in the United States

From To Source/Grade

Fy  
Minimum  

Yield Stress

Fu  
Minimum 

Tensile Strength

Minimum 
Percent of 
Elongation

1901 1931
ASTM A9, medium steel, 
structural steel

30 ksi 55 ksi

1927
AISC (1927) 1st Ed.,  
structural steel

30 ksi1 55 ksi 22

1932 1961
ASTM A7, A9, A140,  
structural steel

33 ksi 60 ksi

1936 1962
AISC (1934) 2nd Ed.– 
AISC (1946) 5th Ed.

33 ksi 60 ksi 22

1962 Present
ASTM A36, AISC (1963) 6th Ed.–
AISC (2017) 15th Ed.2

36 ksi 58 ksi 20

1. The value listed accounts for the larger of 30 ksi and Fu/2.
2. Other higher strength steels are available but are not compared in this table.
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yield stress of 50 ksi or less. The average strength increase 
factor is not readily available for historic structures. How-
ever, the use of this factor in the nonlinear explicit FEA 
in this study does not affect the numerical simulations sig-
nificantly because a failure in the near-contact detonations 
occurs well beyond the initiation of yielding but close to the 
ultimate stress. The second factor is the dynamic increase 
factor, which changes per the strain rate (strain per unit 
time) of a structure. As each and every part of a steel mem-
ber has a different strain rate at different times throughout 
a blast analysis, it is unrealistic or inappropriate to use a 
single factor for the entire steel member during a complete 
cycle of a blast analysis.

A more realistic and accurate dynamic increase factor is 
recognized in nonlinear explicit FEA through appropriate 
material models. Johnson and Cook (1983, 1985) suggested 
a stress-strain constitutive model based on three mate-
rial characteristics: strain hardening, strain-rate effects, 
and temperature change. Each expression within a pair of 
parentheses of Equation 1 represents one of the three char-
acteristics, respectively.

 = A+ B n( ) 1+C ln *( ) 1 T*m( )σ ε −ε⋅⋅  (1)

where
A = yield stress, ksi (MPa)

B = hardening constant, ksi (MPa)

C = strain rate constant

T ∗ = homologous temperature

m = thermal softening exponent

n = hardening exponent

ε = true plastic strain
*ε⋅⋅  = strain rate/reference strain rate

σ = true stress, ksi (MPa)

Johnson and Cook (1983, 1985) listed the five parameters 
(A, B, n, C, m) of Equation 1 from experiments for various 
materials but did not include the ASTM A36 (2014) steel. 
For the blast analysis of steel columns in transportation 
facilities, the strain-hardening constants (A, B, n) were deter-
mined in this study by curve-fitting of the strain-hardening 
expression, separated from Equation 1, to the experimental 
data for ASTM A36 steel by Salmon et al. (2008):

 = A+ B n( )εσ  (2)

For the curve-fitting, the following steps were taken, 
based on the published mechanical properties of ASTM 
A36 steel, summarized in Table  2. First, the minimum 
yield stress was increased by 10% to account for the aver-
age strength increase factor, while the minimum tensile 
(ultimate) stress, Fu, remained unchanged. Second, inter-
mediate data points were selected from the experimental 
stress-strain curve, which were increased linearly between 

the yield and ultimate stresses. The minimum percentage 
elongation was assumed to be the strain value correspond-
ing to the ultimate stress, or the ultimate strain, εu. Third, 
the engineering stress-strain curve data were converted to 
the true stress and the true strain so that they could be con-
sistent with the Johnson-Cook material model. The conver-
sions for the stress and strain are expressed in Equations 3 
and 4, respectively, based on the typical strength of material 
theory (Ugural and Fenster, 1994).

 = o 1+ o( )σσ ε  (3)

 = ln 1+ o( )ε ε  (4)

where
ε = true strain

εo = engineering strain

σ = true stress, ksi (MPa)

σo = engineering stress, ksi (MPa)

Fourth, for a trial value of the hardening exponent, n, the 
hardening constant, B, was computed using Equation 2, at 
the known boundary values of the ultimate strain, εu, and 
ultimate stress, Fu. This process was repeated for eight dif-
ferent trial values of hardening exponent, n, and curve-fitted 
to the ASTM A36 experimental data in Figure 3.

As seen in Figure 3, the best curve fitting of the ASTM 
A36 steel was obtained when the hardening exponent, n, 
was 0.75. The other two parameters in Equation 1 for strain 
rate, C, and temperature changes, m, were obtained from 
Schwer (2007) for ASTM A36 steel. The five parameters 
for ASTM A36 steel are summarized in Table 3.

In use of Ansys/Autodyn, the air was defined by the 
equation of state for the ideal gas with properties published 
by Rogers and Mayhew (1995). For the generation of blast 
pressure, TNT was modeled with the JWL (Jones, Wilkins, 
Lee) equation of state, which was originally developed by 
Lee et al. (1973) to appropriately fit various explosive mate-
rials in pressure-volume-energy behavior, based on a three-
term equation (Century Dynamics, 2005).

Model Geometry and Boundary Conditions

Two separate meshes were generated in the numerical 
simulation model. For air and TNT, multi-material Eule-
rian meshes were created for computational fluid dynam-
ics analysis, while for the steel column, Lagrangian meshes 
were created for nonlinear explicit FEA. Figure 4(a) shows 
only the outlines of the two meshes, where detailed mesh 
grids were turned off for visual clarity. As the steel col-
umn is loaded by blast pressure, the Lagrangian mesh grids 
deform. On the other hand, the Eulerian mesh grids stay 
the same, when the air and TNT materials flow between 
the meshes. The two meshes are solved independently via 
corresponding solvers and fully coupled for interaction. 
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Table 3. Five Constants of Johnson-Cook Material Model Estimated for ASTM A36 Steel

Constants A B n C m

ASTM A36
39.7 ksi  

(273 MPa)
108 ksi  

(744 MPa)
0.75 0.017 0.917

Fig. 3. Curve-fitting of ASTM A36 steel (Salmon et. al., 2008) with various  
trial-and-error hardening exponents, n, of the Johnson-Cook material model.
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During the coupling, the air and TNT meshes apply deto-
nation pressure to the column meshes, while the column 
meshes block the flows of the air and TNT meshes and 
deform in accordance with the detonation pressure time his-
tory (Century Dynamics, 2005). The overall dimensions of 
the Eulerian meshes are shown in Figure 4(a). The Eulerian 
meshes in Figure  4(a) are composed of uniform repeated 
box-shaped elements, of which individual size is (0.98 in.)
(1.97 in.)(0.98 in.) or (25 mm)(50 mm)(25 mm) in (x)(y)(z) 
directions. This results in 320,000 Eulerian elements.

The overall vertical dimension, 8.20 ft (2500 mm), of the 
Eulerian mesh domain in Figure 4(a) was determined per 
an approximate rail station platform ceiling height. How-
ever, there would be nearly no limitations in the transverse 
directions because typical rail station spaces are wide open. 
To minimize computational efforts, the transverse dimen-
sions were limited to 6.56 ft (2000 mm) in each direction. 
Instead, a flow-out boundary condition was applied at the 
four sides of the domain so that the blast pressure could 
flow away at the side boundaries to simulate the wide-open 
space without increasing the number of elements. At the 
head and base of the Eulerian domain, a bounce-back con-
dition was applied to simulate the blast pressure to be physi-
cally reflected at the floor and ceiling of a station space. 

The overall Eulerian domain dimensions and boundary 
conditions are summarized in Figure 4(a).

The overall length of the column is 8.86 ft (2700 mm), 
which extends out by 3.94  in. (100 mm) above and below 
the Eulerian meshes. The extensions simulate the column 
embedded in concrete floor slab above and below the 
air space. Lagrangian meshes are composed of uniform  
rectangular-shaped shell elements. Overall discretizations 
of the shell elements for each steel column resulted in eight 
elements across the flange width, eight or ten elements 
across the web width, and 27 elements along the column 
length. Details of the discretizations of the shell models are 
summarized in Table 4.

Figure  4(b) shows a snapshot of the mesh discretiza-
tion with boundary conditions. The three-dimensional pin 
boundary conditions at the two consecutive rows of the col-
umn bottom nodes function as a fixed boundary condition. 
The fixed boundary condition represents a welded steel 
base plate rigidly anchored and embedded in a thick layer 
of concrete. On the other hand, a roller boundary condition 
was applied at the top of the steel column to represent a col-
umn lateral support at each floor beam intersection.

As the centerlines along the mid-thicknesses of the plates 
and angles are taken to model a steel built-up column for 

  
 (a) Model outlines without mesh for clarity (b) Detailed column mesh

Fig. 4. The standard numerical simulation model for a built-up column equivalent to W14×99 with boundary conditions.
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FEA, there are small gaps between the shell elements due 
to the thicknesses of the plates and angles. To simplify 
the riveted connections, a nodal point at each riveted con-
nection in the web plate is directly joined to the counter-
part nodal point in the angle after moving the nodal point 
slightly to match coordinates. Similarly, each angle and 
each cover plate were joined at rivet locations. Rivet spac-
ing is assumed to be 7.87 in. (200 mm) on-center in the col-
umn longitudinal direction. This numerical simplification 
of the riveted connections would be practically reasonable 
because the typical failure modes of the columns subjected 
to close-in detonations are localized breach, but not involv-
ing overall bending of the columns; see the Failure Modes 
of Steel Columns Subjected to Close-in Detonations and 
Sensitivity of Variables Considered in Modeling sections 
for further discussions about the failure modes. The Bridge 
Security Design Manual (Davis et al., 2017) also focused 

on front panel failures rather than connection failures of the 
bridge towers subjected to close-in detonations for similar 
practical reasons.

The sizes of meshes were determined from a series of 
mesh sensitivity analyses. Figure 5 shows the three different 
meshes of the same column subjected to the same CW and 
SOD. The deformed shapes of the column models are pre-
sented on von Mises stress contour in the figure. Compared 
to the standard meshing in Figure 5(b), used throughout the 
present study, the mesh size of the model in Figure 5(a) is 
twice the standard size in the transverse direction. On the 
other hand, the mesh size of the model in Figure 5(c) is half 
the standard size in the longitudinal direction.

All three models resulted in a similar punctured hole on 
the web and similar flaring deformations on the flanges. 
Each hole was made when certain elements reach the fail-
ure and erosion criteria, as discussed in the Failure Criteria, 

Table 4. Cross-Sectional Dimensions and Number of Shell Elements Used in Numerical Models for Steel Columns

Equivalent AISC 
Standard Shape

Component 
Elements in Shape

Cross-Sectional  
Dimension Number of 

FEA Elements

FEA Element Size  
(average)

in. mm in. mm

W14×43
(W360×64)

Angle leg in flange 3.5 88.9 4 0.88 22

Angle leg in web 3.5 88.9 2 1.75 44

Cover plate — — — — —

Web plate 13.0 330.2 8 1.63 41

W14×99
(W360×147)

Angle in flange 7.0 177.8 4 1.75 44

Angle in web 4.0 101.6 2 2.00 51

Cover plate — — — — —

Web plate 14.0 355.6 8 1.75 44

W14×176
(W360×262)

Angle in flange 4.0 101.6 2 2.00 51

Angle in web 4.0 101.6 2 2.00 51

Cover plate 15.6 396.9 8 1.95 50

Web plate 12.5 317.5 10 1.25 32

W14×257
(W360×382)

Angle in flange 4.0 101.6 2 2.00 51

Angle in web 4.0 101.6 2 2.00 51

Cover plate 16.0 406.4 8 2.00 51

Web plate 12.5 317.5 8 1.56 40

W14×342
(W360×509)

Angle in flange 4.0 101.6 2 2.00 51

Angle in web 4.0 101.6 2 2.00 51

Cover plate 16.4 415.9 8 2.05 52

Web plate 12.5 317.5 10 1.25 32

W14×426
(W360×634)

Angle in flange 4.0 101.6 2 2.00 51

Angle in web 4.0 101.6 2 2.00 51

Cover plate 16.6 422.3 8 2.08 53

Web plate 12.5 317.5 10 1.25 32
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difference was also observed when time-history von Mises 
stress curves were plotted and compared in Figure 5(d) for 
the three models at the same gauge location. There are fluc-
tuations or oscillations of the stress values over time due to 
the dynamic nature of the analysis (as further discussed in 
the Effects of Preloading section). The fluctuations result in 
numerous local maximums and minimums, which do not 
match among the three models. However, the overall trend 
is practically the same among the three models; each of the 
three models reached the highest maximum stress quickly 

Erosion, and Failure Mechanism section. As analyses con-
tinue, some parts of the web were eroded, detached, flown 
away, or bent and rolled up around the hole, which were 
also observed in the experiments by Krishnappa et al. 
(2014), Remennikov and Uy (2014), and Mazurkiewicz et al. 
(2015). Due to the individual element size difference among 
the three models in Figure 5, the three holes have similar 
but slightly different sizes and perimeter deformations. This 
is one of the reasons the stress contours of the three meshes 
in Figure 5 are similar but do not match exactly. A similar 

 (a) Twice transverse mesh (b) Standard mesh (c) Half longitudinal mesh

(d) Time-history von Mises stress curves at the gauge point for three models

Fig. 5. Deformed shapes with von Mises stress contour of three models at 43 ms with various mesh sizes along  
with time history stress plot for mesh sensitivity study of column W14×99 subjected to CW = 0.12Y at SOD = 0.8X.
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around 1  millisecond (ms), followed by an exponential 
decay and a convergence to a constant value.

Regardless, the analysis results of the three models 
reached the same critical conclusion: A hole was punctured 
on the web. A column subjected to this level of damage (or 
damage level 4) likely results in a column collapse under 
service loads, as further discussed in the Failure Modes 
of Steel Columns Subjected to Close-in Detonations, Per-
formance-Based Damage Criteria and Application, and 
Effects of Preloading sections. For this reason, finer meshes 
may improve the similarity in stress contours or time his-
tory plots, but such an improvement does not seem practical 
or necessary for the purpose of the analysis to determine 
the column collapse. Through the mesh sensitivity study, it 
is concluded that the standard mesh in Figure 5(b) is practi-
cally accurate and reasonable for the purpose of this study.

Failure Modes of Steel Columns Subjected to  
Close-In Detonations

For built-up steel columns subjected to close-in detonations 
to face web directly (0° direction in Figure 1), the loading 
is highly concentrated on a small area with a greater mag-
nitude, and its amplitude decays much more quickly like an 
impulse, within a few milliseconds. When the intense, but 
short duration, blast pressure is applied to a localized area 
of a column, none of the individual components of the col-
umn have enough stiffness to resist such an acute and high 
pressure, nor do they have time to engage the entire length 
to bend globally to the pressure. Instead, the structure expe-
riences localized deformations or failures, such as bulging, 
puncturing, or even severing. Typical failure modes are 
exemplified in Figure 6, obtained from the numerical simu-
lations in this study.

The failure modes are not typically observed in civil 
engineering structures, but they are similar to punching 
shear without significant bending. The bulging is mostly 
observed in web elements, as detonation pressure builds up 
within the confined space surrounded by the web and two 
flanges of a wide flange steel member. Flaring or spread-
ing of flanges often appear together with the bulging of the 
web, as seen in Figure 6(a). When the bulging deformation 
on the web increases, and passes the tensile limit, the web 
begins to open up. The breach of the steel material may 
result in the puncturing of a large hole on the web, as shown 
in Figure 6(b). With this level of deformation, flange flaring 
or spreading becomes apparent.

The bulging, cracking, and puncturing of wide flange 
shape columns were observed through experiments (e.g., 
Krishnappa et al., 2014; Mazurkiewicz et al., 2015). When 
the column is subject to a larger CW, a smaller SOD, or 
both, the entire cross section could be completely severed, 
as seen in Figure  6(c). Severing was observed in experi-
ments by Remennikov and Uy (2014) for a square hollow 

section (SHS), which is equivalent to a square HSS shape, 
in addition to the other failure modes.

The three failure modes observed in Figure  6 are the 
three most representative failure modes or deformation pat-
terns for steel columns subjected to close-in or near-contact 
detonations. When the puncturing deformation occurs, the 
stress flow through the web as a result of gravity loads is 
diverted to the flanges due to the lost section in the web. 
The stress on the flanges increase even more due to the 
eccentric moment caused by the flange deformations. The 
flange elements become more susceptible to plate buck-
ling because the adjacent web element that works as the 
lateral support is removed. The column is about to collapse 
at this stage. Most of the time in this study, the overall col-
umn straightness was maintained without forming a kink, 
regardless of the weakening through the local deformations 
in Figures  6(a) or 6(b). The kink, however, may appear 
when the column has very weak flexural stiffness or when 
detonation occurs near the mid-height of a column, which 
are beyond the scope of this study.

Numerical simulations based on high-fidelity, explicit 
nonlinear FEA, similar to what is presented in this study, 
have also been presented by others (e.g., Krishnappa et al., 
2014; Mazurkiewicz et al., 2015; Remennikov and Uy, 2014; 
Ngo et al., 2015), which were validated through comparison 
to experiments. Similarly, the validation of numerical simu-
lations in the present study is demonstrated in the Valida-
tion of the Numerical Model section. Because available test 
data are extremely rare and limited, it is a common practice, 
instead, to perform explicit nonlinear FEA for close-field 
blast effects, as suggested by ASCE/SEI 59 (2011).

None of the existing blast evaluation or mitigation design 
approaches available in the current codes or specifications 
(e.g., ASCE, 2010; DOD, 2014; U.S. Army, 1986; Gilsanz 
et al., 2013) address the three deformation patterns of steel 
columns shown in Figure  6 because the approaches are 
based on far-field blast effects. The Bridge Security Design 
Manual (Davis et al., 2017) addresses similar close-in det-
onation failure modes, but the approach focuses on steel 
bridge towers composed of multiple cells with flat exterior 
surfaces subjected to a large-truck VBIED. The manual 
categorizes the deformation patterns of exterior steel plates 
as elastic, plastic, and catastrophic damage levels; plastic 
damage is similar to bulging; and catastrophic damage is 
similar to puncturing. However, the approach presented in 
the manual cannot be directly applied to wide-flange steel 
columns because the region surrounded by the two flanges 
and web of a typical wide-flange steel column can function 
as the three-sided flow boundary, resulting in the build-up 
of blast pressure.

None of the three failure modes or deformation patterns 
in Figure  6 can be addressed in the progressive collapse 
analysis using only stick models or beam elements, such as 
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parametric study model was evaluated. For the convenience 
of defining the significance of damages, six different dam-
age levels were proposed as shown in Table 5.

A damage level was determined at the end of each analy-
sis, in which a total accumulated time step was large enough 
not to result in any further significant deformations to the 
steel column. Each of the parametric study models was ana-
lyzed up to 2000 cycles, which is typically equivalent to 3 
to 7 ms after detonation. The analysis for each parametric 
study model took approximately 1 to 2 hr to reach the 2000 
cycles with a workstation computer with 2.4  GHz 8  core 
(16 threads) CPU and 32 GByte RAM.

If damage level is evaluated for the three failure modes 
in Figure 6, based on Table 5, bulging [Figure 6(a)] occurs 
at Levels 0 through 3, depending on the degree of deforma-
tion compared to member width. The puncturing shown in 
Figure 6(b) would be classified as Level 4 because only the 
column web is punctured; the flanges are still attached, but 
significantly deformed and flared. The severing shown in 
Figure  6(c) is Level  5 because the entire cross-section is 
vanished. As a minimum, practicing structural engineers 
must avoid Level 4 or 5 damages so that a column collapse, 
which can lead to a subsequent progressive collapse of a 
structure, can be prevented.

Sideri et al (2017). The analysis approach in the literature 
cannot account for the escalated reflective pressure within 
the region surrounded by the flanges and web element, 
causing a potential catastrophic localized failure.

In current literature, there is no simplified evaluation 
approach for steel columns subjected to close-in or near-
contact detonations. The present study intends to provide 
practical guidance of nonlinear explicit FEA and develop 
simple evaluation or design approaches based on charts or 
equations, accounting for the three close-in detonation fail-
ure modes.

Performance-Based Damage Criteria and Application

It is not straightforward to check the structural adequacy of 
a steel column subjected to close-in detonations, using con-
ventional strength of material or steel design approaches, 
due to the extraordinary failure modes or dynamic behav-
iors, which are different from typical civil engineering 
structures. Instead, performance-based damage criteria 
are proposed in this study, so that practicing structural 
engineers can come up with a practical damage mitigation 
design. Based on a set of given conditions, such as a column 
size, an SOD, and a CW, a damage level for each numerical 

    
 (a) Bulging (b) Puncturing (c) Severing

Fig. 6. Typical deformation patterns or failure modes in close-in  
detonations for built-up wide flange steel columns equivalent to W14×176.
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Sensitivity of Variables Considered in Modeling

To optimize the computational time and effort, the overall 
dimension of Eulerian mesh domain was limited to 6.56 ft 
(2000 mm) in each of the transverse directions with the 
flow-out boundary condition at the four sides, as shown 
in Figure  4(a). This model is called the standard mesh 
and is shown in Figure 7(b), resulting in 320,000 Eulerian 
elements. To investigate the effectiveness of the flow-out 
boundary condition, two additional models were created: 
one with doubled Eulerian domain dimensions in transverse 
directions, as shown in Figure 7(c), resulting in 1,280,000 
Eulerian elements, and the other with half the standard 
z-dimension and three-quarter of the standard x-dimension, 
as shown in Figure  7(a), resulting in 120,000 Eulerian 
elements. In the new models, all other conditions remain 
unchanged, but the number of Eulerian elements was either 
increased or decreased with the dimensional changes. The 
computational time was also increased or decreased almost 
proportionally to the number of elements. As compared in 
Figures 7(a), 7(b), and 7(c), the deformed shape and the level 
of damage of the steel column stayed the same, regardless 
of the Eulerian mesh domain sizes.

The response of the steel column subjected to the close-
in detonations was not sensitive to the size of the Eulerian 
mesh domain due to the flow-out boundary condition. Thus, 
it could be concluded that the flow-out boundary condition 
was effective for the purpose of this study.

The length of the standard column model is a constant 

value of 8.86 ft (2700 mm), as shown in Figure 4(b). This 
was determined based on a probable platform ceiling height 
of typical rail stations. However, the ceiling height varies 
depending on different parts of a rail station, or different 
transportation facilities. To investigate whether or not col-
umn responses to close-in detonations are sensitive to the 
variation of the column length, two additional models were 
created: One model had one-half the length of the standard 
model, while the other model had twice the length of the 
standard model. As seen in Figure 8, the deformation pat-
tern and the level of damage remained unchanged among 
the three models, regardless of the column length.

This is because the three typical failure modes of a built-
up steel column subjected to close-in detonations as depicted 
in Figure  6 are localized deformations without engaging 
any significant bending deformations of the member. Most 
damages to the column occur within a relatively short time 
period (less than a few milliseconds) over a very small and 
localized area. With the presence of gravity loads, all three 
columns in Figure 8 will likely collapse due to local buck-
ling of the flanges adjacent to the punctured hole at the 
bottom. The effects of the gravity loads and subsequent col-
lapses are discussed extensively in the Effects of Preload-
ing section. This is one of the major differences with the 
existing blast evaluation or mitigation design approaches 
available in the current codes or specifications (e.g., ASCE, 
2010; DOD, 2014; U.S. Army, 1986; Gilsanz et al., 2013), in 
which far-field detonations are considered. In the far-field 

Table 5. Damage Level Criteria for Built-Up W-Shape Steel Columns Subjected to Close-In Detonations

Level Damage Criteria Failure Modes

5

The steel column flanges are significantly or completely severed, and the web is 
completely perforated. The cross-sectional area loss is approximately 50% or greater. 
This could result in immediate column failure even without the presence of service 
loads.

Severing, 
puncturing

4
The steel column web is perforated, and flanges are mostly attached but significantly 
deformed and flared. The cross-section area loss is less than 50%. This could result in 
column failure with the presence of service loads. 

Puncturing

3

The steel column is not severed or perforated but is significantly deformed (greater 
than or equal to 10% of member width). Web is swollen and flanges are flared locally, 
adjacent to the detonation center. This may not result in immediate column failure but 
may require immediate evacuation of occupants and immediate repair or replacement of 
the column. 

Bulging

2
The steel column is not severed or perforated but is somewhat deformed (greater than 
or equal to 4% of member width). The deformation patterns are similar to Level 3, but 
less intense. Partial repairs are still needed to the column.

Bulging

1
The steel column is not severed or perforated but is slightly deformed (greater than or 
equal to 2% of member width). The deformation patterns are similar to Level 2, but less 
intense. Partial repairs are still needed to the column.

Bulging

0
The steel column is not noticeably deformed (deformation less than 2% of member 
width). Column should be adequate, but still needs inspections.

Bulging
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 (a) 120,000 elements (b) 320,000 elements (c) 1,280,000 elements

Fig. 7. Damage on built-up steel column equivalent to W14×176 in three models  
with various numbers of Eulerian elements when all other conditions are the same.

      
 (a) Half length (b) Standard length (c) Twice the length

Fig. 8. Damage on built-up steel column equivalent to W14×176 in three models with various model lengths.
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detonations, there is significant time and distance between 
a detonation center and a target structure for a column to 
form a plastic hinge and to engage the entire member length 
to resist the blast pressure. Thus, the column length is a 
critical variable for far-field detonations but not for close-
in (or near-contact) detonations. Thus, the constant column 
length used for the numerical model is reasonable for the 
purpose of the present study.

Validation of the Numerical Model

For the validation of the numerical model developed in 
this study, comparison with physical tests would be useful. 
However, publicly available experimental data of steel col-
umns subjected to close-in detonations are extremely rare. 
Even if experimental evidence is available, critical data, 
such as CWs and/or SODs, used for the experiments are fre-
quently hidden from public release for security reasons. A 
well-documented paper with detailed critical experimental 
data was presented by Remennikov and Uy (2014), which is 
used for the validation purpose of the numerical model used 

in this present work. The overall numerical model used to 
simulate the experiment is depicted in Figures 9(a) and 9(b).

The tested specimen to compare with the numerical 
model was Australian SHS 100×5 without concrete fill 
(specimen C3  in the paper), in which the overall cross-
sectional dimension was 3.94 in. (100 mm) in each side, and 
thickness was 0.197  in. (5 mm). The TNT charge weight 
(CW) was 5.73 lb (2.6 kg-g) in cube shape, of which the 
bottom was placed 3.94 in. (100 mm) above the specimen 
(SOD) right at the span center. The overall length of the col-
umn was 6.56 ft (2000 mm), of which ends were considered 
as simply supported (one end is pin; the other end is roller). 
The steel column was placed horizontally to facilitate the 
experiment.

The steel column was made of Australian C350 steel, of 
which tensile coupon test results from the specimen were 
reported by Remennikov and Uy (2014). The stress-strain 
curve from the tensile test was used to curve-fit the strain-
hardening constants (A, B, and n) for the Johnson and Cook 
material model, in the same approach as described in the 
Material Models section. The other two constants (C and n)  

(a) Isometric view

(b) Elevation view

Fig. 9. Model geometry for numerical simulation in this study of specimen C3 in the experiment by Remennikov and Uy (2014).
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the numerical approach presented in this paper. The analy-
sis took approximately 2.5 hr to reach the breaches of top 
and bottom walls at 0.3 ms or 1,000 cycles, but took 61 hr 
to reach the ground touch at 8.5 ms or 20000 cycles with 
a workstation computer with 2.4 GHz 8 core (16 threads) 
CPU and 32 GByte RAM.

Failure Criteria, Erosion, and Failure Mechanism

To define the failure of steel material during the explicit 
dynamics FEA, the plastic strain failure criteria available 
in Ansys/Autodyn was used. Under the failure criteria, once 
the effective plastic strain in an element reaches a specified 
value, instantaneous failure occurs, and the element stress 
is set to zero and remains zero in the subsequent calcula-
tions (Ansys, 2015). In this study, the effective plastic strain 
for failure was set to 25%, which is slightly higher than the 
minimum percent of elongation in Table 2, to account for 
the average value.

In Ansys/Autodyn (Ansys, 2015), there are three major 
material status flags for steel: elastic, plastic, and failure 
based on the current effective plastic strain value. These 
three flags are graphically shown in different colors on 
the column and exemplified at multiple time-steps in Fig-
ure 11(a) for a built-up column W14×99 subjected to CW = 
0.12Y at SOD = 0.6X. As analysis time increases, the area 
boundary flagged as either plastic or failure becomes 
larger. The punctured hole at 500  cycles and beyond is 
caused by erosion, which is discussed later. To facilitate the 
understanding of the failure mechanism, the element where 
Gauge 1 is attached in the figure is focused. The element 
was labeled as plastic in 300 cycles, which becomes failure 
in 400 cycles.

In Figure  11(b), von Mises stress plots on the column 
are also presented for the same time-steps as Figure 11(a). 
Shortly after the element with Gauge 1 partially reaches 
the maximum stress range (red in the stress scale) at 300 
cycles, the element’s effective plastic strain reaches the 25% 
failure limit, and the von Mises stress approaches zero at 
400 cycles (blue range in the stress scale). Thus, the areas 
flagged as failure in Figure  11(a) closely match the areas 
with zero or the lowest stress scale range in Figure 11(b), 
which remains zero during the remaining analysis cycles. 
Thus, the comparison between the material status and von 
Mises stress plots demonstrates the failure mechanism.

were assumed to be similar to ASTM A36 steel. The 
five constants for the tested specimen are summarized in 
Table 6.

Lagrangian shell elements were used to model the side-
walls of the SHS steel column through the mid-thickness, 
discretized with 8 elements across each side wall and 
160 elements in the longitudinal direction, which resulted 
in a total of 5120 elements for the steel column. The typi-
cal Lagrangian element size was 0.469  in. × 0.492  in. 
(11.9 mm × 12.5 mm). Eulerian meshes to model air and 
TNT were discretized with 96 elements in each of the three 
perpendicular directions of the Eulerian domain, resulting 
in a total of 884,736 elements. The typical Eulerian element 
size was 0.246 in. (6.25 mm) along each edge of the cube 
shape element.

The flow-out boundary condition (BC) was applied to 
the four sides and the top of the Eulerian domain to mimic 
the open-air space of the actual test, while the bounce-back 
BC was applied to the bottom to mimic the ground surface, 
as shown in Figure 9(a). Failure was defined with a plastic 
strain of 21% based on the stress-strain curve from the test, 
while the erosion strain was set to 100% to match the ero-
sion strain in the parametric study model described in the 
Failure Criteria, Erosion, and Failure Mechanism section. 
All other input parameters and modeling considerations are 
consistent with what is provided in the previous sections for 
the parametric study model.

At an early stage of 0.3 ms or 1000 cycles, the top wall 
was already breached, followed by the bottom wall breach 
shortly after, as shown in Figures  10(a) and 10(b). The 
puncturing failure mode, similar to Figure 6(b), constitutes 
Level 4 damage, which would likely result in a column col-
lapse. To compare the deformed shape of the picture from 
the experiment, the analysis was continued. Due to the lost 
portions at the center of the column, the column was weak-
ened and began to bend and form a kink as a result of the 
remaining blast pressure. The analysis was discontinued 
when the kinked portion of the column touched the ground 
surface. The final deformed shape is shown in Figures 10(c) 
and 10(d).

The punctures on the top and bottom walls, along with 
the symmetrical flaring-out deformations with the ripples 
of the two side walls of the SHS cross-section, match 
closely to the experiment picture of specimen C3 shown in 
Figure 10(e) by Remennikov and Uy (2014). This validates 

Table 6. Five Constants of Johnson-Cook Material Model Estimated, Based on  
Stress-Strain Curve Obtained from Specimen (C350 Steel)

Constants A B n C m

C350
58.2 ksi 

(401 Mpa)
76.8 ksi 

(530 Mpa)
0.6 0.017 0.917
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 (a) Overall view of deformed shape at 0.3 ms (b) Enlarged view at 0.3 ms

 (c) Overall view of deformed shape at 8.5 ms (d) Enlarged view at 8.5 ms

(e) Experimental photo by Remennikov and Uy (2014)

Fig. 10. Comparison of the numerical simulation in this study and the experiment photo by Remennikov and  
Uy (2014); reprinted from the Journal of Constructional Steel Research, Copyright 2014, with permission from Elsevier.
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(a) Material status plots

(b) Von Mises stress plots

Fig. 11. Changes of deformed shape of built-up column W14×99 subjected to CW = 0.12Y at SOD = 0.6X.
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As the strain value becomes excessively high, any highly 
distorted elements can result in numerical errors, which can 
diverge the solution. In order to avoid such errors, when 
the effective strain of an element reaches a preset value, 
the element is automatically removed from the model dur-
ing the remaining calculations. This mechanism is called 
erosion (Ansys, 2015). Although the original purpose of 
erosion is to avoid such numerical errors, the hole made 
from erosion also releases blast pressure. The hole and the 
pressure release would result in a more realistic physical 
representation of a column subject to close-in detonations, 
as evidenced in Figure 10. In this study, the erosion strain 
limit was conservatively set to 100% so that the steel col-
umn could take blast pressure slightly longer.

In Figure  11(a), at the bottom of the column, close to 
where TNT is detonated, more elements are flagged as fail-
ure at 400 cycles than 300 cycles with larger deformations. 
At 500 cycles, the boundary of the failed area increases, but 
the elements at the center of the failed area are removed, 
leaving a large hole. This is because the elements are fur-
ther stretched, and the corresponding effective strain value 
meets or exceeds the erosion strain limit. The triggering 
values to cause plastic strain failure and erosion were deter-
mined as a result of a series of sensitivity studies.

At the bottom of the column, Gauge 1 was attached to 
the column, as shown in Figures 11(a) and 11(b), to monitor 
detailed analysis values. For the same column and CW, four 
models with different SODs, ranging from 0.6X through 
1.2X, were monitored. For the four models, the time history 
curves of von Mises stress at Gauge 1 are plotted in Fig-
ure 12(a), which is enlarged for visual clarity in Figure 12(b). 
For models with SOD = 0.6X and 0.8X, shortly after each of 
the curves reached the maximum value, the stress suddenly 
dropped to zero and stayed at zero during the remaining 
analysis. This is because the effective plastic strain for the 
element with Gauge 1 reached the failure limit. The maxi-
mum von Mises stress values are also significantly larger 
than the ultimate stress of 480 MPa (69.6 ksi) in Figure 3. 
The failure of the element with Gauge 1 was followed by the 
erosion, as part of the punctured hole at the base of the col-
umn model in Figure 11. Thus, these two models resulted in 
Level 4 damages.

For the other two models with SOD  = 1.0X and 1.2X, 
when each of the curves reached the maximum value, the 
stress did not drop to zero but continued to vary over time to 
imply that the element sustained the blast pressure. This is 
because the effective plastic strain for the Gauge 1 element 
did not reach the failure limit. The maximum von Mises 
stress was also smaller than the ultimate stress. Eventually, 
these two models did not cause any hole puncturing on the 
web, but resulted in Level 3 damages, as discussed in the 
Effects of Preloading section.

Effects of Preloading

Columns are typically subjected to axial compressive 
stresses, due to applied service loads such as dead and live 
loads, as defined in the building code of a jurisdiction. In 
this study, focus has been made on built-up steel columns 
subjected to close-in detonations without any service loads. 
However, it is likely that the axial compressive stress from 
the service loads would worsen the damages on the col-
umns due to detonations, as is the case in a typical progres-
sive collapse analysis, such as Sideri et al. (2017). In the 
literature, columns were preloaded with a service load of 
1.2D + 0.5L (where D = dead load and L = live load) per 
DOD (2009), prior to the detonation pressure application. 
The service load was applied uniformly to floor slab, which 
was distributed to beams and girders, and subsequently to 
columns below. The columns were then subjected to det-
onation pressures for a few milliseconds, after which the 
columns were loaded further with additional vertical loads 
until failure.

However, such a load combination cannot be applicable to 
the present study, where the analysis is focused on element-
level local deformations of an individual column rather than 
the member-level deformations of the entire building frame 
in the literature. The analysis of an individual column is 
needed to model flanges and web components using shell 
elements to address the localized failure modes or defor-
mation patterns exemplified in Figure 6, which cannot be 
addressed using the stick models or beam elements used 
in the literature. The modeling difference fundamentally 
stems from the different blast loading scenarios: a small 
MPIED with close-range or near-contact detonations in 
the present study versus a large VBIED with far-field deto-
nations in the literature. The far-field detonations apply a 
uniformly distributed lateral load to the entire span of the 
affected columns, which causes a typical bending failure 
and simultaneously facilitates a flexural column buckling 
failure. On the other hand, the close-range or near-contact 
detonations apply highly concentrated pressures to a small 
region bound by flanges and web, in which the detonation 
pressure is escalated further to cause localized flange and 
web deformations and failures without causing significant 
member-level deformations or failures.

In order to investigate the effects of the service loads 
and potential subsequent damage changes, additional sets 
of models were created in the present study to apply the 
service loads as a preloading stage prior to the detona-
tion stage. Due to the different modeling focus mentioned 
earlier between the literature and the present study, the 
preloading was assumed to be equal to 60% of the yield 
stress, 0.6Fy, axially compressed all over the entire col-
umn, accounting for practical ranges of service loads in 
steel columns. In the progressive collapse analysis by Sideri 
et al. (2017), the preloading was applied via simple static 
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continue endlessly between the top and bottom of the col-
umn, while the desired constant static stress from the pre-
loading is not attainable.

The stress change over time can also be monitored at a 
fixed position in a column. Gauge  1 was attached to the 
column model near the bottom, as shown in Figure 13(a), at 
the same location as Figure 11. When the time history curve 
of von Mises stress at Gauge 1 is plotted in Figure 14(a), 
the model labeled as “no damping” shows that the stress 
oscillates between approximately 30 MPa and 270 MPa (or 
4.4 ksi and 39.2 ksi) with an average of 150 MPa (21.8 ksi). 

analysis, prior to the dynamic analysis for blast loading. 
However, it is not straightforward to apply static preloading 
to an explicit dynamics FEA using Ansys/Autodyn because 
a separate static analysis tool is not available within the 
program. Instead, the static stress state can be generated 
using the available explicit dynamics program. When the 
preloading is applied on top of a column to cause an axial 
uniform compression, as shown in Figure 13(a), the stress 
wave propagates over time and position toward the bottom 
of the column [Figure 13(b)]. The stress wave reflects at the 
bottom and then at the top of the column. The reflections 

(a) For the entire time range from 0 to 7 ms

(b) For the enlarged view from 0 to 1.5 ms

Fig. 12. Von Mises stress curves of built-up column W14×99 at Gauge 1 subject to CW = 0.12Y at various SOD without preloading.
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The average stress is close to the applied preloading of 
0.6Fy (149 MPa or 21.6 ksi).

In order to avoid the oscillation, but to imitate the practi-
cal constant static compressive stress in the explicit dynam-
ics FEA, static damping was used. Static damping changes 
the dynamic analysis to a relaxation iteration converging 
to a state of stress equilibrium (Ansys, 2015). For an opti-
mized convergence, the calculation for the static damping 
constant, R, recommended in Ansys is in accordance with 
Equation 5:

 R = 2 t( ) TΔ  (5)

where
T = longest period of vibration, ms

Δt = time step, ms

Based on the typical period of vibration T ≈ 3.3 ms [as 
observed in Figure  14(a)] and the typical time step, Δt  = 
4.7×10−4  ms (from analysis outputs), the static damping 
constant, R, becomes 2.8×10−4, using Equation 5. A series 
of analyses were performed with various damping constants 
around the computed value. The most optimal damping con-
stant is obtained when the model converges most quickly to 

the constant stress equal to the applied preloading stress. The 
most optimal damping constant was found to be 2.6×10−4, 
which is close to the computed value. For the model with the 
most optimal damping constant, the von Mises stress con-
verged to a uniform compressive stress of 0.6Fy (149 MPa 
or 21.6 ksi) at around 4.7 ms or 10,000 cycles, as shown in 
Figure 14(a). The constant stress is uniformly distributed all 
over the column as shown in Figure  13(c), except for the 
base of the column, where the fixed boundary condition is 
located.

When the damping constant was too low (2.6×10−5), the 
time history curve of von Mises stress oscillated too long 
to converge to the constant preloading, as shown in Fig-
ure 14(a). On the other hand, when the damping constant 
was too high (2.6×10−3), the time-history stress curve did 
not oscillate, and it took even longer to converge to the con-
stant preloading, as shown in the figure. Considering that 
additional blast analysis must follow each of the preloading 
analyses and there are numerous models to run, it is practi-
cally crucial to find the most optimal damping constant. 
When the CPU times are compared in Figure 14(b), it took 
6 to 10 times longer time in the models with the too high or 
too low damping constants than the most optimal damping 

 (a) Model setup (b) Stress at 0.47 ms (c) Stress at 4.7 ms

Fig. 13. Preloading stage for a built-up column W14×99 with a von Mises stress contour at an early cycle of  
preloading stage (1,000 cycles or 0.47 ms) vs. a final and converged cycle of preloading stage (10,000 cycles or 4.7 ms).
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constant (or set it to zero) and set the detonation initiation 
time right after the last time-step of Stage 1.

• Stage 3, blast analysis: Perform close-in detonation blast 
analysis on the column preloaded with the service loads.

These three stages are demonstrated in Figure  15 for 
the same four column models as Figure 12, except for the 
additional Stages 1 and 2. The time history curves of von 
Mises stress at Gauge 1 are plotted in Figure 15(a), which is 
enlarged for visual clarity in Figure 15(b).

For models with SOD  = 0.6X and 0.8X, shortly after 
each of the curves reached the maximum value, the stress 
suddenly dropped to zero to constitute failure. These two 
models resulted in Level 4 damages. However, for the other 
two models with SOD = 1.0X and 1.2X, when each of the 
curves reached the maximum value, the stress did not drop 
to zero, but continued to vary over time to imply that the 
element sustained the blast pressure without failure. These 
two models resulted in Level 3 damages.

constant. Also, in order to shorten the overall analysis time, 
including both preloading and blast analysis stages, the 
model with 120,000 Eulerian elements was adopted, which 
reduced approximately additional 50% of the total analysis 
time, compared to the original model with 320,000 Eule-
rian elements, as shown in Figure  14(b). Comparison of 
various Eulerian models are shown in Figure 7.

After the preloading analysis was completed, the damp-
ing constant was removed or set to zero prior to detonation 
initiation for blast analysis. This is because the damping 
constant can attenuate damages to the column subject to 
blast pressure, which is not conservative or intended. As a 
summary, the following overall steps were taken:

• Stage 1, axial preloading: To make the column subject to 
uniform compressive stress of service loads, use the most 
optimized damping constant from Equation 5 and trial 
analyses with various damping constants.

• Stage 2, preparation for blast analysis: Remove damping 

(a) Von Mises stress plots over time

(b) Total computation times for convergence

Fig. 14. Comparison of analysis results at Gauge 1 of built-up column W14×99 for various damping constants.
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When these four column models accounting for the ser-
vice loads in Figure 15 are compared to the previous models 
without considering the service loads in Figure  12, there 
is no change to the damage level in each model. Although 
there was a slight increase in the maximum stress value in 
each of the four models, the difference is much less than the 
preloading stress. For all four models, the increase of the 

maximum stress in each model was less than 8%, and thus, 
there were no changes to the damage levels between the 
models with and without the preloading.

This shows that the preloading stress as a result of service 
loads are not directly additive to the stress due to blast pres-
sure. A few reasons could be considered for this observa-
tion. First, the system of equations is highly nonlinear, and 

(a) For the entire time range from 0 to 15 ms

(b) For the enlarged view from 4.5 to 6 ms

Fig. 15. Von Mises stress plots over time at Gauge 1 of built-up column W14×99 subject to CW = 0.12Y at various SOD with preloading.
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thus, the principle of superposition does not apply. Second, 
the constant in-plane stress from the preloading is in com-
pression, while the prevailing in-plane stress from the deto-
nation is in tension. For example, web bulging deformation 
demonstrated in Figure 6(a) would be similar to the behav-
ior of a pressurized tank, where in-plane tensile stresses 
are dominant. For this reason, the relationship between the 
in-plane stresses from the preloading and the detonation 
would be somewhat subtractive rather than purely additive 
in nature. This is also observed in the time-history plots of 
von Mises stress in Figure 15(b). Right after Stage 2, when 
detonation pressure reached the steel column approximately 
in between 4.8 and 4.9 ms, the von Mises stress curves sud-
denly dropped significantly before they began to increase 
toward the maximum values. Thus, it was observed for the 
short term (until the maximum stress) that the effect of the 
service loads would be insignificant for steel columns sub-
jected to close-in or near-contact detonations.

To investigate further the effects of the service loads for 
a long term beyond the maximum stress, various types of 
deformations were investigated as follows. Typical out-
of-plane deformations from close-in detonations, such 
as bulging and flaring in Figure 6(a), result in significant 
eccentricities for the axial compressive stress from the 
undeformed centerlines of the flange and web elements. 
The axial compressive stress applied away from an ele-
ment’s undeformed centerline causes secondary moments 
and, in turn, additional flexural stresses on the flanges and 
the web. In addition, a punctured hole or partial severing 
reduces the cross section area of the column, with which 
the compressive stress of the remaining area would also 
increase.

In order to investigate whether or not the stress increase 
due to the out-of-plane deformations or the area reduc-
tion would cause column failure and subsequent collapse, 
the blast analysis stage was continued until no significant 
deformations were observed or until a column collapse was 
observed. For the first column model (SOD = 0.6X) with 
the preloading in Figure 15, the deformed shapes are dem-
onstrated in Figure 16 at a number of time steps.

At 12,000 and 19,000 cycles in Figure 16, the deformed 
shapes of the model with the preloading are qualitatively 
similar to the counterpart 600 and 1700  cycles in Fig-
ure 11(b) without the preloading. Notice that the time to ini-
tiate the detonation or the preloading stage duration, 4.7 ms, 
was subtracted from the time steps of the model with the 
preloading so that only the time-steps after the detona-
tion could be matched for the deformation comparisons. 
The deformed shapes of the model without the preloading 
remained nearly the same between 1700 and 2511  cycles 
[Figure  11(b)], while the deformed shapes of the model 
with the preloading were significantly different between 

counterpart 19,000 and 27,000  cycles (Figure  16). Severe 
erosions were observed on the flanges at 27,000 cycles due 
to the addition of the preloading. Regardless of the changes 
observed at 27,000 cycles in Figure 16, the damages on the 
column are still considered as Level 4 damages in this study 
because the flange erosions occurred during the collapse of 
the column due to the preloading. Both the models with and 
without the preloading could be judged equally as Level 4 
damages, based on the observation of the deformed shape 
changes over time and the damage level criteria given in 
Table 5.

To measure the collapse behavior quantitatively and facil-
itate the comparison between the models with and without 
the preloading, Gauge 3 was attached near the top of the 
column, as shown in Figure 16. When the vertical displace-
ments at Gauge 3 are compared over time in Figure 17(a) for 
the model with SOD = 0.6X, the vertical displacement of 
the model without the preloading remained nearly the same 
with minor fluctuations between 4 and 10 ms. For the same 
time range, however, the vertical displacement of the model 
with the preloading kept increasing in the negative direc-
tion, which indicated falling. The column collapse is fur-
ther evident in the deformed shape at 10 ms in Figure 17(a) 
for the model with the preloading.

For the second column model (SOD  = 0.8X) in Fig-
ures  12 and 15, each of the models without and with the 
preloading resulted in a puncture hole on the web, but the 
model with the preloading resulted in a collapse as shown in 
Figure 17(b), similar to the first model. For the same reason 
discussed earlier, the damage level remained unchanged as 
Level 4. Therefore, for the first and second column models 
in Figure  15, the short-term behavior of the column sub-
jected to close-in detonation remained the same, leaving a 
punctured hole on the web, with and without the preloading. 
However, the long-term behavior resulted in a collapse with 
the presence of the preloading. Both of the models resulted 
in Level 4 damages, regardless of the preloading, based on 
the damage level criteria in Table 5.

For the third and fourth models (SOD = 1.0X and 1.2X) 
in Figures 12 and 15, each of the models without and with 
the preloading converged to a constant vertical displace-
ment, but the model with the preloading had slightly more 
deformations than the model without the preloading, as 
shown in Figures 17(c) and 17(d). In addition, each of the 
deformed shapes in the figures did not result in a punctured 
hole or a collapse.

Additionally, horizontal out-of-plane displacements were 
measured for the last two models (SOD = 1.0X and 1.2X) 
on the web at Gauge  2 and on the flange at Gauge  7, of 
which locations are shown in Figure 16. The time-history 
curves of the out-of-plane displacements for the two mod-
els are plotted in Figure 18. For both models without and 
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Fig. 16. Deformed shape changes over time with von Mises stress contours of a  
built-up column W14×99 model subject to CW = 0.12Y at SOD = 0.6X with the preloading.
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with the preloading, web out-of-plane displacements were 
more than 10% of the flange width, and flange out-of-plane 
displacements were more than 10% of the member depth. 
Thus, both models resulted in the same Level 3, regardless 
of the preloading.

In the research by Sideri et al. (2017), the horizontal dis-
placement as well as the axial force of each column were 
monitored over time to determine a column failure. It was 
appropriate and possible to monitor the axial force in the 
literature because the progressive collapse analysis model 
was composed of stick models or beam elements subjected 
to far-field detonations. The progressive collapse model 
in the literature is able to capture a member level failure 
mode, such as bending or flexural buckling (snap-through), 
but the model is not able to capture element level failure 
modes, such as flange flaring, web bulging, web punctur-
ing, or flange severing, which are exemplified in Figure 6. 
On the other hand, for the individual column models sub-
jected to close-field or near-contact detonations in the pres-
ent study, the localized failure modes or deformed patterns 

in Figure 6 are well captured and most critical to determine 
the degree of damages on each column and a potential col-
umn collapse. For this reason, instead of the time history 
of the axial force, time history of von Mises stress in Fig-
ure 15 is more appropriate and is critical to monitor signs of 
a column collapse at the component element level subjected 
to close-range or near-contact detonations.

A lateral deflection was appropriate to monitor in the 
progressive collapse model of the literature subjected to 
far-field detonations because the major failure mode is the 
bending failure and flexural buckling. However, the lateral 
deflection is not significant in the individual column model 
in this study because the majority of the detonation energy 
is consumed to either deform flanges and web locally, punc-
ture a hole on web, or sever flanges, instead of bending the 
entire column member. Nevertheless, it is still crucial to 
monitor the out-of-plane deformations of the flange or web 
elements to determine a column collapse, based on whether 
the deformation is stabilized or continues to grow over 
time. The lateral deformations of flange and web elements 

(a) SOD = 0.6X

(b) SOD = 0.8X

Fig. 17(a-b). Vertical in-plane displacement curves over time at Gauge 3 (left) and deformed shapes  
with von Mises stress contours (right) for built-up column W14×99 subjected to CW = 0.12Y at various SOD.
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were demonstrated in Figure 18 for this purpose. In order 
to supplement column failure, vertical displacement of the 
column was monitored in Figure 17, which is not available 
in the progressive collapse model by Sideri et al. (2017).

In this study, for columns subjected to close-range or 
near-contact detonations, several parameters were inves-
tigated and used to compare the cases with and without 
preloading in order to understand the effects of the service 
loads. Based on the investigation, it is concluded that the 
columns with Level 4 damages actually collapsed with the 
service loads; damage levels remained unchanged without 
and with service loads; and thus, the effects of service loads 
are insignificant with respect to the determination of the 
damage level and the column collapse. The same proce-
dures and considerations were taken to determine and com-
pare damage levels between the models without and with 
the preloading for more extensive ranges of CW and SOD 
in the next section.

NUMERICAL PARAMETRIC STUDY RESULTS

For each of the six different built-up sections described in 
Table 1, a numerical parametric study was performed, based 
on the model described in this paper. Each analysis model is 
defined by a column size, an SOD, and a CW. For each col-
umn size, six different SODs and five different CWs were 
considered, but one combination was used at a time for each 
model. Thus, there are 30 parametric study models per each 
column, resulting in a total of 180 models in the first set of 
the study, where no service loads were considered. In the 
second set of the study, 180 models were added to account 
for the preloading from the service loads prior to the blast 
analysis. Thus, there are a total of 360 models for the study. 
For each combination of SOD and CW for a given column, 
a high-fidelity, nonlinear, explicit FEA was performed. At 
the end of the analysis, a deformed shape and time his-
tory of displacements and von Mises stresses at a number 
of gauge points of the column were carefully reviewed and 

(c) SOD = 1.0X

(d) SOD = 1.2X

Fig. 17(c-d). Vertical in-plane displacement curves over time at Gauge 3 (left) and deformed shapes  
with von Mises stress contours (right) for built-up column W14×99 subjected to CW = 0.12Y at various SOD.
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(a) SOD = 1.0X

(b) SOD = 1.2X

Fig. 18. Horizontal out-of-plane displacement curves over time at Gauge 2 on the web (x-direction) and Gauge 7 on  
the flange (z-direction) without and with preloading for built-up column W14×99 subjected to CW = 0.12Y at various SOD.
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investigated, as exemplified in the previous section, and a 
damage level was determined in accordance with Table 5.

When the SOD was varied for a constant CW, the change 
of damage level is demonstrated in Figure 19 for a built-
up column section equivalent to W14×176. As the SOD 
decreased, the column was more significantly damaged: 
The column damage level is inversely proportional to the 
SOD.

On the other hand, when the SOD was fixed, but the 
CW was varied, the change of damage level is exempli-
fied in Figure 20 for a built-up column section equivalent 
to W14×99. As the CW increased, the column damage 
became more substantial: The column damage level is pro-
portional to the CW.

From Figures 19 and 20, it is observed that the damage 
level for a given column depends on both SOD and CW. 
In order to present the damage level variation of a column 
more effectively, a contour plot was adopted. In the plot, 
the horizontal axis is SOD, while the vertical axis is CW. 
For a trial combination of SOD and CW, only one damage 
level is determined from a nonlinear explicit FEA, based on 
the damage level criteria specified in Table 5. The damage 
level, z, is recorded and displayed at a unique coordinate 
point (SOD, CW) on a two-dimensional (2D) graph. The 
schematic concept is depicted in Figure  21. This process 
was repeated for 30 models for each column, and the results 

are presented on a contour plot, which is then repeated for 
all six columns in Figures 22 and 23, without and with the 
service loads, respectively.

In Figures 22 and 23, each solid dot represents a numeri-
cal model with a unique combination of SOD and CW, and 
its corresponding damage level result (z). Together with 
the scattered data of damage levels, representative contour 
lines are drawn in the graphs. The SOD values on the hori-
zontal axis are expressed as fractions of a constant X; while 
the CW values on the vertical axis are expressed as frac-
tions of a constant Y. For security reasons and concerns, the 
actual constant numbers, X and Y, used on horizontal and 
vertical axes, respectively, are unreleased from the plots in 
Figures 22 and 23.

When the damage contours are compared among six dif-
ferent columns for the same range of CW and the same range 
of SOD in Figure 22, most area of the contour plot is cov-
ered with either damage Level 4 or 5 for built-up W14×43 
and W14×99 columns. To identify CW and SOD combina-
tions causing relatively less significant damages, the area 
covered by Level 3 or below is highlighted in gray for each 
of the six columns. As the column weight increases, the 
gray-colored area increases. Thus, it may be concluded that 
the column weight is directly proportional to the resistance 
to close-in detonations, but inversely proportional to the 
damage level.

Fig. 19. Deformed shapes with von Mises stress and damage level variations  
per SOD for a built-up column section equivalent to W14×176 subjected to CW = 0.23Y.
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Fig. 20. Deformed shape with von Mises stress and damage level variations  
per CW for a built-up column section equivalent to W14×99, when SOD = 1.2X.

Fig. 21. Schematic concept of damage level plot for a column.
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 (a) (b)

 (c) (d)

 (e) (f)

Fig. 22. Parametric study results for six built-up columns subjected to close-in detonations without  
preloading. Each number next to solid dot represents damage level for a given SOD and CW combination.
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 (a) (b)

 (c) (d)

 (e) (f)

Fig. 23. Parametric study results for six built-up columns subjected to close-in detonations after preloading is applied to  
account for service loads. Each number next to solid dot represents damage level for a given SOD and CW combination.
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Both the web and flange thicknesses of a standard wide-
flange steel member listed in the AISC Steel Construction 
Manual (AISC, 2017) generally increase as the column 
weight increases. It is expected that the similar trend is 
observed in the existing built-up columns in transportation 
facilities. However, there may be situations where the web 
or flange plate is thinner than the equivalent standard shape 
based on a column weight, which could lead to underes-
timation of detonation damages. In order to address such 
potential imbalance of the web and flange thicknesses of a 
built-up column, an equivalent standard shape can be deter-
mined alternatively, based on either flange or web thick-
ness, and the minimum shape can be used for conservative 
considerations.

Among the first 180  models without the preloading in 
Figure 22, there are 108 models labeled as Level  5 dam-
ages. These 108 models were excluded in the second set of 
analyses with the preloading because the first set models 
with Level 5 damages will still result in Level 5 damages 
with the addition of the preloading. Thus, only the remain-
ing 72 models, labeled as Level 4 or below in Figure 22, 
were actually analyzed with the preloading for the second 
set of models, and the results are plotted in Figure 23.

When the gray areas covered by Level 3 or below dam-
ages are compared with and without the preloading in Fig-
ures  22 and 23, most columns resulted in the same area 
and the same damage levels. Thus, it is concluded that the 
effects of the service loads are insignificant for built-up 
steel columns subjected to close-in detonations in terms 
of determining the damage levels. The same observation 
was made when the four sample models of W14×99 column 
were compared thoroughly between the models without and 
with the preloading in the Effects of Preloading section. In 
addition, it is confirmed that the preloading caused col-
lapses eventually for almost all columns labeled as Level 4 
or 5 damages, which is consistent with the damage criteria 
in Table 5.

A few exceptions were observed in two extreme columns: 
the smallest and largest columns among the parametric 
study shapes. For built-up column W14×43 subjected to 
CW = 0.12Y at SOD = 1.2X, no hole was punctured on the 
web without and with the preloading, but the column began 
to collapse with the preloading as shown in Figure 24(a). 
For this reason, the damage levels were given differently 
between the models without and with the preloading. 
W14×43 column is simply too flimsy to support close-in 
detonations of any practical combinations of CW and SOD 
considered in this study. As a minimum, built-up column 
equivalent to W14×99 or larger must be used for consider-
ation of close-in detonations without adding any separate 
protective components.

For built-up column W14×426 subjected to the CW  = 
0.23Y at SOD = 0.6X and CW = 0.44Y at SOD = 0.8X cases, 

no hole was punctured on the web, but the flange and web 
plates deformed significantly enough to buckle and collapse 
with the preloading, as shown in Figures 24(b) and 24(c). 
This kind of failure mode was not discovered in any other 
columns in this study. For the specific combinations of CW 
and SOD, the component plates are strong enough to pre-
vent them from hole-puncturing or severing but not strong 
enough to avoid the buckling with the preloading. For this 
reason, the damage level is elevated from Level 3 without 
preloading to Level 4 with preloading. For all other cases 
of CW and SOD combinations, no changes were observed 
in the damage levels in between the cases without and with 
preloading, as shown in Figures 22 and 23.

SUGGESTED DESIGN METHODOLOGY

As defined in Table 5, in order to avoid a column collapse 
in a facility, a combination of SOD and CW must not result 
in Level 4 or 5 damages, as a minimum. The shaded area in 
the lower right corner in each of the plots in Figures 22 and 
23 represents desirable combinations of SOD and CW that 
could result in Level 3 or less damages and avoid a column 
collapse. Bulging deformations observed in Level 3 or less 
damages could result in secondary moments in flanges or 
web, but they do not seem significant enough to cause a 
column collapse with the presence of service loads, except 
for the three exceptional cases described in the last section. 
Thus, it is likely that the upper-level passengers or build-
ing users could evacuate with a lower-level column subject 
to Level 3 or less damages. In addition, the design safety 
margins in the AISC Specification for Structural Steel 
Buildings (AISC, 2016) would likely provide some reserve 
capacity to allow the evacuation with the same damage 
levels. Mazurkiewicz et al. (2015) also reached a similar 
conclusion in terms of the relationship between the level of 
damage or deformation in the column and the remaining 
load-carrying capacity.

The contour plots in Figure 22 without the service loads 
match closely to Figure 23 with the service loads, except 
for a few extreme cases. For this reason, the contour plots 
in Figure 22 could still be used for preliminary design or 
cost-estimate purposes. However, for the final design pur-
poses, detailed close-range blast FEA should be performed 
considering the service loads with the aid of Figure 23.

Each contour plot in Figures 22 and 23 was presented in 
a linear form because other mathematical models, such as 
quadratic or cubic forms, did not necessarily result in better 
representations of the scattered damage plots than the linear 
form. In addition, linear contour plots would be more useful 
in an attempt to develop blast mitigation design equations to 
cover the entire range of steel columns subjected to close-in 
detonations.

Using the damage contour plots in Figures  22 and 23, 
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overall preliminary design procedures are summarized as 
follows:

1. For a given built-up column, determine the closest 
matching standard shape in the AISC Steel Construction 
Manual (AISC, 2017), based on the weight, overall cross-
sectional dimensions, and element thicknesses. This is 
the equivalent standard shape.

2. Based on a risk assessment of a facility, determine the 
design SOD and CW combinations for a project.

3. If the equivalent column size matches with one of the six 
sizes in Figures  22 and 23, which were investigated in 
this study, directly plug the SOD and CW variables into 
the plot to estimate the damage level.

4. If the column size does not match with one of the six 
sizes, plug the variables into the plots with the sizes 
immediately larger and smaller than the column 
to estimate the damage levels in the two plots. The 
damage level of the column under consideration could 
be estimated via linear interpolation between the two 
damage levels, based on column weights per unit length. 
Alternatively, engineers may prefer to choose one of 
the six plots with the size immediately smaller than the 
column under consideration to determine the damage 

level conservatively. In place of the column weight, 
either column flange or web thickness could be used 
as a variable to estimate the equivalent section, if the 
thickness results in a conservative section.

If a given column is potentially subject to Level 4 or 5 
damages, implement one of the following blast mitigation 
designs alone or combined:

• Increase the SOD by enlarging the architectural cladding 
size around the column. However, this option can result 
in reduction of the usable spaces around the column.

• Enforce and tighten access control so that the CW can be 
capped by a lower value.

• Replace the column with a larger standard AISC shape 
that can result in Level 3 or less damage under the given 
condition. However, there are several challenges with this 
method: The existing beams and girders framing into the 
column must be supported separately during the column 
replacement, and the crane access to hoist steel members 
in building interior spaces may be limited.

• Alternatively, strengthen the existing columns by adding 
thicker steel plates on the flanges and the web to come up 
with a larger equivalent column shape that can result in 
Level 3 or less damage under the given condition. If the 

 (a) (b) (c)

Fig. 24. Exceptional cases resulting in different damage levels in between models without and with preloading.
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section does not match with an AISC standard section, 
either flange or web thickness could be used as a variable 
to estimate the equivalent section. In addition, the existing 
beams and girders framing into the column must also be 
supported separately during the column strengthening, 
because the existing rivets must be removed for the plate 
additions.

• Harden the column by adding encasement materials 
around the column over a sufficient height from the 
bottom, where possibly MPIED can be placed. This 
is based on traditional design approaches used against 
close-in or near-contact detonations, which was also 
used for mitigating potential risks of direct vehicular 
impacts. The added layers around the column should be 
designed in a way that the most blast energy is dissipated 
via sacrificing themselves, while the remaining energy 
is small enough to result in only minor damages to the 
column. Simultaneously, the outer layers could harden the 
column by supporting the flanges and web not to allow 
significant deformations. The sacrificial and hardening 
layers can be made from typical construction materials, 
such as steel plates, concrete fill, and reinforcement bars. 
Separate analyses are needed to design the outer layers, 
using explicit nonlinear FEA. The details of the analysis 
approaches are similar to what is discussed in this study 
but are beyond the scope of this study.

To use the damage contour plots in Figures 22 or 23 for 
a preliminary design, the following conditions must be 
satisfied:

• The existing column shapes are wide-flange columns 
built up from individual angles and plates similar to the 
examples shown in Table 1.

• The columns are made from the materials listed in 
Table 2 or stronger.

• The column sizes are similar to one of the shapes 
shown in Figures 22 and 23 or are equivalent to one of 
the W14 series standard shapes listed in the AISC Steel 
Construction Manual (AISC, 2017). The recommended 
minimum size to be considered for the design would be 
built-up shape equivalent to W14×99.

• The CW must be within the portable range that can be 
carried by a single person. The exact range of the CW is 
not disclosed for security reasons.

• The SOD must be within a few depths of the column 
size so that the architectural finish size can be within 
a practical range. The exact range of the SOD is not 
disclosed for security reasons.

• Corrosions and deterioration of the columns are 
beyond the scope of this study. If the existing column 

is deteriorated significantly, account for the thickness 
reduction in choosing the equivalent shape.

• The service loads should not result in more than 60% of 
the yield stress in the column. If the service loads beyond 
this limit are expected, or the residual ultimate capacity 
is sought, separate analyses could be performed based 
on preloading larger than 60% of the yield stress. This is 
beyond the scope of the present study.

The six contour plots and design methodology presented 
in this study could be used for preliminary structural ade-
quacy assessments of hundreds or thousands of built-up steel 
columns subjected to potential close-in detonations in most 
historic transportation facilities, such as rail or subway sta-
tions or tunnels, without going through expensive and time-
consuming nonlinear, explicit FEA. This study could benefit 
local, state, or federal agencies in estimating project costs 
and decision making for essential blast evaluation or mitiga-
tion projects, but it could also benefit structural engineers 
in providing an efficient and practical tool for preliminary 
close-in detonation analysis, most of whom do not have 
access to sophisticated high-fidelity analyses. In addition, 
the contour plots and the design method developed in this 
study could be used for quality control purposes in other 
security projects, requiring similar nonlinear explicit FEA 
for close-in detonations. For final design purposes of criti-
cal columns subjected to close-in detonations, performing 
detailed nonlinear explicit FEA is recommended.

CONCLUSION

A new performance-based method was proposed in this 
work to evaluate steel columns in historic transportation 
facilities subjected to close-in detonations. Many historic 
transportation structural members are built-up steel sec-
tions composed of angles and plates connected with rivets. 
Using the mechanical properties of steel data, the five coef-
ficients for a strain-rate dependent material model were 
determined. Practical ranges of charge weights and stand-
off distances were determined for transportation facility 
columns subjected to close-in detonations. For six care-
fully chosen built-up steel columns, equivalent to standard 
AISC wide-flange sections, two series of parametric stud-
ies were conducted with and without service loads, using a 
high-fidelity, nonlinear, explicit FEA program. Six levels 
of damage criteria were proposed in this study for a per-
formance-based design. Using the damage criteria, analysis 
results were presented in two sets of six contour plots. The 
contour plots can be directly used by practicing structural 
engineers for a quick evaluation of built-up transportation 
facility columns, subjected to close-in detonations, and 
basis for cost estimate and preliminary blast mitigation 
design.
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ABSTRACT

A method was recently proposed, by Wei and Packer (2021), for application of the 2016 AISC Specification (AISC, 2016) to rectangular HSS 
sidewall instability. The proposal was based on evidence from prior research and collated data from international experiments. Herein, this 
topic is further updated with very recent research, and suggested improvements by others. An expanded database containing both experi-
mental and numerical (finite element) tests of rectangular HSS-to-HSS cross connections with chord sidewall failure is hence amassed, 
totaling 227 tests. An analysis of this data reinforces the recent recommendations.

A review is given of methods in use for determining the structural reliability of steel members and connections. Based on this, a reliability 
study is performed on the recent recommendations, using various closed-form reliability methods as well as Monte Carlo simulation, to 
determine appropriate resistance factors for use with nominal-strength design equations for HSS sidewall instability. The influence of many 
variables, in particular chord sidewall slenderness, live-to-dead load ratio, as well as material and geometric properties, on the structural 
reliability of full-width rectangular HSS-to-HSS cross-connections under branch axial compression is studied.

KEYWORDS: hollow structural sections, cross connections, sidewall instability, reliability, resistance factors, Monte Carlo simulation.

INTRODUCTION

The 2016 AISC Specification for Structural Steel Buildings 
(AISC, 2016), hereafter referred to as the AISC Specifi-
cation, provisions for web stability under local compres-
sion loading were applied to HSS connections by Wei and 
Packer (2021) through a limited experimental study and an 
analysis of a database of full-width rectangular HSS cross-
connection experimental tests. This study showed that 
the web local crippling limit state never governs for HSS 
grades up to 50 ksi yield and sidewall slenderness values up 
to 57. Connections meeting the requirements do not need 
to be checked for web local crippling as a limit state. The 
web local yielding limit state in the AISC Specification was 

found to be very applicable to the full-width rectangular 
HSS cross (or X-) connection, illustrated in Figure 1.

Wei and Packer (2021) proposed to use the findings of 
Kuhn et al. (2019) to specify a limit for when the AISC 
Specification Chapter E can be used to determine the HSS 
chord sidewall (or web) compression buckling resistance. 
Instead of requiring the bearing length to be greater than 
the chord depth, as mentioned in the AISC Specification 
Commentary for I-shaped sections, a bearing length of 
greater than 0.25 of the chord depth was a more appropriate 
demarcation point for HSS connections (Kuhn et al., 2019). 
The effective length factor in the column buckling model 
is not stipulated by the Specification but was taken as 0.65 
because rectangular HSS sidewalls resemble more of a 
fixed-fixed end restraint than a pin-pin end restraint. It was 
also determined that the branch angle of inclination, θ, does 
not have a definite impact on the cross-connection capacity; 
thus, the predicted cross-connection capacity (expressed as 
a force in an inclined branch) was conservatively limited 
to only the vertical force component of the branch member 
force (Wei and Packer, 2021). These proposals for applying 
the 2016 AISC Specification web compression limit states 
to rectangular HSS cross-connections are shown in Table 1. 
As with this current study, the connections were not suscep-
tible to out-of-plane instability. With regard to Table 1 and 
thereafter, a list of symbol definitions is given at the end of 
the paper, but the symbols used herein are also in accord 
with the AISC Specification.
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Fig. 1. Example of a full-width rectangular  
HSS cross connection, in vertical bracing.

Table 1. Proposed Application of the 2016 AISC Specification Web Compression  
Limit States to Rectangular HSS Cross Connections, per Wei and Packer (2021)

Limit State
HSS-to-HSS Connection Nominal Strength, Pn  

(kips)
ϕϕ  

(ΩΩ)

Web local yielding, interior

For lend > H

2Fyt 7.5t+ Hb

sin
⎛
⎝

⎞
⎠θ  

(1)
1.00  
(1.50)

Web local crippling, interior

For lend  ≥ H/2

1.6t2 1+

3Hb

sin
H

EFyQf

⎛

⎝
⎜

⎞

⎠
⎟

⎜ ⎟
⎜ ⎟θ

 

(2)
0.75  
(2.00)

Web compression buckling, 
interior, and lb ≤ 0.25H

For lend  ≥ H/2 and Hb/Hsinθ ≤ 0.25

48t3

H 3t
EFyQf−

⎛
⎝⎜

⎞
⎠⎟  

(3)
0.90  
(1.67)

Web compression buckling, 
interior, and lb > 0.25H

For lend  ≥ H/2 and Hb/Hsinθ > 0.25  
Use AISC Specification Equations E3-1, E3-2, and E3-3, with  
K = 0.65, Lc/r from Equation 4, and Ag (for each sidewall) from 
Equation 6

0.90  
(1.67)
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For the web compression buckling limit state with lb > 
0.25H, the slenderness, λ or Lc/r, is calculated according to 
Equation 4 (Wei and Packer, 2021):

 
= KL

r
= Lc
r

= 3.46
H

t
3

1

sinθ
λ −⎛

⎝
⎞
⎠  

(4)

If the branch member is inclined, there is an allowance 
(indicated in Equation  4) resulting in a longer buckling 
length (Packer et al., 2009; IIW, 2012; ISO, 2013). A nondi-
mensional slenderness, λC, can also be described by:

 
C =

Fy
E

λ λ
π  

(5)

Using Equation  4, the critical stress, Fcr, can be deter-
mined for each chord sidewall or “column” from AISC 
Specification Section E3 and, using the cross-sectional 
area for each sidewall “column” (a load dispersion length 
multiplied by the wall thickness) given by Equation 6, the 
buckling strength of each sidewall can then be calculated.

 
Ag = 7.5t + Hb

sin
t

θ
⎛
⎝

⎞
⎠  

(6)

Herein, the topic of chord sidewall buckling in full-
width rectangular HSS-to-HSS cross connections is further 
updated with recent research and suggested improvements 
by others. An evaluation of various failure models is con-
ducted using data reflective of North American rectangular 
HSS strengths; a reliability study is then performed using 
various closed-form reliability methods, as well as Monte 
Carlo simulation (MCS), to determine appropriate resis-
tance factors for use with the nominal-strength design equa-
tions recommended.

RECENT DEVELOPMENTS

Lan et al. (2021)

Recently, a review of competing proposals was performed 
by Wardenier et al. (2020) against a collated experimen-
tal and numerical database of full-width rectangular HSS-
to-HSS cross connections in branch compression, which 
resulted in the following chord sidewall buckling equation, 
NL (Lan et al., 2021):

 
NL =CfFk 2Hb +10t( ) 1

sin θ
Qf

 
(7)

where

 
F χk = H

Hb

0.15

Fy Fy≤
⎛
⎝⎜

⎞
⎠⎟  

(8)

and

 
Cf = 1.1 0.1

Fy
355

1.0≤−
 

(9)

The material factor (Cf in Equation 9, with Fy in MPa) 
was added to the proposed connection capacity by Lan et al. 
(2021) to cater for the influence of high-strength steels with 
a yield strength up to 139 ksi (960 Mpa). High-strength steel 
rectangular HSS connections have a larger elastic range, 
have material softening in the heat-affected zone, and are 
more prone than regular-strength steel rectangular HSS 
connections to production and fabrication imperfections 
(Lan et al., 2021). The branch angle effect of the proposed 
Equation 7 is in accordance with Davies and Roodbaraky 
(1987). Two possible methods were advocated for deter-
mining the buckling reduction factor χ: (1) using buckling 
curve c in EN 1993-1-1 (CEN, 2021), with a chord sidewall 
slenderness with an effective length factor of 0.5, and (2) a 
linear alternative given by:

 
=χ 1.12 0.012

H

t

Fy
355

1.0≤−
 

(10)

Despite the effort expended on achieving accurate 
nominal-strength models for the chord sidewall bucking 
limit state, in the format of Eurocode 3 (CEN, 2021), only 
a perfunctory reliability analysis was performed to obtain 
resistance expressions. Inclusion of the (H/Hb)0.15 term in 
Equation 8 complicates the direct use of the AISC Specifi-
cation Chapter E column buckling approach, so the method 
of Lan et al. (2021) is not considered further.

Kim and Lee (2021)

Kim and Lee (2021) performed a numerical and experimen-
tal study on rectangular HSS cross connections in which 
they proposed that, for full-width rectangular HSS cross 
connections, sidewall failure be idealized by a column 
model with a column width of Hb. Their proposed sidewall 
effective length factor, K, was variable, based on the branch 
and chord heights, as a value of 0.5 was found to be uncon-
servative for high Hb/H. This variable K, with the corre-
sponding width of the sidewall “column” based solely on 
Hb without any load dispersion, as shown in Equation 11, 
achieved better correlation with their database. The effect 
of branch angle was negligible; thus, it was neglected. The 
AISC-format connection strength equation for rectangu-
lar HSS cross-connection chord sidewall buckling under 
branch axial compression, with the Kim and Lee (2021) 
recommendations, NKL, can be expressed by:

 NKL = 2FcrtHbQf  (11)

where Fcr is determined by AISC Specification Section E3, 
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(2020) because data was available and high-yield HSS 
were not being considered. All tests with a bearing length 
less than 0.25 of the chord depth were also screened out 
to exclude tests failing by web (or sidewall) local yielding 
rather than sidewall buckling. (The limit state of sidewall 
local yielding is dealt with later in this paper.) Full data 
for the remaining 44 experimental and 183 numerical full-
width rectangular HSS-to-HSS cross connections under 
branch axial compression from the extended database(s), 
which failed by chord sidewall buckling, are tabulated by 
Rudman (2021).

The parameter ranges for the experimental database are 
β = 1.0, 12.6 ≤ 2γ ≤ 42.2, 12.6 ≤ 2γ∗ ≤ 50.5, 0.50 ≤ η ≤ 2.47, 
0.60 ≤ η∗ ≤ 1.00, −0.87 ≤ n0 ≤ 0, 44° ≤ θ ≤ 90°, and 33 ksi 
(228 Mpa) ≤ Fy ≤ 70 ksi (483 Mpa). The 44 experimental 
rectangular HSS sections were either cold formed or hot 
finished; 14 have a non-90° angle, while the other 30 tests 
have a 90° angle. The parameter ranges for the numerical 
database are β = 1.0, 10 ≤ 2γ ≤ 35, 10 ≤ 2γ∗ ≤ 35, 0.25 ≤ 
η ≤ 2.00, 0.21 ≤ η∗ ≤ 2.50, −0.80 ≤ n0 ≤ 0.75, θ = 90°, and 
49 ksi (338 Mpa) ≤ Fy ≤ 70 ksi (483 Mpa). The 183 numeri-
cal rectangular HSS sections were either cold formed or 
hot finished. The prime limits of the screened database are 
shown in Table 2.

EVALUATION OF DESIGN PROPOSALS

The compiled and screened database was evaluated against 
the following design methods for sidewall buckling failure 
in rectangular HSS-to-HSS cross connections under branch 
axial compression:

1. AISC Specification Chapter J, assuming Chapter E is 
applied for lb > H, and (a) K = 1.0; (b) K = 0.65.

2. Wei and Packer (2021) proposal, assuming Chapter E is 
applied for lb > 0.25H, and K = 0.65.

3. Kim and Lee (2021) recommendations.

For the combined database of 227 tests on full-width rect-
angular HSS-to-HSS cross-connection tests under branch 
axial compression, the resulting statistical evaluation of vari-
ous design methods for chord sidewall buckling is shown 
in Figure  2. The mean and coefficient of variation (COV) 
of the ratios N1u/NAISC, N1u/NWP, and N1u/NKL are indicated 
on the plots, where N1u represents the connection ultimate 
strength and NAISC, NWP, and NKL represent nominal strength 
prediction models. It can be seen that all methods feature 

with:

 
K = 0.5

Hb

H  
(12)

DATABASE FOR FULL-WIDTH RECTANGULAR 
HSS CROSS-CONNECTION TESTS UNDER 

BRANCH COMPRESSION

As discussed previously, Wardenier et al. (2020) compiled 
an up-to-date database of recent tests, at the time, on rect-
angular HSS-to-HSS full-width cross connections with 
chord sidewall failure when subjected to branch compres-
sion [i.e., the database used by Lan et al. (2021)]. For the 51 
experimental tests in that database, the source references of 
Fan (2017), Kuhn et al. (2019), Feldmann et al. (2016), and 
Pandey and Young (2020) were used. The latter two sources 
cover high-strength steel rectangular HSS connections 
with nominal yield strengths up to 139  ksi (960  Mpa)—
far in excess of typical North American rectangular HSS 
strengths. The “numerical tests” (finite element models) 
included in the database were 21 by Yu (1997) and 152 by 
Kuhn (2018). In addition to other limits, Wardenier et al. 
(2020) screened their database to 2γ∗ = H/t ≤ 40 because no 
data was included for high-strength steel rectangular HSS 
connections with larger H/t. (Also, in general, rectangu-
lar HSS sections with large 2γ∗ are sensitive to geometric 
imperfections.)

Recently, Wei and Packer (2021) and Kim et al. (2019) 
each completed two further tests on rectangular HSS full-
width cross connections under axial compression, beyond 
the Wardenier et al. (2020) database. These four tests have 
been added, herein, to the experimental tests in the Warde-
nier et al. database to produce a new, extended experimental 
database (of 55 tests in total). Very recently, a further 48 
numerical tests were generated by Kim and Lee (2021) to 
investigate chord sidewall failure of rectangular HSS cross-
connections in compression. These numerical tests, in addi-
tion to those of Yu (1997) and Kuhn (2018), were compiled 
to produce a new, extended numerical database (of 221 tests 
in total).

To both the extended experimental and numerical data-
bases, screening was applied by the authors. First, all 
tests with a yield strength greater than 70  ksi (483  Mpa) 
were removed because North American rectangular HSS 
strengths rarely exceed this. The 2γ∗ and 2γ limit was 
increased from the value of 40 used by Wardenier et al. 

Table 2. Database Limits Used in the Current Study

Steel Nominal Yield Stress 2γγ∗∗ and 2γγ Limit lb Limit

≤70 ksi (483 MPa) 50.5 Hb/Hsinθ > 0.25



ENGINEERING JOURNAL / FOURTH QUARTER / 2022 / 317

sidewall slenderness and produces the largest mean ratio. 
This can be attributed to their proposed change to the width 
of the sidewall “column.” In low-slenderness HSS, the side-
wall thickness adds a significant amount of width to the 
bearing length (due to load dispersion). Eliminating this 
width from the nominal-strength equation results in under-
predicting connection strength. As the sidewall slenderness 
increases, the wall thickness contributes less to the width 
of the failure area, and the connection strength predictions 

over- and underestimations of the ultimate strength. Fig-
ures  2(a) and 2(b) show correlations by applying the pro-
visions of AISC Specification Chapter J to HSS and using 
the Chapter E column buckling approach for bearing lengths 
lb > H. Regardless of the effective length factor used [K = 
1.0 in Figure 2(a); K = 0.65 in Figure 2(b)], the COV is high, 
reflecting an imprecise model.

The Kim and Lee (2021) equation, Figure 2(d), consis-
tently underpredicts the strength of connections with a low 

(a) 2016 AISC Specification Chapter J, Chapter E is applied for lb > H, and using K = 1.0

(b) 2016 AISC Specification Chapter J, Chapter E is applied for lb > H, and using K = 0.65

Fig. 2(a-b). Comparison of 227 rectangular HSS-to-HSS cross-connection test results against prediction methods.
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using the Kim and Lee (2021) equation become more accu-
rate. This results in their proposed design equation produc-
ing a large COV and thus being an imprecise predictor of 
the connection strength.

The Wei and Packer (2021) proposed design method, 
Figure 2(c), produces the lowest actual-to-predicted mean 
ratio; however, it is still greater than 1.0. Significantly, it 
has a much lower COV than the other design models con-
sidered. Thus, the Wei and Packer (2021) proposal for HSS 
chord sidewall buckling (Table 1) is still recommended for 

adoption. The following sections of this paper deal with 
determining the appropriate resistance factor, ϕ, for use 
with this design approach.

STRUCTURAL RELIABILITY,  
TARGET RELIABILITY INDEX,  

AND RESISTANCE FACTORS

It is well-known that engineering decisions must be made 
in the presence of uncertainties arising from inherent 

(c) Wei and Packer (2021) proposal, Chapter E is applied for lb > 0.25H, and using K = 0.65

(d) Kim and Lee (2021) proposal with variable K

Fig. 2(c-d). Comparison of 227 rectangular HSS-to-HSS cross-connection test results against prediction methods.
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randomness in design parameters and imperfect modeling. 
Due to these uncertainties, potential risk arises in engineer-
ing design; therefore, safety factors are required to ensure 
an acceptable level of risk, and absolute reliability is an 
unattainable goal because of uncertainties (Ellingwood et 
al., 1980).

The structural reliability of a member or element is 
based on the limit state where the member’s resistance, R, 
and the load effect, S, acting on the member are compared 
(Melchers and Beck, 2018). A failure event occurs under the 
following conditions, or any other equivalent criteria:

 
R S < 0

R

S
<1 ln R( ) ln S( ) < 0−−

 
(13)

The randomness in the resistance of an element, R, and 
the load effect, S, can be accounted for by introducing 
dimensionless random variables. For the resistance, these 
random variables help account for variations in the proper-
ties of the element and the assumptions used in determin-
ing the resistance (Ravindra and Galambos, 1978). For the 
load effect, the random variables account for uncertainties 
in load intensities and structural analysis (Ravindra and 
Galambos, 1978). The random variable obtained by sub-
tracting ln(S) from ln(R), is called the safety margin, g:

 g = ln R( () )ln S( ) = ln R S−  (14)

and the probability of failure, pF, of a structural element can 
thus be represented by:

 pF = P g < 0⎡⎣ ⎤⎦ 
(15)

The probability distribution of g is unknown in prac-
tice. However, if the assumption is made that R and S are 
independently log-normally distributed, then g is normally 
distributed, and a first-order probabilistic method requir-
ing only the mean and standard deviation may be used 
(Ravindra and Galambos, 1978). These parameters may 
be summarized into a relative measure of safety, known as 
the safety index, β+, defined as follows (Ellingwood et al., 
1980):

 
+ = gm

gσ
β

 
(16)

where gm is the mean value of g and σg is the standard 
deviation of g. The reliability index can be conveniently 
interpreted as the distance from the mean to the origin, rep-
resenting failure, in units of standard deviations. Substitut-
ing the expression in Equation 14 results in:

 

+ =
ln

R

S m

ln R
S( )σ

β

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

 

(17)

and Equation 17 may be approximated using first-order sta-
tistics of R and S:

 

+
ln

Rm
Sm

VR
2 +VS2

⎛
⎝

⎞
⎠

β
 

(18)

where Rm and Sm are the means of the resistance and load 
effect and VR and VS are the corresponding COVs. Equa-
tion 18 includes a small-variance approximation [i.e., substi-
tutions for ln(R/S)m and σln(R/S)] that are valid when VR and 
VS are both less than about 0.30 (Ellingwood et al. 1980). If 
this condition is violated, β+ can instead be determined by 
using Equation 19, which is exact if R and S are assumed 
to be independent log-normal random variables (Benjamin 
and Cornell (1970),

 

+ =

ln
Rm
Sm

1+VS2

1+VR2

ln 1+VS2( ) 1+VR2( )
β

⎛

⎝
⎜

⎞

⎠
⎟

⎡⎣ ⎤⎦  

(19)

In either case, the probability of failure, pF, may be com-
puted as:

 
pF = +− βΦ⎡⎣ ⎤⎦ (20)

If R and S are instead described by independent normal 
distributions, a more appropriate formulation for the safety 
margin is:

 g = R − S (21)

In addition,

 

+ = Rm Sm

R
2 +σσ S

2

−
β

 
(22)

and substitution of Equation  22  into Equation  20 for pF 
yields an exact probability of failure.

The resistance of a structural steel member or connec-
tion, R, is often assumed to be a function of the material 
strength, the geometric properties, and a professional factor. 
The professional factor accounts for the imperfect nominal 
resistance design equation. Typically, these relationships 
are further assumed to be represented by actual-to-nominal 
ratios in the form:

 R =MGPRn (23)

The material ratio, M, is the ratio of the actual-to-nomi-
nal relevant material property of the structural steel. The 
geometric ratio, G, is the ratio of the actual-to-nominal rel-
evant geometric properties of the structural steel. The pro-
fessional ratio, P, represents the ratio of observed capacity 
in tests (experimental or numerical) to predicted capacity, 
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with the latter based on measured material and geometric 
properties and a nominal strength model, Rn.

Similarly, the load effects on a steel member or connec-
tion can be assumed to be represented by the sum of the 
actual-to-nominal ratios for the applied loads and their 
nominal value. The load effect, S, can hence be written as:

 S = δS,i Sn,i∑  (24)

where δS is the actual-to-nominal ratio for a load effect and 
Sn is the nominal load effect. The subscript i refers to the 
load effect under consideration (dead, live, etc.).

Load and resistance factor design (LRFD) and limit states 
design (LSD) criteria are based on an expression where the 
resistance of an element must be greater than the sum of the 
factored load effects acting on the element; that is,

 
Rn iSn,i

i=1

j
∑≥ αϕ

 
(25)

The resistance side of the criterion is the product of the 
nominal resistance of the element, Rn, and a dimensionless 
resistance factor, ϕ. The load effect side of the criterion is 
the sum of the products between the various nominal load 
effects, Sn, and the associated dimensionless load factor, αi.

Separation Factor Approach

Equation  18 can be rearranged and expressed as a first-
order probabilistic design criterion with a central safety fac-
tor, θC (Ravindra and Galambos, 1978), which combines the 
uncertainties of both the resistance and load effects; that is,

 Rm CSm≥ θ  (26)

 C = e
+ VR

2+VS2( )θ
β

 (27)

Lind (1971) proposed the following linear approxima-
tion, Equation 28, to the square root of the sum of squares 
terms in the exponent of Equation  27, which allows for 
the separation of the resistance and load effect terms. In 
doing so, the resistance factor can be determined without 
knowledge of the load effects (and load factors can be deter-
mined without knowledge of the resistance). For a range of 
3 ≤ VR/VS ≤ 3, with α = 0.75 (where α is the coefficient of 
separation), this approximation is within about 6%. Equa-
tion 29 is established through substitution of Equation 28 
into Equations 27 and 26.

 VR
2 +VS2 = VR +VS( )α  (28)

 e
+VR( )Rm e

+VS( )Smα αβ β≥−
 (29)

Galambos and Ravindra (1973) extended this concept 
further by introducing two different separation factors, one 
for the load effects, and one for the resistance. They went 

on to show that a value of α = 0.55 on the resistance side of 
the equation gave a near-zero error and a standard deviation 
of 3% for a limited range of key variables. This was deter-
mined through an error minimization process considering 
combinations of dead, live, and wind load (Galambos and 
Ravindra, 1977). After the addition of random variables and 
linear approximations to the LRFD criterion, the resistance 
factor can be expressed as seen in Equation 30 (Ravindra 
and Galambos, 1978).

 
= Rm
Rn

e
+VR( )ϕ αβ−

 
(30)

The value of β+ was determined by selecting a standard 
design situation with the allowable stress design method 
and requiring that the LRFD criterion generally produce 
the same element to resist the forces. For structural ele-
ments, β+ = 3.0, while for structural connectors, β+ = 4.5 
(Ravindra and Galambos, 1978).

Many past studies have taken Rm/Rn to simply be the ratio 
of observed capacity in tests (experimental or numerical) 
to predicted capacity, with the latter based on measured 
material and geometric properties and a nominal strength 
model. Therefore, VR is also simply taken as the COV of 
the observed capacity in tests (experimental or numerical) 
to predicted capacity. The “separation factor approach” 
used throughout this study adopts this methodology, with a 
separation factor of α = 0.55 in accordance with Ravindra 
and Galambos (1978). As noted earlier, a value of α = 0.75 
(Lind, 1971) has also been used, historically, with ACSE 
(2016) currently advocating for a value of α ≈ 0.70.

Expanded Separation Factor Approach

If M, G, and P are assumed to be independently log-normal, 
then the mean resistance, Rm, can be expressed using the 
ratio of mean to nominal resistance, δR:

 Rm = RRnδ  (31)

where

 R = M G Pδ δ δ δ  (32)

and δM, δG, and δP represent the mean values for M, G, and 
P, respectively. The COV of the resistance is well approxi-
mated by the square root of the sum of the squares of the 
three different COVs—VM, VG, and VP—which are associ-
ated with δM, δG, and δP. The resistance factor equation can 
be seen in Equation 34.

 VR = VM
2 +VG2 +VP2  (33)

 = Re
+VR( )δϕ −αβ

 (34)

This approach applies to members whose resistance is 
a direct product of a geometric and material property. For 
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members, whose resistance is a product of many geometric 
and material properties, the contribution from each prop-
erty must be determined over the range of the independent 
variable. The relative contribution of each of the distinct 
properties to the mean ratios and the related COVs can be 
approximated by mathematical manipulation of the resis-
tance equation, using a partial derivative approach (Ken-
nedy and Gad Aly, 1980). Depending on how the equation 
describing the property was determined, either on a solely 
mathematical basis or a semi-empirical or curve-fitting 
basis, different participation factors for the various proper-
ties will be determined (Kennedy and Gad Aly, 1980).

Effect of Material Parameters

The resistance of a structural steel column under compres-
sion loading is governed by its overall slenderness, which 
determines the critical buckling stress, which, in turn, 
depends on the radius of gyration (a geometric parameter), 
the yield stress, and the modulus of elasticity (material 
parameters). Thus, as the column slenderness varies, so 
does the dependency on the material parameters. Schmidt 
and Bartlett (2002) showed that for columns, using the over-
all flexural buckling equation in CSA S16 (CSA, 2019a), 
at low slenderness the yield strength contributes more to 
the material mean ratio and COV, while at high slenderness 
the radius of gyration and modulus of elasticity dominate. 
Because statistical parameters for materials are contingent 
on column slenderness, different resistance factors are 
therefore determined for various chord sidewall slender-
ness values. This results in a range of resistance factors (or 
alternatively safety indices) for rectangular HSS sidewalls 
under branch compression.

Lognormality of the Resistance

Equations 23 and 32 are convenient due to the log-normality 
assumption. When the material strength, geometric proper-
ties, and professional factor are independently log-normal, 
so is the resistance. A log-normal distribution can be 
described entirely through its mean and COV (second-order 
statistical parameters). If the log-normality assumption is 
true, then the probability of failure, or reliability index, 
can be determined through the mean and COVs of mate-
rial strength, geometric properties, and professional fac-
tor. Reliability analysis techniques make this assumption 
in order to predict the probability of failure, or reliability 
index, using second-order statistical parameters from sur-
vey and test data. In a recent paper by Xi and Packer (2021), 
this assumption was assessed for the resistance.

The data for actual-to-predicted nominal strength (pro-
fessional factor) that are obtained from experimental or 

numerical tests are often a poor fit to normal or log-normal 
probability distributions. The typical data for actual-to-
nominal distributions of the material and geometric proper-
ties of HSS sections are generally a reasonable fit to normal 
or log-normal probability distributions. When all the data 
is combined, the resistance distribution has a more regular 
shape (Xi and Packer, 2021). Xi and Packer used actual-to-
nominal data of the material strength from Liu (2016) and 
actual-to-nominal data of the geometric properties from 
Kennedy and Gad Aly (1980), as well as actual-to-predicted 
test data from rectangular HSS-to-HSS cross connections 
with chord sidewall failure from Wei and Packer (2021) and 
Bu et al. (2021). It was shown that the combined resistance 
obtained by a simulation procedure closely approximated a 
log-normal distribution even if some of the data was seem-
ingly incompatible (Xi and Packer, 2021). Despite having 
an irregular distribution for the professional factor, the 
expanded separation factor approach can be used for evalu-
ating the reliability of HSS connections.

As an example of this effect, Figure  3(a) shows the 
actual-to-predicted ultimate strength correlation for the 
limit state of web buckling, using the method of Wei and 
Packer (2021) and the experimental data for full-width HSS 
cross connections from that paper. After sampling from this 
professional factor histogram, plus typical distributions for 
material and geometric properties, the numerically simu-
lated resistance (using 1.9  million samples) is shown in 
Figure 3(b). The continuous curve (red line) represents the 
best-fit log-normal distribution using an iterative maximum 
likelihood estimation (MLE) technique. The statistical 
parameters given in Figure 3 pertain to the histograms.

Approximate FORM Approach

Nowak and Lind (1979) showed that the load side of the 
LRFD inequality (Equation 25) can be considered in deter-
mining the resistance factor (or, alternatively, the reliability 
index) by using the following equation:

 
= R

iSn,i
Sm

+ VR
2+VS2( )2−β

ϕ e
∑αδ ⎣

⎢ ⎥
⎡

⎦
⎤

 
(35)

The most accurate results for this first-order reliability 
method (FORM) occur when both the resistance and load 
side of the LRFD reliability inequality have a log-normal 
distribution. Of late, it has become common practice to con-
sider the load side of the LRFD reliability inequality when 
determining resistance factors, and it is even stipulated by 
some standards such as CSA S408-11 (CSA, 2011). Con-
sidering only the basic combination of dead and live loads, 
Schmidt and Bartlett (2002) determined the following 
expressions for the reliability index and resistance factor:
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where δR is the mean ratio of the resistance and is com-
prised of three different mean ratios in accordance with the 
expanded separation factor approach, VR is the COV of the 
resistance per the expanded separation factor approach, VS 
is the COV of the load effects, αD and αL are the load fac-
tors for dead and live loads, δD and δL are the bias coeffi-
cients for dead and live loads, and L/D is the live-to-dead 
load ratio. Only the combination of dead and live loads is 
considered in this paper.

Schmidt and Bartlett (2002) also computed the resistance 
factor over a range of L/D ratios. This results in a range of 

reliability indices for a particular structural steel member 
(or connection). The load effect was assumed to have a log-
normal distribution because the L/D ratio for steel members 
typically exceeds 1.0, thus the log-normal live load distri-
bution component dominates the load effect (Schmidt and 
Bartlett, 2002). Galambos (2006) has also used both the 
load side of the LRFD reliability inequality and the L/D 
ratio to determine resistance factors.

Reliability Method of CSA S408-11

The Canadian Standards Association provides a standard, 
CSA S408-11 (CSA, 2011), with guidelines for the develop-
ment of limit states design standards. Annex B.2.5 of CSA 
S408-11 provides a so-called Approximate Method (an 
approximate FORM) for calculating the resistance factor 
to achieve target reliability values for arbitrary limit states. 
Annex B.2.5 cites Equation  35, which is to be used with 
load factors and load combinations specified in a loading 
standard such as NBC (2020) or ASCE (2016). Applying the 

(a) Statistical correlation for professional factor only

(b) Statistical correlation for numerically simulated resistance

Fig. 3. Resistance smoothing effect produced by sampling from multiple histograms (Xi and Packer, 2021).
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where σP is the standard deviation of the ratio of actual-to-
nominal strengths.

Monte Carlo Simulation Approach

As yet another alternative to the previous approaches, Monte 
Carlo techniques can be used to randomly sample from the 
various resistance and load effect parameter distributions 
to determine a possible resistance and load effect scenario 
for a member or connection. This process closely approxi-
mates the probabilistic behavior of the resistance and load 
effect for the desired design scenario with a large number 
of samples. This sampling technique is known as a Monte 
Carlo simulation (MCS). Kennedy and Baker (1984), Lund-
berg and Galambos (1996), Hong and Zhou (1999), and oth-
ers have undertaken such MCSs. MCS is also advocated as 
a reliability analysis method in some codes and standards 
(e.g., CSA S408-11).

RESISTANCE FACTOR EVALUATION  
FOR WEI AND PACKER (2021)

In this study, statistical parameters were taken as δD = 1.05 
and VD = 0.10 for the dead load effect and as δL = 0.78 and 
VL  = 0.32 for the live load effect (Schmidt and Bartlett, 
2002). Dead loads can be more accurately predicted than 
live loads, and for comparison, values of δD = 1.0 and VD = 
0.08 were used in a previous reliability study of tubular con-
nections in offshore structures (Packer and Kremer, 1988). 
Values of αD = 1.20 and αL = 1.60 were used, per ASCE/
SEI 7-16 (ASCE, 2016), and material statistical parameters 
of δM = 1.178 and VM = 0.086 per Xi and Packer (2021). 
These material parameters are based on a survey done by 
Liu (2016) on variations in yield stress of A500 (ASTM, 
2021) dual-certified Grade B/C rectangular HSS. The geo-
metric statistical parameters, δG = 0.975 and VG = 0.025, 
were adopted from a survey by Kennedy and Gad Aly 
(1980), but the proposed design method depends on mul-
tiple rectangular HSS geometric properties, such as chord 
thickness and height. The geometric statistical parameters 
taken in this study are the lowest mean ratio and the highest 
COV, from all the contributing properties, to be conserva-
tive. The target safety index, β+, for the ductile connections 
under consideration was assigned to be 3.0, which is in 
accord with the Commentary to 2016 AISC Specification 
Section B3.1. A target safety index of 3.0 is now a com-
monly accepted level of safety for public buildings, corre-
sponding to a notional probability of structural failure of 
1.35 × 10−3 (Packer and Kremer, 1988).

For the AISI S100-16 reliability method, the material and 
geometric statistical parameters were compared with the 
requirements in Chapter K of that specification. The only 
statistical parameter that was in accordance with the require-
ments was the geometric ratio (mean). The other statistical 

basic dead plus live load combination to the approximate 
FORM analysis, and expressing the equation as a function 
of the L/D ratio, gives the resistance factor in Equation 37. 
Annex B.2.5 of CSA S408-11 states that the COV of the 
load effects can be determined by Clause 14.15.2.3 of CSA 
S6:19 (CSA, 2019b), which is given by Equation 38 for dead 
plus live load.
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Reliability Method of AISI S100-16

Chapter K of American Iron and Steel Institute S100-16 
(AISI, 2016) provides a method to determine the resistance 
factor of a cold-formed structural steel resistance equa-
tion by direct testing. This method uses the LRFD crite-
rion to determine the resistance factor but simplifies the 
load side to a single load combination (1.2D + 1.6L) and 
L/D = 5 (Meimand and Schafer, 2014). The resistance fac-
tor given by AISI S100, Section K2.1.1 (AISI, 2016) is in an 
“expanded separation factor” form:

 =C M G P( )e
+ VM

2 +VG2+CPVP2+VS2δ δ δϕϕ −β
 (39)

where Cϕ is a calibration coefficient and CP is a correc-
tion factor for sample size. For the material factor and the 
fabrication factor, the means (δM and δG, respectively) are 
to be determined from statistical analysis but are not to be 
greater than the values given in Table K2.1.1-1, while the 
COVs (VM and VG, respectively) are not to be less than the 
values given in Table K2.1.1-1 (AISI, 2016). The calibra-
tion coefficient, target safety index, and COV for the load 
effects are predetermined factors based on LRFD criteria, 
with the mean value of the professional factor given by:
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where nt is the number of tests, Rt is the tested strength, and 
Rn is the nominal strength by a rational engineering analy-
sis. The subscript i denotes an individual test within a series 
of tests. The correction factor for sample size is given by:
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where m is the number of degrees of freedom (m = nt − 1). 
The COV for the test results is given by:
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parameters were hence taken from Table K2.1.1-1. The cali-
bration coefficient and COV for the load effect were taken 
as Cϕ = 1.52 and VS = 0.21, respectively, due to use of the 
LRFD format (AISI, 2016). The target reliability index, β+, 
was assigned to be 2.5 because the connection resistance is 
dependent on the HSS members and the use of the LRFD 
equation (AISI, 2016).

The professional factor statistical parameters used for 
the Wei and Packer (2021) proposed approach for the chord 
sidewall compression buckling limit state are taken from 
the results of the combined database: δP = 1.038 and VP = 
0.131 [see Figure 2(b)]. (The professional factors from the 
experimental and numerical databases, separately, are simi-
lar to the combined values.)

SIDEWALL COMPRESSION BUCKLING

Closed-Form Solutions

The resistance factor for chord sidewall compression buck-
ling can be determined by the various closed-form meth-
ods. Two different sets of material statistical parameters 
can be used to determine the resistance factors: (1) param-
eters based only on the yield stress and (2) parameters that 
depend on the chord sidewall slenderness.

Based on Chord Yield Stress

Using the previously noted material statistical parameters 
for yield stress, the resistance factor is 0.836 for the sepa-
ration factor approach and 0.917 for the expanded separa-
tion factor approach. The resistance factors over a range 

of L/D ratios, using the approximate FORM analysis in 
CSA S408-11, can be seen in Figure 4, wherein the dip at 
a L/D ratio of about 0.2 is due to the intersection of the 
two factored load combinations from ASCE/SEI 7 (ASCE, 
2016): 1.4D (dead load only) and 1.2D + 1.6L. By equating 
these two loading situations with mean loads, one obtains 
(L/D) = 0.168. The resistance factor using the AISI S100-16 
approach is 0.857.

Based on Chord Sidewall Slenderness

A mathematical manipulation of the equations describing 
the critical yield stress for columns in axial compression 
was performed to determine the relative contribution of each 
distinct property to the material statistical parameters. The 
material statistical parameters depend on the yield stress, 
radius of gyration (which in turn depends on the thickness), 
and modulus of elasticity. The statistical parameters were 
taken as δr = 0.975 and Vr = 0.025 for radius of gyration and 
δE = 1.000 and VE = 0.019 for modulus of elasticity, from 
Kennedy and Gad Aly (1980). Although δM and VM can be 
shown to vary with the chord sidewall slenderness, material 
statistical parameters at the average chord sidewall slender-
ness of the combined database were chosen to determine 
the resistance factors for the various methods. The average 
slenderness of the database is 0.619, which results in δM = 
1.134 and VM = 0.070.

For the separation factor approach, these material statis-
tical parameters do not change the resistance factor deter-
mined previously because the separation factor approach 
(as used herein) is based on only the professional factor 
parameters. The expanded separation factor approach, on 

Fig. 4. Resistance factor for the Wei and Packer (2021) proposed buckling method, using the  
approximate FORM analysis in CSA S408-11, with material statistical parameters based on yield stress.
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compression buckling resistance are the material strength 
(yield stress), modulus of elasticity, chord thickness, chord 
height, branch height, and the professional factor.

Material strength variations for ASTM A500 dual-
certified Grade B/C rectangular HSS compiled by Liu 
(2016) were used (Figure 6), from which the raw data (nt = 
3018) was obtained. The continuous curve (red line) in 
Figure  6, and subsequent histograms for variables, repre-
sents the best-fit log-normal distribution using the afore-
mentioned iterative MLE technique. Statistical parameters 
given in the figures pertain to the histograms.

For modulus of elasticity, the variation determined by 
Galambos and Ravindra (1978) was used. A log-normal 
distribution was created (on the basis of its limitation to 

the other hand, produces a resistance factor of 0.894 (com-
pared to 0.917 previously). For the approximate FORM 
analysis in CSA S408-11, the resistance factors over a range 
of L/D values are shown in Figure 5 and these can be seen 
to be lower than those in Figure 4, and for the AISI S100-16 
reliability method, statistical parameters based on chord 
sidewall slenderness do not meet the material requirements 
of Chapter K; thus, the resistance factor is retained as the 
one determined with just the yield stress (0.857).

Participating Variables for MCS

As can be seen in Table 1, the participating random vari-
ables in the Wei and Packer (2021) method for sidewall 

Fig. 5. Resistance factor for the Wei and Packer (2021) proposed buckling method, using the approximate  
FORM analysis in CSA S408-11, with material statistical parameters based on chord sidewall slenderness.

Fig. 6. ASTM A500 dual-certified Grade B/C rectangular HSS yield stress variation (Liu, 2016).
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whereas variations in live load can generally be described 
by a Gumbel distribution (Ellingwood and Culver, 1977). 
Herein, an equivalent log-normal distribution for the varia-
tions of dead load was created, per Ellingwood et al., 
based on the statistical parameters for normal distribution 
given in Schmidt and Bartlett (2002). For the live load, an 
equivalent log-normal distribution, as derived by Schmidt 
and Bartlett, has been used. Samples were then taken from 
these distributions.

MCS Method

A representative set of 19 full-width (β = 1.0) connections, 
listed in Table 3, was formulated for rectangular HSS-to-
HSS axially loaded cross connections, covering the para-
metric range of 17.2 ≤ 2γ∗ ≤ 45.8, 0.33 ≤ Hb/Hsinθ ≤ 2.83, 
and 45° ≤ θ ≤ 90°. A nominal yield stress, Fy, of 50  ksi 
(345  MPa) was used. A reliability index was determined 
using Equation 16 for each one of the representative con-
nections, using a given resistance factor and a particular 
L/D ratio, by sampling 1 million times from the participat-
ing variable distributions. Details of the sampling method, 
using MATLAB, can be found in Rudman (2021). This 

a non-negative value) from the statistical parameters in 
Galambos and Ravindra (1978). Samples were then taken 
from this log-normal distribution.

Geometric variations were determined through the sur-
veys of Kennedy and Gad Aly (1980). The raw data for the 
rectangular HSS thickness (nt = 302) and height (nt = 149) 
surveys could not be obtained, so sampling was performed 
directly from the histograms. The sampling procedure fol-
lowed was to select a histogram bin with probability pro-
portional to its reported frequency, then to simulate a value 
uniformly within the limits of the bin (Xi and Packer, 2021). 
Figures 7 and 8 show the geometric variations used.

Professional factor variations were obtained from the 
combined database compiled herein by comparing the 
actual connection strength with the nominal strength pre-
dicted by Wei and Packer (2021). Sampling was thus per-
formed from the histogram in Figure 9. Professional factors 
were not binned into various combinations (by branch 
angle, chord sidewall slenderness, and bearing length) as 
the number of tests within each bin would, in that case, be 
too minimal.

For the load effect, variations in dead load generally 
resemble a normal distribution (Ellingwood et al., 1980), 

Table 3. Representative Connections for Monte Carlo Simulation

Connection 
Number

Chord  
Member  
H ×× B ×× t

Branch 
Member  

Hb ×× Bb ×× tb
H 

(in.)
t 

(in.)
Hb 
(in.)

θθ 
(°) Hb//Hsinθθ H//t

1 6×6×a 3×6×a 6.00 0.349 3.00 90 0.50 17.2

2 6×6×a 6×6×a 6.00 0.349 6.00 90 1.00 17.2

3 6×6×a 12×6×a 6.00 0.349 12.0 90 2.00 17.2

4 6×6×a 12×6×a 6.00 0.349 12.0 60 2.31 17.2

5 6×6×a 12×6×a 6.00 0.349 12.0 45 2.83 17.2

6 8×8×a 4×8×a 8.00 0.349 4.00 90 0.50 22.9

7 8×8×a 8×8×a 8.00 0.349 8.00 90 1.00 22.9

8 8×8×a 12×8×a 8.00 0.349 12.0 90 1.50 22.9

9 8×8×a 8×8×a 8.00 0.349 8.00 60 1.16 22.9

10 8×8×a 8×8×a 8.00 0.349 8.00 45 1.41 22.9

11 12×12×a 12×4×a 12.0 0.349 4.00 90 0.33 34.4

12 12×12×a 12×6×a 12.0 0.349 6.00 90 0.50 34.4

13 12×12×a 12×8×a 12.0 0.349 8.00 90 0.67 34.4

14 12×12×a 12×12×a 12.0 0.349 12.0 90 1.00 34.4

15 12×12×a 12×12×a 12.0 0.349 12.0 60 1.16 34.4

16 12×12×a 12×12×a 12.0 0.349 12.0 45 1.41 34.4

17 16×16×a 16×8×a 16.0 0.349 8.00 90 0.50 45.8

18 16×16×a 16×12×a 16.0 0.349 12.0 90 0.67 45.8

19 16×16×a 16×16×a 16.0 0.349 16.0 90 1.00 45.8
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Fig. 7. Rectangular HSS depth and width variation data by Kennedy and Gad Aly (1980).

Fig. 8. Rectangular HSS thickness variation data by Kennedy and Gad Aly (1980).

Fig. 9. Professional factors using the Wei and Packer (2021) proposed buckling method.
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procedure was then repeated for a range of L/D ratios from 
0 to 3.0; for resistance factors of 0.8, 0.85 and 0.90; and 
for each representative connection. For all simulations, the 
overall load effect distribution is approximately log-normal, 
and similarly, the resistance distribution is approximately 
log-normal, despite deviations from log-normality in the 
material survey and professional factor data, as shown pre-
viously. Thus, Equation 16, where the resistance and load 
effect distributions are both log-normal, can be used. Fig-
ures  10 and 11 display typical resistance and load effect 
distributions, respectively, determined for the set of repre-
sentative connections.

MCS Results

A reliability index at each L/D ratio and resistance factor 
was determined by taking the average reliability index from 
each of the 19 connections. Figure 12 shows that ϕ = 0.90 
achieves suitable results as the reliability index is greater 

than 3.0 for the majority of the L/D ratios investigated and 
does not fall below 2.6 for any L/D ratio, which is the mini-
mum that is currently expected (Commentary to 2016 AISC 
Specification Section B3.1).

The 19 representative connections cover the key vari-
ables in rectangular HSS-to-HSS cross connections. To 
investigate the chord sidewall slenderness effect, the aver-
age reliability index at each L/D ratio was determined for 
connections with the same chord sidewall slenderness (17.2, 
22.9, 34.4, and 45.8, in the set of representative connec-
tions). Figure 13 shows that the reliability index decreases 
by about 0.1 when the chord sidewall slenderness is high 
(45.8). This is an expected result and is a reason the upper 
limits of validity have been set on chord sidewall slender-
ness in rectangular HSS cross connections. To investigate 
the bearing length effect, the average reliability index at 
each L/D ratio was determined for the connections in three 
categories: bearing length ratio (Hb/Hsinθ) less than 1.0, 

Fig. 10. Resistance for Connection 6, with L/D = 1.0 and ϕ = 0.90.

Fig. 11. Load effect for Connection 6, with L/D = 1.0 and ϕ = 0.90.
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Fig. 12. Reliability index vs. L/D ratio for the Wei and Packer (2021)  
proposed buckling method, using a MCS with various ϕ factors.

Fig. 13. Effect of chord sidewall slenderness on reliability index, for the  
Wei and Packer (2021) proposed buckling method, by MCS with ϕ = 0.90.
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Fig. 14. Effect of bearing length on reliability index, for the Wei and  
Packer (2021) proposed buckling method, by MCS with ϕ = 0.90.

bearing length ratio between 1.0 and 2.0, and bearing length 
ratio greater than 2.0. Figure 14 illustrates that the bearing 
length effect is captured well by the proposed method.

SUMMARY

The closed-formed solution methods produce a resistance 
factor based on an input target reliability index, whereas the 
MCS method used herein produces a reliability index given 
a resistance factor. In order to compare the various reliabil-
ity methods, the closed-formed solutions were manipulated 
to input a resistance factor and output a reliability index. 
The AISI S100-16 method is henceforth discounted due to 
its set target reliability of 2.5; the target reliability index for 
all other closed-form methods and the MCS method is 3.0. 
The separation factor approach and the expanded separa-
tion factor approach are independent of the L/D ratio; there-
fore, the reliability index for these methods applies to all 
L/D ratios. Figures 15 and 16 compare each of the methods, 
using ϕ = 0.90.

The closed-form equations using the material statistical 
parameters adjusted for slenderness produce more conser-
vative estimates of the reliability index compared to the 
yield stress material statistical parameters. This is expected 
as the mean-to-nominal ratio of the material statistical 
parameters adjusted for slenderness is lower.

MCS is a numerical method and is the most accurate 
reliability analysis. Using the yield stress parameters, the 
approximate FORM analysis in CSA S408-11 produces 
reliability index values that are within 0.10 of the MCS for 
all L/D ratios (Figure 15). Using the parameters adjusted for 
slenderness, the approximate FORM analysis in CSA S408-
11 produces statistically indistinguishable reliability index 
values for L/D ≤ 0.50, and values within 0.25 of the MCS 
(but on the conservative side) for L/D > 0.50 (Figure 16).

The expanded separation factor approach generates an 
unconservative reliability index value for L/D ≤ 0.50, no 
matter which set of material statistical parameters are used. 
For L/D > 0.50, the yield stress parameters produce a sur-
prisingly accurate reliability index value that is within 0.05 
of the MCS values, while the parameters adjusted for slen-
derness produce a conservative reliability index value by 
about 0.30. The closed-form equations using the material 
statistical parameters of the yield stress create more accu-
rate predictions of the reliability index (measured against 
MCS) than the case of material parameters adjusted for 
slenderness. All further comparisons are therefore based on 
the closed-form equations using yield stress material statis-
tical parameters.

The separation factor approach produces extremely 
conservative predictions of the reliability index. This is 
expected since it only accounts for the professional factor. 
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Fig. 15. Reliability index vs. L/D ratio for the Wei and Packer (2021) proposed buckling method,  
using closed-form solutions and MCS, with yield stress material statistical parameters.

Fig. 16. Reliability index vs. L/D ratio for the Wei and Packer (2021) proposed buckling method,  
using closed-form solutions and MCS, with material statistical parameters adjusted for chord slenderness.
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Fig. 17. Reliability index vs. L/D ratio for Wei and Packer (2021) proposed local  
yielding equation, using the approximate FORM analysis in CSA S408-11.

The expanded separation factor approach method produces 
much better predictions of the reliability index than the sep-
aration factor approach because it accounts for the material, 
geometric, and strength properties, as well as the profes-
sional factor. The material strength property (Fy) actual-
to-nominal ratio usually has a mean (bias) much greater 
than 1.0 for HSS, and this is the main contributing factor 
in generating higher predictions for the reliability index. 
The expanded separation factor approach can still produce 
unconservative results for L/D < 1.0. For steel buildings, 
however, typical design L/D ratios exceed 1.0, and the 
expanded separation factor approach provides accurate pre-
dictions in this L/D range due to the uncertainties in live 
loading.

The approximate FORM analysis from CSA S408-11 
thus appears ideal for determining the reliability index of 
HSS connections. This method illustrates the dependency 
of the reliability index on the L/D ratio and generates results 
that are very similar to MCS, yet requires much less time 
and effort to complete. From the preceding analysis, it can 
be concluded that, for the Wei and Packer (2021) proposed 
buckling method, ϕ = 0.90 is appropriate. With this resis-
tance factor, the reliability index is greater than 3.0 for the 
majority of the L/D ratios assessed and does not fall below 
2.6 for any L/D ratio—the minimum currently expected 
(Commentary to the 2016 AISC Specification Section B3.1).

SIDEWALL LOCAL YIELDING

The approximate FORM analysis from CSA S408-11 was 
also used to evaluate Equation 1 (Table 1) for the sidewall 

local yielding limit state by using the existing database 
from Wei and Packer (2021). The resulting professional fac-
tor statistical parameters for Equation 1, in conjunction with 
this database, are δP = 1.193 and VP = 0.150 (Xi and Packer, 
2021). Figure 17 shows the reliability index determined for 
the range of L/D ratios with ϕ = 1.0. The reliability index is 
greater than 3.0 for most L/D ratios assessed and does not 
fall below 2.6 for any L/D ratio, thus supporting the choice 
of ϕ = 1.0 for the Wei and Packer (2021) proposed local 
yielding design equation.

CONCLUSION

Several alternative methods for predicting the nominal 
strength of HSS webs under local compression loading are 
evaluated using a large contemporary database of experi-
mental and numerical results totaling 227 tests. For rect-
angular HSS-to-HSS full-width cross connections under 
branch axial compression, it is found that the proposal of 
Wei and Packer (2021) accurately predicts the connection 
strength, without the further modifications suggested by 
Kim and Lee (2021). It is thus recommended that the Wei 
and Packer (2021) proposed approach for chord sidewall 
compression on rectangular HSS-to-HSS axially loaded 
cross connections (given in Table  1) be adopted. Monte 
Carlo simulation shows that the reliability index decreases 
for connections with a high chord sidewall slenderness; it 
is therefore recommended that the limit on chord sidewall 
slenderness be H/t ≤ 35. Three key points for the Commen-
tary to the AISC Specification, to facilitate the application 
of Chapter J to rectangular HSS sidewall compression, are:
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Cp Correction factor for sample size

Cϕ Calibration coefficient

D Dead load, kips

E Modulus of elasticity of HSS member, ksi

Fcr Critical buckling stress of HSS chord member, ksi

Fk Chord sidewall failure stress, including a reduction 
for application to design, ksi

Fy Yield stress of HSS chord member, ksi

G Ratio of actual-to-nominal geometric property

H Height of rectangular HSS chord member, parallel to 
the plane of the connection, in.

Hb Height of rectangular HSS branch member, parallel to 
the plane of the connection, in.

K Effective length factor

L Live load, kips; length of member, in.

Lc Effective length of the member = KL, in.

M Ratio of actual-to-nominal material property

N1u Axial ultimate strength of a connection for a test (or 
numerical calculation), expressed as a force in the 
branch, kips

NAISC Axial ultimate strength of a connection, per the AISC 
Specification, expressed as a force in the branch, kips

NKL Axial ultimate strength of a connection, per Kim and 
Lee (2021), expressed as a force in the branch, kips

NL Axial ultimate strength of a connection, per Lan et al. 
(2021), expressed as a force in the branch, kips

NWP Axial ultimate strength of a connection, per Wei and 
Packer (2021), expressed as a force in the branch, 
kips

P Professional factor = ratio of observed capacity in tests 
(experimental or numerical) to predicted capacity

Pn Connection nominal strength, kips

Qf Chord-stress interaction parameter

R Resistance, kips

Rm Mean resistance, kips

Rn Nominal resistance, kips

Rt  Tested resistance/strength, kips

S Load effect, kips

Sm Mean load effect, kips

1. An effective length factor of K = 0.65 is recommended 
because it represents the fixed-fixed end condition for the 
chord sidewalls, in welded connections.

2. The Fcr equation (column buckling method) should be 
used for a bearing length greater than 0.25 of the chord 
depth.

3. The branch angle of inclination should not be considered 
because assuming only vertical force components is 
conservative, pragmatic, and simple.

A reliability analysis was performed for the Wei and 
Packer (2021) proposed web compression buckling method. 
This was assessed using various closed-form methods as 
well as a Monte Carlo simulation. Comparing all the reli-
ability methods, an approximate FORM analysis given in 
CSA S408-11 produced excellent results, comparable to 
Monte Carlo simulation. The approximate FORM analysis 
generates a reliability index for any desired live-to-dead 
load ratio, avoids the complexity of Monte Carlo simula-
tion, and is recommended. The review and application of 
contemporary reliability methods herein is instructive for 
other researchers determining resistance factors.

For the Wei and Packer (2021) proposed method for the 
web compression buckling limit state, a resistance factor 
of ϕ = 0.90 is recommended, which is also the same value 
used for compression members in the AISC Specification 
Section E1. This resistance factor is included in Table 1 to 
determine available connection strength. The approximate 
FORM analysis in CSA S408-11 was also applied to evalu-
ate the Wei and Packer (2021) proposed method for the web 
local yielding limit state, and a resistance factor of ϕ = 1.00 
is recommended. This is also the same value as used for this 
limit state in the AISC Specification Section J10.2, and this 
resistance factor is given for Equation 1 in Table 1.
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SYMBOLS

Ag Cross-sectional area of element, in.2

B Width of rectangular HSS chord member, perpen-
dicular to the plane of the connection, in.

Bb Width of rectangular HSS branch member, perpen-
dicular to the plane of the connection, in.

Cf Material factor
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Sn Nominal load effect, kips

VD Coefficient of variation for dead load

VE Coefficient of variation for modulus of elasticity

VG Coefficient of variation for relevant geometric 
properties

VL Coefficient of variation for live load

VM Coefficient of variation for relevant material 
properties

VP Coefficient of variation associated with δP

VR Coefficient of variation for resistance

Vr Coefficient of variation for radius of gyration

VS Coefficient of variation for load effect

g Safety margin

gm Mean of the safety margin

i Subscript that denotes the load effect under 
consideration (dead, live, etc.); subscript that denotes 
an individual test

lb Bearing length of the load, measured parallel to the 
axis of the chord member, in.

lend Distance from the near side of the connecting branch 
or plate to the end of chord, in.

m Degrees of freedom, nt − 1

n0 Ratio of stress in the chord connecting face to the 
chord yield stress (+ indicates chord tensile stress; − 
indicates chord compressive stress)

nt Number of tests

pF Probability of failure

r Radius of gyration, in.

t Design wall thickness of rectangular HSS chord 
member, in.

tb Design wall thickness of rectangular HSS branch 
member, in.

Ω Safety factor

α Coefficient of separation, generally taken as 0.55

αD Load factor for dead load

αL Load factor for live load

β Ratio of branch width to chord width (Bb/B), 
perpendicular to the plane of the connection

β+ Reliability or safety index

2γ Ratio of chord width to wall thickness for rectangular 
HSS (B/t)

2γ∗ Ratio of chord height to wall thickness for rectangular 
HSS (H/t)

δD Ratio of mean to nominal for dead load

δE Ratio of mean to nominal for modulus of elasticity

δG Mean value of G

δL Ratio of mean to nominal for live load

δM Mean value of M

δP Mean value of P

δR Ratio of mean to nominal for resistance

δr Ratio of mean to nominal for radius of gyration

δS Ratio of mean to nominal for load effect

η Ratio of branch height to chord width for rectangular 
HSS (Hb/B)

η∗ Ratio of branch height to chord height for rectangular 
HSS (Hb/H)

θ  Acute angle between the branch and chord, degrees

θC Central safety factor

λ Slenderness of a column or chord sidewall = KL/r
λ0.65 Nondimensional chord sidewall slenderness with an 

effective length factor of 0.65

λ1.0 Nondimensional chord sidewall slenderness with an 
effective length factor of 1.0

λC Nondimensional chord sidewall slenderness

λKL Nondimensional chord sidewall slenderness with the 
Kim and Lee (2021) effective length factor

σP  Standard deviation of the ratio of actual-to-nominal 
strength

σR  Standard deviation of R

σS  Standard deviation of S

σg  Standard deviation of g

ϕ Resistance factor

χ Reduction factor for (column) buckling
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INTRODUCTION

Ongoing research on future hot-rolled asymmetric steel 
I-beams is highlighted. This study is currently under way 
at Texas A&M University, led by Dr. Matthew Yarnold, 
Assistant Professor in the Department of Civil and Envi-
ronmental Engineering. Dr. Yarnold’s research interests 
include building structural systems, bridge infrastructure, 
hybrid building energy-structure performance, and engi-
neering education. Dr. Yarnold has been recognized for his 
teaching and research with the Robert J. Dexter Memorial 
Award, ASCE Nashville Branch Engineering Educator of 
the Year, an AISC Early Career Faculty Award, and AISC’s 
Milek Fellowship. The four-year Milek Fellowship is sup-
porting this research on the behavior of hot-rolled asym-
metric I-beams. The research team is part way through year 
three of the four-year study. Selected results from a manu-
facturing study, full-scale experiments, and an initial sizing 
study are highlighted, along with a preview of future work.

MOTIVATION FOR THE STUDY

This investigation into the behavior of hot-rolled asymmet-
ric I-shapes, or “A-shapes,” is motivated by the expected 
gains in structural, fabrication, and construction efficiency. 

Improvements in steel building economy can be realized for 
shallow residential and commercial floor systems. Built-up 
asymmetric shapes have demonstrated advantages in com-
posite construction, whether with precast or cast-in-place 
concrete. Precast concrete panels can be supported on the 
wider bottom flanges; the narrower top flange does not 
interfere with the panel during placement (Figure 1). This 
type of assembly could also be used for deep metal decking. 
For conventional cast-in-place concrete with the deck slab 
supported on the top flange, a narrower flange corresponds 
to its relatively low contribution to the strength and stiffness 
of the composite flexural member. However, the top flange 
is important for the bare-steel member’s ability to support 
the construction loads. Currently, gains in structural and 
construction efficiency are outweighed by fabrication costs. 
Fabrication of current asymmetric shapes can be labor and 
material intensive with welding of pieces cut from two sep-
arate sizes of hot-rolled sections or welding of hot-rolled 
shapes and plates (Stoddard and Yarnold, 2022). Production 
of hot-rolled A-shapes would reduce fabrication costs while 
maintaining structural and construction efficiency.

RESEARCH GOAL AND PLAN

With the long-term goal of regular mill production of hot-
rolled A-shapes, the research team is conducting an inte-
grated numerical and experimental investigation into the 
behavior of these asymmetric shapes. The team aims to 
develop recommended A-shape cross-sections with compa-
rable or improved structural efficiency compared to built-
up asymmetric shapes (Stoddard and Yarnold, 2022). Over 

Precast Deck Panel or
Deep Metal Decking

Cast-in-Place 
Concrete

A-Shape
(Hot-Rolled)

Fig. 1. Schematic of A-shape with cast-in-place concrete on deep metal decking or precast panel.
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the first two years of the project, the team conducted a man-
ufacturing study, initial concept design and experimental 
testing, and an initial sizing study for residential facilities. 
Analytical models have also been developed and are being 
used to refine A-shape sizing. Experimental validation 
studies are also under way in the third year of the project, 
and year four will see a final shape study and results syn-
thesized into design aids.

MANUFACTURING STUDY

Future production of the asymmetric shapes requires con-
sideration of practical limitations and potential issues with 
hot-rolling of the A-shapes. Proportioning and sizing guid-
ance was provided by mill experts. The producers also 
raised concerns about residual stresses and deformations 
after hot-rolling and cooling. A computational study and 
proof-of-concept (POC) beams were used to address those 
concerns.

Steel Mill Guidance

The steel mill guidance came from experts across different 
disciplines and producers. The three U.S. steel producers 
were Nucor, Steel Dynamics, and Gerdau. Industry roll-
pass engineers, roll-pass designers, metallurgical engineers, 
roll-mill supervisors, and product developers collaborated 
with the researchers on recommendations for A-shape pro-
duction. Cost considerations motivated a recommendation 
to match final flange dimensions with those of currently 
rolled shapes. Other sizing guidance included proportion-
ing of shapes to have equal top and bottom flange areas, 
minimum web thickness of 0.50  in., and flange-to-web 
thickness ratios no larger than 2.0. Enlarged fillets were 
recommended to reduce cracking in the flange-to-web con-
nection. A-shapes will be produced using ASTM A992/
A992M steel.

Residual Stresses

Hot-rolled shapes develop residual stresses while cooling at 
the mill. Some steel experts expressed concerns for exces-
sive residual compressive stresses and adverse impact on 
A-shape flange buckling. Those concerns were addressed 
through finite element modeling and reference to POC 
beams.

A three-dimensional, thermal-mechanical, finite element 
(FE) modeling approach was developed through a sensitiv-
ity study and reference to past research. A coupled thermal-
displacement analysis utilized the nonlinear transient 
thermal and stress analysis capabilities of ABAQUS/CAE. 
Single tetrahedral elements were used through the flange 
and web thicknesses of simulated A-shapes. Element type 
and meshing were chosen with consideration for flange 

stress profiles, modeling of the flange-to-web fillets, and 
computational processing time. A modeled beam length of 
three times the depth allowed for sufficient development of 
the stresses (Stoddard, 2022). Beams were supported at cor-
ners only with pins or rollers to allow for free contraction. 
Temperature-dependent properties, such as elastic modu-
lus and Poisson’s ratio, were modeled based on published 
test results. The initial temperature of 2,372°F mimicked 
pre-rolling conditions; the beams then cooled to an ambi-
ent temperature of 68°F. Additional details can be found in 
Stoddard and Yarnold (2022).

The thermomechanical validation study included com-
parisons with POC beams. Simulated A-shapes were cre-
ated with longitudinal cuts along the top flanges of W12×65 
beams, as shown in Figure 2. The simulated A-shape had 
half the top flange width of the original W-shape. This pro-
cedure did not provide the correct grain structure for the 
rolled shapes but avoided the expense of retooling an entire 
roll line (Stoddard and Yarnold, 2022). The beams were 
reheated to approximately 1,740°F. Noncontact temperature 
measurements taken during the cooling process (Figure 3) 
were compared with the FE model results. Differences 
ranged from 1.9% to 15.8%, with larger differences being 
attributed to factors such as a slight wind in the facility. 
Additional information and a description of the literature 
comparison portion of the thermomechanical validation 
study can be found in Stoddard and Yarnold (2022).

The computational parametric study explored variations 
on two W-shapes. The W8×31 and W18×76 were selected 
to represent two section depths found in composite con-
struction. The width or thickness of the top flange was then 
varied from 25% to 200% of the original. There were 30 
unique cross sections, and the “limits produced unrealistic 
extreme cases that were included to determine the full spec-
trum of behavior” (Stoddard and Yarnold, 2022).

The residual stresses in the webs were most affected by 
variations in the flange properties. The beams were largely 
insensitive to changes in the flange thickness or width. The 
biggest changes in flange residual stress were seen with the 
width-to-thickness ratio, b/t. A b/t limit was introduced, 
corresponding to a flange residual stress of approximately 
30% of the yield stress. Additional details on the residual 
stress study can be found in Stoddard (2022).

Deformations

Deformations (curvature) resulting from the cooling pro-
cess were examined. A concern was that excessive defor-
mations would require more rotary straightening and cause 
issues with handling throughout the mill. In addition, 30 ft 
beams were modeled and analyzed using the procedure 
described for the residual stress study. Initial imperfections 
were considered but were shown to have minimal impact on 
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Cut Lines

AlteredW-Shape

Reheat

& Cool

SimulatedA-Shape

Fig. 2. W-shape altered, reheated, and cooled to simulate a hot-rolled  
A-shape; residual stresses qualitatively graphed on the simulated A-shape.

Fig. 3. Noncontact temperature measurements being taken of the cooling A-shapes.
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configured for 3 ft increments as well. With consideration 
for the POC beams, the tie-down locations, and the physical 
dimensions of the stub columns and load frame, a 6 ft POC 
beam spacing and approximate 23 ft length were chosen.

The test specimen used simple connections with modifi-
cations at the edge beams. Bolted double-angle connections 
connected all POC A-shape beams to the columns. How-
ever, concerns about eccentric loading of the edge beams 
during concrete topping placement prompted additions of 
top and seat angles at those locations. These angles were 
welded to the edge beam flanges and bolted to the columns. 
The top and seat angles could be unbolted at a later stage, 
converting the edge beams back to a simply supported con-
dition (Yarnold, 2022; Davis, 2022).

Instrumentation included strain gages and string poten-
tiometers for displacement measurements. The strain gages 
were placed on the top and bottom flanges of all beams 
at three different cross sections. One cross section was at 
beam mid-span; the other two were located 3  ft to either 
side. The displacement measurements were taken at the 
beam mid-span location. Each beam had a vertical displace-
ment measurement. One edge beam also had two lateral 
displacement measurements that could be used to calculate 
rotation. Additional details of the test setup, instrumenta-
tion, and loading can be found in Davis (2022).

Experimental Results

The initial system experiment was designed to capture com-
posite A-shape considerations and behavior at construction 
and in service. The experiments included Test  1: Precast 
panel placement, Test 2: Concrete topping slab, and Test 3: 
In-service and ultimate strength testing. The knowledge 
gained helped to inform the initial sizing of A-shapes.

the cooling deformations. The resulting camber was com-
pared with the ASTM limit for a channel, another asym-
metric hot-rolled section. Some beams did exceed the limit 
but were deemed to have small enough deformation to be 
corrected with rotary straightening (Stoddard and Yarnold, 
2022). No cross-sectional limitation for cooling deforma-
tions was placed on future A-shapes. Additional details on 
the deformation study can be found in Stoddard (2022).

FULL-SCALE FEASIBILITY EXPERIMENTS

Full-scale experiments were used to evaluate the construc-
tability and performance of a steel-concrete composite 
floor system with A-shapes. These experiments focused 
on A-shape beams with shallow precast panels and a cast-
in-place topping slab. The experiments included three dif-
ferent phases of testing and contributed knowledge on the 
behavior of shallow composite steel-concrete members 
using A-shapes.

Experimental Setup

The test specimen and setup began with the steel frame for 
the construction loading (placement of panels), followed by 
the cast-in-place topping, and then vertical loading by the 
hydraulic actuator. There were three A-shape beams in par-
allel that spanned between stub columns and supported pre-
cast concrete panels with a cast-in-place topping (Figure 4). 
The load frame straddled the test specimen at mid-span. 
The center A-shape beam was loaded by an actuator and 
spreader beam.

The overall geometry of the test specimen was dictated 
by the laboratory and POC beams used. The floor tie-
down locations are at 3 ft spacing. The load frame could be 

Fig. 4. Test setup for the full-scale experiment.
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Test 2: Concrete Topping Slab

In preparation for casting of the concrete topping slab, spray 
expanding foam and silicone caulk were used to seal voids 
and joints between elements, such as the joint between the 
precast panel and bottom beam flange. Plywood formwork 
was built and fitted to the test specimen to achieve 12 in. of 
cover over the top beam flanges. A grid of No. 4 Grade 60 
reinforcing steel at 16 in. on center was hand tied and sup-
ported on 3 in. chairs and the center beam top flange. The 
slab was cast using a concrete dump bucket attached to the 
laboratory’s overhead crane. During curing, the slab was 
sprayed with water every 6 hr. There was no need to cover 
the slab in the laboratory’s temperature-controlled environ-
ment (Yarnold, 2022).

Concerns motivated deformation and capacity limit state 
checks for the construction loading. Measured out-of-plane 
rotation of the edge beams during the concrete pour was 
approximately 53% of the 4° limit. The researchers noted 
that while the rotations were “better than that anticipated,” 
the edge beams would likely be stiffened for the torsional 
demands in a real building. Lateral torsional buckling 
(LTB) of the center beam exhibited a demand-to-capacity 
ratio of 0.45. Here, the researchers noted that the predicted 
capacity did not consider the stabilizing effect of the load 
placed at the bottom flange rather than at the top of the 
beam (Yarnold, 2022; Davis, 2022). The results suggested 
potential improvements and greater efficiencies in A-shape 
designs.

Test 1: Precast Panel Placement

The precast panel placement test explored panel loading 
for different scenarios and beam boundary conditions. The 
8-in.-thick, 4 ft × 6 ft hollow-core precast panels, supported 
on the beams’ bottom flanges, were placed in two different 
sequences for a simply supported center beam and fixed-
fixed edge beams. For loading scenario one, precast panels 
1–5 were placed in order in one bay, and then panels 6–10 
placed in the next bay, as shown in Figure 5(a). For loading 
scenario three, panel placement alternated between adja-
cent bays—that is, panel 1 in one bay, followed by panel 2 
in the adjacent bay, and so on, as shown in Figure 5(c). For 
loading scenario two, the bolts in the top and seat angles 
were removed to revert back to pinned beam-to-column 
connections, and then one bay was loaded with panels 1–5, 
as shown in Figure 5(b).

Loading scenario two provided the most significant 
results. The center and edge beams experienced heavier 
torsional demands than in the other loading scenarios. The 
measured and theoretical combined bending and torsional 
stresses were compared, as were the edge beam rotations. 
Maximum measured and predicted stresses were 5.01  ksi 
and 5.29 ksi, respectively. The measured edge beam rota-
tion of 1.62° compared favorably to the theoretical rotation 
of 1.76°. The theoretical stresses and rotations were conser-
vative, due in part to the assumption of pure “pin” connec-
tions at the beam ends.

 (a) Scenario one (b) Scenario two (c) Scenario three

Fig. 5. Order of panel placement for loading.
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Test 3: In-Service and Ultimate Strength Testing

With the test frame shown in Figure 4, 220 a kip hydraulic 
actuator, and a spreader beam, a four-point bending test was 
applied at the center test beam. The load was applied with 
two steel pin assemblies attached to the spreader beam and 
spaced 6  ft apart. This created a constant moment region 
in the center of the beam. A loading rate of 2  kips per 
minute was used for evaluation of the in-service and ulti-
mate strengths. The in-service loading was the equivalent 
of 100 psf for the floor system. The ultimate loading was 
equivalent to 500 psf.

The in-service loading results confirmed the viability 
of A-shapes for composite floor systems. Strain measure-
ments were relatively low and corresponded to the expected 
neutral axis location for a fully composite section. Deflec-
tions were also low. For the design service load of 100 psf, 
the measured midspan deflections were on the order of the 
beam span/3000. The deflections easily satisfied a limit of 
span/360 (Yarnold, 2022; Davis 2022).

The ultimate strength test results suggested options for 
design. At a loading corresponding to 500  psf, there was 
a loss of composite action between the concrete and steel 
for the center beam. The load redistributed to the edge 
beams and was sustained for 20 min until unloading. Load 
at failure corresponded to 54% of the composite capacity. 
Mechanical connections or other means to increase the 
steel-concrete bond could be considered in design. Such 
means might be warranted for longer spans and/or loads, 
but the strength increase would come at the cost of con-
struction speed and efficiency (Yarnold, 2022).

Theoretical vs. Experimental Comparison

Comparisons between the experimental results and theo-
retical predictions provided additional insights for analy-
sis and design of these floor systems. Assumptions for the 
theoretical predictions include ideally pinned and fixed to 

establish bounds for the partially restrained connections, a 
25%–50%–25% load distribution across the three beams, 
a composite beam effective width corresponding to the 
beam tributary width, and fully composite behavior. The 
measured strains and displacements for the center beam 
did show closer to ideal pinned connection behavior, as 
well as more fixity at the supports for the edge beams. The 
design assumption of pinned, or simple, connections was 
deemed to be conservative and appropriate (Davis, 2022). 
As mentioned previously, the data also confirmed compos-
ite action between the concrete and encased steel section at 
service-level loads. There are no mechanical connections; 
the composite behavior is developed from bond and friction 
(Yarnold, 2022). Additional details of the tests and com-
parisons can be found in Davis (2022).

INITIAL SIZING STUDY FOR 
RESIDENTIAL FACILITIES

A shallow-depth residential floor system case study was 
used to investigate the flange and web sizing of A-shapes. 
The case study utilized the configuration seen in the  
experiment—A-shapes supporting precast concrete panels 
and a cast-in-place topping slab. Flange and web geometries 
were varied for different beam depths, spans, and spacing. 
Beam depths and spacing ranged from 8 to 12 in. deep and 
10 to 26 ft, respectively. In addition, 20 to 30 ft span lengths 
were considered.

The analytical study followed the loading from the initial 
construction stages to the building in service. Construction 
load cases (Load Cases 1, 2a, 2b) were noncomposite, and 
the in-service loading case was composite (Load Case 3) 
(Figure 6). The construction loads considered an eccentric 
loading for precast panel placement (Load Case 1), a uni-
form flexural demand from the concrete topping and con-
struction live load of 20 psf (Load Case 2a), and an eccentric 
loading resulting in flexural and torsional demands (Load 

Fig. 6. Load cases for the initial sizing study for residential facilities.
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Case  2b). The beam end supports are modeled as pinned 
connections. The out-of-plane rotation limit was set at 
4°, and beam span/240 is the service dead plus live load 
deflection limit. For the building in service, the composite 
A-shape beams were designed for a live load of 100 psf and 
a live load deflection limit of beam span/360. Following 
AISC Design Guide 11, Vibrations of Steel-Framed Struc-
tural Systems Due to Human Activity (Murray et al., 2016), 
the beams were also designed for a floor vibration live load-
ing of 8 psf and a walking excitation loading of 65 lb (Stod-
dard, 2022).

A collection of A-shape cross sections was evaluated 
for the construction and in-service design parameters. 
Cross-sectional properties were dictated by the previously 
mentioned manufacturing constraints and seat width for 
the precast panels. Top flange areas were set equal to the 
bottom flange areas. Web thicknesses were constrained to 
at least 0.5 in. or half of the top flange thickness. Bottom 
flanges were required to be 4 in. wider than the top flange 
to provide a 2  in. seat for the panel. The collection was 
developed by varying the top flange geometry and adjust-
ing the other parameters.

Controlling limit states varied by load case. Out-of-plane 
rotation controlled the A-shape designs for Load Case  1. 
The service dead and live load deflection limit controlled 
for Load Case 2a. Stability [i.e., lateral-torsional buckling 
(LTB)] was a controlling limit state for Load Cases 2a and 
2b. Normalized moment capacities versus cross-sectional 

area are shown in Figure 7. Highlighted in Figure 7(a) are 
the ranges of moment capacity for the varying A-shape 
proportions. Figure 7(b) summarizes the controlling limit 
states of elastic LTB, inelastic LTB, and compression flange 
local buckling (CFLB). Meanwhile, vibration was the major 
design consideration for Load Case 3.

FUTURE RESEARCH

Future work is focused on refining the A-shape recommen-
dations by revisiting limitations and conservative assump-
tions to improve the modeling, update sizing, conduct new 
experimental validation studies, and generalize the results 
for design. Limitations included the use of normal-weight 
concrete for one topping slab depth and one compressive 
strength. The team will investigate the potential advantages 
for variations in compressive strength and use of lightweight 
concrete. The team will also explore increased strength 
and stiffness versus higher dead load for different topping 
slab thicknesses. The rotation limit of 4.0° requires further 
investigation and justification. Conservative assumptions, 
including those made for initial vibration calculations, 
will be refined. Modeling and sizing of A-shapes will be 
updated accordingly, as experimental validation studies 
further expand knowledge about behavior of the recom-
mended shapes. The research team will synthesize results 
from the analytical and experimental studies to produce 
design aids with supporting documentation.

  
 (a) A-shape proportions (b) Limit states

Fig. 7. Normalized moment capacity vs. beam area organized by A-shape proportions and limit states.
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