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DISCUSSION

Investigation on the Performance of a Mathematical 
Model to Analyze Concentrically Braced Frame  
Beams with V-Type Bracing Configurations
Paper by ALIREZA ASGARI HADAD and PATRICK J. FORTNEY 
(2020, 2nd Quarter)

Discussion by CHARLES W. ROEDER, DAWN E. LEHMAN, QIYANG TAN, JEFFREY W. BERMAN, and ANDREW D. SEN

The paper “Investigation on the Performance of a Mathematical Model to Analyze Concentrically Braced Frame Beams with V-Type Bracing 
Configurations” (Hadad and Fortney, 2020) addresses a difficult problem that is not well understood by engineers. While that paper does not 
specifically limit its application to seismic design, the work was based upon the AISC Seismic Provisions and chevron-braced frame seismic 
behavior experiments. The authors of this discussion, hereafter referred to as the responders for clarity, have also studied chevron-configured 
concentrically braced frames. That research forms the basis of this discussion. In particular, this discussion aims to clarify the AISC Seismic 
Provisions and prior research results, which the responders believe is misinterpreted in the paper in question. Further, in the series of contin-
uum finite element analyses on a beam with a plate discussed in the paper, it is of note that the model’s boundary conditions, loading regime, 
and results are simplifications of those for beams in chevron-configured or multistory X-braced frames under seismic loading. This discussion  
addresses applicability of the paper to seismic design and does not apply to any other application.

There are several aspects of the original paper that need 
to be clarified. First, the findings of some of the cited 

research is misstated. For example, the paper states that 
the yielding-beam mechanism is inferior to the “nomi-
nally elastic” chevron-beam concept, but this is not cor-
rect. Research by the responders (Sen et al., 2016) shows 
that chevron-braced frames with yielding beams provide 
better distribution of inelastic deformation over the build-
ing height than those with “nominally elastic” beams, and 
they develop larger inelastic deformations prior to brace 
fracture. The expected brace forces for seismic design (i.e., 
Equations 1, 2, and 3 in the paper in question) are used as 
the basis of the analyses as specified in the AISC Seismic 

Provisions, but it is important to recognize that these are 
not the forces necessary to resist the design seismic lateral 
force for the system; instead, they are an idealized set of 
demands used in the capacity-based design process.

In seismic design of braced frames, the braces are initially 
designed to resist reduced forces [forces corresponding to 
the design basis earthquake reduced by the seismic reduc-
tion factor, R, as determined by ASCE/SEI  7, Minimum 
Design Loads and Other Associated Criteria for Buildings 
and Other Structures (ASCE, 2016)]. These reduced seis-
mic design forces are expected to correspond to demands 
resulting from small, frequent earthquakes, and the struc-
ture is expected to remain elastic for that seismic hazard 
level. For special concentrically braced frames (SCBFs), 
collapse resistance of the structure is achieved by capacity-
based design and detailing for ductility to ensure the sys-
tem can sustain the cyclic inelastic deformation demands 
during large earthquakes. In such events, the braces are 
expected to buckle in compression, yield in tension, and 
sustain deterioration of their post-buckling compressive 
resistance at large inelastic deformations. Adjacent mem-
bers, including the beams, columns, and gusset plates, are 
designed using capacity-based methods to ensure the braces 
develop their resistance and inelastic deformation capacity. 
The capacity-based design concept is not intended to guar-
antee that members or connections remain elastic during 
an earthquake; they are simply intended to ensure that the 
ductile element (the brace in this case) can develop its full 
deformation capacity by designing the adjacent members to 
sustain their maximum demands. A primary issue with the 
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stress evaluations proposed in the paper is that they will not 
necessarily achieve this goal.

The main objective of capacity-based design in SCBFs 
is to develop the inelastic deformation of the brace rather 
than to design for a set of fictitious forces. The gusset plates 
are designed for the expected brace capacities because they 
are directly connected to the brace. However, when braces 
are oriented for out-of-plane buckling, the gusset plates 
deform inelastically due to brace buckling and, as a conse-
quence, sustain significant inelastic deformation demands, 
as shown in Figure 1. The actual local stresses developed in 
gusset plates after brace buckling are distributed unevenly 
and are much larger than those used in gusset-plate design 
calculations; as the authors recognize, this has been well 
established even in the absence of brace buckling (Richard, 
1986). However, gusset plates that are very conservatively 
designed will still develop significant yielding because of 
this out-of-plane brace deformation demand (Lehman et al., 
2008). Gusset plates sustain these demands because of the 
inherent ductility of steel, but welds joining gusset plates 
to beams and columns are vulnerable to tearing and frac-
ture prior to brace fracture. Therefore, such welds should be 
designed to develop the plastic capacity of the gusset plate, 
not the expected brace forces, because inelastic action in 
the gusset plate is required to accommodate the deforma-
tion demands on the system. The User Note in AISC Seis-
mic Provisions Section F2.6c.4 (AISC, 2016) is intended 
to address this goal. While the gusset plates should be 
designed to develop the expected brace forces, it is unwise 
to overdesign the gusset plate because that will require 
larger and more expensive welds on the gusset plate-to-
beam or plate-to-column interface. The paper suggests that 

the welds joining a midspan gusset to the chevron beam 
should be designed for the in-plane shear, bending moment, 
and axial force from the gusset plate, but research funded 
by AISC has shown that this can lead to premature weld 
fracture, as illustrated in Figure  2 (Swatosh, 2015). Weld 
fracture should be prevented in seismic design because it 
prevents the braces and the SCBF from developing their full 
inelastic capacity. Moreover, weld fracture in some gusset 
plate connection configurations can also compromise the 
vertical load-resisting system, as shown in Figure 2.

A second issue with the research presented in the paper 
is the numerical simulation of the chevron beam. A finite 
element analysis of the beam and midspan plate was per-
formed with the goals of improving the understanding 
of the behavior of beams in chevron-braced frames and 
supporting their proposed stress distribution at the gus-
set plate-to-chevron beam weld. There are several issues 
with the approach. First, the boundary conditions of the 
beam and other aspects of the modeling approach are not 
described, and these will influence the demands at that 
weld. It appears that the beam was simply supported, which 
is an idealized boundary condition and not representative of 
an actual SCBF. Second, a set of idealized point loads were 
applied to the gusset plate. However, the demand resulting 
from cyclic action on an SCBF does not result in a single 
set of forces, and as such, this approach is not sufficient to 
understand this complex stress state. Third, as a result of 
these two issues, the local demands are not properly simu-
lated, but this is not recognized in the paper. Nevertheless, 
a detailed discussion of the local shear forces and bending 
moments of the beam in the midspan gusset-plate connec-
tion are provided, and it is asserted that these local effects 

Fig. 1. Inelastic deformation of a gusset plate under seismic deformation.
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(a) Gusset-plate connection based on expected brace forces

Fig. 2(a). Fracture of gusset-plate welds designed by stress.
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(b) Inelastic deformation of braced frames

(c) Buckled brace just prior to connection weld fracture

(d) Fractured weld

Fig. 2(b-d). Fracture of gusset-plate welds designed by stress.
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of the beam. Further, stresses are significantly higher in 
regions that are not adjacent to the midspan gusset plate; 
these higher stresses must be considered in design. They 
are neglected in the paper, however, and this is a primary 
concern to the responders.

2. The paper focuses on the stress-distribution transfer 
between the midspan gusset plate and the chevron beam; 
to achieve this, an idealized distribution of stresses is 
proposed, and these stresses are transferred to the beam 
as an external load. This approach does not represent 
the stress transfer because the gusset plate is attached 
to the beam by continuous welds (or bolts). Therefore, 
compatibility of the strain between the beam and gusset 
plate must be maintained at this interface, and these 
are truly internal stresses. The stresses and strains 
in the beam and gusset plate must be the same at this 
location, and the gusset plate and the beam join to resist 
the forces. The proposed idealization suggests that only 
the beam resists these forces; this is incorrect. The local 
effects predicted in the paper’s proposed method do not 
represent the significant overall moment, shear, and axial 
load demands, and they do not consider that the chevron 
beam is strengthened significantly by the gusset plate in 
this region.

3. The axial load in the beam is neglected. A braced frame 
is often idealized as a truss. This idealization neglects 
the bending moment demands on the beams and column, 
but research by the responders indicates that it does 

control the design of the beam. This conclusion is incorrect 
because the simulation neglects the axial load, shear force, 
and bending moment demands in the beam outside the 
gusset area. These forces and moments are larger than the 
forces and moments in the gusset area as demonstrated in 
Figure 3, and they form the primary design considerations 
for the chevron beam.

Considering these three issues, there are several concerns 
with the paper’s approach:

1. Using St. Venant’s principle indicates that the local 
stresses in the beam in the vicinity of the gusset plate 
are not reliable when using this calculation method. The 
principle clearly states that an analysis will produce 
reasonable results at considerable distance from the load 
if the load is in equilibrium with the true condition but 
distributed differently; however, calculated stresses near 
or adjacent to the applied loads will be quite different 
under these conditions. Rather than use these reliable 
stresses away from the gusset plate, the analysis proposed 
in the paper focuses on local stresses in a disturbed region, 
and first principles indicates that this is not correct. In 
comparison, consider the analysis shown in Figure  4, 
which are the results from a nonlinear analysis of a full 
chevron-braced frame. The figure shows that the stresses 
and deformations in the beam when the full system is 
analyzed are very different from those described in 
the paper. The beams were designed for the forces of 
Equations 1, 2, and 3, but there is still significant yielding 

Fig. 3. Axial-load, shear-force, and bending-moment diagrams for idealized  
boundary condition for capacity-based design of chevron beams.



6 / ENGINEERING JOURNAL / FIRST QUARTER / 2021

(a) Frame with chevron beam designed to current AISC  
Seismic Provisions with tw/ tp of 0.8 and with stiffeners

Fig. 4(a). Nonlinear analyses of chevron-braced frames.

(b) Frame with chevron beam designed to current AISC  
Seismic Provisions with tw/ tp of 0.8 and with no stiffeners

Fig. 4(b). Nonlinear analyses of chevron-braced frames.
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(c) Frame with chevron beam designed to current AISC  
Seismic Provisions with tw/ tp of 1.0 and with no stiffeners

Fig. 4(c). Nonlinear analyses of chevron-braced frames.

provide a reliable estimate of the axial demands. As 
such, all primary members in SCBFs must be designed 
considering the axial forces. Neglecting these forces is 
not an acceptable approach for chevron-beam design. The 
chevron beam must be designed to develop the combined 
axial load and bending moment, not local stresses at the 
gusset plate.

4. In chevron-braced frames, the brace forces distributed 
over the region of the gusset plate and the extreme local 
stresses shown in the paper cannot occur. The stresses at 
the interface also include stresses induced by out-of-plane 
brace buckling deformations, which are not included in 
the proposed model. Further, the ends of the chevron 
beam may not be simply supported. There are often 
corner gusset plates for the bracing of the story above, 
and research has shown that these corner gusset plates 
will provide significant end restraint to the beam and 
develop significant end moments. This is clearly seen in 
the nonlinear analysis of Figure 4, but it is not considered 
in the paper. If there is no corner gusset plate, and the 
beam-to-column connection is a shear plate or similar 
connection, the end restraint and resulting moments are 
very small, as depicted in Figure  3. Figure  3 and the 

analytical results shown in Figure 4 indicate significant 
stress due to shear, bending, and axial force outside the 
gusset regions. Within the midspan gusset regions, the 
beams are more lightly stressed because the gusset plates 
stiffen and strengthen the beams in this location.

A BETTER WAY

Local beam forces result from post-buckling brace forces 
and the boundary conditions of the beam, and these local 
effects simply change the direction of shear, axial force, 
and bending moment vectors over the length of the midspan 
gusset plate. Figure  3 shows that the maximum moment, 
shear, and axial load are just outside the gusset plate, shown 
as dashed lines in Figure 3. Analysis of the frame shows the 
von Mises stresses resulting from combined moment, shear, 
and axial load are smaller in the region of the midspan gus-
set and largest just outside of the corner and midspan gus-
set plates (see Figure 4). Although these forces are affected 
by the local stresses argued in the paper, the only effect of 
these local stresses is to change direction and magnitude of 
these forces over the short length of the gusset plate, which 
is not the critical section of the beam. The actual shear and 
axial force must be largest in the beam section outside the 
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gusset plates, shown by the solid lines. Note that Figure 3 
assumes a pinned condition at the beam-to-column connec-
tion; if the stiffness of the corner gusset is included, then the 
demands and resulting stresses are also high just outside of 
the corner gusset plate, as shown in Figure 4. The moment 
will be slightly larger over the length of the midspan gusset, 
but the gusset plate adds considerable cross-sectional area 
and depth to the beam; thus, this larger moment is resisted 
by the combined capacity of the wide-flange section and 
gusset plate. The critical section is outside of the gusset 
plate—and, therefore, the bending moment at the edge of 
the gusset plate—needs to be checked in the beam design. It 
is important to note that the beam must be designed for the 
maximum combined axial, bending, and shear demands, 
which occur at the circled areas of the figure. This design 
requirement is not addressed in the paper.

While the responders disagree with results of the paper’s 
stress-driven approach, they also recognize that additional 
checks are needed to evaluate the midspan gusset plate-
to-beam connection in chevron-braced frames. The paper 
contends that seismic design requires a detailed stress cal-
culation based on forces used as aids in capacity-based 
design. However, these calculated stresses are not accurate, 
and they will not capture the local stress demands that actu-
ally occur. As previously noted, the gusset-plate connec-
tion develops larger stresses than computed if the gusset 
plate is solely designed to develop the expected brace forces 
because out-of-plane brace buckling induces inelastic 
deformation demands on the gusset plate.

To accommodate these demands, gusset-plate welds 
should be sized to the plastic capacity of the gusset plate as 
stated in the User Note in AISC Seismic Provisions Section 
F2.6c.4. If the welds are designed to meet this user note, 
capacity-based design would logically require that the beam 
must also be capable of developing this resistance. For cor-
ner gusset plates where the beam is attached to the column 
as part of the beam-to-column connection, the beam flange 
could aid in developing this resistance. However, the beam 
flange is not restrained for midspan gusset plates, and hence 
the web of the chevron-beam must resist these demands. If 
the yield stress of the gusset plate and the beam are the 
same, this simply means that the thickness of the beam 
web, tw, should be equal to or greater than the thickness 
of the gusset plate, tgp (in multistory X-bracing, the thicker 
gusset plate controls). This is a very simple check, but it will 
ensure that stress and force demands required to develop 
the buckling capacity of the brace are resisted by the beam. 
Further, this again illustrates why it is so important that the 
gusset plate be large and strong enough to develop the brace 
capacity, but no larger or stronger than needed. If a larger 
plate is used, a thicker web is required.

This simple check may be difficult to satisfy in practice, 

however, because it is likely that the gusset plate will be 
thicker than the lightest beam needed to support chevron-
beam forces. Figure 4 illustrates the impact of stiffeners and 
the gusset plate-to-beam web thickness ratio. The validity 
of this approach is illustrated in Figure 4 for frames sub-
jected to large inelastic deformations. Figure 4(b) shows a 
chevron-beam web that is thinner than the gusset plate, and 
a significant amount of local yielding can be seen in the 
beam web above the midspan gusset plate. Figure 4(a) has 
the same beam and gusset plate, but stiffeners are applied to 
the beam web and midspan gusset plate. At the same inelas-
tic deformation as in Figure 4(b), the beam web adjacent to 
the midspan gusset plate is quite clear of all yielding. Fig-
ure 4(c) has a beam with web thickness equal to the gusset-
plate thickness and no beam-web or gusset-plate stiffeners. 
While the thinner beam web with stiffeners performed bet-
ter, this frame with the thicker web and no stiffeners per-
formed acceptably.

The results indicate the stiffeners can help achieve the 
desired response and a web thickness less than the gusset 
plate can be used; further research is being conducted by 
the responders to provide more guidance on this aspect 
of design and detailing. While adding stiffeners might be 
viewed as an undesirable expense, they serve multiple pur-
poses here, which justify their cost. The bending moment 
in a chevron beam is largest at the midspan gusset plate, 
which means that bracing against lateral-torsional buckling 
is also required at this location. In addition, stiffeners can 
be used to attach transverse beams or elements used for 
lateral support and aid in transferring brace forces to the 
chevron beam.

An X-braced frame with top and bottom gusset plates 
is even more likely to require stiffeners with thin webs 
because stiffeners will facilitate force transfer between sto-
ries. The size of the stiffeners could be based on the size of 
the balance of the gusset-plate and beam-web thicknesses. 
A similar approach can be used for corner gusset plates, but 
this could be relaxed when the beam flange is attached to 
the column because this attachment stiffens the flange so 
that it also facilitates transfer of forces from the gusset plate 
to the beam or column.

CONCLUSIONS

The responders recognize that this is a difficult topic and 
more research is needed to define the optimal design pro-
cedure. However, the responders contend that the research 
presented herein justifies a simpler and more reliable 
method for evaluating beams and midspan gusset plates in 
seismic design of chevron or multi-story, X-braced frames 
versus that proposed in the paper. This research clearly sug-
gests the following design method:
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1. The brace is designed to develop the seismic design 
forces required by ASCE/SEI 7.

2. The expected tensile and compressive capacity of these 
selected braces are used to perform a capacity-based 
design of the gusset plates. The gusset plates should be 
strong enough to develop the expected resistance of the 
brace, but additional strength beyond this requirement 
is discouraged because overly strong gusset plates will 
require larger welds and adversely affect braced-frame 
performance.

3. The welds or bolts joining the gusset plate to the beams 
and the columns should be strong enough to develop the 
resistance of the gusset plate, ensuring they are able to 
accommodate the deformation demands of the gusset 
plate due to out-of-plane brace buckling.

4. The beams of chevron (V- and inverted V-configuration) 
and multi-story, X-braced frames should be capacity 
designed to develop the expected shear force, bending 
moment, and axial force in the beam from maximum 
elastic and plastic brace forces, including deterioration of 
the compressive capacity.

5. Because the midspan gusset plate stiffens and strengthens 
the beam where they are attached, the demands should 
be evaluated in the beam adjacent to the midspan gusset 
plate. No stress calculations for the beam in the midspan 
gusset plate region are recommended.

6. The midspan connection should fulfill one of two 
requirements. If the thickness of the beam web is equal 
to or greater than the thickness of the gusset plate, no 
further design checks are required. Otherwise, when the 
thickness of the gusset plate exceeds the thickness of the 

beam web, vertical stiffeners to the beam web and the 
gusset plate should be employed.
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AISC Provisions for Web Stability Under Local 
Compression Applied to HSS
FEI WEI and JEFFREY A. PACKER

ABSTRACT

The relevant limit states for local compression loading on the webs of a rectangular HSS member are reviewed, and the 2016 AISC Specifi-
cation Chapter J provisions are adapted from their normal application to the single web of a W-shape or I-section to this case. Two recent 
laboratory tests on matched-width, rectangular HSS-to-HSS cross-connections are described to illustrate the behavior of such connections 
under branch axial compression. The data from these tests are supplemented by experimental results from a further 76 cross-connection 
tests, with the branches being either welded plates or welded HSS. From this 78-test database, the existing provisions for local yielding of 
the chord sidewalls, local crippling of the chord sidewalls, and buckling of the chord sidewalls are evaluated. Recommendations are made for 
handling transverse compression loading on HSS webs in the AISC Specification, and a design example is given to illustrate the approach.

KEYWORDS: hollow structural sections, cross-connections, web yielding, web crippling, web buckling, design procedures.

INTRODUCTION

Concentrated compression forces on rectangular HSS 
are relatively common, especially at bearing or reac-

tion points of trusses and girders and at beam-to-column 
moment connections. This loading situation is covered in 
AISC Specification Section K2.3 (AISC, 2016), where one 
is directed to determine the connection available strength 
from the applicable limit states in Chapter J.

For loading across the full width of the HSS (or when 
the branch-to-chord width ratio β = 1.0), the two webs are 
loaded in compression, and yielding or instability of the 
chord/column webs will control the connection capacity. 
AISC Specification Section J10 (AISC, 2016) on “Flanges 
and Webs with Concentrated Forces,” which is based on 
the behavior of I-shaped sections with a single web, speci-
fies the applicable limit states. For laterally supported HSS 
connections these are (1) web local yielding (Section J10.2), 
(2) web local crippling (Section J10.3), and (3) web com-
pression buckling (Section J10.5). In the following, these 
limit states are further described, applied to the case of 
HSS webs, and evaluated against test results for matched-
width, HSS-to-HSS cross-connections and plate-to-HSS 
connections under transverse compression. For all three 
limit states, the AISC Specification considers separate 

cases of the concentrated compression load being applied: 
(1)  away from the member end (termed “interior” herein) 
and being free of any end effects and (2) close to the mem-
ber end (termed “end” herein). The latter would correspond 
to a compression load close to an open end of an HSS mem-
ber, without a cap plate. This paper evaluates transversely 
loaded HSS connections remote from the member end.

Web Local Yielding

Local yielding of the HSS webs is a possible limit state for 
both compression and tension concentrated loads, and it 
applies to T-, Y- and cross- (or X-) connections with β  ≈ 
1.0. The applied load, acting over a bearing length of lb, dis-
perses at a slope of 2.5:1 to the “k line” and thus produces 
yielding over a length of (5k + lb) for an interior connection. 
This load-dispersion angle of 21.8° is a classical assump-
tion throughout steel codes. The distance k, from the outer 
face of the flange to the web toe of the fillet for a wide 
flange or I-section, can be taken for a rectangular HSS as 
the outside corner radius, with a conservative value of 1.5t, 
where t is the HSS member design thickness (AISC Speci-
fication Section J10 Commentary). The applicable connec-
tion nominal strength equations, in both wide-flange (or 
I-section) format and HSS format, are shown in Table 1 for 
interior- and end-loading situations. In laboratory experi-
ments, this failure mode has been found to occur for short 
bearing lengths (such as with plate-to-HSS connections, as 
shown in Figure  1) and also for stocky chord walls with 
longer bearing lengths.

Web Local Crippling

This limit state is defined as the crumpling of the web 
into buckled waves directly beneath a compression load, 
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occurring in more slender webs, whereas web local yield-
ing of that same area occurs for stockier webs (AISC Speci-
fication Section J10.3 Commentary). Research by Roberts 
(1981) on the compression of a single, slender, I-section web 
provided the basis for the nominal strength expressions in 
the AISC Specification. As shown in Table  1, modified 
versions are provided for interior- and end-loading situa-
tions. Because the overall member depth, d, is used in the  
I-section web crippling AISC Specification Equation 
J10-4, for consistency this is replaced by the HSS over-
all depth, H, in the conversion shown in Table  1. This is 
a small and conservative difference to the presentation 
in the 2010 AISC Specification Equation K2-10 (AISC, 
2010). This limit state is applicable to “compressive single- 
concentrated forces” (Specification Section J10.3), hence 
to T- and Y-connections with β ≈ 1.0. However, this fail-
ure mode has not been observed in rectangular HSS con-
nections, which is presumed to be because the typical H/t 
values of HSS webs are below the wall slenderness require-
ment for this failure mode to govern. [Note that the tests 
reported by Roberts (1981) had overall height-to-web thick-
ness ratios ranging from 75 to 505, with very few below 
100.] Nevertheless, although the scope of the study pre-
sented herein is for HSS cross-connections, the applicable 
connection nominal strength equations for web local crip-
pling, in both wide flange (or I-section) format and HSS 
format, are shown in Table 1.

Web Compression Buckling

This limit state involves overall buckling of the entire 
web and only applies to “a pair of compressive single- 
concentrated forces” (AISC Specification Section J10.5), 
hence to HSS cross-connections with β ≈ 1.0, where com-
pression force is transferred through the chord/column 
member. AISC Specification Section J10.5 Commen-
tary notes that the nominal strength expression (for W- or 

I-shapes) is only valid for bearing lengths “…for which lb/d 
is approximately less than 1.” A validity range of lb/d is 
hence included in Table  1. AISC Specification Equation 
J10-8 originates from Newlin and Chen (1971), who showed 
that their semi-empirical expression was a lower bound for 
web buckling failure loads achieved in a small number of 
transverse compression tests on point-loaded, wide-flange 
sections. AISC Specification Section J10 Commentary 
points out that Specification Equation J10-8 assumes 
pinned restraints at the ends of the web.

The dimension h is defined as the clear distance between 
flanges less the fillet or inside corner radius. Thus, in the 
conversion of web compression buckling formulas to HSS 
format, h is taken equal to (H − 3t), which represents a max-
imum height of the flat part of the chord sidewall. For long 
bearing lengths, greater than the HSS overall depth, H, the 
web needs to be designed as a column member in accor-
dance with AISC Specification Chapter E. Treating each 
HSS web as a column with a rectangular cross section is 
actually the method for handling web compression failure 
in Eurocode 3 (CEN, 2005), CIDECT Design Guide No. 3 
(Packer et al., 2009), and ISO 14346 (ISO, 2013). This fail-
ure mode has been observed experimentally for full-width 
HSS-to-HSS cross-connections with H/t greater than about 
15 (Figure  2). An earlier investigation on the influential 
parameters affecting the web strength of HSS chords under 
transverse compression, by Davies and Packer (1987), indi-
cated that the bearing length parameter, lb/H, affects the 
chord sidewall slenderness, H/t, at which failure changes 
from web bearing (local yielding) to web buckling.

For web compression buckling with lb > d, or Hb/sinθ > H  
(i.e., beyond the applicable limit of Table  1), each web is 
to be treated as a column of slenderness KL/r, where the 
effective length factor, K, can be taken as 1.0 (as suggested 
by AISC Specification Appendix Section 7.2.3, considering 
the main HSS through member as a non-sway frame). The 
column length, L, is taken as the sidewall flat dimension, 
equal to (H  − 3t). The radius of gyration, r, of a rectan-
gular cross-section HSS wall is t 12 . Thus, the nominal 

Fig. 1. Web local yielding failure in a full-width plate-to-HSS 
connection, with plates in compression.

Fig. 2. Web buckling failure in a full-width  

(β = 1.0) HSS-to-HSS cross-connection, with  
branches in compression and H/ t = 23.
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7 in Table 1, the factor Qf (from AISC Specification Table 
K3.2) should also be included if chord compression stress 
is present.

A recent numerical study of welded, full-width, rectan-
gular HSS cross-connections by Kuhn et al. (2019) showed 
that 0.25 represented a critical value for the bearing length-
to-chord height ratio at which the failure mode changed 
from web yielding to web buckling. Thus, for rectangular 
HSS-to-HSS cross-connections and plate-to-HSS cross-
connections with (Hb/sinθ)/H ≤ 0.25, web local yielding was 
deemed to govern and could be predicted by a model such 
as Equation 1. Hb represents either the HSS branch depth, 

flexural buckling strength of the two HSS sidewalls can be 
calculated from AISC Specification Section E3, with an 
allowance for an inclined branch producing a longer web 
buckling length (Packer et al., 2009; IIW, 2012; ISO, 2013) 
by:

 

KL

r
= Lc

r
= −3.46

H

t
3

1

sinθ
⎛
⎝

⎞
⎠  

(8)

and, for one sidewall, a “column” cross-sectional area 
given by Ag = (7.5t + Hb/sinθ)t, from Equation 1 in Table 1 
for lend > H, or Ag = (3.75t + Hb/sinθ)t from Equation 2 in 
Table 1 if lend ≤ H. For consistency with Equations 6 and 

Table 1. Nominal (and Available) Strengths of Web Compression Limit States for  
Wide Flange (I-Section) Shapes and Rectangular HSS Connections, per the AISC Specification 

(Equation Numbers and ϕϕ//ΩΩ Values from the Specification)

Limit State
Wide Flange or I-Section, Rn 

(kips)
HSS-to-HSS Connection, Pn 

(kips)
ϕϕ 

(ΩΩ)

Web local 
yielding, 
interior

for lend > d
Fywtw 5k + lb( ) (J10-2)

for lend > H
2Fyt
sinθ θ

7.5t +
Hb

sin
⎛
⎝

⎞
⎠  

(1)
1.00
(1.50)

Web local 
yielding,  
end

for lend ≤ d
Fywtw 2.5k + lb( ) (J10-3)

for lend ≤ H
2Fyt
sinθ θ

3.75t +
Hb

sin
⎛
⎝

⎞
⎠  

(2)
1.00
(1.50)

Web local 
crippling, 
interior

for lend ≥ d/2
0.80tw

2 1+ 3
lb
d

tw
tf

1.5 EFywtf
tw

Qf
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

⎡

⎣
⎢

⎤

⎦
⎥

 
(J10-4)

for lend ≥ H/2
1.6t2

sinθ
1+

3Hb

sinθ
H

EFyQf

⎛

⎝⎜

⎞

⎠⎟
⎜ ⎟

 

(3)
0.75
(2.00)

Web local 
crippling, 
end, and 
lb/d ≤ 0.2

for lend < d/2
0.40tw

2 1+ 3
lb
d

tw
tf

1.5 EFywtf
tw

Qf
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

⎡

⎣
⎢

⎤

⎦
⎥

 

(J10-5a)

for lend < H/2 and Hb/Hsinθ ≤ 0.2

0.8t2

sinθ
1+

4Hb

sinθ
H

EFyQf

⎛

⎝⎜

⎞

⎠⎟
⎜ ⎟

 

(4)
0.75
(2.00)

Web local 
crippling, 
end, and 
lb/d > 0.2

for lend < d/2
0.40tw

2 1+ −4
lb
d

0.2
tw
tf

1.5 EFywtf
tw

Qf
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

⎡

⎣
⎢

⎤

⎦
⎥

 
 (J10-5b)

for lend < H/2 and Hb/Hsinθ > 0.2

0.8t2

sinθ
0.8 +

4Hb

sinθ
H

EFyQf

⎛

⎝⎜

⎞

⎠⎟
⎜ ⎟

 

(5)
0.75
(2.00)

Web 
compression 
buckling, 
interior, and 
lb ≤ d

for lend ≥ d/2
24tw

3 EFyw
h

Qf
 

(J10-8)

for lend ≥ H/2 and Hb/Hsinθ ≤ 1.0

1
sinθ

48t3

H − 3t
EFyQf

⎛
⎝

⎞
⎠  

(6) 0.90
(1.67) 

Web 
compression 
buckling, 
end, and 
lb ≤ d

for lend < d/2
12tw

3 EFyw
h

Qf

for lend < H/2 and Hb/Hsinθ ≤ 1.0

1
sinθ

24t3

H − 3t
EFyQf

⎛
⎝

⎞
⎠  

(7) 0.90
(1.67)

Note:  lend = distance from the near side of the connecting branch or plate to end of member
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EXPERIMENTS ON FULL-WIDTH 
RECTANGULAR HSS CROSS-CONNECTIONS

Two recent laboratory tests (Wei, 2019) on matched-
width, rectangular HSS-to-HSS 90° cross-connections 
are described to illustrate the behavior under branch axial 
compression. These were tested to failure under displace-
ment control, in quasi-static branch compression, as shown 
in Figure  4, using a 1,000-kip-capacity universal testing 
machine. As can be seen from Figure 4, the branch compres-
sion load was reacted by a steel plate, which was secured 
to the laboratory strong floor, and no lateral restraint was 
provided to the chord member. Displacement was captured 
at many points by a Metris K-610 3D Dynamic Laser Mea-
suring System together with a linear variable differential 
transformer (LVDT). All members were made of cold-
formed HSS to either ASTM A500 Grade B/C (ASTM, 
2018) or CSA G40.20/G40.21 (CSA, 2013), and two chord 
sizes were used: HSS 8×8×4 and HSS 8×8×a. A common 
branch size of HSS 8×4×2 was used, oriented such that  
β = Bb/B = 1.0 and η = (Hb/sinθ)/B = 0.5. The branch thick-
ness was selected to be greater than that of the chord to be 
certain that local branch yielding would not occur before 
the chord webs failed. Measured geometric properties are 
given in Tables 2 and 3. Mechanical properties of the two 
chord members were determined by tensile tests on cou-
pons cut from the flat regions where there was no weld 
seam. Average measured values (using three coupons from 
each HSS) are shown in Table 4.

In both connection tests, sidewall buckling was the 
observed failure mode, and the maximum load, Pa, was 
achieved prior to the 3%B connection ultimate deformation 

in the plane of the connection or, alternatively, the thickness 
of a transverse, full-width plate. If (Hb/sinθ)/H > 0.25, web 
compression buckling was deemed to govern and could be 
predicted by treating the two chord sidewalls as columns, 
for which a modification of Equation 1 could be used:

 
Pn =

2χFyt

s θθin
7.5t + Hb

sin
⎛
⎝

⎞
⎠  

(9)

where χ is a reduction factor applied to yield stress for col-
umn buckling. For fully welded branches to either side of 
the chord member, the end fixity of the sidewall “column” 
is likely closer to fixed-fixed than pin-ended. For fixed-
fixed end conditions, Kuhn et al. (2019) noticed that most 
steel codes have a cold-formed column buckling curve that 
is almost linear when plotted over a practical chord sidewall 
slenderness range; hence they advocated a simple conserva-
tive estimation for χ using:

 
= ≤−χ 1.15 0.013

H

t θ
1

sin
1

 
(10)

Equation 10, for Fy ≤ 50 ksi and H/t ≤ 50, is shown plot-
ted in comparison to the 2016 AISC Specification column 
buckling curve in Figure 3. The vertical axis in this figure, 
χ, is equivalent to the AISC Specification buckling stress, 
Fcr, divided by the yield stress, Fy. An effective length fac-
tor of K  = 0.65 is used as a design approximation to the 
theoretical fixed-fixed factor of K  = 0.5. This approach 
advocated by Kuhn et al. (2019) is also evaluated against 
test data later in this paper, in addition to the current 2016 
AISC Specification method.

Fig. 3. AISC Specification column buckling curve and the linear approximation of Equation 10, for Fy = 50 ksi.



ENGINEERING JOURNAL / FIRST QUARTER / 2021 / 15

Table 2. Test Specimens and Measured Geometric Variables

Specimen

Width
Ratio

ββ

Chord 
Slenderness 

Ratio
2γγ == B//t

Wall-Thickness 
Ratio

ττ == tb//t

Chord
Length

(in.)

Branch  
Length

(in.)

Fillet Weld
Size (leg)

(in.)

X1 1.0 34.7 2.17 41.4 20.0 0.25

X2 1.0 23.6 1.47 38.1 20.0 0.22

Table 3. Average Measured Rectangular HSS Cross-Sectional Dimensions

Designation
Width
B (in.)

Height
H (in.)

Wall Thickness
t (in.)

Corner Radius

Outer (in.) Inner (in.)

HSS 8×8×4 7.98 7.98 0.23 0.59 0.36

HSS 8×8×a 8.03 8.03 0.34 0.94 0.60

HSS 8×4×2 8.02 4.02 0.50 1.01 0.51

Table 4. Average Measured Rectangular HSS Chord Material Properties

Designation
E  

(ksi)
Fy  

(ksi) εεy

Fu  
(ksi) εεrup Fy//Fu 

HSS 8×8×4 30,180 57.1 0.0039 70.3 0.308 0.81

HSS 8×8×a 28,630 56.9 0.0040 71.6 0.334 0.79

Fig. 4. Testing arrangement for rectangular HSS cross-connections, with failure by web buckling.
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limit state (Lu et al., 1994). Thus, the connection ultimate 
strength was given by Pa, as shown on the load-displacement 
curves in Figure 5. To obtain the load-displacement curves 
in Figure 5, connection displacement was determined from 
the global vertical displacement of the difference between 
light-emitting-diode (LED) targets placed slightly above 
the chord face and the targets positioned at the centroid of 
the chord, and the branch compression load was provided 
by the testing machine’s load cell. Table  5 compares the 
predicted ultimate strength and predicted failure mode, by 
the three limit states, with the observed strength and failure 
mode. For test X1, the capacity is reasonably predicted for 
the correct failure mode. For test X2, the capacity is rea-
sonably predicted but for an incorrect failure mode. Both 
of these connections had a bearing length-to-chord height 
ratio of 0.50, but different H/t ratios (34.7 and 23.6). These 
results indicate that a wider review of these limit states—as 
applied to HSS connections—is warranted.

EVALUATION OF HSS WEB  
COMPRESSION LIMIT STATES

Although early design provisions have been evaluated 
(Packer, 1984, 1987), it is timely to apply the current 
2016 AISC Specification rules to an expanded contempo-
rary database of HSS experiments. Thus, aside from the 
two laboratory tests described, an additional 76 cross- 
connection tests from the literature were collated. This total 
database consists of 44 tests performed at the University of 
Toronto, 29 in the United Kingdom, and 5 in Spain. Perti-
nent data for all 78 tests is tabulated in Appendix G of Wei 
(2019). The group of 78 tests covers chord sidewall slender-
ness ratios (H/t) from 12.6 to 56.9; bearing lengths ranging 
from 0.07H to 3.72H; chord compressive stress up to 86% 
of chord yield stress; branch angles of 45°, 60°, and 90°; and 
three HSS production processes: cold-formed, cold-formed 
stress-relieved, and hot-formed. Measured geometric and 

Fig. 5. Connection load-displacement curves for tests X1 and X2.

Table 5. Actual versus Predicted Ultimate Strengths and Failure Modes for Tests X1 and X2

Test No.

Actual Predicted

Ultimate 
Strength 

(kips)
Observed 

Failure Mode

Web Local 
Yielding  
Eq. (1)

Web Local 
Crippling  

Eq. (3)

Web Compression 
Buckling  

Eq. (6)

Web 
Compression 

Buckling  
Eqs. (10) and (14)

X1 128
Sidewall 
buckling

150.9 279.0 105.2 105.5

X2 244
Sidewall 
buckling

254.2 590.6 343.5 214.3
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nonslender elements, as defined in Section B4.1; however, 
none of the cases included in Table B4.1a of the Specifica-
tion directly correspond to a laterally compressed rectan-
gular HSS sidewall. Hence, the full gross cross-sectional 
area, Ag, is always used in the sidewall buckling equation. 
The critical stress, Fcr, is determined based on the slender-
ness ratio of KL/r. The Specification and Commentary do 
not clearly state which value of the effective length factor, 
K, to use, and designers could adopt K = 1.0 to be conserva-
tive. Because Fcr ≤ Fy, the limit state of local yielding of 
the chord sidewalls is thus incorporated into the nominal 
flexural buckling strength by:

 
Pn =

2Fcr t

sin
7.5t + Hb

sθ θin
Qf

⎛
⎝

⎞
⎠  

(13)

where Qf is a reduction factor to account for the effect of 
normal stress in the chord. All 16 connection tests with 
bearing length of the load greater than the total depth 
of the chord member were governed by the limit state of 
flexural buckling of the chord sidewalls, represented by 
Equation 13, and the correlation between actual experimen-
tal test results and predicted connection strengths, using  
K = 1.0, is shown in Figure 7.

With the two bearing length situations combined, cor-
relation between the entire group of 53 welded rectangular 
HSS-to-HSS cross-connection tests is plotted in Figure 8. 
The mean ratio of actual/predicted capacity is 1.41 with a 
very large scatter (COV of 0.46). When the bearing length 
of the load is greater than the total depth of the chord mem-
ber, web buckling failure predictions given by Equation 13 
using K = 1.0 are conservative for a considerable number of 
the test results. In this case, 1 out of 53 tests had a ratio of 
actual/predicted capacity greater than 2.6, which did not fit 
into Figure 8(a). This correlation suggests that the end fix-
ity of the sidewall “column” is more likely to be fixed-fixed 
rather than pin-ended for a chord member with branches 
welded to either side, which seems logical considering the 
large flare bevel groove welds at either end of the chord 
member web. This implies that the effective length factor, 
K, can better be taken as 0.65 instead of 1.0.

For these 53 welded rectangular HSS-to-HSS cross-
connections, 42 of them have the failure mode recorded 
(although there may be misinterpretations of the initial fail-
ure mode by some researchers). Nine of the 42 connections 
had the failure mode incorrectly predicted when compared 
against the observed actual test failure mode (Wei, 2019). 
All nine of these incorrect predictions were a result of high 
predicted sidewall buckling strength.

Welded Plate to Rectangular HSS Connections

Unlike the welded rectangular HSS-to-HSS cross-connection 
tests, the load bearing length of all 25 welded plate to rect-
angular HSS cross-connection tests is less than the total 

mechanical properties of the test specimens were used. 
Based on the configuration of individual connection tests, 
the database has been further divided into two categories: 
welded rectangular HSS to rectangular HSS connections 
and welded plate to rectangular HSS connections.

Welded Rectangular HSS to Rectangular 
HSS Connections

In this section, an evaluation is made of the current design 
provisions against 53 welded rectangular HSS to rectangu-
lar HSS cross-connections. When the bearing length of the 
load, Hb/sinθ, is less than or equal to the total depth of the 
chord member, H, the three web compression limit states 
(local yielding of the chord sidewalls, local crippling of 
the chord sidewalls, and buckling of the chord sidewalls) 
are represented by Equation 1, Equation 3, and Equation 6 
respectively, as discussed earlier.

The correlation between actual experimental test results 
and predicted connection strengths is shown in Figure  6. 
Ultimate strengths Pn and Pa are used in the correlation 
plots, where Pn represents the connection theoretical capac-
ity calculated from the limit states and Pa represents the 
actual experimental test results recorded by the research-
ers, both expressed as a force in the branch. Although the 
mean of this ratio is 1.37, the scatter is huge (COV = 0.45). 
A number of tests are overestimated, while some tests are 
significantly underestimated by the limit state of chord 
sidewall buckling. The large variability shown by chord 
sidewall buckling predictions indicates that the interior 
web compression buckling equation, Equation  6—when 
applied to rectangular HSS-to-HSS connections—is gener-
ally a poor predictor of the strength for this limit state. As 
noted earlier, Equation 6 originates from point-load tests on 
wide-flange section webs. In addition, none of the connec-
tion tests is governed by local crippling of the chord side-
walls, represented by Equation 3, indicating that this is not 
a viable failure mode over this range of data.

When the bearing length of the load is greater than the 
total depth of the chord member, each chord sidewall needs 
to be designed as a column with a slenderness ratio of KL/r. 
As discussed earlier, instead of using Equation 6, the nomi-
nal flexural buckling strength can be calculated using AISC 
Specification Section E3:

 Pn = Fcr Ag (11)

and the “column” cross-sectional area of one web can be 
calculated as:

 
Ag= 7.5t + Hb

s θin
t

⎛
⎝

⎞
⎠  

(12)

AISC Specification Section E3 applies the full gross 
cross-sectional area, Ag, to compression members with 
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(a)

(b)

Fig. 6. Correlation between 37 welded rectangular HSS to rectangular HSS  
connection tests with bearing length ≤ H and the 2016 AISC Specification.
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(a)

(b)

Fig. 7. Correlation between 16 welded rectangular HSS to rectangular HSS  
connection tests with bearing length > H and 2016 AISC Specification, using K = 1.0.
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(a)

(b)

Fig. 8. Correlation between 53 welded rectangular HSS to rectangular HSS connection tests and the AISC Specification.
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[rather than the current 1.0H, as indicated below Equa-
tion 6 in Table 1]. With this modification, the capacity of 
37 welded rectangular HSS-to-HSS connections with bear-
ing length (Hb/sinθ) ranging from 0.25H to H, which are 
originally estimated as per Table 1, can now be predicted 
by Equation  13. A second proposed modification is to 
adopt an effective length factor of K = 0.65 instead of 1.0. 
Combined with the other 16 tests, the correlation between 
actual experimental test results and predicted connection 
strengths using Equation 13 is presented in Figure 10(a) to 
evaluate the effectiveness of these modifications.

A clear improvement can be observed by a comparison 
of Figure 10(a) with Figure 8(a). Although the COV of 0.27 
is still not low, it is significantly reduced from the value of 
0.46 obtained previously, which indicates that the sidewall 
flexural buckling equation, Equation 13, is a better strength 
predictor of connections with bearing length (Hb/sinθ)  > 
0.25H when compared to web buckling Equation 6. More-
over, for connections with inclined branches (i.e., when  
θ < 90°), there is a trend for the connection strengths to be 
overpredicted. Packer (1984) has already noted that the con-
nection strength increase (measured as a force in the branch) 
is less than associated with 1/sinθ. The effect of branch mem-
ber inclination requires more study but, in the meantime, if 
one takes the predicted branch capacity as simply the vertical 
force component, the more-conservative correlation shown 
in Figure  10(b) is the result. In Figure  10, the connection 
capacity prediction is based on a column-buckling model, 
which incorporates both sidewall local yielding (squashing) 
and flexural buckling; hence, no legend (buckling governs/
yielding governs) is given in this figure.

A simple reliability analysis (Fisher et al., 1978; Ravin-
dra and Galambos, 1978) can be applied to the statistics 
(or model parameters) in Figure 10(b) in which a resistance 
factor, ϕ, is calculated using a target safety/reliability index 
of 3.0 and a coefficient of separation of 0.55. Furthermore, 
one can introduce statistical parameters to model geomet-
ric variations [as recommended by AISI (2016)] and typical 
material strength variations for ASTM A500 Grade B/C 
yield strength [as determined by Liu (2016)], the result of 
which is ϕ = 0.95. Because a value of ϕc = 0.90 is used in 
AISC Specification Section E1, which is lower, adequate 
safety/reliability is provided by Model 1 for welded rectan-
gular HSS-to-HSS cross-connections.

For connections with a bearing length (Hb/sinθ) ≤ 0.25H 
(all 25 welded plate to rectangular HSS connections), the 
capacity can be predicted by Equation 1 alone since the web 
local yielding limit state governed the predicted strength of 
all 25 cases, with only one exception. Applying this single 
limit state check to connections in this bearing length range 
leads to a mean value of 1.14 and a COV of 0.17, which are 
almost identical to what was obtained in Figure 9(a). If one 
takes the predicted branch capacity as simply the vertical 

depth of the chord member. Thus, the web compression 
limit states are represented by Equation 1, Equation 3, and 
Equation  6. In this category, the web local yielding limit 
state governed the predicted strength of all cases, with only 
one exception. The actual-to-predicted strength distribu-
tion, shown in Figure 9(a), is much better compared to that 
of welded rectangular HSS-to-HSS connection tests. The 
mean is slightly greater than unity (1.15) with a relatively 
low spread of data, indicated by a COV of 0.18. Figure 9(b) 
shows a somewhat more conservative correlation by taking 
the predicted branch capacity as simply the vertical force 
component. These plots indicate the excellent applicability 
of the existing web local yielding model to HSS webs.

In Figure  9, the one test for which buckling governed 
had Hb/H = 0.20 and H/t = 57. Because Hb/H < 0.25, the 
breakpoint between web yielding and web buckling estab-
lished by Kuhn et al. (2019), one might expect web yield-
ing to govern. However, the 0.25 value was determined 
on the basis of numerical research on HSS up to H/t = 50 
(Kuhn et al., 2019), so there may be less reliability in this 
breakpoint at H/t > 50. Nevertheless, in Figure 9 the actual 
strength far exceeds the predicted strength for this test and 
is conservative.

ALTERNATE MODELS

From the evaluation of existing test results for full-width, 
welded rectangular HSS cross-connections, it was shown 
that the 2016 AISC Specification web crippling equation 
and the web buckling equation, which are based on specific 
tests on I-section webs, either never govern or result in a 
large scatter in the predicted strengths when applied to the 
chord sidewall of rectangular HSS. One of the most influ-
ential parameters, bearing length Hb/sinθ, is absent from 
the web buckling equation. Even for connections where 
the strength prediction is governed by a sidewall flexural 
buckling equation, represented by Equation 13, the assump-
tion of pinned-pinned end fixity (K = 1.0) leads to generally 
conservative estimates. Hence, the web compression limit 
states for rectangular HSS connections could be modified 
to one of the following.

Model 1

According to a recent numerical study by Kuhn et al. 
(2019), a failure mode transition from web local yielding 
to web buckling was observed at a critical bearing length 
(Hb/sinθ) = 0.25H. For bearing lengths greater than 0.25H, 
the sidewall compression strength was well-predicted using 
the column flexural buckling approach, over a practical H/t 
range associated with manufactured HSS. Thus, the first 
proposed modification is to require HSS sidewalls to be 
considered as columns (and analyzed using AISC Specifi-
cation Section E3) for bearing lengths greater than 0.25H 
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(a) Using Equation 1

(b) Using Equation 1 but deleting the first sinθ term (below 2Fyt)

Fig. 9. Correlation between 25 welded plate to rectangular HSS connection test and the 2016 AISC Specification.
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(a) Using Equation 13

(b) Using Equation 13 but deleting the first sinθ term (below 2Fcrt)

Fig. 10. Correlation between 53 welded rectangular HSS to rectangular HSS connection tests and Equation 13 with K = 0.65.



24 / ENGINEERING JOURNAL / FIRST QUARTER / 2021

length (Hb/sinθ) ≤ 0.25H, it is recommended for Model 2 
that the buckling reduction factor, χ, be taken as 1.0. As 
connections within this range are very likely governed by 
sidewall local yielding, the correlation is again very similar 
to that shown in Figure 9.

CONCLUSIONS

AISC Specification Section J10 (AISC, 2016) provisions 
for concentrated compression forces on webs have been 
applied to the case of transversely compressed rectangu-
lar HSS members. These provisions have then been evalu-
ated against 78 laboratory tests, taking the form of welded 
interior plate-to-HSS cross-connections and welded inte-
rior HSS-to-HSS cross-connections. The web local yield-
ing limit state, represented by Equation 1 in Table 1, has 
been found to be very applicable to HSS. The web local 
crippling limit state, represented by Equation 3 in Table 1, 
has been found to never govern for the range of HSS exam-
ined (specified yield strengths up to 50 ksi and sidewall 
slenderness values up to 57). It has been shown that, for 
the web compression buckling limit state, represented by 
Equation 6 in Table 1, greater prediction accuracy can be 
obtained if a column buckling model is used when bear-
ing lengths are greater than 0.25 of the chord depth. It is 
thus recommended (as a modification to AISC Specifi-
cation Section J10.5 Commentary) that the HSS member 
web be designed as a compression member, in accordance 
with AISC Specification Chapter E, when lb or (Hb/sinθ) > 
0.25H. Moreover, when doing so, the compression member 
(each web) can be taken to have a cross-sectional area given 
by Equation 12 and an effective length factor of K = 0.65. 
The influence of branch member inclination on connection 
capacity is not conclusive, so it is recommended that—in 
the case of inclined branches with θ  < 90°—one conser-
vatively takes the predicted branch capacity, for all failure 
modes, as simply the vertical force component. Table  6, 
which can be compared to Table  1, provides a summary 
of the foregoing recommendations, applied to interior HSS 
connections. The limit state of web local crippling should 
be redundant for normal HSS sizes, but it is included in 
Table  6 for completeness and also in the design example 
that follows.

This review has studied connections that were not prone 
to out-of-plane stability. This will be the usual case when 
an HSS main member is subject to transverse compression 
because lateral restraint is generally provided (e.g., at reac-
tion or load points of trusses and beam-to-column moment 
connections). It is conceivable that lateral instability of the 
chord member could arise with a lack of symmetry due 
to misalignment or with long compression-loaded branch 
members; in such cases, this should be incorporated in 
modeling structural behavior of the system.

force component a mean value of 1.19 and a COV of 0.15 
result, which are almost identical to what was obtained in 
Figure  9(b). Performing the same reliability analysis as 
described above, but with model parameters of mean = 1.19 
and COV = 0.15, one obtains ϕ = 1.09. Because a value of 
ϕ = 1.00 is used in AISC Specification Section J10.2, which 
is lower, adequate safety/reliability is provided by Model 1 
for welded plate to rectangular HSS connections.

To design a full-width welded rectangular HSS-to-HSS 
cross-connection, the AISC Specification requires design-
ers to check three web compression limit states: local yield-
ing of the chord sidewalls, local crippling of the chord 
sidewalls, and buckling of the chord sidewalls. With this 
method, the predicted connection capacity can be based on 
either Equation 1 or Equation 13 with K = 0.65, depending 
on the connection bearing length. A recommended adjust-
ment to these equations, for inclined branches with θ < 90°, 
is to take the predicted branch capacity as the branch force 
vertical component. Maintaining the checks for all three 
limit states, but using the preceding recommendations, will 
still result in reliable predictions of connection capacity for 
the limit state that governs.

Model 2

Another simplified method to the foregoing is also possible. 
As discussed previously, Kuhn et al. (2019) advocated the 
use of Equation 10 for a reduction factor to be applied to 
yield stress for column buckling, χ, as it was noticed that 
most steel codes have a cold-formed column buckling 
curve that is almost linear when plotted over a practical 
chord sidewall slenderness range (H/t ≤ 50) for fixed-fixed 
end conditions. The AISC Specification buckling curve is 
no exception, as presented in Figure  3. Thus, to simplify 
the process of calculation, the critical stress, Fcr, can be 
replaced by χFy to give a sidewall compression strength of:

 
Pn =

2χFyt

sin
7.5t + Hb

sin
Qfθ θ

⎛
⎝

⎞
⎠  

(14)

Of the 53 tests, 47 lie within the chord sidewall slen-
derness range of H/t ≤ 50. The correlation between actual 
experimental test results and predicted connection strengths 
using Equation 14 is shown in Figure 11(a) and, as expected, 
a similar relationship to Model 1 is obtained. The numeri-
cal research of Kuhn et al. (2019) was based only on 90° 
connections, so it would be logical to again investigate (as 
in Model 1) the correlation with experiments by taking the 
predicted branch capacity as simply the vertical force com-
ponent. This results in the excellent correlation shown in 
Figure 11(b). In Figure 11, the connection capacity predic-
tion is based on a single limit state model; hence, no legend 
(buckling governs/yielding governs) is given in this figure.

For welded plate to rectangular HSS connections or 
welded rectangular HSS-to-HSS connections with bearing 
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(a) Using Equation 14

(b) Using Equation 14 but deleting the first sinθ term (below 2χFyt)

Fig. 11. Correlation between 47 welded rectangular HSS to rectangular HSS connection tests and Equation 14, with H/t ≤ 50.
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DESIGN EXAMPLE

Given:

Determine the adequacy of the welded rectangular HSS-to-HSS 90° cross-connection shown in Figure 12 subjected to the 
loads indicated. The branch members are oriented such that the chord is loaded across its full width, and the loads shown con-
sist of 50% dead load and 50% live load. Assume the welds are noncritical and that there is zero force in the chord member.

From AISC Manual (AISC, 2017) Table 2-4, the material properties are as follows:

All members
ASTM A500 Grade C
Fy, Fyb = 50 ksi
Fu, Fub = 62 ksi

From AISC Manual Table 1-11 and Table 1-12, the HSS geometric properties are as follows:

HSS 8×8×a
A = 10.4 in.2

B = 8.00 in.
H = 8.00 in.
t = 0.349 in.

HSS 8×4×2
Ab = 9.74 in.2

Bb = 8.00 in.
Hb = 4.00 in.
tb = 0.465 in.

Table 6. Recommended Nominal (and Available) Strengths of Web  
Compression Limit States for Rectangular HSS Connections

Limit State
HSS-to-HSS Connection, Pn  

(kips)
ϕϕ  

(ΩΩ)

Web local yielding, interior for lend > H

2Fyt 7.5t + Hb

sinn
⎛
⎝

⎞
⎠  

(15)
1.00
(1.50)

Web local crippling, 
interior

 for lend ≥ H/2
1.6t2

sinθ
1+

3Hb

sinθ
H

EFyQf

⎛

⎝⎜

⎞

⎠⎟
⎜ ⎟

 

(16)
0.75
(2.00)

Web compression 
buckling, interior, and  
lb ≤ 0.25H

for lend ≥ H/2 and Hb/Hsinθ ≤ 0.25
48t3

H−3t
EFyQf

⎛
⎝

⎞
⎠  

(17)
0.90
(1.67)

Web compression 
buckling, interior, and  
lb > 0.25H

for lend ≥ H/2 and Hb/Hsinθ > 0.25
Use AISC Specification Equations E3-1, E3-2, and E3-3 with K = 0.65, 
Lc/r from Equation 8, and Ag (for each sidewall) from Equation 12

0.90
(1.67)
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Solution:

Required strength (expressed as a force in the branch)

From ASCE/SEI 7 (ASCE, 2016) Chapter 2, the required strength of the connection is:

LRFD ASD

Pu = 1.2 (50.0 kips) + 1.6 (50.0 kips)

 = 140 kips

Pa = 50.0 kips + 50.0 kips

 = 100 kips

The strength of a matched-width (β = 1.0), welded, rectangular HSS to rectangular HSS cross-connection, under branch axial 
compression, can be determined from the limit states of web local yielding, web local crippling, and web compression buckling.

=β 8.00 in.

8.00 in.
= 1.00

Limit State of Web Local Yielding

From Equation 15 in Table 6,

Pn = 2Fyt 7.5t + Hb

s θin
⎛
⎝

⎞
⎠  

(15)

 

= 2 50 ksi( ) 0.349 in.( ) 7.5 0.349 in.( ) + 4.00 in.

sin90°
= 231 kips

⎡
⎣⎢

⎤
⎦⎥

Fig. 12. Rectangular HSS-to-HSS cross-connection subjected to branch axial compression.
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By applying the resistance factor of ϕ = 1.00, and the safety factor of Ω = 1.50, for this limit state (AISC Specification Section 
J10.2), the available strength (ϕPn or Pn/Ω) is:

LRFD ASD

Pn =ϕ 1.0 231 kips( )
= 231 kips

 231 kips > 140 kips     o.k.

Pn = 231 kips

1.50
= 154 kips

 154 kips > 100 kips     o.k.

Limit State of Web Local Crippling

From Equation 16 in Table 6,

Pn = 1.6t2 1+

3Hb

s θin
H

EFyQf

⎛

⎝

⎜
⎞

⎠

⎟
⎜ ⎟
⎜ ⎟

 

(16)

Qf = 1.0 for a chord with no load, or a tension force, in accordance with AISC Specification Table K3.2.

Pn = 1.6 0.349 in.( )2 1+

3 4.00 in.( )
sin90°
8.00 in.

29,000 ksi( ) 50 ksi( ) 1.0( )

= 587 kips

⎡

⎣
⎢
⎢

⎤

⎦
⎥

⎢ ⎥
⎢ ⎥

⎥

By applying the resistance factor of ϕ = 0.75, and the safety factor of Ω = 2.00, for this limit state (AISC Specification Section 
J10.3), the available strength is:

LRFD ASD

Pn =ϕ 0.75 587 kips( )
= 440 kips

 440 kips > 140 kips     o.k.

Pn = 587 kips

Ω 2.00
= 294 kips

 294 kips > 100 kips     o.k.

Limit State of Web Compression Buckling

Hb sin =θ 4.00 in. > 0.25H = 0.25 8.00 in.( ) = 2.00 in.

Hence, from Table 6, the member webs will be designed as compression members in accordance with AISC Specification 
Chapter E, using K = 0.65.

Critical Buckling Stress, Fcr

Calculate the effective slenderness ratio (Lc/r) using Equation 8, with K = 0.65, to determine applicable equation:

KL

r
= =Lc

r
−3.46K

H

t
3

1

sin
⎛
⎝

⎞
⎠  

(8)

 

= −3.46 0.65( ) 8.00 in.

0.349 in.
3

1

sin90°
= 44.8

⎛
⎝

⎞
⎠



ENGINEERING JOURNAL / FIRST QUARTER / 2021 / 29

4.71
E

Fy
= 4.71

29,000 ksi

50 ksi

= 113.4

Because
 

KL

r
< 4.71

E

Fy
,
 
AISC Specification Equation E3-2 applies:

Fcr = 0.658
Fy

Fe Fy

⎛

⎝
⎜

⎞

⎠
⎟

 

(Spec. Eq. E3-2)

where

Fe =
2Eπ

Lc

r

2⎛
⎝

⎞
⎠

 

=
2 2π 9,000 ksi( )

44.8( )2

= 143 ksi

Hence,

Fcr = 0.658
50 ksi

143 ksi 50 ksi( )

= 43.2 ksi

⎛
⎝⎜

⎞
⎠⎟

Flexural Buckling of the Chord Sidewalls

The nominal compressive strength of the two sidewalls, by flexural buckling, is given by AISC Specification Equation E3-1:

Pn = Fcr Ag (Spec. Eq. E3-1)

where Ag for one sidewall is given by Equation 12. For two sidewalls,

Ag= 2 7.5t + Hb

s θin
t

⎛
⎝

⎞
⎠  

(12)

 

= 2 7.5 0.349 in.( ) + 4.00 in.

sin90°
0.349 in.( )

= 4.61 in.2

⎡
⎣⎢

⎤
⎦⎥

Therefore, the nominal strength of the two sidewalls in flexural buckling is:

Pn = 43.2 ksi( ) 4.61 in.2( )
= 199 kips
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SYMBOLS

A Cross-sectional area of rectangular HSS chord 
member, in.2

Ab Cross-sectional area of rectangular HSS branch 
member, in.2

Ag Cross-sectional area of element, in.2

B Overall width of rectangular HSS chord member, 
perpendicular to the plane of the connection, in.

Bb Overall width of rectangular HSS branch member or 
plate, perpendicular to the plane of the connection, 
in.

COV Coefficient of variation

E Modulus of elasticity of HSS member, ksi

Fcr Critical stress of HSS chord member, ksi

Fu Ultimate tensile strength of HSS chord member, ksi

Fub Ultimate tensile strength of branch member, ksi

Fy Yield stress of HSS chord member, ksi

Fyb Yield stress of branch member, ksi

Fyw Yield stress of web material, ksi

H Overall height of rectangular HSS chord member, 
perpendicular to the plane of the connection, in.

Hb Overall height of rectangular HSS branch member or 
plate, perpendicular to the plane of the connection, 
in.

K Effective length factor

Lc Effective length of member, in.

P Axial force, kips

PD Axial force due to dead load, kips

PL Axial force due to live load, kips

Pa Actual connection ultimate load, kips; required axial 
strength using ASD load combinations, kips

Pa,X1 Actual connection ultimate load of specimen X1, 
kips

Pa,X2 Actual connection ultimate load of specimen X2, 
kips

Pn Nominal connection strength, kips

Pu Required axial strength in tension or compression, 
using LRFD load combinations, kips

Qf Chord-stress interaction parameter

Rn Nominal strength, kips

d Full nominal depth of member, in.

h Clear distance between flanges less the fillet or 
corner radius, in.

k Distance from outer face of flange to web toe of 
fillet for I-section, in.; outside corner radius for 
rectangular HSS section, in.

lb Bearing length of the load, measured parallel to the 
axis of the HSS member, in.

lend Distance from the near side of the connecting branch 
or plate to end of member, in.

By applying the resistance factor of ϕc = 0.90, and the safety factor of Ωc = 1.67, for this limit state (AISC Specification Section 
E1), the available strength is:

LRFD ASD

ϕcPn = 0.90 (199 kips)

 = 179 kips

 179 kips > 140 kips     o.k.

Pn

c
= 199 kips

1Ω .67
= 119 kips

 119 kips > 100 kips     o.k.

As expected, because the bearing length is greater than 0.25H, the connection resistance by web compression buckling governs. 
The connection shown in Figure 12 has an identical configuration to Specimen X2, which, as indicated in Table 5, failed by 
sidewall buckling.
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Critical Temperature of Axially Loaded Steel Members 
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ABSTRACT

This paper presents closed-form equations that were developed to evaluate critical temperatures of structural steel compression and ten-
sion members exposed to fire. The deterministic approach involved a parametric study using finite element simulations in order to iden-
tify influencing factors—for example, mechanical properties of steel, member slenderness, and axial load ratios. Statistical models were 
employed to develop closed-form equations representing the best fit of numerical results. A comparison with experimental column test data 
indicates that the proposed equation for compression members provides a conservative lower bound (16% lower on average) relative to the 
test data at load ratios greater than 0.3. A sensitivity study was also performed to further explore uncertainty in predicted critical tempera-
tures due to variability of axial load ratios. For both compression and tension members, the ambient-temperature yield stress of steel, Fy, 
has a great impact on determination of axial load ratios, subsequently influencing the overall accuracy of the critical temperature estimated 
by the proposed equations. The applicability of the proposed equations is limited to wide-flange steel members that are simply supported, 
concentrically loaded, and exposed to uniform heating.

Keywords: critical temperature, structural steel, compression, tension, fire.

INTRODUCTION

Background

In the United States, fire resistance design of load-carrying  
steel members (beams and columns) in steel-framed 

buildings is mainly achieved through compliance with 
prescriptive provisions in the International Building Code 
(ICC, 2009). In this approach, fireproofing insulation is 
applied to exposed steel so that the steel does not exceed 
the critical temperature under standard fire conditions for 
a minimum specified duration (known as a fire-resistant 
rating). According to the American Society for Testing 
and Materials (ASTM) E119 standard (ASTM, 2019), the 
critical temperature of exposed steel members in a stan-
dard fire test is 1000°F (538°C) for columns and 1100°F 
(593°C) for beams, determined as the average temperature 
of all measurement points. However, these limiting tem-
peratures seldom account for the effects of imposed load 

levels, semi-rigid support conditions, and both member and 
section slenderness.

Prescriptive methods have provided little information 
regarding the high-temperature strength and associated 
failure modes of steel members exposed to fire. As an alter-
native engineering approach, AISC Specification Appen-
dix  4 (AISC, 2016b) provides high-temperature member 
strength equations for the limit states of flexural buck-
ling and lateral-torsional buckling. To calculate member 
strengths at elevated temperature, users need to define the 
temperature of interest as an input, which must be greater 
than 392°F (200°C), based on heat transfer analyses or 
engineering judgments. These equations are less practical 
for solving the critical temperature at which the member 
demand exceeds its capacity because iteration with increas-
ing temperatures is required (Sauca et al., 2019).

In Europe, the evaluation of critical temperatures of axi-
ally loaded steel members was of interest beginning in the 
late 1970s. Kruppa (1979) defined “critical” or “collapse” 
temperature as the temperature at which the structure 
cannot assume its function and proposed a critical tem-
perature equation for steel columns using the temperature-
dependent axial stress and buckling coefficient. Rubert and 
Schaumann (1988) used finite element models for calculat-
ing critical temperature of steel columns. The analytical 
results were compared with 50 full-scale column tests and 
showed good correlation at temperatures in the range of 
390°F (200°C) to 1300°F (700°C) and utilization (demand-
to-capacity) ratios of 0.2 to 0.6.

Neves (1995) further explored the critical temperature 
of restrained steel columns analytically, with three column 
slenderness values (40, 80, and 120) and eccentricity of the 
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applied load. Due to the variety of parameters being con-
sidered, a critical temperature equation was not proposed. 
Similarly, Franssen (2000) applied an arc-length numerical 
technique to calculate the collapse temperature of columns. 
Wang et al. (2010) evaluated the critical temperature of 
restrained steel columns using a finite element ABAQUS 
model (Smith, 2009) with two-dimensional beam elements. 
Their study indicated that the section geometry had very 
limited effects on the column critical temperature, and the 
critical temperature of a restrained column can be obtained 
by making a reduction in corresponding values of columns 
without axial restraint.

The European standards provide critical temperature 
equations or tabulated data for steel members. For steel 
members “without instability phenomena” (e.g., tension or 
flexural yielding), the critical temperature is only a function 
of a utilization ratio for fire conditions (CEN, 2005). This 
equation is very similar to an inverse of the temperature- 
dependent yield strength of structural steel. For steel col-
umns, however, only tabulated forms (e.g., Vassart et al., 
2014; BSI, 2005) are available to evaluate critical tempera-
tures, depending upon the member slenderness and utiliza-
tion ratio. Despite all the limitations (i.e., applicability only 
under standard fires, uniform distribution of temperatures 
across the section and length, and simplified boundary con-
ditions), the critical temperature method would remain as a 
useful tool to evaluate the fire resistance of load-carrying 
steel members (Milke, 2016).

Objectives, Scope, and Limitations

The significance of the critical temperature method lies in 
its simplicity and the useful information obtained about a 
structural member exposed to varying temperatures dur-
ing a fire event. To date, however, a critical temperature 
method is not available in AISC Specification Appendix 4 
(AISC, 2016b). The objective of the study presented herein 
was to develop closed-form solutions that can be used to 
evaluate critical temperatures of axially loaded steel mem-
bers exposed to fire. The methodology adopted in this study 
included (1)  a parametric study using 900 finite element 
models to identify the influencing variables for determina-
tion of critical temperatures of steel members at elevated 
temperatures, (2) three-dimensional regression analyses to 
develop a closed-form equation that represents the best fit 
of numerical results with given ranges of the parameters 
considered in this study, (3) comparison of the critical tem-
perature predicted using the proposed equation with test 
data in literature, and (4)  a sensitivity study to estimate 
uncertainty in critical temperatures computed using pro-
posed equations.

The scope of this study focused on the critical tempera-
ture of structural steel tension and compression members 
with wide-flange rolled shapes. The parameters influencing 

critical temperatures were evaluated, including various 
axial load levels, steel grades, and section compactness 
and member slenderness at ambient temperature. The use 
of proposed equations presented herein should be limited 
to wide-flange steel members simply supported, concen-
trically loaded, and exposed to uniform heating. Future 
work will include the effects of thermal restraints as well 
as thermal gradients through the section depth and along 
the member length.

NUMERICAL ANALYSES

Test Bed

The critical temperature of axially loaded steel columns 
with wide-flange rolled shapes was evaluated using the 
finite element method (FEM). In this study, a total of 900 
FEM models were analyzed in combination with various 
ranges of parameters summarized in Table 1. Five differ-
ent wide-flange rolled shapes, including W8×31, W10×68, 
W14×22, W14×90, and W14×211, were used in this study. 
With the exception of the W14×22, all other shapes are com-
pact for compression at ambient temperature. In addition, 
two American standard grades of structural steel shapes, 
including Fy  =  50  ksi and Fy  =  36  ksi, are considered, where  
Fy is the minimum specified yield stress. Effective slen-
derness ratios, Lc/r, range from 20 to 200, and applied 
load ratios vary from 0.1 to 0.9. The load ratio is defined 
as the axial demand at elevated temperatures, Pu, normal-
ized by the nominal capacity at ambient temperature, Pna. 
The demand for fire condition can be determined from the 
load combination for extraordinary events, 1.2 × dead load 
+ 0.5 × live load + AT, where AT is the force and defor-
mation induced by fire effects (ASCE, 2016). In this study, 
all investigated members were assumed to be simply sup-
ported, concentrically loaded, and exposed to uniform heat-
ing; therefore, the magnitude of AT was assumed to be zero. 
The nominal capacity at ambient temperature, Pna, can be 
calculated using AISC Specification Section E3.

Numerical models of columns were developed using 
three-dimensional shell elements. Each model was dis-
cretized into 50 elements along the member length and 8 
elements each for the flange and the web. The FEM solution 
with this element size was converged with the maximum 
error of about 2%, based on the mesh density study presented 
in Sauca et al. (2019). Linear kinematic constraints were 
applied to both the flanges and web at each end in order to 
enforce rigid planar behavior. The column ends were sim-
ply supported. An axial force was applied to the centroid 
of the end section. An initial displacement at midspan was 
taken as the 1/1000 of the column length to simulate global 
imperfections (initial sweep). Local geometrical imperfec-
tions were implemented by scaling a sinusoidal deformation 
of the cross sections using elastic buckling analyses. The 
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• Applied load level: The critical temperature is affected 
by the magnitude of applied loads. The reduction in 
critical temperature can reach nearly 80% between the 
load ratio of 0.1 and 0.9 and 20% on average at each 
increment of 0.1. Larger scatter of the results is observed 
for the models with the load ratio between 0.5 and 0.8, as 
shown by the error bars in Figure 1(a), due to variation 
in member slenderness. The critical temperature versus 
applied load relationship shows a very good linear fit, 
similar to an empirical relationship presented in Choe et 
al. (2011).

Figure  2 shows critical temperatures of steel columns 
relative to load ratio with (1)  all five shapes and two dif-
ferent steel grades and (2) W14×22 and W14×90 columns 
with Fy = 50 ksi. Both graphs considered the slenderness 
ratios of 20, 40, and 100. Some discussions on the effect of 
the ambient yield stress, Fy, and the section compactness 
are as follows.

• Ambient yield strength: The variation in critical 
temperatures predicted using two different steel grades 
(36 ksi versus 50 ksi) is about 1% on average. This is to 
be expected as the buckling behavior of columns with the 
slenderness ratio greater than 40 (i.e., medium-length to 
slender columns) is mainly affected by low strain levels 
(less than 0.05% strain) and temperature-dependent 
elastic modulus (Choe et al., 2017).

• Section geometry: Between two different wide-flange 
shapes, the variation in critical temperatures is over 10% 
for short columns subjected to large axial loads (i.e., a 
slenderness ratio less than 60 and a load ratio greater 
than 0.6). The critical temperature variation for slender 
columns subjected to small axial loads is below 5%.

PROPOSED CLOSED-FORM EQUATION

Compression Members

The numerical results from 900 finite-element models were 
used to develop a closed-form equation that predicts criti-
cal temperatures of steel columns as a function of member 
slenderness and load ratio. The three-dimensional linear 
polynomial model, as shown in Figure  3, was employed 

scaled value was taken as the larger of a web out-of-flatness 
equal to the ratio of the section depth over 150 (Kim and 
Lee, 2002) or a tilt in the compression flanges taken as the 
ratio of the flange width over 150 (Zhang et al., 2015). No 
residual stresses were applied because their influence is 
limited at elevated temperature (Vila Real et al., 2007). The 
Eurocode 3 (CEN, 2005) temperature-dependent stress-
strain relationship was employed, whereas no thermal creep 
model was incorporated explicitly.

In order to estimate critical temperatures of columns 
using FEM models, an axial load as a fraction of Pna was 
applied at ambient temperature, and then the member tem-
perature was increased monotonically until force equi-
libriums could not be achieved. The maximum value of 
temperature achieved from each FEM model was defined 
as a critical temperature.

Numerical Results

Figure  1 shows the critical temperature, Tcr, of steel col-
umns predicted using the finite element models with Fy = 
50 ksi (350 MPa), where the dotted lines indicate the lin-
ear regression of these predicted results. Figure 1(a) shows 
the average critical temperature of columns as a function 
of a load ratio. The error bars indicate the standard devia-
tion of the results varying with five different shapes and all 
slenderness ratios (Lc/r = 20 to 200) at the same load level. 
Figure  1(b) shows the relationship of the average critical 
temperature of all five columns versus the slenderness ratio 
at four different load ratios (Pu/Pna) of 0.1, 0.3, 0.6, and 0.9. 
As shown, the critical temperature appears to be linearly 
decreasing with both increasing load ratios and increasing 
slenderness ratios. However, the critical temperature is less 
sensitive to the member slenderness at the same load level. 
Some statistical results and discussions on the effect of 
member slenderness and applied load levels are as follows.

• Member slenderness: The reduction in critical 
temperatures with increasing slenderness ratios is 
influenced by the applied load level. At load ratios 
smaller than 0.5, the critical temperature is reduced 
by about 10% between the slenderness ratio of 20 and 
200. At higher load ratios, the critical temperature can 
reduce by 30% to 60% for the Lc/r ratio of 20 to 200. This 
reduction is not proportional to load ratios.

Table 1. Test Parameters Used in Numerical Analyses

Shape Fy Lc//r Pu//Pna

W8×31
W10×68
W14×22
W14×90
W14×211

36 ksi (250 MPa)
50 ksi (350 MPa)

20 to 200
(increment: 20)

0.1 to 0.9
(increment: 0.1)
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Tcr = −−1580 0.814

Lc

r
1300

Pu

Pna  
in °F

 
(2)

Figure 4 shows a comparison of critical temperatures cal-
culated using the proposed equation with those estimated 
using various methods, including FEM models, the ASTM 
E119 limiting temperature of columns, and the AISC Speci-
fication Appendix 4 equation. In Figure 4(a), the results of 

based on the results from the parametric study presented 
previously. Equations 1 and 2 show the resulting best linear 
fit equation in °C and °F, respectively, with the R-square 
value of 0.97.

 
Tcr = −−858 0.455
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Tcr (°F) = -1303.7(Pu/Pna) + 1488.7
R2 = 0.9925
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Fig. 1. Average critical temperatures for columns predicted using FEM models of five shapes  
with Fy = 50 ksi as a function of (a) load ratio (Pu/Pna) and (b) member slenderness (Lc/ry).
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Fig. 2. Predicted critical temperatures of columns with slenderness ratios of 20, 40, and 100.
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Fig. 3. A three-dimensional linear curve fit of 900 FEM models of columns.
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Fig. 4. Comparisons of the proposed column equation.
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FEM models are presented with two lines: the upper bound 
as mean values plus standard deviations (std) and the lower 
bound as mean values minus standard deviations. The stan-
dard deviation incorporates the total variation in the FEM 
data resulting from the range in parameters described in 
Table 1 at each load level. The error bars plotted with the 
critical temperature predicted using Equation 1 indicate the 
standard deviation due to slenderness ratio ranges from 20 
to 200. Overall, the proposed equation compares reason-
ably well with the FEM results. With this equation, the 
load-bearing capacity of steel columns is approximately 
40% of the ambient capacity at the ASTM E119 limiting 
temperature of 1000°F (540°C).

Figure 4(b) gives a comparison with critical temperatures 
estimated using the AISC Specification Appendix 4 flex-
ural buckling strength equation, Equation A-4-2. A detailed 
description of computation methods, which required an iter-
ation process, is presented in Sauca et al. (2019). The error 
bars in this figure indicate the standard deviation resulted 
from a variety of steel shapes and slenderness ratios con-
sidered in this study. For columns with load ratios less than 
0.6, the proposed equation also adequately predicts critical 
temperatures, with 2% difference on average. At load ratios 
equal to or greater than 0.6, however, the proposed equa-
tion may overestimate critical temperatures estimated using 
AISC Specification Equation A-4-2.

The efficacy of Equation  1 was examined by compar-
ing predicted critical temperatures with observed critical 
temperatures from previous experimental studies (Franssen 
et al., 1996; Ali et al., 1998; Choe et al., 2011) of steel col-
umns that had similar properties used for the present study. 
Test data used for this comparison included 36 wide-flange, 
hot-rolled column specimens that had simply supported 

boundary conditions and were concentrically loaded (i.e., 
an eccentricity of axial loading was less than the 1/1000 
of the column length) at elevated temperatures. In this data 
set, the ambient-temperature yield stress ranged from 32 ksi 
(220 MPa) to 60 ksi (400 MPa), and effective slenderness 
ratios varied from 30 to 137.

Figure 5 shows a comparison of the column test data with 
predicted critical temperatures using Equation 1 and with 
the linear regression of the data itself. Overall, the proposed 
equation provides a conservative lower bound of the test 
results. For the specimens with load ratios greater than 0.3, 
the calculated critical temperatures are approximately 16% 
lower than the measured values on average. For load ratios 
less than 0.2, Equation 1 slightly overestimates the critical 
temperature by 4%.

Tension Members

Critical temperatures of uniformly heated steel members in 
tension have a dependency of high-temperature mechanical 
properties, such as temperature-dependent yield stress and 
ultimate tensile strength. This paper also suggests a critical 
temperature equation for tensile yielding in gross sections of 
a steel member as a function of imposed tension loads, Tu, at 
elevated temperature normalized by the nominal capacity, 
Tna, at ambient temperature. As shown in Figure 6, the criti-
cal temperature equation is an inverse relationship of the 
AISC Specification temperature-dependent retention fac-
tors for yield stress, ky, essentially the same as the Eurocode 
3 (CEN, 2005) retention factors. The logarithmic regres-
sion model was employed similar to the Eurocode 3 criti-
cal temperature equation for members “without instability 
phenomena.” Equations 3 and 4 show the best fit equation 
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Although uncertainty in geometric properties are present 
in the proposed equation, such as column length, Lc, and 
the radius of gyration, r, this effect was neglected with the 
assumption that compliance of standard fabrication toler-
ances specified in the AISC Code of Standard Practice 
for Steel Buildings and Bridges (AISC, 2016a) would not 
result in notable critical temperature changes. A compari-
son of the influence of each parameter (Fy, E, DL, and LL) 
on the variation in the critical temperature was calculated 
by considering reasonable upper and lower bounds of each 
variable. Each parameter was evaluated at the mean ±1 
standard deviation (std) that represents 68% confidence 
intervals. The mean ±2 standard deviations (to represent a 
95% confidence interval) were also reported. A normal dis-
tribution of each variable was assumed.

Statistical properties of the investigated variables are 
summarized in Table  2, based on work from Takagi and 
Deierlein (2007), who proposed the member strength equa-
tion for gravity columns at elevated temperature in AISC 
Specification Appendix  4. The mean values and coeffi-
cients of variation (CV) were determined from statistical 
data obtained by Ellingwood et al. (1980). The percentages 

in °C and °F, respectively, with the R-square value of 0.99. 
For the use of these equations, the load ratio, Tu/Tna, must 
be greater than or equal to 0.01.
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ESTIMATED UNCERTAINTY OF  
CLOSED-FORM EQUATIONS

Compression Members

Because the proposed closed-form solution was developed 
using a deterministic approach, which does not account for 
uncertainty in estimation of applied load ratios, Pu/Pna, sen-
sitivity was examined with variability in mechanical prop-
erties of steel (Fy and elastic modulus, E) and the magnitude 
of design loads (e.g., dead load, DL, and live load, LL).  

32

392

752

1112

1472

1832

2192

2552

0

200

400

600

800

1000

1200

1400

0 0.2 0.4 0.6 0.8 1

T
cr
(°
F
)

T
cr
(°
C
)

Pu/Pna

ky

Proposed eqn

Fig. 6. Critical temperature versus load ratio relationship of tension members.

Table 2. Statistical Data for Uncertainties (Takagi and Deierlein, 2007)

Variable Mean CV Std

Fy 50 ksi (350 MPa) 0.10 5 ksi (35 MPa)

E 29,000 ksi (200 GPa) 0.06 1,740 ksi (12 GPa)

DL 103% unfactored 0.10 a

LL 25% unfactored 0.60 b

a: The standard deviation for DL is taken as the mean load × 1.025 × 0.10.
b: The standard deviation for LL is taken as the mean load × 0.25 × 0.60.
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for DL and LL were obtained from load surveys using prob-
abilistic load models. They represent the mean values of the 
unfactored design loads for dead and live loads relative to 
the nominal design loads in the American National Stan-
dard A58. The standard deviation (std) for each variable 
was calculated as the mean times the coefficient of varia-
tion (CV), as shown in Table 2. Ambient temperature values 
of Fy and E were used to calculate the mean and CV values 
due to a lack of statistical data on their high-temperature 
values.

A range of columns used in this study (W8×31, W14×90, 
and W14×211 with Fy = 50 ksi) were examined for sensitiv-
ity. The change in critical temperature due to uncertainty 
of 1 standard deviation is consistent across all compact 
column shapes, so the results presented represent all of the 
compact shapes listed above. Figure 7 shows the change in 
critical temperature for the W14×211 column with Lc/r = 40  
and Lc/r  = 80 due to uncertainty in Fy. The solid line 

represents the critical temperatures determined using the 
proposed closed-form equation [Equation (1)]. The dashed 
lines represent the critical temperatures calculated with Fy 
adjusted by a positive and negative standard deviation. The 
uncertainty in the critical temperature estimated using the 
propose equation is more pronounced at lower Lc/r ratios 
and at higher load ratios where Euler buckling does not 
likely occur. At higher Lc/r levels, where elastic buckling 
of the column would dominate, the impact of a change in 
Fy, appears to be minimal and becomes negligible for Lc/r 
ratios of 120 and greater. At a load ratio (Pu/Pna) of 0.6, the 
uncertainty in estimated critical temperatures is about 20% 
at Lc/r = 40 and about 10% at Lc/r = 80 due to ±1 std of Fy. 
These percentages represent the ratio of change in critical 
temperature due to uncertainty relative to the closed-form 
proposed equation without uncertainty.

Figure 8 shows the variation in estimated critical temper-
ature for the W14×211 column with Lc/r = 40 and Lc/r = 120  
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Fig. 7. Sensitivity of calculated critical temperatures of a W14×211 column due to uncertainty in Fy.
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Fig. 8. Sensitivity of calculated critical temperatures of a W14×211 column due to uncertainty in E.
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due to uncertainty in the elastic modulus, E, in the calcula-
tion of Pna. The uncertainty in estimated critical temper-
ature is most pronounced at both higher slenderness and 
higher load ratios where elastic buckling likely governs. In 
this study, the maximum uncertainty is observed for slen-
der columns (Lc/r ≥ 120) and the applied load ratio of 0.8. 
For these columns, the uncertainty in critical temperatures 
can be as large as 30%. However, for stockier columns  
(Lc/r ≤ 40), this uncertainty in critical temperatures associ-
ated with ±1 std of E becomes very minor, less than 3%.

Sensitivity due to uncertainty in applied loads under fire 
conditions (Pu) was determined by considering three differ-
ent DL/LL ratios selected based on engineering judgment. 
The first DL/LL ratio was 0.65, which was determined by 
assuming a dead load of 65 psf and a live load of 100 psf. 
The second DL/LL ratio of 1.3 was calculated using the 
same dead load of 65 psf but a live load of only 50 psf. The 
65-psf dead load was selected based on the assumption of 

50 psf for the composite slab plus 15 psf for superimposed 
dead loads such as ceilings and ductwork and piping for 
utilities. The live load values of 50 psf and 100 psf repre-
sent average and high levels of live loading, respectively. 
According to ASCE/SEI  7 (2016), 50  psf represents live 
loads for office spaces, while 100  psf represents lobbies 
and other assembly areas. The final DL/LL ratio that was 
used was 0.33. This ratio is given in the AISC Specification  
Section A1 Commentary (AISC, 2016b) as the ratio that 
results in the same reliability between the ASD and LRFD 
design methods. Using these ratios, the dead and live loads 
on the column were determined by assuming that the 
demand-to-capacity ratio for each column at ambient con-
ditions is equal to 1.0 for the ambient load combination, 
1.2DL + 1.6LL. Converting to the fire load combination 
(1.2DL + 0.5LL), this equates to a Pu/Pna ratio of approxi-
mately 0.4, 0.5, and 0.6 for DL/LL ratios of 0.33, 0.65, and 
1.3, respectively. Figure  9(a) shows the change in critical 

(a) Dead load (DL)

(b) Live load (LL)

Fig. 9. Sensitivity of the change in critical temperature due to uncertainty. Note: ΔTcr is presented (not Tcr); ΔTcr(°F) = 9/5[ΔTcr (°C)].
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temperature due to uncertainty in dead load, while Fig-
ure 9(b) represents the change in critical temperature due 
to live load uncertainty. These results show that critical 
temperatures are more influenced by a higher DL/LL ratio 
for dead load variability and a lower DL/LL for live load 
variability. These critical temperature changes (ΔTcr) are 
independent of the Lc/r ratio of the column. The maximum 
change in critical temperature due to uncertainty of 1 stan-
dard deviation in DL and LL is 59°F and 44°F, respectively.

Tension Members

The same variables (Fy, DL, and LL) were studied for ten-
sion members to determine the sensitivity of the closed-
form equation. There is no sensitivity in the equation to a 
change in modulus of elasticity (E). A W14×22 shape was 
chosen to demonstrate the sensitivity. Figure 10 summarizes 
the sensitivity by showing the change in critical temperate 
for ±1 std and ±2 std of each parameter, estimated using CV 
values in Table 2. The same DL/LL ratios of 0.33, 0.65, and 
1.3 were also used. This comparison shows that the great-
est change in critical temperatures is due to a change in 
the yield stress of the material. At 1 standard deviation, the 
change in temperature is −32°F to 29°F, and at 2 standard 
deviations, it is −68°F to 56°F. The variation in DL with a 
high DL/LL ratio produces the second highest sensitivity.

SUMMARY AND CONCLUSIONS

This paper presents the development of closed-form solu-
tions to evaluate critical temperatures of axially loaded 
steel members exposed to fire. For compression members, 

a total of 900 FEM models were analyzed in combination 
with various ranges of parameters, including five different 
wide-flange rolled shapes made of two American standard 
grades of structural steel, member slenderness ratios from 
20 to 200, and applied load ratios varying from 0.1 to 0.9. 
Load ratios represent the axial demand at elevated tempera-
tures, Pu, normalized by the nominal capacity at ambient 
temperature, Pna.

The parametric study indicates that the most influential 
parameters for critical temperature of columns are member 
slenderness and applied load ratios. A closed-form equa-
tion predicting critical temperatures of steel columns with 
these two factors is proposed based on curve-fitting of the 
FEM results using the three-dimensional linear polyno-
mial model. With this equation, the load-bearing capac-
ity of steel columns is approximately 40% of the ambient 
capacity at the ASTM E119 limiting temperature of 1000°F 
(540°C). At load ratios less than 0.6, the proposed equation 
accurately predicts critical temperatures determined using 
the high-temperature flexural buckling strength equation 
in AISC Specification Appendix 4, whereas it may overes-
timate critical temperatures (10% difference or greater) at 
load ratio greater than or equal to 0.6. The proposed equa-
tion also provides a conservative lower bound (16% lower 
on average) of the published test data for the specimens 
with load ratios greater than 0.3. This result considers col-
umn failure by flexural buckling at elevated temperature.

A critical temperature equation for tension members is 
also proposed using the logarithmic regression model for 
the case with tensile yielding only. This equation is essen-
tially the same as an inverse relationship of the AISC 

Fig. 10. Sensitivity of the change in critical temperature of tension members due to  
uncertainty in parameters. Note: ΔTcr is presented (not Tcr); ΔTcr(°F) = 9/5[ΔTcr (°C)].
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Specification temperature-dependent retention factors for 
yield stress.

A sensitivity study was performed to estimate the uncer-
tainty in critical temperatures predicted using the proposed 
equations due to the variability in axial load ratios. The 
results show that these critical temperatures depend on the 
ambient temperature Fy and E as well as design loads (DL 
and LL). The variation in Fy is the most influential factor 
among other uncertain variables for critical temperatures 
of both compression and tension members. The influence 
of Fy uncertainty is apparent in stout columns with a low 
slenderness ratio. All results show that variations in critical 
temperature are relatively minor for uncertainty of 1 stan-
dard deviation, particularly for typical columns, which are 
assumed to have load ratios of approximately 0.6 and Lc/r 
ratios of approximately 40 to 60. Consideration of material 
sensitivity should be implemented for load ratios beyond 
0.6.

The findings and equations from this study are limited 
to the range of parameters included in the numerical evalu-
ation. Future studies will be conducted to further incorpo-
rate probabilistic analyses into the current deterministic 
approach, accounting for the effects of thermal restraints 
as well as thermal gradients through the section depth and 
along the member length.
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Design for Local Member Shear at Brace and 
Diagonal-Member Connections: Full-Height and 
Chevron Gussets
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ABSTRACT

Large local member shear forces develop in beams in chevron-braced frames due to the delivery of brace forces to beam flanges, which 
are at a distance from the beam centerline (Fortney and Thornton, 2015, 2017; Hadad and Fortney, 2020). Using the “lower bound theorem” 
(Thornton, 1984), Sabelli and Arber (2017) developed design methods to address this local member shear by optimizing the internal stress 
distribution and thus maximizing the resistance utilized in design. This paper further develops those design methods for chevron beams and 
extends them to gusset connections at columns.

Keywords: gusset plates, braced frames, truss connections.

INTRODUCTION

The “chevron effect” is a term used to describe local 
beam forces in the gusset region of a chevron (also 

termed inverted-V) braced frame. These local forces are 
not captured by beam analysis methods that neglect con-
nection dimensions. Fortney and Thornton (2015, 2017) and 
Hadad and Fortney (2020) have shown methods of analy-
sis for these forces. This study adds design solutions for 
addressing high member shear in the connection region, 

including reinforcement and proportioning for (chevron) 
gussets within the beam span and for full-height gussets at 
beam-column-brace connections.

V-braced frames (and their variants) are commonly used 
in steel structures and are commonly termed “chevron-
braced frames.” Figure 1 shows three chevron configura-
tions: the inverted-V-braced frame (a), in which two braces 
connect to the bottom of the beam at its midpoint; the 
V-braced frame (b), in which two braces connect to the top 
of the beam at its midpoint; and the two-story, X-braced 
frame (c), in which four braces connect to the beam at its 
midpoint, two from above and two from below.

The beams and columns of these frames are typically 
designed using centerline models, and equilibrium is 
addressed in the design at the “workpoint” (the intersection 
of member centerlines). In typical design, a substantial gus-
set plate is provided at brace connections, and force trans-
fer is accomplished over the length of that plate. Figure 2 
shows a frame with such gusset plates. Similar connections 

 (a) Inverted-V-braced frame (b) V-braced frame (c) Two-story, X-braced frame

Fig. 1. Chevron-braced frame configurations.
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are used in truss construction with web-vertical wide-flange 
chords (Figure 3).

Work by Fortney and Thornton (2015, 2017) and Hadad 
and Fortney (2020) highlights the importance of analysis of 
chevron braced-frame connections. In particular, Fortney 
and Thornton derive expressions for the local beam shear 
and moment that result from the distribution of brace forces 
over the gusset-plate length. These beam forces (in particu-
lar, the shear) can result in the need to supplement the beam 
web with a doubler plate. An example of such a condition is 
shown in the second edition AISC Seismic Design Manual 
(AISC, 2012). In the third edition Seismic Design Manual 
(AISC, 2018), the example connection utilizes some of the 
relationships developed by Sabelli and Arber (2017) to 
eliminate the need for reinforcement.

This study builds on the work of Sabelli and Arber, apply-
ing the same concepts developed by Fortney and Thornton, 
with the aim of providing methods for the design of con-
nections that do not require reinforcement. The methods 
presented in this paper rely heavily on the “lower bound 
theorem” as presented by Thornton (1984) for similar con-
nections, demonstrating adequate strength through inves-
tigation of an advantageous internal stress distribution in 
a ductile connection and examining forces at gusset edges 
and at critical sections.

This study also extends and generalizes the equations 
developed for chevron connections for use in other condi-
tions, such as columns with full-height gussets (also called 
“mega-gussets”) in which the gusset extends through the 
beam depth and the beam connects to the gusset rather than 
to the column (see Figure 4). In addition to transferring brace 
forces, full-height gusset connections transfer beam forces 
to the column. Such connections may be accomplished with 
welded beam flanges (as shown in Figure 4), which provide 
flexural continuity (and thus additional flexural forces to be 

transferred by the gusset to the column), or with a connec-
tion similar to a single-plate connection (also known as a 
“shear tab”), which minimizes these flexural forces. Adap-
tation of these methods to beam-column-brace connections 
with traditional gussets (Figure 5) is beyond the scope of 
this paper.

The first part of the paper derives the design equa-
tions employing statics and two models of stress distribu-
tion along the gusset-flange interface: the Uniform Stress 
Method, based on Fortney and Thornton (2015), and the 
Concentrated Stress Method, based on Sabelli and Arber 
(2017). The former model is simpler, but if that model indi-
cates that reinforcement is required, significant economy 
can be realized by using the latter. The second portion of 
the paper is a brief design example that addresses both 
methods for the design of a chevron connection.

This study addresses both member shear and member 
moment caused by the local connection forces as these dif-
fer from the shears and moments from a simple, center line 
model of members. In the authors’ experience, the local 
member shear often controls the connection design (such 
as by necessitating a minimum gusset length), but the addi-
tional member moment caused by the local connection 
forces does not.

The design equations derived here are based on the static 
equilibrium of the gusset plate based on the brace axial 
forces (and beam reactions for the column connection). As 
such, they are equally applicable to frames designed as part 
of a ductile seismic system (in which brace forces typically 
correspond to the brace capacity), and those designed for 
wind or other cases that do not involve capacity design. 
Additional considerations for seismic design, such as deter-
mination of the appropriate brace force level for which 
beam yielding should be precluded, are beyond the scope 
of this paper.

Fig. 2. Typical braced frames with gussets. Fig. 3. Truss with gussets. 
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Fig. 4. Full-height gusset brace connection at column.

Fig. 5. Traditional gusset at column.
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Mmax Maximum member moment (within connection 
region) due to brace forces, kip-in. (N-mm)

MTot Total moment acting on beam due to Mf1 and Mf2, 
kip-in. (N-mm)

NBm Beam axial force transferred to gusset at column 
connection, kips (N)

Ng Normal force on a gusset section transverse to the 
member axis, kips (N)

Pn Nominal member or element axial strength, kips (N)

Ru Required strength, kips (N)

Rz Normal force from moment transfer for 
Concentrated Stress Method, kips (N)

VBm Beam connection shear transferred to gusset at 
column connection, kips (N)

VCh Chevron shear, equal to the sum of member shear 
and gusset shear transverse to member axis, kips (N)

Vef Effective member shear strength (deducting demands 
other than brace connection forces), kips (N)

VefTot Effective member shear strength considering the 
effects of unbalanced forces from gussets on both 
sides of the member, kips (N)

Vg Shear on a gusset section transverse to the member 
axis, kips (N)

VM Member shear due to loading other than from braces, 
kips (N)

Vma Member shear (outside connection region), kips (N)

Vmc Member shear (within connection region), kips (N)

Vn Nominal member or element shear strength, kips (N)

W Width of brace-to-gusset connection used to locate 
critical diagonal section, in. (mm)

Xcrit Dimension parallel to the member axis used to locate 
critical diagonal section, in. (mm)

Yclip Dimension transverse to member axis of gusset 
corner clip, in. (mm)

dm Member depth, in. (mm)

dg Gusset dimension transverse to member axis, in. 
(mm)

ecrit Location of force FYcrit with respect to intersection of 
critical diagonal section and gusset edge, in. (mm)

eg Eccentricity parallel to member axis of gusset 
midpoint from workpoint (e.g., beam centerline at 
column connection), in. (mm)

SYMBOLS, NOMENCLATURE,  
AND CONVENTIONS

This study employs the following symbols and terms:

Dclip Diagonal dimension of reduced critical-diagonal-
section length due to Yclip, in. (mm)

Dcrit Length of critical diagonal section of gusset, in. 
(mm)

Fi,j Brace axial force for brace “j” connecting to gusset 
“i,” kips (N) (sign conventions are per the figures)

FN Gusset concentrated force at member flange, 
transverse to member axis, kips (N) (compression is 
positive)

FV Gusset shear component parallel to member axis at 
interface with flange, kips (N)

FXcrit Force parallel to the member axis acting on critical 
diagonal section of gusset, kips (N)

FYcrit Force transverse to member axis acting on critical 
diagonal section of gusset, kips (N)

Fy Specified minimum yield stress, ksi (MPa)

Lbeam Beam length (column centerline to centerline), in. 
(mm)

Lg Gusset length, in. (mm)

Lw Length of weld, in. (mm)

MBm Beam moment transferred to gusset at column 
connection, kip-in. (N-mm)

MCh Chevron moment at face of member due to force FV 
(equal and opposite to the distributed moment MFV 
for concentric workpoints), kip-in. (N-mm)

Mcrit Moment acting on critical diagonal section of gusset, 
kip-in. (N-mm)

Mf Moment at gusset-to-flange-interface due to brace 
forces, kip-in. (N-mm)

MFV Moment in the connection due to force FV, 
distributed along gusset length and eccentric to 
workpoint (equal and opposite to the chevron 
moment, MCh, for concentric workpoints), kip-in. 
(N-mm)

Mg Moment on a gusset section transverse to the 
member axis, kip-in. (N-mm)

MM Member moment at workpoint due to loading other 
than from braces, kip-in. (N-mm).

Mn Nominal member or element flexural strength, kips 
(N)
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the corresponding subscript. The subscript “Tot” refers to 
total forces, combining those from gusset “1” and gusset “2.”

Brace axial forces have two subscripts. The first pertains 
to which gusset the brace connects to (“1” or “2”). The sec-
ond pertains to which of the two braces is indicated. Sign 
conventions match the figures such that positive brace axial 
forces F1,2 and F2,1 correspond to compression and positive 
brace axial force F1,1 and F2,2 correspond to tension. Forces 
and angles pertaining to each brace carry the same designa-
tion subscript.

The design equations are presented in a general form 
such that they can be used for both column and beam gus-
sets. To permit this, certain general terms are used, such as 
“member” in lieu of “beam” or “column.” This approach 
carries through to the symbols.

Brace-force components acting on the gusset–member 
interface are described as (gusset) “shear” or “normal” 
forces. Gusset shear forces, FV, are parallel to the member 
axis (horizontal for the chevron beam and vertical for the 
column); normal forces on the connection, FN, are perpen-
dicular to the member axis (vertical for the chevron beam 
and horizontal for the column).

The term “workpoint” refers to the intersection of brace 
centerlines with each other or with the column centerline. 
This workpoint is typically also at the beam centerline.

Figure 6 shows dimensions noted on beam and gusset-
plate diagrams. Braces may occur above the beam, below 
the beam, or both. The diagram shows a symmetrical con-
dition, but the connection calculations apply for asymmet-
rical cases. (Beam shear and moment require adjustment 
for asymmetrical applications.) Figure 7 shows dimensions 
noted on column and gusset-plate diagrams. Braces may 
occur in various combinations, and the column may con-
tinue up past the connection or may terminate as shown in 
the upper diagram. The diagram shows a full-height gusset: 
a gusset plate that comes between the beam and the column.

em Transverse eccentricity from member flange to 
workpoint, typically equal to half the member depth, 
in. (mm)

ez Length of moment arm between centroids of z 
regions, in. (mm)

k Distance from outer face of flange to web toe of 
fillet, in. (mm)

ru Required strength per unit length, kips/in. (N/mm)

tg Gusset thickness, in. (mm)

tw Member web thickness, in. (mm)

w Weld size, in. (mm)

x Distance from gusset midpoint along member axis, 
in. (mm)

z Length of concentrated stress region at ends of 
gusset, in. (mm)

γ Brace angle from member longitudinal axis, deg

ϕb Resistance factor for bending (0.9)

ϕc Resistance factor for compression (0.9)

ϕn Resistance factor for nonductile limit states such as 
web crippling and weld rupture (0.75)

ϕt Resistance factor for tension (0.9)

ϕw Resistance factor for web local yielding (1.0)

ϕv Resistance factor for shear (1.0)

Subscripts are employed in some equations to distin-
guish actions and dimensions related to one gusset or one 
brace from another. Gussets are designated “1” and “2,” and 
dimensions and forces associated with each gusset are given 

Fig. 6. Chevron gusset geometry.
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STATICS

Although the methods developed in this paper are intended 
to facilitate the design of connections of multiple mem-
bers (such as is shown in Figure 7), in essence the methods 
simply provide designers with the means of designing an 
attachment to a wide-flange member (such as is shown in 
Figure  8) for a set of known, in-plane forces, converting 
these to a normal force transverse to the member axis, FN, 
a shear force parallel to the member axis, FV, and a moment 
in the plane of the web, Mf. The design of this connection 
includes evaluation of local limit states within the member, 
including web local yielding, web crippling, and local shear. 
This local shear (in the gray zone in the center diagram in 
Figure 8) is essentially panel-zone shear, and determination 
of the effective depth of the force couple is central to the 
design methods presented. The right-hand diagram in Fig-
ure 8 illustrates that while the member flange and bracket 
rotate in unison, the panel-zone section of the member web 
can undergo large shear strains while the bracket remains 
elastic, and thus the member can yield in shear even if there 
is a substantial bracket present. The shear strength of the 
member is not increased by the addition of the bracket shear 
strength; a thicker or wider bracket would not preclude 
panel-zone shear yielding. Instead, the shear demand on the 
member panel zone can be reduced by using a bracket that 
extends further along the flange, thus increasing the height 
of the panel zone.

The same reconstitution of forces is applicable to braced-
frame and truss connections, assuming the forces in the 

connecting members are known. The analysis and design of 
braces and truss diagonals is typically based on their ideal-
ization as pin-pin members. In some cases, this idealization 
could be modified to permit reduction of the moment Mf 
(which causes the panel-zone shear in the connection); this 
introduces design moments for both the main member and 
the diagonals, and thus requires an integration of member 
design and connection design.

Figure 9 shows free-body diagrams of the gusset plate at 
the beam midspan; Figure 10 shows the same at the column. 
Both figures convert a known set of in-plane forces acting 
on the gusset plate from connecting members into three 
forces at the midpoint of the gusset-flange interface: normal 
force transverse to the member axis, FN, shear force paral-
lel to the member axis, FV, and moment in the plane of the 
web at the face of the member, Mf. The brace forces used 
for the connection design typically do not include moments, 
although these could be included in determining the gusset 
forces.

LOCAL MEMBER FORCES  
(DERIVATION FOR TWO BRACES)

For simplicity, only two braces are considered in the subse-
quent derivation: those on “side 1” of the connection. A later 
section shows the procedure for the inclusion of the effects 
of an additional gusset on the far side (side 2). These braces 
may be at equal angles (as is typical for the beam case) or at 
unequal angles (as happens frequently for the column case 

Fig. 7. Column gusset geometry. 
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Fig. 8. Free-body diagram of bracket.

and, on occasion, in the beam case). The design equations 
are presented in general terms applicable to both the beam 
and the column condition. Minor adjustments to the equa-
tions are required for the column case due to the additional 
forces from the connecting beams; these are noted.

The forces on the gusset-to-flange interface are statically 
determined. For clarity, brace forces are separated into 
normal, FN, and shear, FV, components. For the column 
connection, these forces are combined with forces from 
the beam: VBm, NBm, and MBm, as shown in Figure 10. (For 
the case of a beam chevron connection, these forces are all 
zero.) Assuming two braces with forces F1,1 and F1,2, the 
shear force is:

 FV1 = γ γF1,1 cos 1,1 + F1,2 cos 1,2 +VBm1 (1)

The normal force is:

 FN1 = − γγF1,2 sin 1,2 F1,1 sin 1,1 + NBm1 (2)

For the column connection, the collector force NBm1 should 
be determined from an analysis consistent with brace forces 
used in the connection design.

In addition to these normal and shear forces, there is a 
moment (required for static equilibrium). While the moment 
due to the brace forces is zero at the workpoint, at the flange 
the moment is:

 Mf 1 = −MCh1 MBm1 (3)

The first term in Equation 3, MCh1, is the “chevron moment” 

at the member face. This moment may be conceptualized 
by considering the forces from the two braces as applied 
point loads at the locations where their centerlines inter-
sect the member flange. If the brace forces are decomposed 
into components parallel to and normal to the member axis 
(Figure 11), the chevron moment can be determined from 
the normal force components and their eccentricities along 
the member axis:

 

MCh1 =

γ

γF1,1 sin 1,1( ) em

t

γ

γan 1,1( )

+ F1,2 sin 1,2( ) em

tan 1,2( )
⎡⎣

⎡⎣

⎤⎦

⎤⎦

⎡

⎣
⎢

⎡

⎣
⎢

⎤

⎦
⎥

⎤

⎦
⎥
 

(4)

which reduces to:

 MCh1 = FV1em (5)

The chevron moment is opposed by a moment, MFV1, that 
corresponds to the parallel components, FV1, multiplied by 
the eccentricity of the flange from the centerline (2dm):

 
MFV1 = γγF1,1 cos 1,1( ) + F1,2 cos 1,2( ) dm

2
= FV1dm

2
⎡⎣ ⎤⎦

 
(6)

which can be simplified to:

 
MFV1 =

FV1dm

2  
(7)
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Fig. 9. Force conventions for chevron connection.

Fig. 10. Force conventions for column connection.
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This moment does not affect the gusset or the weld but 
is necessary for member equilibrium and affects member 
moment. If the workpoint is at the member centerline (as 
shown in Figure  9), the distance from the flange to the 
workpoint, em, is:

em = dm

2  
for the workpoint at the member centerline

 
(8)

If this is the case, the two brace-shear-component-
induced moments are equal and opposite (MCh1 − MFV1 = 0), 
and there is effectively no moment at the workpoint location 
on the member centerline due to FV1. If the workpoint is off 
the member centerline (as shown in Figure 11), the braces 
induce a moment in the member at the centerline location 
aligned with the workpoint; this moment causes shear and 
bending both within and outside of the connection region. 
Moving the workpoint from the main member centerline 
toward the gusset reduces the chevron moment while intro-
ducing a moment into the main member. In general, such an 
approach can be economical but requires coordination with 
member design and building analysis. Similarly, the con-
nection analysis could assign only a portion of this chev-
ron moment to the main member and apply the remainder 
to the braces. This might reduce the connection demands 
but would introduce additional design moments into both 
the main member and the braces, and this member flexure 
could, in principle, affect the building response to lateral 
loads. The former approach (modifying the work point) can 
be integrated with the methods presented in this paper, but 
the latter approach (assigning counterbalancing moments to 
the main member and the braces) is separate.

For the column connection, the beam moment, MBm1, 
affects the moment at the column flange, Mf1. This moment 
(MBm1) should be consistent with the brace forces, and the 
minus sign reflects the direction of forces in Figure  10. 
Typically, both the beam moment and the brace force are 
due to the lateral drift. In such cases, the signs are consis-
tent with those shown in Figure 10; when the brace is in 
compression, the corresponding beam flange is in tension, 
and vice versa, and thus Mf1 in Equation 3 is the differ-
ence rather than the sum. (The corresponding column shear 

is additive to the brace forces as discussed later.) Because 
the effect of the beam moment MBm1 is to reduce the total 
demand, designers should consider how much of this ben-
eficial effect can be relied on, and a range of this moment 
could be considered.

For the case of an asymmetric column gusset (such as 
with only one brace, as shown in the upper diagram of Fig-
ure 7), the eccentricity between the gusset midpoint and the 
beam centerline contributes to the moment:

Mf 1 = −FV1em MBm1 + FN1eg (9)

A similar adjustment can be made for chevron beams if 
the gusset midlength and the workpoint are not aligned 
vertically.

In addition to the “chevron moment,” there is a “chevron 
shear.” The chevron shear (VCh1) is resisted by the gusset 
and the beam in combination:

VCh1 =Vg1 +Vmc1 (10)

This chevron shear can be determined using static equilib-
rium on either half segment of the gusset:

 
VCh1 = γF1,1 sin 1,1 +

1

2
FN1

 
(11)

 
VCh1 = −γF1,2 sin 1,2

1

2
FN1

 
(12)

Figure 12 shows a free-body diagrams of beam and gus-
set segments at the connection, including a transverse sec-
tion through the beam and gusset showing the sharing of 
the chevron shear (VCh1) between the beam shear (Vmc1) and 
the gusset transverse shear (Vg1). Note that the location of 
the centroid of the transverse forces from the gusset seg-
ment to the beam flange (Vmc1 ± 2FN1) is not specified in 
the free-body diagrams of the gusset segments; that loca-
tion may be selected (within certain constraints) in the con-
nection design by the use of a stress distribution model, 
such as the Elastic Method, the Plastic Method, or the 
Optimized Plastic Method as described in Section 8 of the 
AISC Steel Construction Manual (2017). Once this location 

Fig. 11. Brace forces at flange.
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is set, the division of VCh1 between Vmc1 and Vg1 is statically 
determined. (Moment at the vertical gusset section is zero, 
regardless of the stress distribution, for symmetrical condi-
tions with equal brace forces, as shown in the subsequent 
section, “Gusset Design: Mid-Length Transverse Section.”)

The same relationship applies to full-height column gus-
sets. As will be shown in the following sections, the sharing 
of this chevron shear between the gusset and the beam or 
column can be controlled by a combination of the gusset 
dimension selected and the force distribution assumed at 
the gusset-to-flange interface. In this way, the design meth-
ods presented can reduce or eliminate any required web 
reinforcement.

UNIFORM STRESS METHOD

The Uniform Stress Method is the simplest model for 
addressing the chevron effect, both for discussion and 
design purposes. While the treatment of this method here 
is general, it does not specifically address conditions such 
as beams with workpoints not at the beam midspan; Fort-
ney and Thornton (2017) provide a more thorough treat-
ment. [The term “Uniform Stress Method” is not employed 
by Fortney and Thornton. Sabelli and Arber use this term; 
Hadad and Fortney refer to it as the “Chevron Effects (CE) 
Method.” The term “Uniform Stress Method” has been 
used in practice and so is used here.]

Fortney and Thornton (2015, 2017) employ the Uniform 
Stress Method for the transfer of forces over the length of 
a chevron gusset. In this method, the moment transfer is 
achieved through two blocks of principal stress in the gus-
set, each with a length equal to half that of the gusset, as 
in the “plastic method stress distribution” described in the 
AISC Steel Construction Manual. Figure  13 shows the 
Uniform Stress Method applied to the column and chevron 
connections.

Member Shear

Stresses at the member-to-gusset interface are assumed to 
be distributed uniformly using the full length for the normal 
and shear forces and a plastic-section-modulus approach for 
the moment (Fortney and Thornton, 2015). Following this 
approach, the member shear within the connection region is 
described by the following equation:

 
V1 x( ) = −

2M f 1

Lg1
+

4M f 1

Lg1
2 x + FN1

Lg1
x +VM

 
(13)

The first two terms are the shear due to the gusset 
moment, which includes the chevron moment, MCh, plus 
any other moment transmitted by the gusset per Equation 3. 
The third term in the equation is the shear from the unbal-
anced normal force, and the value at the gusset end (FN1/2) 
is the shear in the member outside of the gusset region for 
the typical, symmetrical case with VM = 0.

In this equation, x is the distance from the gusset mid-
point, as shown in Figure  13. This differs from Fortney 
and Thornton but is presented in this manner to facilitate 
combination of forces from gussets of different lengths on 
opposite flanges of the main member. The member shear is 
additive for connections with gussets on opposite sides for 
the typical braced-frame case (with forces as shown in Fig-
ures 9 and 10), although the member shear VM should only 
be added once. (Hereafter, it is assumed that the member 
shear VM is zero in the connection region.)

The maximum shear in the connection region occurs at 
the gusset midpoint (x = 0) and is equal to:

 
Vmc1 =

2Mf 1

Lg1  
(14)

This shear, Vmc1, is not equal to the chevron shear, VCh1, nor 
to a trigonometric component of either of the brace forces 

Fig. 12. Transverse section of beam and gusset showing chevron shear.
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region should be considered by reducing the available shear 
strength or by engaging the gusset to distribute the load 
over the gusset length along with the normal force, FN1.

The member shear is the result of both the eccentricity 
(typically a function of the member depth) and the gusset 
length. These can be adjusted (within practical bounds) to 
provide a member that does not require web strengthening. 
Following this approach, the minimum gusset length to 
eliminate web strengthening is:

 
L ≥g1

2Mf 1

vVϕ n  
(15)

which is equivalent to:

 
L ≥g1

2FV1em

vVϕ n  
(16)

A subsequent section addresses member selection to avoid 
web reinforcement.

Concentrated Forces

The limit states of web local yielding and web crippling 
typically can be satisfied without reinforcement at chevron 
connections, especially those designed using the Uniform 
Stress Method. These limit states can be evaluated consid-
ering two concentrated forces (Ru), each acting on a bearing 
length of 2Lg:

 
Ru1 =

FN1

2
±

2Mf 1

Lg1  
(17)

(e.g., F1,1sinγ1,1 or F1,2sin γ1,2); it may be greater or smaller 
than the trigonometric component, depending on the geom-
etry of the connection. The difference between the two is 
the shear carried by the gusset, Vg1, as indicated in Equa-
tion 10. The longer the gusset plate, the lower the shear in 
the main member due to the chevron moment, Vmc1, and 
thus the greater the shear resisted by the gusset, Vg1. This 
is similar to a moment connection in which beam haunches 
can be used to engage a larger column panel-zone height. 
In this sense, the gusset plate can be used as external shear 
reinforcement for the beam, although in this method, it is 
the length of the gusset that permits it to provide a larger 
arm for transfer of the chevron moment (and thus reduce the 
force imposed on the main member) rather than a simple 
addition of member and gusset shear strength.

Note that this member shear in Equation 14, Vmc1, is due 
only to the force components parallel to the member axis 
(shear on the connection). The unbalanced normal compo-
nent does cause shear in the member, but this unbalanced-
component shear becomes zero at the workpoint and thus is 
not considered in conjunction with shear from the balanced 
component (i.e., the shear from Equation  14). Figure  14 
shows a shear diagram for brace-induced shears in a typical 
pin-end beam consistent with Equation 13.

Note that the maximum member shear occurs at the gus-
set midpoint (where the member shear neglecting connec-
tion effects is zero), and thus the member shear outside of the 
connection does not affect the maximum shear in the con-
nection region. Concentrated loads within the connection 

Fig. 13. Uniform Stress Method (after Fortney and Thornton).
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Moment

Shear forces in the member have an effect on member 
moment. While this effect is generally small, Fortney and 
Thornton (2015) describe conditions in which the beam 
moment determined using these assumptions (if not con-
sidered in design) may necessitate reinforcement using the 
Uniform Stress Method. Hadad and Fortney (2020) show 
that in finite element analyses, the beam moments are sub-
stantially lower than those calculated using the Uniform 
Stress Method. While the authors do not propose evalua-
tion of the member moment within the connection region as 
necessary, examination of the effects that contribute to the 
moment may aid in understanding of the method.

Beam Moment

In the case of a chevron beam, braces are often considered to 
be a support point for the beam for wind design. For seismic 
design of ductile systems, the expected behavior typically 
entails brace yielding with resulting transverse loading of 
the beam causing beam shear and bending. [See, for exam-
ple, AISC Seismic Provisions Section F2.3(b).] The beam 
is evaluated for these forces (adding any gravity loading 
effects) in combination with the axial force resulting from 
the components of brace force parallel to the member axis. 
The combined effect of the moment Mf1 and the brace force 
components parallel to the member axis, FV1, produces no 
shear or flexure outside of the connection region.

For the chevron beam connection, MBm  = 0, and thus 
Mf = MCh. Beam moments within the connection region are 
described by the following equation:

M1 x( ) = 2MCh1

Lg1
x +− −

− − −

2MCh1

Lg1
2 x x

MFV1

Lg1
x

FN1
Lbeam

4

Lg1

8

x2

2Lg1

⎛

⎝⎜
⎞

⎠⎟  

(18)

Note that Equation 18 includes more than the integral of 
the member shear formula (Equation 13). It also includes a 
distributed moment due to the applied force parallel to the 
member axis, FV1, at the gusset–flange interface (which, for 
simplicity, is assumed to be uniformly distributed along the 
length of the gusset):

 

MFV1

Lg1
= FV1em

Lg1  
(19)

Thus:

 

MFV1

Lg1
= MCh1

Lg1  
(20)

The applied force parallel to the member axis, FV1, thus 
has two equal and opposing effects: the transverse stress 
resulting from MCh, which causes member shear and 
moment, and the distributed moment corresponding to 
MFV. These counteracting effects produce zero moment at 
the ends of the connection region and at the gusset mid-
length; at other locations, some moment may result based 
on the differing rates of accumulation over length within 
the connection region, corresponding to the assumed trans-
verse stress distribution and the assumed distribution of FV1 
over the gusset length.

Fig. 14. Brace-induced shears in pin-end beam (Uniform Stress Method).
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shear forces outside the connection region are not generally 
large, especially for frames with pin-ended beams.

CONCENTRATED STRESS METHOD

In the preceding discussion, the Uniform Stress Method 
stress distribution was assumed to determine the member 
forces in the connection region. The calculated member 
shear may be reduced by selecting a more favorable dis-
tribution. The Concentrated Stress Method maximizes the 
moment arm within a given gusset length and thus mini-
mizes the corresponding force caused by the moment. This 
method is based on the Optimized Plastic Method (AISC, 
2017), modified to optimize only for moment resistance 
(rather than both moment and normal force) and to allow 
for incorporation of design limits based on both gusset yield 
and member limit states.

In the Concentrated Stress Method, the moment Mf1 is 
assumed to be transferred at the ends of the gusset over 
lengths z1. The remaining segment in the middle of the 
gusset does not participate in transmitting the flexure; it 
is assumed to resist the unbalanced force FN1. Figure  15 
shows this stress distribution.

Member Shear and Minimum Gusset Length

The Concentrated Stress Method converts the moment Mf1 
into a normal force couple Rz1 with a moment arm of ez1. 
This normal force Rz1 is distributed over a length z1. The 
values of Rz1 and ez1 are determined such that Rz1 does not 
exceed the force that would cause shear yielding of the 
member.

Figure 16 shows a shear diagram corresponding to this 
stress distribution for a chevron connection. Note that the 
maximum beam shear in the Concentrated Stress Method 
does not occur at the beam midpoint (as it does for the Uni-
form Stress Method), and thus the beam shear outside of 
the connection affects the maximum shear within the con-
nection region.

The moment arm ez1 is:

 ez1 = −Lg1 z1 (24)

The normal force from the moment transfer is thus:

Rz1 =
Mf 1

ez1  
(25)

Rz1 =
Mf 1

L −g1 z1 
(26)

This normal force causes shear in the member. For 
beams, the maximum shear is a combination of the shear 
due to the unbalanced force and the shear due to delivery of 

Equation 18 simplifies to:

M1 x( ) = −−− − −FV1em

Lg1
x

2

Lg1
x x FN1

Lbeam

4

Lg1

8

x2

2Lg1

⎛

⎝
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⎛

⎝
⎜

⎞

⎠
⎟

⎞

⎠
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 (21)

Nonuniform distributions of transfer of the shear force FV 
from the gusset to the beam are also admissible, including 
distributions that minimize or eliminate the local moment 
effect MCh(x) − MFV(x). However, the authors have found 
such approaches unnecessary for demonstrating beam ade-
quacy and, at times, uneconomical for the gusset weld.

A simplified equation can be used to provide a liberal 
estimate of the maximum brace-induced moment in the 
beam:

 
M ≤max1

FV1em

8
+ − −FN1

Lbeam

4

Lg1

8
+ MM

⎛
⎝⎜

⎞
⎠⎟  

(22)

where MM is the member moment neglecting brace forces 
(typically due to gravity). This equation simplifies the deter-
mination of moment, providing a liberal upper bound by 
combining two maxima: the beam moment corresponding 
to the local shear, Mf1/8, which occurs at the gusset quar-
ter point, and the midspan moment due to the unbalanced 
normal force (the second term) and any other beam loading, 
MM. (The idealization of the unbalanced normal force as a 
point load rather than distributed over the gusset length also 
slightly overestimates the moment.) For the typical braced-
frame case (with forces as shown in Figures 9 and 10), the 
moments from the two gussets are additive, with MM being 
added only once.

The first term in Equation 22, Mf1/8, is a local effect 
of the connection geometry and is typically small, corre-
sponding to a small eccentricity for the axial force in the 
beam (which is typically FV1/4 at the gusset quarter point).

Column Moment

The column is not required to span to resist the unbal-
anced brace forces. The column moment in the connection 
region for the Uniform Stress Method is similar to that from 
Equation 22:

 
Mmax1

FV1em

8
+≤ MM

 
(23)

The effect of any moment MBm on the member moment is 
captured in the term MM, conservatively taken at its full 
value at the quarter point (where the effect of FV is at its 
maximum).

The column moment is typically permitted to be neglected 
in capacity-design calculations for seismic loads per AISC 
Seismic Provisions D1.4a (AISC, 2016a). For other braced-
frame cases this moment is typically very small. The design 
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the chevron moment. The maximum shear is given by the 
following equation:

 Vmc1 =Vma1 + Rz1 (27)

The shear outside of the connection region, Vma1, is due to 
net normal force, FN1, and the member shear from gravity 
or other sources, VM:

 
Vma1 =

1

2
FN1 +VM

 
(28)

The shear VM is typically zero adjacent to (and within) the 
connection region for beams.

If the gusset is long enough, the total connection shear 
Vmc may be set less than or equal to the design shear strength 
of the member in order to preclude the need for shear rein-
forcement. For a given gusset length, the maximum moment 
transfer can be achieved by the highest concentration of 
stress at the ends. For a minimum gusset length, stiffeners 
at the gusset edges may be used to create a moment arm 

Fig. 16. Brace-induced shear in pin-end beam with Concentrated Stress Method.

Fig. 15. Stress distribution for the Concentrated Stress Method.
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This length is minimized by taking the maximum normal 
force Rz1 that the member can resist based on its effective 
shear strength per Equation 30.

Considering combined shear and tension in the gusset, 
the minimum gusset thickness corresponding to the mini-
mum length selected using Equation 34 and the maximum 
normal force Rz1 (equal to Vef1) is determined using the von 
Mises yield criterion, with shear stress over the full gusset 
length and the moment delivered by a force couple.

A gusset that satisfies this criterion is required:

 
tg1

FV1

v 0ϕ ϕ −.6Fy Lg1

2
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t Fy Lg1 ez1( )
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which is equivalent to:
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(36)

The center zone may be similarly examined, although 
generally this zone is much less stressed:
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which is equivalent to:
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(38)

If the required gusset thickness is excessive, a longer gus-
set may be employed. The gusset length required for a given 
gusset thickness is the root of a fourth-power polynomial, 
for which various solution methods are available, including 
trial-and-error and computer solvers. A closed-form solu-
tion may also be derived using Ferrari’s formula (Euler, 
1765). A simple approximate formula can be obtained, 
however, if the shear, FV1, is neglected and Rz1 is set equal 
to Vef1:

 
Lg1 >

Mf 1

Vef 1
+

Vef 1

t ϕg1 tFy  
(39)

As in the design example, a length slightly greater than that 
indicated by Equation 39 is generally satisfactory.

Because of the complexity of the equations for web crip-
pling, that limit state is not integrated into the equations 
for minimum gusset length but may be evaluated after the 
gusset length is determined, as shown in the subsequent 
section.

equal to the gusset length Lg1, similar to a moment connec-
tion in which beam flanges deliver moment to the face of a 
column. For the more typical chevron-moment transfer via 
the gusset plate, the concentrated stress may be limited by 
web local yielding, web crippling, or the gusset yielding.

If the gusset length is minimized (without stiffeners), 
the concentrated stress will be maximized such that the 
full member shear strength is utilized. Unlike the Uniform 
Stress Method, in the Concentrated Stress Method the max-
imum member shear is maintained over a significant por-
tion of the connection length, and thus (for beams) occurs 
at locations that also have shear induced by the unbalanced 
normal force from braces. Considering that some of the 
shear strength is utilized in resisting this unbalanced force, 
the remaining member shear strength that can be utilized 
for the moment transfer is:

 Vef 1 = −ϕvVn Vma1 (29)

For designs with a gusset on the opposite flange, both the 
design shear strength (ϕVn) and the net shear outside the 
connection (Vma1 − Vma2) can be apportioned between the 
two gusset designs. This is addressed in a later section.

The Concentrated Stress Method is derived such that 
the maximum shear from Equation 26 does not exceed the 
effective shear strength from Equation 29:

 R ≤z1 Vef 1 (30)

The minimum gusset length possible corresponds to the 
use of stiffeners (flanges) to transfer the moment Mf1. Thus 
as z1 approaches zero, Equation 26 (combined with Equa-
tion 30) gives the minimum gusset length dimension:

 
L for z = 0g 11 =

Mf 1

Vef 1  
(31)

Without such stiffeners, there is a finite length of gusset 
z1 over which the force Rz1 is transferred to the beam. The 
minimum length z1 may be governed by the limit states of 
web local yielding, web crippling, or yielding of the gusset. 
For web local yielding, AISC Specification Equation J10-2 
(AISC, 2016b) can be rearranged to solve for the minimum 
bearing length z1:

 
z −≥1

Rz1

wwFϕ ytw
5k

 
(32)

The corresponding minimum gusset length based on the 
web local yielding limit state is:

 Lg1 ez1 +≥ z1 (33)

Combining Equations 24, 32, and 33:

 
Lg1

M f 1

R ϕz1
+ −≥ Rz1

wFytw
5k

 
(34)
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Gussets Longer than the Minimum Length

In many cases, the gusset length will exceed the minimum 
from Equation 34, due to design considerations such as the 
required gusset thickness or the brace-to-gusset attach-
ment. For gussets longer than the minimum, the designer 
has some flexibility in selecting a stress distribution that 
transfers the moment. Maximizing the length z decreases 
the moment arm and thus increases the force to be resisted; 
it also leaves less weld length for the forces that are resisted 
in the center zone. The authors have found that the total 
weld volume tends to be minimized by minimizing the 
length z1 for optimized weld lengths and sizes. However, in 
many cases, the weld size in the center zone is controlled 
by a minimum weld size, or a proportioning requirement to 
ensure deformation compatibility is used to size the center-
zone weld or the minimum length for z1; in such cases, 
maximizing the length z1 may be more economical.

The minimum length z1 is determined considering web 
local yielding, web crippling, and gusset yielding, consid-
ering the normal force Rz1 acting over the length z1 (and 
combined with a shearing force for the gusset evaluation). 
The force Rz1 corresponding to the length z1 is determined 
by Equation 26 and is bounded by Equation 30.

Considering web local yielding, the minimum length z1 
is:

 
z ≥ −−−1
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(40)

The von Mises yield criterion is used to determine the 
minimum length z1 that, for the design loads and a given 
gusset thickness and length, will result in effective stresses 
at the yield limit in the gusset. The shear stress is due to FV1 
and the normal stress is due to the moment Mf1. The thick-
ness should satisfy Equation 36. The length z1 correspond-
ing to the gusset length and thickness selected is obtained 
by combining Equations 24, 26, and 36:
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Considering web crippling, the minimum length z1 can be 
determined by rearranging AISC Specification Equation 
J10-4:
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(42)

Due to the number of terms of Equation  42, it is con-
venient to use the maximum value of Rz1 = Vef1 per Equa-
tion 30 rather than solving for z1 using Equations 26 and 
42. Alternatively, web crippling can be evaluated using Rz1 

corresponding to the larger of the values from Equations 
40 and 41.

The minimum value of z1 is the largest of the values from 
Equations 40, 41, and 42. Larger values of z1 may be used up 
to a maximum value of z1 limited by the minimum moment 
arm corresponding to the maximum transverse force:

 
z ≤ −1 Lg1

Mf 1

Vef  (43)

Above this value of z1, the length of the moment arm ez 
is insufficient and the transverse force required to transmit 
the moment will exceed Vef. If this maximum value is nega-
tive the gusset is too short to transmit the moment regard-
less of how concentrated the force delivery can be.

In principle, the maximum value of z1 may also be lim-
ited by stresses in the center region. Use of the additional 
bearing length of 5k (as opposed to 2.5k) in Equation  40 
distributes some of the force Rz1 into the center region. For 
cases with high unbalanced load (or very small dimension 
ez), 2.5k may be used in Equation 40, or the following eval-
uation can be made based on the total transverse force Rz1 + 
FN1 acting on a length Lg1 − z1:

 
z ≤ −1 Lg1

Rz1 + FN1

wFϕ ytw
+ 5k

 
(44)

Similarly, if the normal force FN1 is large (or the center 
zone is very short), the gusset stress in the center region 
should also be considered. Using the von Misses yield crite-
rion gives this maximum:
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(45)

Concentrated Stress Method Validation

Richards et al. (2018) analyzed a number of braced-frame 
beams using finite element models and compared inter-
nal forces with those obtained from the Uniform Stress 
Method and the Concentrated Stress Method (as presented 
by Sabelli and Arber, 2017). Figure  17 shows the results 
of one such analysis (from Figure  3.32 from Richards et 
al.). The finite element analysis results (FE) are shown 
along with the shears determined using the Uniform Stress 
Method (USM) and the Concentrated Stress Method (CSM, 
using the modified method as presented in this paper); the 
beam shear strength, ϕVn, is also indicated. The values of 
maximum shear are reasonably consistent between the 
finite element analysis and the Concentrated Stress Method 
for this example, and while the total shear in the finite 
element model is less than the beam shear capacity, the 
finite element analysis indicated local yielding in the web. 
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The beam shear in the center region is:

V1 x( ) = −Rz1 +
FN1

Lg1
x
   

for |x| ≤ Lg1/2 − z1

 

(46)

In the z1 region, the beam shear is:

V1 x( ) = − −Rz1
Lg1

2z1

x

z1
+ FN1

2

x

x
⎛
⎝

⎞
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   for |x| ≥ Lg1/2 − z1 

(47)

Similar to the Uniform Stress Method, the distributed 
moment MFV may be assumed to be transferred over the 
length Lg1 using Equation 19. The brace-induced moment 
in the beam is:

M1(x) = − − − −Rz1x + MFV1

Lg1
x FN1

Lbeam

4

Lg1

8

x2

2Lg1

⎛
⎝⎜

⎞
⎠⎟   

   for |x| ≤ Lg1/2 − z1 

(48)

Similar to the Uniform Stress Method, the two equal and 
opposing effects of the applied force parallel to the member 
axis, FV1, are included in Equation 48: the transverse stress 
resulting from MCh, which causes member shear in addi-
tion to moment, and the distributed moment corresponding 
to MFV, which does not affect the shear. The shape of the 
shear diagram in the Concentrated Stress Method results in 
a somewhat smaller moment within the connection region 
than that corresponding to the Uniform Stress Method.

A liberal estimate may be made by computing the  
connection-induced moment and combining with the mid-
span moment due to overall beam flexure:

Nevertheless, the point of maximum shear is not identical 
between the finite element analysis and the Concentrated 
Stress Method, indicating that the Concentrated Stress 
Method, while useful for design, is not a perfect representa-
tion of the internal stresses.

It should be noted that both Richards et al. (2018) and 
Hadad and Fortney (2020) found that the Uniform Stress 
Method is generally representative of the beam shear at 
levels of loading that do not result in web shear yielding. 
At higher levels of loading, the work of Richards et al. 
(2018) indicates adequate performance of gussets meeting 
the minimum required length for the Concentrated Stress 
Method and exceeding the length required for the Uniform 
Stress Method. Additional comparisons of finite-element 
analyses from Richards et al. with the two design models 
are presented in Sabelli et al. (2020).

Moment

Shear, such as shown in the three analyses represented in 
Figure  17, implies moment. The authors do not propose 
evaluation of the member moment within the connection 
region as necessary but present the equations for moment to 
facilitate understanding of the Concentrated Stress Method. 
Hadad and Fortney (2020) show that in finite element anal-
yses, the beam moments are substantially lower than those 
calculated using the Uniform Stress Method.

Beam Moment

The beam moment is the combination of the integral of the 
beam shear and the distributed moment MFV (Equation 19). 

Fig. 17. Concentrated Stress Method (CSM) and Uniform Stress Method (USM) analysis of beam from Richards et al. (2018).
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The connection-induced moment due to MCh never 
exceeds MCh/8 (the value for z1 = Lg1/2, which corresponds 
to the Uniform Stress Method distribution). The moment 
is additive with the moment from gusset 2 for the typical 
braced-frame case.

Column Moment

Similar methods can be applied to calculate moment in the 
column within the connection region. Column moments 
due to frame behavior, which reverse over the connection 
depth, are typically additive to the effect of MCh.
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(50)

The effect of any moment MBm on the member moment is 
captured in the term MM, conservatively taken at its full 
value. Similar to the beam moment, the column moment 
due to the chevron effect tends to be small.

COMBINATION OF FORCES  
FOR TWO GUSSET PLATES

The member forces derived are for braces on one side with 
opposite forces (one brace in tension and the other in com-
pression). These forces may be combined with gravity-
induced forces and with shear due to flexural restraint for 
frames with moment connections. While the diagrams show 
the left brace in tension and the right brace in compression, 
forces corresponding to the opposite case are easily deter-
mined by using negative values for the brace forces.

For a configuration with braces on both sides of the 
member (such as a two-story X-configuration in a beam), 
brace-induced shears and moments will be additive for the 
typical case in which the story shears are in the same direc-
tion. The effective web shear resistance may be apportioned 
between the two gussets, considering the relative magni-
tudes of their moments, Mf, to permit independent design 
of the two gussets:

 
Vef 1 =

Mf 1

MTot
VefTot

 
(51)

and

 
Vef 2 =

Mf 2

MTot
VefTot

 
(52)

where

 MTot = Mf 1 + Mf 2 (53)

Other methods of apportionment are admissible, but this 
method allows for design of the gusset connections based 
on member forces established prior to gusset design and 
without additional interdependence.

Uniform Stress Method

In the Uniform Stress Method, the full member shear 
strength generally may be utilized:

 VefTot = vVn (54)

Gusset plates may be of different lengths, but for simplic-
ity, they may be set to be equal. If equal-length gussets are 
used (Lg1 = Lg2), Equation 15 for the minimum gusset-plate 
length to preclude the need for reinforcement can be modi-
fied thus:

 
L ≥g

2MTot

VefTot  
(55)

Concentrated Stress Method

In the Concentrated Stress Method, the effective beam 
shear strength is reduced:

 
VefTot = ϕ − − −vVn

FN1

2

FN 2

2
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(56)

If equal-length gussets are used, Equation 34 for the 
minimum gusset-plate length to preclude the need for rein-
forcement can be modified thus:

 
Lg
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wFytw
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(57)

Similarly, Equation 39 based on gusset yielding can be 
modified thus:

 
Lg1 >

MTot

VefTot
+

VefTot

t ϕϕg1 tFy  
(58)

MEMBER SELECTION

The procedures described earlier allow for the design of 
a connection based on design forces and the strength of 
a member already selected. Economy in steel construc-
tion can often be achieved by consideration of connection 
requirements in member selection. Equations for required 
beam strength, rather than required gusset length, can be 
derived from the methods presented. Fortney and Thornton 
(2015) suggest a preliminary assumption of a gusset length 
of one-sixth of the beam span for chevron connections; this 
value can be used to facilitate member selection.
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reinforcement, albeit with possible moderate adjustment in 
gusset length. (Use of 75% of the value from Equation 62 
requires ez1∼qLg1; use of 60% requires ez1∼yLg1.)

GUSSET AND WELD DESIGN

The stress distributions assumed in the Uniform Stress 
Method and the Concentrated Stress Method impose dif-
ferent demands on gusset plates and welds. The design of 
those elements should be compatible with each other (and 
with the checks on member local limit states, such as web 
local yielding, web crippling, and panel-zone shear), or the 
connection may not be able to resist the applied forces. For 
example, if the design for local limit states is based on the 
Uniform Stress Method, but the gusset thickness is sized 
using the optimized plastic stress method (which is implicit 
in the interaction Equation 9-1 in the AISC Steel Construc-
tion Manual), the member may be subject to a combina-
tion of web local yielding and gusset plate yielding prior to 
developing the required strength. It is recommended that 
the method used for member local limit states be carried 
through the design of the gusset and the weld.

Gusset Design: Section Parallel to Member Axis

Uniform Stress Method

For the Uniform Stress Method, the gusset section at the 
interface with the flange can be evaluated using an interac-
tion method such as the von Mises yield criterion and solv-
ing for the required thickness:
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(63)

Concentrated Stress Method

For the Concentrated Stress Method, the gusset section at 
the interface with the flange is implicitly designed by use of 
a length z conforming to Equations 36 and 38.

Gusset Design: Mid-Length Transverse Section

Statics require that certain forces be transferred across the 
midpoint of the gusset. Figure 18 shows free-body diagrams 
of half of a gusset for both the Uniform Stress Method (a) 
and the Concentrated Stress Method (b).

The normal force on the gusset transverse section (i.e., 
the force parallel to the member axis) for both models is:

 
Ng1 = γ−1

2
FV1 F1,1 cos 1,1

 
(64)

The chevron shear at the connection is due mainly to 
the chevron moment, Mch, which is proportional to the 
eccentricity, em, typically half the member depth. Selection 
of a shallower member reduces the eccentricity and thus 
reduces the chevron shear. Because the shear capacity is 
also proportional to the depth, the member depth appears in 
both the demand and capacity terms, and the required web 
thickness is not a function of member depth.

Uniform Stress Method

Using the Uniform Stress Method equation for minimum 
gusset length for a given member strength (Equation 15), 
the minimum shear strength is

vVn =ϕ ϕv 0.6Fydmtw (59)

vVn
2Mf 1

Lg1
+≥ϕ

2Mf 2

Lg2  
(60)

vVn
FV1dm

Lg1
+≥ϕ FV 2dm

Lg2  
(61)

Note that the member depth appears both in the demand, 
Mf1, and in the resistance, ϕVn, and thus cancels out in 
Equation 62 for the minimum member web thickness:

 
t ≥w

FV1
Lg1

+ FV 2
Lg2

v 0ϕ .6Fy  
(62)

For beams or columns with small moments due to unbal-
anced normal forces, a shallow member meeting this 
requirement may be economical. Note that the optimal gus-
set length may be a function of member depth.

Concentrated Stress Method

Use of a member with web thickness less than that required 
by Equation  62 necessitates either reinforcement of the 
web or use of a greater moment arm to deliver the moment 
Mf1 than is assumed in the Uniform Stress Method (such 
as ez1 in the Concentrated Stress Method). There is not a 
corresponding simple equation for minimum web thickness 
using the Concentrated Stress Method. However, the mini-
mum gusset length based on beam shear strength with z1 = 
0 (Equation 31) represents a limiting value. This minimum 
gusset length corresponds to a moment arm ez1 equal to Lg1 
(rather than 2Lg1, as corresponds to the Uniform Stress 
Method and Equation 62), and thus, if there are no other 
member shear demands to consider, the required web thick-
ness for this limiting case is half of that from Equation 62. 
A web thickness of 60% to 75% of that given by Equation 62 
(based on an assumed gusset length) generally permits use 
of the Concentrated Stress Method without the need for web 
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which is equivalent to:

 
Ng1 = −γ γ1

2
F1,2 cos 1,1 F1,1 cos 1,2( )

 
(65)

Uniform Stress Method

The shear on this gusset section transverse to member axis 
(for the Uniform Stress Method) is:

 
Vg1 = F1,1 sin 1,1
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2  
(66)

The gusset moment (for the Uniform Stress Method) is:
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which simplifies to:
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Concentrated Stress Method

The gusset shear transverse to member (for the Concen-
trated Stress Method) is:

 
Vg1 = −γF1,1 sin 1,1 Rz1 +

FN1
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(69)

The gusset moment (for the Concentrated Stress Method) 
is:
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which simplifies to:

 
Mg1 = Ng1 em + −
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(71)

Note that the terms related to Mf1 and FV1 cancel out in 
both Equations 68 and 71. Thus, the gusset moment is only 
due to the unequal brace force components transverse to the 
member axis (resulting in an unbalanced transverse force 
FN1) and to unequal brace force components parallel to the 
member axis (resulting in a force transfer Ng1 from one half 
of the gusset to the other), with those two effects offsetting 
each other.

The gusset should be evaluated for the interaction of 
these shear, normal, and moment forces. This may be done 
using von Mises yield criteria or other methods as discussed 
in the AISC Steel Construction Manual (AISC, 2017).

Gusset Design: Diagonal Section (Concentrated 
Stress Method)

Brace-to-gusset connections are typically evaluated for 
the limit state of block shear without consideration of the 
subsequent load path through the gusset. This may not 

 (a) Uniform Stress Method (b) Concentrated Stress Method

Fig. 18. Free-body diagrams of half gusset.
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Note that this length is somewhat greater than the length 
of one of the shear areas used for the block-shear rupture 
check in the gusset plate. In some cases, a simplified check 
with that portion of the block-shear area suffices.

The forces acting to the left of that section are:

 
FX crit =

Xcrit

Lg
FV

 
(77)

If Xcrit is less than or equal to z:

FYcrit =
Xcrit

z
Rz

 
(78)

ecrit =
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2  
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If Xcrit is greater than z1:

 
FYcrit = Rz + FN

X −crit z

Lg 2− z  
(81)

Note that on one side of the gusset, the two terms of Equa-
tion 81 will be additive; that is the more critical condition.

ecrit =
Rz Xcrit

z
2( ) +− FN

X −crit z( )2
2 L −g 2z( )

FYcrit  
(82)

present any significant inconsistency for the Uniform Stress 
Method, which assumes a uniform stress over each half of 
the gusset, but may for the Concentrated Stress Method, 
in which high stresses are assumed at the gusset zones z1. 
In order to ensure that the gusset has sufficient strength to 
transfer the force Rz1 to the region z1 in the gusset-to-beam 
connection, the gusset should be evaluated along a diagonal 
section, as shown in Figure 19. That section is aligned with 
the outside shear area used in the block-shear calculation 
and projected to the beam–gusset interface.

The intersection of the diagonal section with the gusset 
edge occurs at a point defined by the dimension Xcrit:

 
Xcrit = − −

Lg

2 γ γ
em

tan

W

2sin  
(72)

thus,

 
Xcrit = −

Lg

γ
dm cos +γ W

2sin2  
(73)

The length of the section is determined using the dimen-
sions indicated in Figure 19:

Dclip
sin γ

= γ − −Xcrit tan dg Yclip( )
 

(74)

Dcrit = −Xcrit
cos γ

Dclip
 

(75)

Dcrit = − γγXcrit cos + dg Yclip( )sin  (76)

Fig. 19. Critical gusset section.
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The forces are transformed to act on the diagonal section:

Vcrit = γ γFXcrit cos + FYcrit sin  (84)

Ncrit = γ γ−FXcrit sin FYcrit cos  (85)

The gusset should be evaluated for these forces using an 
interaction method such as the von Mises yield criterion or 
interaction Equation  9-1 in the AISC Steel Construction 
Manual.

Weld Design

The design of welds should provide adequate strength to 
transfer forces across the gusset-to-beam interface (FV, 
FN, and Mf) and adequate ductility to achieve the assumed 
stress distribution. The weld size for a double fillet need 
not exceed s of the gusset thickness (for an adequately 
sized gusset), as discussed for single-plate connections in 
the AISC Steel Construction Manual (2017); this weld size 
permits yielding of the gusset before weld rupture. (This 
proportioning rule implicitly accepts use of a resistance 
factor greater than 0.75.) Weld sizes greater than s of the 
gusset thickness are not effective in developing their full 
force because they are limited by the gusset capacity (and 
thus also indicate an inadequate gusset thickness); however, 
increasing a weld that requires less than s of the gusset 
thickness up to this value allows for yielding of the gusset 
before weld rupture and thus permits stress redistribution.

Uniform Stress Method

Under the Uniform Stress Method, the weld adequacy 
should be evaluated using methods from the AISC Steel 
Construction Manual, such as the instantaneous center of 
rotation, which represents both weld strength and the limits 
on weld ductility. As a minimum, the weld should be large 
enough to resist the local stress consistent with the Uniform 
Stress Method. The required strength per unit length is:
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The AISC Seismic Design Manual (2018) utilizes the 
25% increase related to gussets at beam-column-brace con-
nections to promote ductility per the AISC Steel Construc-
tion Manual and Hewitt and Thornton (2004). Hadad and 
Fortney (2020) determined a ratio of maximum to average 
stress of approximately 3 (including a standard deviation) 
for weld stresses in their finite element analyses of chevron 
connections. They suggest that the factor of 3 be applied in 

the design of the weld (which need not exceed the size cor-
responding to the gusset-plate strength).

Concentrated Stress Method

The Concentrated Stress Method inherently addresses non-
uniform stress in the gusset and may indicate stresses in the 
z region much higher than indicated by the Uniform Stress 
Method. As such, the increase to address nonuniform stress 
is not proposed for this method.

For designs employing the Concentrated Stress Method, 
stresses may redistribute along the weld due to beam inelas-
ticity. As such, the stress distribution corresponding to the 
instantaneous center of rotation method may be impossible 
to achieve with the beam web strength provided. The weld 
in the z1 zones should be evaluated for the force normal to 
the member axis, Rz1. For welds in the center region (Lg1 − 
2z1), the normal force is FN1. The shear force (parallel to 
the member axis) in both regions may be taken as FV1/Lg1. 
Often the weld size required in the z regions will be sub-
stantially greater than that required in the center region.

To address strain compatibility of the linear weld group 
consisting of a larger weld size in the z regions and a 
smaller size in the center, two measures are proposed. First, 
the weld size in the z region may be sized to develop the 
strength of the gusset plate (e.g., a double fillet weld of at 
least s of the gusset thickness); this ensures that the defor-
mation required of that zone of the joint may be provided 
by the gusset, and thus the full strength of both that region 
and the center region can be achieved.

Second, the two welds may be proportioned so that their 
strains are consistent with the design strength utilized. This 
may be done by analyzing the deformation of the differ-
ent weld elements, as in the instantaneous center of rota-
tion method. The authors have found satisfactory designs 
by proportioning the weld group with the weld in the center 
zone being s of the size of the welds in the z region and 
then extending the larger z-region weld to the 4 point of 
the gusset at each end. It is expected that, with more study, 
those minima could be reduced or eliminated. Alterna-
tively, the weld size selected for the z region may be used 
for the entire gusset length.

PROPOSED DESIGN PROCEDURE

The design of chevron and full-height gussets may be gov-
erned by design considerations other than the local forces 
addressed in this paper. In such cases, the material effi-
ciency of the Concentrated Stress Method cannot be real-
ized, and the Uniform Stress Method (which is simpler 
to implement) may be convenient. The following design 
procedure may be used to minimize the complexity of the 
required calculations:
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length and this minimum length. If this length 
is excessive, consider reinforcing the member 
web (or using a different member).

3.1.2. Determine the required gusset thickness per 
Equations 36 and 38. Revise gusset length if 
necessary.

3.2. Analyze connection and check member

3.2.1. Determine the length of the zone z (Equa-
tions 40, 41, and 42). Use the maximum length 
from these three equations.

3.2.2. Determine the concentrated force Rz (Equa - 
tion 26).

3.2.3. Determine Vmc (Equation 27); check member 
shear.

3.3. Design gusset.

3.3.1. Check the gusset section at the interface 
with the flange in the center zone. (Gusset 
horizontal section at the interface with the 
flange in the z zone is implicitly checked by 
the required thickness calculation.)

3.3.2. Check the transverse gusset section for the 
forces from Equations  65, 69, and 71. (Any 
procedure in the AISC Manual may be used.)

3.3.3. Check the diagonal gusset section for the 
forces from Equations 80 (or 83), 84, and 85. 
(Any procedure in the AISC Manual may be 
used.)

3.4 Design weld.

3.4.1. Design zone z weld.

3.4.2. Design center-zone weld.

Note that this recommended design procedure implicitly 
checks member shear in the connection region for both 
the Uniform Stress Method and the Concentrated Stress 
Method. It does not include a check of the member for 
combined axial and bending forces within the connection 
region based on the authors’ experience and judgment.

1. Establish parameters.

1.1 Determine the forces FV, FN, and Mf, acting on the 
gusset-member interface.

1.2 Determine the optimal gusset-plate length based 
on the brace-to-gusset connection (and any other 
considerations). If desired, determine the optimal 
gusset thickness.

1.3 For connections with gussets on opposite flanges, 
determine shear-strength apportionment for the two 
gussets per Equations 51 and 52.

2. Try the Uniform Stress Method.

2.1. Check if the optimal gusset-plate length exceeds the 
minimum length required for the Uniform Stress 
Method using Equation 15 or 55. If so:

2.2. Check member.

2.2.1. Determine Vmc (Equation 14); check shear.

2.2.2. Evaluate web local yielding and web crippling 
Equation 17.

2.3. Design gusset.

2.3.1. Design the gusset section parallel to the 
member axis using the Uniform Stress Method 
Equation 63.

2.3.2. Check the transverse gusset section for the 
forces from Equations 65, 66, and 68. (Any 
procedure in the AISC Manual may be used.)

2.4. Design the gusset–member interface weld. (Design 
for peak stress using the Uniform Stress Method 
distribution; apply appropriate ductility factor or size 
to develop the gusset plate strength.)

3. If the Uniform Stress Method design is unsatisfactory, 
try the Concentrated Stress Method.

3.1 Select gusset length.

3.1.1. Check minimum length required for the 
Concentrated Stress Method (Equation  34). 
Use the maximum of the optimal gusset-plate 
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DESIGN EXAMPLE

The connection shown in Figure 20 will be designed following the recommended procedure, proceeding from the Uniform 
Stress Method to the Concentrated Stress Method developed in this study to eliminate reinforcement.

Given:

The brace design forces are presented in Table 1. All brace angles are 50.2° from horizontal. To facilitate subsequent calcula-
tions, the shear and normal components of the brace forces are determined and presented in the table.

Both beam and gusset are Grade 50 material. The beam is a W24×94 (ϕVn = 375 kips; A=27.7 in.2; Z=254 in.4), 25 feet long. 
The workpoint is at the beam centerline:

em = dm

2
= 12.15 in. 

(8)

The beam moment due to loading other than from braces, MM, is 80 kip-ft.

Based on the brace-to-gusset connection (not shown), the minimum gusset length is 48 in. For the brace-to-gusset connection 
design, a w-in.-thick gusset is optimal, and the depth required is 21 in.

Fig. 20. Design example.

Table 1. Brace Forces

Brace Axial Force 
F

(kips)

Shear Component
F cos(γγ )

(kips)

Normal Component
F sin(γγ )
(kips)

F1,1 568 364 436

F1,2 653 418 502

F2,2 511 327 393

F2,1 588 376 451
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Solution:

Design of Gusset 1

1. Establish Parameters

Optimal gusset dimensions have been given. The forces acting on the flange from each of the gussets is shown in Table 2, 
which also shows the apportionment factors for beam effective shear strength.

2. Try the Uniform Stress Method

The minimum gusset length is determined from:

L ≥g
2MTot

VefTot

= 18,000 kip-in.

375 kips

= 96.1 in.  

(55)

For 48-in. gussets both above and below the beam, the Uniform Stress Method requires a web thickness of:

t ≥w

FV1
Lg1

+ FV 2
Lg2

v 0.6ϕ Fy

= FV1 + FV 2

v 0.6ϕ FyLg

= 782 kips+ 703 kips
(1.0)0.6 50 ksi( ) 48 in.( )

= 1.03 in.  

(62)

This would require a W24×250. (Using the same gusset length, a W21×248 or a W18×211 would also be suitable.) Alterna-
tively, an increase in effective shear strength of 96.1/48 = 2.0 could be achieved by a web doubler of w × 18 in.:

L ≥g
2MTot

VefTot

= 2MTot

vVnbeam + ϕϕ( )vVndoubler

=
2 18,000 kip-in.( )

375 kips+1.0 0.6( ) 0.75 in.( ) 18 in.( ) 50 ksi( )[ ]
= 46.2 in.  

(55)

Table 2. Connection Forces

Equation Gusset 1 Gusset 2
Combination  

(total or difference)

FV (i) (kips) 1 782 703 78.5

FN (i) (kips) 2 65.5 58.9 6.6

Mf (i) (kip-in.) 3 9500 8550 18000 

Vef (i)/VefTOT
51; 52 0.526 0.474 1.0
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The minimum extents of the doubler can be determined using Equation 13.

The Uniform Stress Method would require a 96-in. gusset without reinforcement, a much heavier beam, or significant rein-
forcement to permit a gusset on the order of the optimal 48-in. length. As none of these is desirable, the design will proceed 
with the Concentrated Stress Method.

3. Try the Concentrated Stress Method

For the Concentrated Stress Method, the effective shear strength, VefTOT, must be reduced considering the net unbalanced force:

VefTot = −−ϕvVn
FN1

2

FN 2

2

= −375 kips
6.6 kips

2
= 372 kips  

(56)

The lower gusset will be designed to utilize no more than 52.6% of the available member shear strength per Equation 51.

Vef 1 =
Mf 1

MTot
VefTot

= 9,500 kip-in.

18,000 kip-in.
372 kips( )

= 196 kips  

(51)

Minimum Gusset Length and Corresponding Thickness

Assuming (for preliminary design) that the transverse force Rz1 is equal to this effective shear strength, the minimum gusset 
length is:

Lg1 >
Mf 1

Vef 1
+ −

Vef 1

wFϕ ytw
5k

= −9,500 kip-in.

196 kips
+ 196 kips

1.0( ) 50 ksi( ) 0.515 in.( ) 5 1.38 in.( )

= 49.2 in.  

(34)

The approximate length that corresponds to a w-in. gusset is:

Lg1 >
Mf 1

Vef 1
+

Vef 1

tFϕ ytg1

= 9,500 kip-in.

196 kips
+ 196 kips

0.9( ) 50 ksi( ) 0.75 in.( )
= 54.3 in.  

(39)

As this length does not include the effect of the shear, a slightly larger value will be used, and the effect of shear addressed in 
the determination of the minimum length z1. A 56-in. effective gusset length will be investigated. (The length also results in an 
economical weld design, which is presented later in the example.) The detailed length is 58 in., recognizing that the weld will 
not extend to the very end of the gusset.
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The minimum bearing length z1 based on the limit states of web local yielding and web crippling is:

z −−−≥1
Lg1

2

Lg1
2

4

Mf 1

wFytw
5k

= −−−56.0 in.

2

56.0 in.( )2

4

9,500 kip-in.

1.0( ) 50 ksi( ) 0.515 in.( ) 5 1.38 in.( )

= 0.73 in.  

(40)

−≥1
Vef 1

n 0ϕ .80tw
2

tw

EFytf
1z

dm

3

tf

tw

1.5

= −196 kips

0.75( ) 0.80( ) 0.515 in.( )2

0.515 in.

29,000 ksi( ) 50 ksi( ) 0.875 in.( ) 1
24.3 in.

3

0.875 in.

0.515 in.

1.5

= −3.87 in.

⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

 

(42)

The low value from Equation 40 and the negative value from Equation 42 indicate that the force being developed, Rz, does not 
require a significant bearing length to satisfy the limit states of web local yielding and web crippling.

The minimum length z1 corresponding von Mises yield criterion for stresses in the gusset is obtained from Equation 41:

z1 = −

−

−
Lg1

2

Lg1
2

4

Mf 1
t

Fytg1( )2 FV1

v 0.6ϕ Lg1

2

= 56.0 in.

2

56.0 in.( )2
4

−−
9,500 kip-in.

0.9

50 − ksi( ) 0.75 in.( )[ ]2 782 kips
1.0( ) 0.6( ) 56 in.( )

2

= 7.38 in.

ϕ

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

 

(41)

The maximum length z1 is:

z1 L≤ −g1
Mf 1

Vef1

= −56.0 in.
9,500 kip-in.

196 kips

= 7.51 in.  

(43)

The value from Equation 41 will be used. The corresponding transverse force is:

Rz1 =
Mf 1

L −g1 z1

= 9,500 kip-in.

56.0 in. 7− .38 in.
= 195 kips  

(26)

The limit states of web local yielding, web crippling, and gusset combined tension and shear yielding are implicitly checked 
by the gusset-length selection and this length z1 determined above (Equations 40, 42, and 41). This value may also be used 
to check gusset stress using Equation 36; however, gusset stress is implicitly checked by the selection of a dimension z1 that 
complies with Equation 41.
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The beam shear is evaluated considering 52.6% of the shear due to the total unbalanced force:

Vmc1 =Vma1 + Rz1

=
M −f 1

MTot

FN1 FN 2

2
+ Rz1

= 0.526
6.6 kips

2
+ 195 kips( )

= 197 kips

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

 

(27)

Vmc1

vVϕ n
= 197 kips

375 kips

= ≤0.525 0.526 o.k.

This is consistent with the apportionment of available beam shear strength between the two gussets established in Table 2.

Beam Moment and Axial Force in Gusset Region

For completeness, the combined effects of the internal beam moment and axial force are evaluated. (The proposed design 
procedure does not include this evaluation.)

Although Equation 49 permits a more precise calculation of beam moment, the moment is typically small, and the upper-bound 
value is used here for convenience for gusset 2, as that design has not been performed. Adapting Equation 49 to include the 
effect of two gussets gives:

Mmax = − −
−MCh1

2

z1

Lg1

z1

Lg1

2

+ MCh2

2

z2

Lg2

z2

Lg2

2

+ FN1 FN 2( )Lbeam

4
+ MM

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

For gusset 1:

1

2

z1

Lg1

z1

Lg1

2

=− −1

2

7.38 in.

56.0 in.

7.38 in.

56.0 in.

2

= 0.0572

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

For gusset 2, the dimension z2 has not been determined. In this example (with Mf2 < Mf1), z2 could reasonably be assumed to 
be less than or equal to z1 if Lg2 = Lg1. The general limit is:

1

2

z2

Lg2

z2

Lg2

2
1

8
≤− ⎛⎝

⎞
⎠

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

Mmax 0.0572
9,500 kip-in.

12 in./ft
+≤

≤

0.125
8,550 kip-in.

12 in./ft
+

65.5 kips 58.9 kips−( ) 25 ft( )
4

+ 80 kip-ft

255 kip-ft

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

The axial force is conservatively taken as the maximum at the end of the connection region, assuming a symmetric distribution 
of collector forces:

Pu = −
FV1

2

FV 2

2

= −782 kips

2

703 kips

2
= 39.5 kips
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Assuming the section is fully braced at this location, the full section strength is used:

cPn = ϕϕ c AsFy

= 0.9( )(27.7 in.2)(50 ksi)
= 1,250 kips

bMn = ϕϕ bZFy

= 0.9( )(254 in.3)(50 ksi)
= 11,400 kip-in.

= 953 kip-ft.

Pu

cPϕ n
= 0.03

Mu

bMϕ n
= 0.27

The interaction check from AISC Specification Equation H1-1b is used:

1

2 ϕϕ
Pu

cPn
+ Mu

bMn
= 1

2
0.06( )+ 0.27

= 0.30 o.k.  

(from Spec. Eq. H1-1b)

Gusset Selection

A w-in.-thick, 21-in.-deep, and 58-in.-long (56-in. effective length) gusset will be investigated.

tg1 = 0.75 in.

dg1 = 21.0 in.

Lg1 = 56.0 in.

Gusset Check at Section Parallel to the Member Axis at Beam Flange

The Concentrated Stress Method implicitly checks the gusset over the lengths z1 for combined stresses in determining the 
minimum length z1 (Equation 41). For the center zone between the lengths z1, Equation 38 gives the interaction ratio:

FV1

v 0 ϕϕ .6Fytg1Lg1

2

+ FN1

tFy tg1 Lg1 2z1( )

2

= 782 kips

0.6 50 ksi( ) 0.75 in.( ) 56.0 in.( )

2

+ 65.5 kips

0.9( ) 50 ksi( ) 0.75 in.( ) 5 −6.0 in. 2 7.38 in.( )[ ]
2

= 0.622

⎡

⎣
⎢

⎤

⎦
⎥

⎧
⎨
⎩

⎫
⎬
⎭

 

(38)

Gusset Check at Mid-Length Transverse Section

The adequacy of the gusset depth is verified examining a section of the gusset transverse to the member axis. (See Figure 18.) 
The gusset force in direction of member is:

Ng1 = − γγ1

2
F1,2 cos 1,2 F1,1 cos 1,1( )

= −1

2
418 kips 364 kips( )

= 27 kips  

(65)
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The axial resistance of the gusset is:

tPn =ϕ 0.9Fy dg1tg1

= 0.9( ) 50 ksi( ) 21.0 in.( ) 0.75 in.( )
= 709 kips

The gusset moment is:

Mg1 = Ng1 em + − −
dg1

2

FN1

2

Lg1

4

z1

2

= − −27 kips( ) 12.15 in.+ 21.0 in.

2

65.5 kips

2

56 in.

4

7.38 in.

2
= 280 kip-in.

⎛
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(71)

The flexural resistance of the gusset is:

bMn =ϕ 0.9Fy
dg1

2 tg1

4

= 0.9 50 ksi( ) 21.0 in.( )2 0.75 in.( )
4

= 3,720 kip-in.

Gusset shear transverse to member:

Vg1 = −γF1,1 sin 1,1 Rz1 +
FN1

2

= −436 kips 195 kips+ 65.5 kips

2
= 274 kips  

(69)

The shear resistance is:

vVn =ϕ 1.00 0.60Fy( )dg1tg1

= 1.00 0.60( ) 50 ksi( ) 21.0 in.( ) 0.75 in.( )
= 473 kips

Using the von Mises interaction equation:

Mg1

tMn
+

Ng1

tP ϕϕϕ n

2

+
Vg1

vVn

2

= 280 kip-in.

3,720 kip-in.
+ 27 kips

709 kips

2

+ 274 kips

473 kips

2

= 0.590
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Gusset Check along Diagonal Section

The gusset will be checked along the critical diagonal section (Figure 19). The bolt gage, W, is 8 in. and the transverse dimen-
sion Yclip is 8.0 in.

Xcrit = −
Lg1

2

−

γ
dm cos +Wγ

2sin

= 56.0 in.

2

24.3 in.( )cos 50.2°( ) +8 in.

2sin 50.2°( )
= 12.7 in.  

(72)



ENGINEERING JOURNAL / FIRST QUARTER / 2021 / 75

This value is greater than z1.

The diagonal section length is:

D γγcrit = −Xcrit cos + dg1 Yclip( )sin
= 12.7 in.( )cos 50.2°( ) + −21.0 in. 8 in.( )sin 50.2°( )
= 18.1 in.  

(75)

The forces acting on the section are:

FX crit =
Xcrit

Lg1
FV1

= 12.7 in.

56.0 in.
782 kips( )

= 177 kips  

(77)

FYcrit = Rz1 + FN1
X −crit z1

L −g1 2z1

= 195 kips+ 65.5 kips( ) 1 −2.7 in. 7.38 in.

56.0 in. 2− 7.38 in.( )
= 204 kips  

(81)

ecrit =
Rz1 Xcrit

z1

2
+− FN1

X −crit z1( )2

2 L −g 2z1( )
FYcrit

=
195 kips( ) 19 −5 kips

7.38 in.
2

+ 65.5 kips( ) 12.7 − in. 7.38 in.( )2
2 56.0 in. 2 7− .38 in.( )[ ]

204 kips

= 8.72 in.

⎛
⎝
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⎛
⎝

⎞
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(82)

Mcrit = FYcrit ecrit
Dcrit cos

2
+ F− Xcrit

Dcrit sin

2

γ γ

= −204 kips( ) 8.72 in.
18.1 in.( )cos 50.2°( )

2
+ 177 kips( ) 18.1 in.( )sin 50.2°( )

2
= 1,825 kip-in.
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⎞
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(83)

V γ γcrit = FXcrit cos + FYcrit sin

= 270 kips  

(84)

Ncrit = γ−γFXcrit sin FYcrit cos

= 177 kips( )sin 50.2 −°( ) 204 kips( )cos 50.2°( )
= 5 kips  

(85)

The gusset is evaluated for these forces using the von Mises yield criterion:

4 Mcrit

tFytg1Dcrit
2 + Ncrit

tFytg1Dϕϕ ϕcrit

2

+ Vcrit

v 0.6Fytg1Dcrit

2

=
4 1,825 kip-in.( )

0.9( ) 50 ksi( ) 0.75 in.( ) 18.1 in.( )2 + 5 kips

0.9( ) 50 ksi( ) 0.75 in.( ) 18.1 in.( )

2

+ 270 kips

1.00 0.60( ) 50 ksi( ) 0.75 in.( ) 18.1 in.( )

2

= 0 ≤.94 1.0 o.k.
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Gusset Weld (z-Region)

The weld along the length z1 must deliver a normal force equal to Rz1; it must also deliver a shear force proportional to its length:

Nweld = Rz1
= 195 kips

Vweld =
z1
Lg
Fv1

= 7.38 in.

56.0 in.
782 kips( )

= 103 kips

The weld in this zone therefore resists a force at an angle:

Pu = Nweld
2 +Vweld2

= 195 kips( )2 + 103 kips( )2

= 221 kips

The angle θ is tan-1(195/103) = 62° from the weld axis. Using AISC Specification Equation J2-5:

P ≤ ϕu Rn

= θ

θ

ϕ

ϕ

n 0.6FEXX 1.0 + 0.5sin1.5( ) 2

2
wLw

w
Pu

n 0.6FEXX 1.0 + 0.5sin1.5( ) 2
2

2z1( )

w ≥

≥

221 kips

0.75( )0.6 70 ksi( ) 1.0 + 0.5sin1.5 62.2°( ) 2 7.38 in.( )
= 0.474 in.

⎡⎣ ⎤⎦

A double-sided 2-in. fillet weld will be used. The weld size need not exceed s of the gusset plate thickness:

w ≤ 5

8
tg1

= 5

8
0.75 in.( )

= 0.469 in.

This weld must include the z region; a 14-in. length will be used to extend to the gusset 4 points. Because this weld fully devel-
ops the gusset strength, deformation compatibility is inherently addressed.

Gusset Weld (Center Region)

The weld in the center region must be checked. The required strength is based on:

L − −g1 2z1 = 56.0 in. 2 7.38 in.( )
= 41.2 in.

Nweld = FN1

= 65.5 kips
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Vweld = FV1
Lg1 2− z1
Lg1

= 782 kips( ) 56.0 in. 2− 7.38 in.( )
56.0 in.

= 576 kips

Pu = Nweld
2 +Vweld2

= 65.5 kips( )2+ 576 kips( )2

= 579 kips

The angle θ is tan-1(65.5/576) = 6.5°. Using AISC Specification Equation J2-5:

w
Pu

n 0.6Fϕ
≥

θEXX 1.0 + 0.5sin1.5( ) 2
2

2 Lg1 2− z1( )

= 579 kips

0.75( )0.6 70 ksi( ) 1.0 + 0.5sin1.5 6.5°( ) 2 41.2 in.( )
= 0.310 in.

⎡⎣ ⎤⎦

A pair of the c-in. fillet welds will be used.

The weld group consisting of the z-region and center welds conforms to both of the deformation compatibility recommenda-
tions: the z-region welds develop the gusset strength and extend to the gusset 4 points, and the center region welds are s of 
the size of the welds in the z-regions.

Design Summary

Figure 21 shows the design based on the calculations above. The 2-in. fillet welds in the z-regions are presented as x-in. fillet 
welds over the c-in. full-length fillet welds.

A similar design is required for gusset 2. If the same method is followed, the beam shear resulting from the two gussets (each 
designed for a portion of Vef) combined with the net unbalanced load will not exceed the beam shear capacity.

Fig. 21. Gusset design.
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CONCLUSIONS

This study provides equations that can be used in the design 
of bracing connections to eliminate the need for web rein-
forcement. Recommendations are made for the selection 
of braced-frame beams and columns to facilitate connec-
tion design. The design method allows engineers to use the 
gusset plate to limit the shear demand on the member web. 
These equations can be used to assess the effects of mem-
ber depth and gusset length on the required member shear 
strength in order to optimize member selection and gusset 
design. The Concentrated Stress Method presented allows 
for significantly smaller gusset plates than the Uniform 
Stress Method for an unreinforced section. For cases in 
which the Uniform Stress Method requires an undesirably 
large gusset or the use of a web doubler, the Concentrated 
Stress Method may permit a more economical design.
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