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ABSTRACT

Recent literature has examined local shear forces in beams in chevron braced frames (Fortney and Thornton, 2015). Subsequently, design 
methods based on optimal stress distributions to address these shears were developed (Sabelli and Arber, 2017; Sabelli and Saxey, 2021). 
This paper extends those design methods to gusset connections at columns, utilizing the adaptability of the Uniform Force Method to facili-
tate design to reduce required member shear strength. The design model presented reduces the required member shear strength required, 
as compared to the conventional application of the Uniform Force Method. The model allows for redistribution of force from the beam inter-
face to the column interface using a “bypass method,” as well as utilizing the gusset plate as part of a moment connection using the “haunch 
method.” Finite element analyses are used to confirm the adequacy of a design employing these methods.

Keywords:  gusset plates, braced frames, truss connections.

INTRODUCTION

D esign of brace connections requires consideration 
of local forces induced in the surrounding framing 

members. Although the discussion of these forces initially 
focused on beam midspan connections (Fortney and Thorn-
ton, 2015), such forces also occur at beam-column-brace 
connections. These local forces are typically missed by 
analysis methods that neglect connection dimensions. Rich-
ards et al. (2018) studied midspan gussets; their finite ele-
ment analyses confirm the presence of these local forces, 
as well as redistribution of stresses similar to those pos-
ited by Sabelli and Arber (2017). [A design procedure for 
beam-to-column connections with full-height gussets based 
on such a stress redistribution is presented in Sabelli and 
Saxey (2021).]

The Uniform Force Method (UFM) (Thornton, 1991; 
Muir and Thornton, 2014; AISC, 2017) is commonly used 
to analyze forces at gusset-plate connections. It is a power-
ful tool that permits designers to proportion and optimize 
connections. This study presents an adaptation of the UFM 

specifically developed to allow the designer to proportion 
and analyze connections to reduce required member shear 
strength and thus to reduce the instances of connections 
requiring web doublers. Similar to the UFM as originally 
developed, the methods presented in this paper rely on 
the lower bound theorem as presented by Thornton (1984) 
for similar connections, demonstrating adequate strength 
through investigation of an advantageous load path in a 
ductile connection and examining forces at gusset edges.

This paper addresses the UFM and adds two options. To 
further optimize designs, a “bypass” method is developed 
that permits assigning more of the brace force to the col-
umn than is possible using the UFM. This approach rec-
ognizes that shear yielding of the beam does not constitute 
formation of a complete mechanism and that inelastic shear 
deformation of the beam web requires inelastic deformation 
of the column web or gusset. (Even inelastic deformation of 
both the beam web and column web does not constitute a 
complete mechanism, and additional strength can be mobi-
lized as is discussed in the bypass section.)

Additionally, a “haunch” method is developed, permit-
ting the use of the gusset as part of a moment-resisting con-
nection. Equations are presented for UFM forces; for UFM 
forces in combination with bypass forces; and for UFM, 
bypass, and haunch forces combined.

This paper begins with the derivation of design equa-
tions for the three methods, along with the combined force 
equations. For clarity, a summary table presents the equa-
tion numbers that apply for the design quantities for each 
method. Design examples are presented for each method. 
Finally, there is a brief presentation of validating finite ele-
ment analyses of one of the design examples.

Each of the methods presented (the adapted Uniform 
Force Method and the bypass method and haunch method 
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enhancements) depends on the lower-bound theorem to jus-
tify the use of a relatively simple design model. While the 
design model is not intended to produce forces matching 
those of more sophisticated analytical models, the methods 
are expected to result in designs with adequate strength. The 
finite element analyses performed confirm this strength. 
Additionally, the analyses produce force distributions simi-
lar to those determined using the design model.

This paper focuses exclusively on the design of braced-
frame-connections to achieve the required strength of each 
component for a defined set of forces. The design forces 
considered are brace axial forces, beam axial and shear 
forces, and (for the haunch method) beam moment. Inelas-
tic deformation demands related to brace buckling are not 
considered; as such, the methods are appropriate for wind 
design and for the design of buckling-restrained braced 
frames but are not sufficient for providing the required duc-
tility of special concentrically braced frames.

Member Shear Checks

The presence of local shears in beam and column webs is 
necessary for static equilibrium. All beam-column-brace 
(and truss) connections must resist these forces, regardless 
of the connection design and analysis techniques used. The 
shear is due to both the force normal to the member axis 
and to the moment at the gusset-flange interface. While dif-
ferent analysis methods assign different force distributions, 
there is no method that eliminates both normal force and 
moment in connections of members with non-zero depth.

For gusset-plate connections, local member shear may be 

at a maximum in either of two locations for each member 
(considering the column above and below the beam as sepa-
rate members). The maximum member shear may be due to 
the total normal force, which is fully delivered by the gusset 
at the section nearest the workpoint. For the column, one 
such section is just above the beam top flange in Figure 1 
(section C1); for the beam, it is at the beam-to-column con-
nection (section B1). Additionally, moments at the gusset-
to-column or gusset-to-beam interface may be large enough 
such that the associated shear in the member at or near the 
mid-length of the gusset (sections C2 and B2) may exceed 
the value at C1 and B1.

The member shear checks at C1 and B1 are straightfor-
ward. These are simply the normal forces transverse to the 
member axis delivered by the gussets (horizontal forces for 
the column; vertical forces for the beam). In the case of a 
beam such as shown in Figure 1, the transverse forces from 
the gusset above and below are additive. Similarly, column-
shear forces from gussets on opposite column flanges are 
additive.

At sections C2 and B2, the member shear is a function of 
both the portion of the normal force delivered between the 
gusset end and the section in question, and the moment on 
the gusset-flange interface. The combined effects of flexure 
and normal force can be analyzed using a number of models, 
three of which are shown in Figure 2. The elastic and (con-
ventional) plastic distributions are adapted from the AISC 
Steel Construction Manual (2017), hereafter referred to as 
the AISC Manual. The third method, the “concentrated 
stress method,” is described by Sabelli and Saxey (2021). 

Fig. 1.  Sections for shear check in beam and column.



ENGINEERING JOURNAL / FOURTH QUARTER / 2021 / 225

[The results from the concentrated stress method match the 
“optimized plastic method” from the AISC Manual (2017) 
for cases in which the section is fully plasticized.] In each 
diagram the flexural stresses are sufficiently large so that 
the shear at an interior section (B2) is greater than the shear 
at B1. Note that the precise location of the section B2 var-
ies among the stress-distribution models in Figure 2. For a 
given combination of moment and normal force, the length 
required for a limit on the maximum stress differs for each 
model.

In this paper the conventional plastic distribution is used. 
In that distribution, the sections B2 and C2 are always at the 
gusset mid-length, which simplifies the equations derived 
based on the moments at the gusset interfaces. However, 
the concentrated stress method requires a lower force to 
transmit the same moment over the same length and thus 
can provide for a more efficient design (Sabelli and Saxey, 
2021).

Using conventional plastic distribution, the shear at sec-
tion B2 or C2 is:

	
Vmid =

M

e
+ N

2 �
(1)

where
L	 = gusset length, in.

M	= �moment at gusset interface to beam or column 
flange, kip-in.

N	 = normal force on beam or column flange, kips

e	 = �eccentricity in force couple resisting moment M 
equal to half the gusset length L, in.

This shear loading from Equation 1 must be combined with 
additional shear that may be present in the member.

Sign Conventions

Figure 3 shows a typical brace-connection diagram. Sub-
scripts are employed in some equations to distinguish 
actions and dimensions related to one gusset or one brace 
from another. Gussets are designated 1 and 2. Dimensions 
and forces associated with each gusset are given the sub-
script 1 or 2.

Braces have two subscripts. The first pertains to which 
side of the column the gusset connects to (1 or 2). The sec-
ond pertains to which of the two braces connecting to a 

Fig. 2.  Stress-distribution models.
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vertical force corresponding to the brace axial force, P, is 
given by AISC Manual Equation 13-2:

	
Vc = r P

β
�

(2)

where
r = �gusset centroid offset from workpoint per AISC Man-

ual Equation 13-6:

	 = + ec( )2 + + eb( )2βα � (3)

and
P	= brace axial force, kips

eb	= �eccentricity from beam flange to beam centerline, 
equal to half the beam depth, in.

ec	= �eccentricity from column flange to column center-
line, equal to half the column depth, in.

α	= �distance from column face to centroid of Uniform 
Force Method force acting on beam flange, in.

β	 = �distance from beam flange to centroid of Uniform 
Force Method force acting on column face, in.

The column horizontal force is given by AISC Manual 
Equation 13-3:

	
Hc =

ec
r
P

�
(4)

The beam vertical force is given by AISC Manual 
Equation 13-4:

	
Vb =

eb
r
P

�
(5)

beam is indicated (above or below). Sign conventions match 
the figures such that positive brace axial forces F1,2 and F2,1 
correspond to compression and positive brace axial force 
F1,1 and F2,2 correspond to tension. Forces and angles per-
taining to each brace carry the same designation subscript.

The term workpoint refers to the intersection of brace 
centerlines with the beam and column centerline. (Eccen-
tric workpoints are not addressed in this paper.)

Sabelli and Saxey (2021) derive local member shears 
based on a full-height gusset that has continuous thickness. 
Similar column shears occur in traditional gussets, and 
similar methods may be employed to utilize the gusset size 
and an optimal stress distribution to eliminate the need for 
local reinforcement.

The Uniform Force Method (UFM) (AISC, 2017) is a 
commonly employed method of analyzing traditional gus-
sets. The UFM utilizes the gusset dimensions 2α and 2β, as 
well as the beam and column eccentricities eb and ec. Note 
that 2α and 2β are the dimensions of a virtual gusset, and 
the actual gusset dimensions (2α and 2β) may be different, 
as shown in Figure 4 and discussed later. The method pre-
sented here is a supplement to the UFM, showing necessary 
dimensions to eliminate the need for web reinforcement. 
For additional guidance and background on the applica-
tion of the UFM readers should consult the AISC Manual 
(AISC, 2017) and AISC Design Guide 29 (Muir and Thorn-
ton, 2014).

Force Equations

The UFM defines vertical and horizontal forces at the gus-
set interfaces with the column and the beam. The column 

Fig. 3.  Diagram with numbering and sign conventions.
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These relationships may also be expressed as:

= −r sin ecα θ � (10)

= r cos eb−θβ � (11)

These virtual dimensions locate the centroids of the 
forces acting on the beam flange and column flange. As 
presented here, the UFM gusset forces are constrained 
to conform to the proportioning relationships defined by 
Equations 7 through 11, regardless of the actual gusset pro-
portioning. Specifically, Equations 9, 10, and 11 are used to 
convert the force equations into functions of r, which can 
then be selected to optimize the connection. Thus, although 
three dimensions (r, α, and β) are used in the following 
equations, they are constrained to each other and represent 
a single variable in the design.

In the UFM procedure [both as defined by Thornton 
(1991) and as applied here], these gusset forces act on the 
beam and column at the points indicated on Figure 4 and 
are proportioned such that their force vectors pass through 
“control points” at the beam centerline at the column face 
(for beam forces Hb and Vb) and at the column centerline 
at the beam top or bottom elevation (for column forces Hc 
and Vc).

The virtual dimensions α and β do not necessarily cor-
respond to the centroid of the gusset welds or bolted joints. 

The beam horizontal force is given by AISC Manual 
Equation 13-5:

	
Hb = r

P
α

�
(6)

For both edges of the virtual gusset to be centered on the 
forces acting on the beam and column flanges, the virtual 
dimensions α and β must conform to the following relation-
ship (AISC Manual Equation 13-1):

	  tan = ebtan ecα −−β θ θ � (7)

where
θ = brace angle from vertical, deg

Equation 7 may also be expressed as:

	
= + ec

tan
eb−β α

θ �
(8)

Equation 3 may be combined with Equation 7 and Equa-
tion 8 thus:

	

r = eb +
cos

= ec +
sin

θ

θ

β

α

�

(9)

Fig. 4.  Uniform Force Method dimensions.
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They locate the centroids of the shear and normal forces at 
the beam or column flange, respectively. At those locations, 
there is effectively no moment. However, if that location 
is not also the centroid of the joint (i.e., when the gusset 
dimension α ≠ α or β ≠ β), there is a resulting moment due 
to the eccentricity. The AISC Manual provides methods 
of determining the relationship between the ideal gusset 
dimensions (2α and 2β) and actual dimensions (2α and 2β) 
and for determining the resulting moments (AISC, 2017). 
For efficient design, it is convenient to determine the mini-
mum virtual dimensions α and β to control the transverse 
loading on the column and beam so as to avoid overloading 
these members in shear and to subsequently select smaller 
gusset dimensions 2α and 2β independently (i.e., not con-
strained to each other) and design the gusset and its inter-
faces for the resulting combination of normal force, shear 
force, and moment.

Figure  4 shows the UFM forces acting on the gusset, 
along with the dimensions used in the UFM. (Forces act-
ing on the member are of opposite sign.) The diagram on 
the left shows a gusset with virtual dimensions 2α and 2β; 
forces on the column act at the centroids of the interfaces 
with the virtual gusset with no moment. The diagram on 
the right shows the smaller gusset of dimensions 2α and 
2β; forces acting at the centroids of the actual gusset edges 
include moments due to the difference between the virtual 
and actual gusset dimensions.

In the following derivations, the relationship between α 
and β defined by Equation 7 is maintained. This simplifies 
the method, while still permitting independent selection of 
actual dimensions 2α and 2β that are not constrained by 
this relationship.

Using Equations 7 through 11 with Equations 2 through 
6, the force equations can be presented in terms of the vir-
tual dimension, r:

Vc = cos
eb
r

Pθ−⎛
⎝

⎞
⎠ �

(12)

Hc =
ec
r
P

�
(13)

Vb =
eb
r
P

�
(14)

Hb = sin
ec
r

P⎛
⎝

⎞
⎠−θ

�
(15)

The larger the virtual dimension, r, the larger the portion 
of the brace force that is resisted in shear at the interfaces 
with the column flange and beam flange (Vc and Hb, Equa-
tions 12 and 15), and the less is resisted in the normal forces 
that cause member shear (Hc and Vb, Equations 13 and 14, 
which are used to evaluate sections C1 and B1, respec-
tively). Subsequent equations solve for the minimum virtual 

dimension, r, based on those forces in comparison to the 
member shear strength. From that dimension, the virtual 
dimensions α and β are defined by Equations 10 and 11. 
Once those virtual dimensions are computed, the actual 
gusset dimensions 2α and 2β are selected. There is not a 
unique relationship between the force distribution (repre-
sented by the virtual dimensions r, α, and β) and the gusset 
geometry (i.e., 2α and 2β); a range of dimensions 2α and 2β 
may be used with the same virtual dimensions α and β, and 
vice versa. The engineer may optimize the design by select-
ing values of α and β to produce forces that do not overload 
the beam (or connection) and column in shear at the B1 and 
C1 sections and subsequently select among a range of pos-
sible gusset dimensions 2α and 2β that are consistent with 
those forces and do not overload the beam and column in 
shear at the B2 and C2 sections.

GUSSETS RESISTING UFM  
BRACE FORCES ONLY

This section derives closed-form solutions for minimum 
virtual and actual gusset dimensions based on UFM gus-
set forces if no other forces are required to be transmitted 
by the gussets. The subsequent sections develop the (more 
complicated) equations that include other forces that the 
designer may elect to assign to the gusset: bypass forces to 
transfer more force to the column than would result from 
the application of the UFM and haunch forces for beam-end 
moments.

Determination of Column Effective Shear Strength

Column and beam shears are readily obtained using the 
UFM; they are Hc and Vb, respectively, combined with any 
shear in the member from other sources. (If the moment at 
the interface is large, the resulting effect on local shear may 
increase the member shear, as is discussed later.)

	 Hc VefCol≤ � (16)

where
VefCol	= effective column shear strength

The column effective shear strength is reduced by addi-
tional shear demands that must be simultaneously resisted 
by the column. For rigid beam-to-column connections, the 
moment at the column face due to lateral loads entails a 
panel-zone shear in the column web and a corresponding 
shear in the column segments above and below the con-
nection. Typically, the panel-zone shear is not critical as its 
direction is opposite that of the connection shear induced by 
the braces. The column shear outside of the panel zone, how-
ever, needs to be considered in determining the total shear 
demand:

	 VefCol = Vn Vcol−ϕ � (17)



ENGINEERING JOURNAL / FOURTH QUARTER / 2021 / 229

where
Vcol	= �column shear due to moment-frame behavior, kips

Vn	 = nominal member shear strength, kips

ϕ	 = resistance factor

Determination of Beam and Beam-to-Column  
Effective Shear Strength

The shear demand from the brace connection must not 
exceed the beam effective shear capacity, considering this 
shear demand present in the beam due to lateral loads. Grav-
ity shear, Vg, and frame shear, VBMF, may further reduce the 
effective beam shear strength:

	 VefBm = − −Vn Vg VBMFϕ � (18)

where
VBMF	= beam shear due to moment-frame behavior, kips

Vg	 = beam shear due to gravity, kips

When the vertical brace force is acting upward, such as in 
the case of the braces on left-hand side of Figure 3 (or the 
case with braces on the right-hand side during the reversal of 
the indicated force), the gravity shear, Vg, is in the opposite 
direction of the brace-induced shear, and thus increases the 
effective shear strength of the beam; reduced-gravity load 
combinations are appropriate for such cases.

The shear strength of the beam connection to the column, 
VefConn, may be less than that of the beam:

	 VefConn = Rn Vg VBMF VefBm−−ϕ ≤ � (19)

where
Rn	= �nominal strength (of beam-to-column connection), 

kips

For convenience, a strength ratio, UC, is defined:

	
UC =

VefConn
VefBm

1≤
�

(20)

Thus,

	 VefConn =UCVefBm� (21)

Note that the factor Uc varies with the load combinations 
that correspond to the shears Vg and VBMF.

Apportionment of Shear Strength for Multiple Gussets

For connections with gussets both above and below (e.g., 
P1,1 and P1,2), the column shear must be checked for both 
separately. For connections with gussets both left and right 
of the column (e.g., P1,1 and P2,1), the column forces Hc1,1 
and Hc2,1 of these gussets are additive, and only a portion 
of the column shear capacity may be utilized to resist each 
of these forces. The effective shear capacity of the column, 
VefCol, must be apportioned between the braces to the left 

and right of the column (e.g., P1,1 and P2,1, as shown in Fig-
ure 3). In this method, it is apportioned considering their 
horizontal components as follows:

	
VefC1,1 =VefCol

P1,1 sinθ
P1,1 sin + P2,1 sinθθ �

(22)

	
VefC2,1 =VefCol

P2,1 sinθ
P1,1 sin + P2,1 sinθθ �

(23)

This apportionment is arbitrary and may be modified based 
on the demands Hc1,1 and Hc2,1. Apportionment as shown in 
Equations 22 and 23, however, permits independent design 
of the two gussets.

The condition at the beam is evaluated similarly for con-
nections with both a brace above the beam and another 
below the beam; only a portion of the beam shear capacity 
may be utilized to resist each UFM vertical beam force, Vb. 
The effective shear capacity of the beam, VefBm, must be 
apportioned between the braces above and below the beam 
(see Figure 3):

	
VefB1,1 =VefBm

P1,1 cosθ
P1,1 cosθ θ+ P1,2 cos �

(24)

	
VefB1,2 =VefBm

P1,2 cosθ
P1,1 cos + P1,2 cosθθ �

(25)

This apportionment applies to both the beam shear strength 
and the connection shear strength. As with the apportion-
ment of column shear strength (Equations 22 and 23), this 
apportionment is arbitrary and may be modified based on 
the demands (Vb1,1 and Vb1,2 in this case).

Determination of Minimum Virtual Dimensions

The virtual dimension, r, determines the shear at the col-
umn section C1 and the beam section B1, and thus the mini-
mum value for this dimension is established based on the 
effective shear strength at those sections.

The horizontal force must not exceed the column effec-
tive shear strength. Combining Equations 13 and 16 gives:

	
r rminCol =

ecP

VefC
≥

�
(26)

where
rminCol = �minimum dimension, r, based on column shear 

yielding, in.

The condition at the beam is evaluated similarly. The shear 
is set equal to the beam shear capacity (deducting shear 
due to other sources), and the minimum dimension, r, is 
derived based on the effective shear capacity of the beam-
to-column connection (considering shear demands on the 
beam not due to the brace force).

The vertical force on the beam due to the brace force 
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from the UFM analysis is set equal to the effective beam-
connection shear strength apportioned to that gusset:

	 Vb UCVefB≤ � (27)

Per Equation  19, the connection effective shear strength, 
VefConn, may be limited by the effective beam shear strength, 
VefBm.

Combining Equation 14 and Equation 27 gives:

	
r rminBm = ebP

UCVefB
≥

�
(28)

where
rminBm = �minimum dimension, r, based on beam shear 

yielding, in.

The maximum length, r, from the check of the column and 
the beam controls the design of the gusset (or the need for 
reinforcement):

	 r max rminCol ,rminBm( )≥ � (29)

The value of r selected is used in subsequent equations 
for determination of UFM forces. The corresponding vir-
tual gusset dimensions α and β (determined using Eqs. 10 
and 11) are used in the determination of the minimum actual 
dimensions α and β, respectively. Note that by selecting one 
of these two values (rminCol or rminBm), the design method 
constrains the corresponding evaluation of member shear 
(section C1 or B1) to indicate a demand-to-capacity ratio 
of 1.0. While larger values of the virtual dimension, r, may 
be used, selection of the lowest value tends to minimize 
the member shears. It is possible that greater economy in 
the gusset can be achieved with a larger dimension, r, for 
designs that can accommodate higher member shear.

Similar designs are performed for each gusset, deter-
mining the minimum dimension, r, for beam or connection 
shear yielding and column shear yielding and apportioning 
the effective shear strength, considering the gusset on the 
opposite side of the beam or column for the respective gus-
set design. 

Selection of Actual Gusset Dimensions:  
Column Interface

As discussed earlier, the minimum virtual gusset dimen-
sions can be established based on the shear strengths at 
sections C1 and B1, and the minimum actual gusset dimen-
sions can be established based on the virtual dimensions 
and the shear strengths at sections C2 and B2.

The required gusset dimension 2β at the column is deter-
mined based on the combined effects of the force, Hc, corre-
sponding to the virtual gusset dimension, r, and, if β ≠ β (as 
is typical), a moment, Mc, on the gusset-column interface:

	 Mc = Hc(β − β)� (30)

The larger the deviation of the actual dimension β from the 
virtual dimension β, the larger the moment that must be 
resisted at the gusset interface.

As shown in Figure 5, the column shear at section C2 at 
the gusset mid-height combines the shear required to trans-
mit the moment with half of the interface horizontal force:

	

Vmid =
Hc

2
+ Mc

= −Hc
1

2
⎛
⎝

⎞
⎠

β

β
β �

(31)

This shear must be less than the column effective (appor-
tioned) shear capacity from Equation 17:

	 Vmid VefC≤ � (32)

The minimum dimension β may be determined by combin-
ing Equations 31 and 32:

VefC
Hc

+ 1
2

ββ ≥

	

for r ≥ rminCol

�

(33)

The minimum gusset dimension obtained using Equa-
tion 33 should be compared to the gusset size required for 
the brace-to-gusset connection.

If the virtual dimension, r, is equal to rminCol, Equation 33 
can be combined with Equations 4 and 26 and simplified to:

2

3
≥β β

	
for r = rminCol

�
(34)

If r is greater than rminCol, Equation  34 will result in a 
larger value than Equation 33, which gives the true mini-
mum length; nevertheless, Equation  34 may be used for 
convenience.

Figure 5 shows column shear diagrams in the column due 
to the effects of the horizontal force, Hc (distributed over 
the gusset height), and the moment, Mc. (The effects of the 
vertical force, Vc, are not shown because they do not con-
tribute to column shear.) Two cases are shown. In the upper 
set of diagrams, the virtual column dimension, r, is selected 
such that the column shear is exactly equal to the column-
effective shear strength, and thus r = rminCol. In this case, 
the column shear at section C1 at the bottom of the gusset, 
Hc, will equal the effective shear strength, VefC. As such, the 
shear at section C2 at the midheight, Vmid, must not exceed 
the shear at the bottom, and the moment (and the eccentric-
ity causing the moment) must consequently be limited. In 
the lower set of diagrams, the column shear at section C1 at 
the bottom of the gusset, Hc, is less than the effective shear 
strength, VefC. As such, the shear at section C2 at the gusset 
mid-height can be larger than the shear at section C1, and a 
greater moment and eccentricity can be tolerated; a larger 
eccentricity results from selecting a smaller dimension β. 
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If β > qβ, the maximum shear occurs at section C1. Con-
versely, if β < qβ, the maximum shear occurs at section C2. 
(If β = qβ, the maximum shear occurs for the entire bottom 
half of the gusset height between sections C1 and C2; this 
case is not shown in the figure.)

Note that Equation  34 can be used to determine the 
required shear strength of the column based on a selected 
gusset size 2β such as might be determined based on the 
brace-to-gusset connection. Assuming rminCol controls, 
Equations 9, 13, 16, and 34 can be combined to estimate the 
required shear strength:

	

VefC
ec cos P
3
2

+ eb

θ

β
≥

�

(35)

This value can also be used to design web reinforcement for 
an already selected column and gusset dimension 2β.

Selection of Actual Gusset Dimensions:  
Beam Interface

The required gusset dimension 2α at the beam is deter-
mined similarly, based on the force distribution corre-
sponding to the virtual gusset dimension α. Similar to the 
condition at the column, if α ≠ α, there is a moment, Mb, on 
the gusset-beam interface:

	 Mb =Vb ( )α α− � (36)

The shear at section B2 at the gusset mid-length com-
bines the shear required to transmit the moment with half 
of the interface vertical force:

	

Vmid =
Vb
2
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=Vb
1

2
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α
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⎛
⎝

⎞
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(37)

This shear must be less than the beam shear capacity:

	 Vmid VefB≤ � (38)

Note that as this check is performed away from the connec-
tion, the full (apportioned) beam shear effective strength, 
VefB, is used without the reduction related to connection 
effective shear strength, UC.

The minimum dimension, α, may be determined by com-
bining Equations 37 and 38:

VefB
Vb

+ 1
2

α
α≥

   

for r ≥ rminBm or VefBm >VefConn

�

(39)

The minimum gusset dimension obtained using Equa-
tion 39 should be compared to the gusset size required for 
the brace-to-gusset connection.

If the virtual dimension, r, is equal to rminBm, Equation 39 
can be combined with Equation 27 and simplified to:

1
UC

+ 1
2

≥
α

α

   

for r = rminBm and VefBm >VefConn

�

(40)

If VefBm = VefConn, Equation 39 can be further simplified to:

2

3
α α≥

   
for r = rminBm and VefBm = VefConn

�
(41)

Fig. 5.  Shear in column due to horizontal force and moment.
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If r is greater than rminBm, Equations 40 and 41 will result in 
larger values than Equation 39, which gives the true mini-
mum length.

Figure 6 shows beam shear diagrams and vertical load-
ing for two cases. In the upper set of diagrams, the connec-
tion effective shear strength, VefConn, is equal to the beam 
shear effective strength, VefBm. The limit on shear demand 
at section B1 at the connection, Vb, and the shear demand 
on section B2 at the gusset mid-length are thus the same. 
(This occurs when the maximum eccentricity is defined 
by Equation 41 for cases in which r = rminBm and VefBm = 
VefConn.) In the lower set of diagrams, a connection weaker 
than the beam is shown (Uc < 1.0), and thus a higher shear 
than Vb can be resisted at the gusset mid-length. (A shear at 
section B2 higher than Vb results from selection of α < qα. 
If α > qα, the shear at section B2 is less than Vb; this case 
is not shown in Figure 6 but is similar to the upper diagrams 
in Figure 5.)

Similar to Equation 34, Equation 41 can be used to deter-
mine the required shear strength of the connection based on 
a selected gusset size 2α:
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eb sin P
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α

θ

�

(42)

If the beam shear strength is equal to the connection 
shear strength (that is, if UC = 1.0), Equation 42 also defines 
the required beam shear strength. If the connection shear 
strength is the limiting factor (that is, if UC < 1.0), the 
required beam shear strength is determined from Equa-
tions 5, 28, and 40:
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(43)

This value can also be used to design beam-web reinforce-
ment for a given beam and desired gusset dimension 2α.

Selection of Gusset Thickness

The gusset and its connections must be evaluated for the 
combined effects of moment, horizontal, and vertical forces 
at both the column interface (Mc, Hc, and Vc), and the beam 
interface (Mb, Hb, and Vb). The von Mises yield criterion 
may be used to determine the minimum gusset thickness, 
tg, considering forces at the interface with the column:
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where
Fy = material specified minimum yield stress, ksi

The minimum thickness at the beam interface is similarly 
determined:
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(45)

Fig. 6.  Shear in beam due to vertical force and moment.
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and diagonal elongation of the gusset in the direction trans-
verse to the brace axis. Such a mechanism engages member 
shear and flexure outside of the connection region. When, 
as is typical, such forces are not considered in the mem-
ber design, the design of the connection, to be consistent, 
should not depend on such forces. In such cases, the com-
plete mechanism is limited by the capacity of the beam 
and column to withstand flexural forces not considered in 
the design in conjunction with the axial forces and other 
actions that were considered. The mechanism may never-
theless represent significant reserve strength over that of the 
design.

Often there is a great deal of economy to be achieved by 
taking advantage of the additional capacity of the column to 
relieve the beam of some of the force. The UFM provides a 
method of transferring some of the vertical force: “Special 
Case #2” (AISC, 2017). An alternative method is presented 
here in which the brace force is divided into two compo-
nents: a “UFM force” that is delivered to the column and 
beam per the method described above and a “bypass force” 
that is delivered only to the column. The apportionment 
is achieved by selecting a factor, λ, between 0.0 and 1.0. 
The UFM portion of the force is λP and is addressed using 
the UFM as described previously (with modified effec-
tive column shear strength). The remaining bypass force 
is (1−λ)P and is assigned to the column, which must resist 
the additional vertical and horizontal forces, as well as the 
corresponding moment. Note that for the design approach 
anticipated (in which β < β), this moment is in the oppo-
site direction from the UFM column moment. The factor, 
λ, may be selected to reduce the required length of gusset 
on the beam or to eliminate the overstress in the beam that 
would necessitate a web doubler.

The resulting column forces due to the bypass force are:

HcBP = 1( )Psinλ− θ� (48)

VcBP = 1( )Pcos

= HcBP

tanθ

θλ−

�

(49)

McBP = HcBP(eb + β) − VcBPec� (50)

where
λ = brace force apportionment factor

Figure 7 shows these forces acting on the gussets.
If the beam strength is the limiting factor in sizing the 

virtual gusset (r = rminBm and VefConn = VefBm), the factor, λ, 
required to avoid beam web doublers may be obtained by 
modifying Equation 42:
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The larger thickness from Equations  44 and 45 should 
be used. If the required gusset thickness is excessive, a 
larger value of β or α (as appropriate) may be selected. [If 
the length β or α required for a certain gusset thickness is 
desired, the required gusset length is the root of a fourth-
power polynomial; various solution methods are available, 
including trial-and error and computer solvers. A closed-
form solution may also be derived using Ferrari’s formula 
(Euler, 1765).]

Normal Forces on Column and Beam

The column and beam should each be evaluated for web 
local yielding and web crippling for a required strength, Ru, 
due to the combined effects of normal force and moment 
over a bearing length, N, of β or α, respectively:
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GUSSETS RESISTING ADDITIONAL FORCES

The preceding derivations are based on the gussets being 
designed using the UFM to transmit the brace force to 
the beam and column. The methods developed (including 
selection of dimensions to preclude the need for member 
shear reinforcement) can be extended to gussets designed to 
resist other forces as well. In the following section, forces 
corresponding to two refinements are developed: gussets 
designed with a “bypass” method to transfer more of the 
brace force to the column (and less to the beam) than would 
result from the application of the UFM, and gussets act-
ing as moment-transferring haunches. Equations for mini-
mum virtual and actual gusset dimensions considering the 
total gusset forces (UFM, bypass, and haunch forces) are 
derived.

Force Transfer from Beam to Column Using 
Bypass Method

Gussets proportioned in the manner described in the previ-
ous section will have sufficient strength and will not cause 
local yielding in the beam and column webs. Nevertheless, 
such gussets may be overly large or otherwise undesirable, 
or such a design might entail reinforcing the web of one of 
the members (typically the beam). Additionally, the shear 
yielding of the web of one of the members does not consti-
tute a complete plastic mechanism; both webs must yield to 
allow this to occur.

In fact, a complete mechanism requires extensive shear 
yielding of both member webs over the entire gusset region 
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If the beam strength is not the limiting factor, the λ factor 
required to avoid beam web doublers may be obtained by 
modifying Equation 43:
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If this bypass-force method is used, Equations 26 and 28 
should be modified as follows:

rminCol =
Pec

VefC HcBP
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− �

(53)

rminBm = Peb
UCVefB

λ

�
(54)

Similarly, the equations for minimum values of β and α 
must be modified to address bypass forces; Equations  33 
and 39 are not valid for such cases. Modified equations 
(Equations 77 and 78) considering total forces and moments 
(including haunch forces) are presented in a subsequent 
section.

Equations 53 and 54 may be combined with Equation 48 
to facilitate member selection. The result is an equation for 
λ:

	
= 1

VefC
ec
eb
UCVefB

Psin
λ −

−

θ �
(55)

This can be combined with Equation  52 to derive the 
required relationship between horizontal gusset length and 
column and beam connection strength:
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The bypass method can be used to design connections 
that satisfy this relationship to preclude the need for 
reinforcement.

In some circumstances, it may be convenient to transfer 
force from the column to the beam (rather than from the 
beam to the column). In such circumstances the engineer 
may either derive similar bypass equations for the beam or 
may use a value of λ greater than 1.0, increasing the beam 
UFM forces and reducing the total column forces.

Use of Gussets as Haunches for Moment Transfer

It is possible to transfer the beam moment utilizing the gus-
set as a haunch as shown in Figure 8. The use of gussets as 
haunches will affect the force transfer at the gusset edges, 
and these forces must be combined with those related to 
the brace axial force. The resulting equations for the mini-
mum virtual gusset dimension, r, to preclude shear yielding 
(determined in a subsequent section), and the correspond-
ing virtual dimensions α and β, are necessarily more com-
plicated. For convenience, the method presented utilizes the 
beam moment at the column face, Mf, rather than at a loca-
tion based on the (as yet undetermined) gusset horizontal 
dimension. Thus, if the moment is based on beam flexural 
strength (as might be the case for seismic design) projection 
of that moment based on an assumed gusset dimension and 
corresponding beam shear is necessary.

	 Mf = MBM +VBMF 2( )α � (57)

where
MBM = �moment at a beam section aligned with the gusset 

edge face, kip-in.

The designer has some discretion in selecting the height 
of the force couple utilized. To permit independent design 

Fig. 7.  Force proportioning.
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Thus, the total moment from beam “i,” Mfi, is divided into 
four (potential) parts:

	 Mfi = MBCi ,1 +MBCi ,2 +MHi ,1 +MHi ,2� (60)

It is expected, however, that in most cases, ρ will be selected 
as either 1.0 or 0.0 for each flange of each beam as is shown 
in Figure 8, and thus two of the components of Equation 60 
will be of zero value.

For simplicity, the beam-connection moment is assigned 
to the beam flange as a force, Pf:

	

Pfi , j =
MBCi , j

2hoi

= i, jMfi

hoi

ρ

�

(61)

where
ho = distance between beam flange centroids

The haunch moment results in a horizontal force, HcH 
(gusset-designation subscripts omitted):
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where
db = beam depth, in.

To satisfy equilibrium, there is an opposite horizontal force, 
HbH, at the gusset interface with the beam:

of the gusset (considering the possibility of no gusset on the 
opposite beam flange or a gusset of yet-to-be-determined 
size), the gusset is assigned one-half of the beam moment 
to be resisted by a force couple over a vertical distance from 
the beam centerline to the virtual gusset centroid defined by 
β. (Other values of this depth may be used, but this value 
provides for efficient gusset designs using simpler equations 
in determining the appropriate dimension, β.)

As shown in Figure  8, at conditions with a gusset, the 
horizontal force that forms part of this moment-resisting 
force couple may be resisted by the beam flange connection 
to the column, the gusset, or a combination of the two.

The value of the moment is 2Mf, assuming that the 
moment is resisted by two force couples: one involving the 
top flange or gusset and the web connection and the other 
involving the bottom flange or gusset and the web connec-
tion. If the connection involves only the top, for example, 
and there is no bottom gusset and no bottom-flange con-
nection to the column, the value of the moment assigned to 
the top flange or gusset and beam web force couple is the 
full Mf.

The moment is apportioned between a beam-connection 
moment, MBC, and a haunch moment, MH, using a distribu-
tion factor ρ (between 0.0 and 1.0); thus:

	
MBCi , j =

i, j Mfi
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where

MHi , j = −1 i, j( ) Mfi

2
ρ

�
(59)

ρ	 = �beam moment apportionment factor (between 
beam flange and haunch force in gusset)

Fig. 8.  Gusset plates acting as haunches.
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	 HbH = HcH� (63)

The eccentricity between HcH and HbH is β, and there is 
thus a moment, βHcH, that must be resolved. A counteract-
ing force couple is determined, with a vertical force, VcH, 
at the column flange and an opposite vertical force, VbH, 
which is assigned to the location α for simplicity:

	

VbH =VcH

= HcHβ
α �

(64)

At the gusset centroid, HcH causes a moment, McH, due to 
the eccentricity between β and β:

	 McH = ( )HcHβ β− � (65)

The moment due to the vertical force at the beam interface, 
MbH, is:

	 MbH = −( )VbHα α � (66)

The horizontal force acting at the beam midheight may 
not completely cancel with the horizontal force from the 
remaining half of the moment addressed at the opposite 
flange, potentially necessitating a small additional force, 
NH, to be resisted at the beam-to-column connection. As 
shown in Figure 8, the horizontal force acting on the beam 
at one flange (Pf1,2 + HbH1,2) has a corresponding force at 
the opposite flange resisted by a combination of flange and 
gusset forces (Pf1,1 + HbH1,1). Due to potentially different 
values of ρ used in Equations  58 and 59, and potentially 
different moment arms used to determine these forces in 

Equation 62, the horizontal forces at opposite flanges may 
not be equal, and the difference must be resisted in the 
beam web-to-column connection to satisfy equilibrium. 
This force, NH, is:

	
NH = −Pf1,2 + HbH1,2 Pf1,1 + HbH1,1

⎡⎣ ⎤⎦� (67)

The haunch method may be used in conjunction with the 
UFM with or without applying the bypass method.

Total Gusset Forces: UFM, Bypass, and Haunch Forces

Figure  9 shows these forces acting on the gusset edges. 
Forces shown are gusset forces; member forces are equal 
and opposite. Note that the beam UFM forces are reduced 
by the factor λ. In most cases, the haunch forces can have 
a beneficial effect; the designer should consider whether it 
is appropriate to neglect that term or take a reduced value 
to address uncertainty in the level of moment. For seismic 
design, the potential for cyclic inelastic drift may result in 
moments in the opposite direction of those shown, which 
could be a more critical case. Determination of appropriate 
combinations of design forces is outside of the scope of this 
study. At a minimum, connections should have sufficient 
strength to resist maximum brace forces and maximum 
beam forces both combined with each other (with consistent 
directions of forces as shown) and separately.

The direction of the UFM, haunch, and bypass column 
forces is shown in Figure  9. The resulting total column 
forces (considering the direction of each component) are 
determined:

Fig. 9.  Total gusset forces.
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HcTot = Hc + HcBP HcHλ − � (68)

VcTot = Vc +VcBP +VcHλ � (69)

McTot = Mc McBP McHλ − − � (70)

The shear in the column panel zone is:

	 VPZ = HcTot Pf− � (71)

The total beam forces (including the UFM, haunch, and 
bypass forces) are:

HbTot = Hb + HbHλ � (72)

VbTot = Vb VbHλ − � (73)

MbTot = Mb MbH−λ � (74)

These equations are used to select the minimum virtual 
dimension, r, considering the shear loading of the column, 
HcTot, at the beam flange and the shear loading of the beam, 
VbTot, at the column flange. Once this is selected, the actual 
dimensions 2α and 2β may be selected considering the 
shear loading of the column and beam at the mid-length 
of the gusset as it is affected by the moments (McTot and 
MbTot) that are functions of these dimensions. The interface 
moments are then computed based on the selected dimen-
sions and are used in conjunction with the vertical and hori-
zontal forces to design the gusset and its connections to the 
beam and column.

Figure 10 shows a free-body diagram of the gusset. The 
centroid of the UFM column force, λHc, is at the location 

defined by the virtual dimension, β, which is typically 
greater than β, causing a moment, λMc, (when evaluated at 
the centroid of the gusset-column interface.). The haunch 
force, HcH, (which acts in the direction opposite to λHc) is 
applied at the same elevation, and the bypass force, HcBP, 
(which acts in the same direction as λHc) is located on the 
brace centerline where it crosses the column face; these two 
forces cause moments in the opposite direction of Mc.

Minimum Virtual Gusset Dimensions Considering 
Haunch and Bypass Forces

In previous sections, Equations 26 and 28 provide the mini-
mum virtual dimensions, r, for cases with UFM forces only; 
Equations 53 and 54 address combined UFM and bypass 
forces. If haunch forces are included in the gusset design, 
equations for minimum virtual dimensions, r, become more 
complicated (but nevertheless solvable). A satisfactory 
value for this virtual dimension can be determined by trial 
and error, such that the beam and column are not overloaded 
in shear by VbTot and HcTot, respectively. Alternatively, the 
following methods can be used.

Combining Equations  16 and 68 results in a quadratic 
equation for the minimum virtual dimension, r, considering 
column web shear, rminCol:
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Fig. 10.  Free-body diagram of gusset.
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Combining Equations  28 and 73 results in a quadratic 
equation for the minimum virtual dimension, r, considering 
beam web shear:
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The largest of the roots from Equations 75 and 76 is used. 
Excessively large values of the minimum dimension, r, may 
indicate that more of the moment, Mf, should be transferred 
by the beam flanges. Note also that both the effective col-
umn shear strength, VefCol, in Equation  75 and the effec-
tive beam shear strength, VefB, in Equation 76 include terms 
that, similar to Mf, are reflective of the moment-frame 
behavior, and the use of consistent loads is recommended. 
As discussed in the design examples, consideration of cases 
without these flexural forces may be appropriate to address 
the range of possible conditions.

Equation 76 presupposes a value of λ. If the design con-
siders both the condition with moment and the condition 
with moment equal to zero (for which haunch forces are 
likewise zero), Equation 52 may be used to select a value 
of λ for the latter condition. As illustrated in the design 
example, the value of λ determined for the zero-moment 
condition may be sufficient for all conditions; otherwise, 
trial and error may be used.

The maximum virtual dimension, r, from the check of 
the column and the beam from Equations 75 and 76 controls 
the design of the gusset (or the need for reinforcement), and 
therefore, the larger value should be used for the virtual 
dimension, r, in subsequent equations per Equation 29. As 
the haunch forces causing shear in the beam and column 
are opposite those from the Uniform Force Method for the 
typical direction of moment, member shear may not always 
be a governing consideration. Thus, selection of the min-
imum permissible value of the virtual dimension, r, may 
not be the most economical choice in all cases; the gusset 
thickness could be optimized in some cases by selecting 
a higher value of r. The authors have not developed equa-
tions to solve for this optimum value; trial and error may be 
used. Note that if the design also considers a case without 
the moment, that latter case typically is governed by beam 
shear and governs the required gusset thickness.

Minimum Actual Gusset Dimensions Considering 
Haunch and Bypass Forces

The minimum gusset dimension, 2β, is governed by the 
shear in the column at the gusset mid-height; β is defined 
by combining Equations 16, 31, 68, and 70:
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The minimum gusset dimension, α, is likewise determined 
by combining Equations 27, 37, 73, and 74:
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Note that this is based on the beam shear at the gusset mid-
length, and thus the connection factor, UC, is not used.

Designers may wish to begin trials using Equations 77 
and 78 with λ = 1.0 (i.e., with no bypass force). If the gusset 
dimension 2α is excessive, the value of λ may be decreased 
and the dimension β may be selected using Equation 77.

Beam-Web-to-Column Connection

The sum of the horizontal forces at the beam web-to-
column connection, HbW, is:

	 HbW = NB + HbTot1,2 HbTot1,1 + NH− � (79)

where
NB = beam axial force delivered to the connection, kips

Note that the horizontal forces, Hb, from the gussets above 
and below counteract each other. For connections with only 
one gusset, the required strength of this connection will be 
significantly larger; this may be an important consideration 
in determining how much force to divert using the bypass 
method, which increases Hb.

The sum of the vertical forces at the beam web-to-column 
connection, VbW, is:

	 VbW =Vg +VBMF +VbTot1,2 +VbTot1,1� (80)

The forces in the beam flange are given in Equation  61. 
These web and flange forces are shared with the gusset 
plate, and the designer should avoid connecting the beam 
to column in a manner that is not compatible with the con-
nection of the gusset to column such as a welded gusset 
connection and bolted beam-web connection.

DESIGN OF WELDS

At a minimum, the welds connecting the gusset plates must 
be capable of transferring the forces at the joint determined 
for the design of the gusset. In some cases, such welds 
may be insufficient to develop the full strength of the gus-
set plate. As the design methods presented here utilize the 
lower-bound theorem, the ductility of such weak-weld/
strong-gusset joints must be demonstrated. It is important 
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to consider that the redistributions required to engage other 
elements necessitates that separate joints in the connection 
deform together. For example, the limitation of the gusset-
to-beam forces in the bypass method may assign more force 
to the beam-to-column connection, and the deformation 
demands on the two weld groups are not independent. In the 
absence of a nonlinear or mechanism analysis demonstrat-
ing that weld deformations are within their rupture limit, 
design of the weld for the gusset plate strength ensures the 
ductility of the joint by favoring inelastic deformation of the 
gusset or the web of the member over rupture of the weld.

Table 1.  Summary of Equations

Design Quantity UFM Method Bypass Method Haunch Method

λ — (52) or (55) —

VefCol (17)

Required VefC (35) (35) [λP for P] or (55)

VefBm, VefConn (18), (19)

UC (20)

UCVefB [below; above] (24), (25)

Required UCVefB (42) (42) [λP for P]

Required VefB (43) (43) [λP for P]

rminCol (26) (53) (75)

rminBm (28) (54) (76)

r (29)

α, β (10), (11)

Vc, Hc, Vb, Hb (2), (4), (5), (6)

HcBP, VcBP — (48), (49) —

HcH, HbH — — (62), (63)

VcH, VbH — — (64)

HcTot, VcTot — (68), (69)

HbTot, VbTot — (72), (73)

Required β (33) (77)

Required α (40) (78) or (56) (78)

Mc (30)

McBP — (50) —

McH — — (65)

McTot — (70)

Mb (36)

MbH — — (66)

MbTot — (74)

Vmid (column, beam) (31), (37)

tg Maximum of (44) and (45)

SUMMARY OF EQUATIONS

The preceding discussion includes many intermediate 
equations necessary for derivation of the design equations. 
Additionally, some equations have multiple forms: simpler 
equations for the UFM and more terms with the introduc-
tion of bypass and haunch forces. Table 1 presents the equa-
tion numbers to be used for the determination of design 
quantities for the UFM, bypass, and haunch methods. (The 
haunch method equations include bypass forces.) Certain 
equations developed for the UFM are modified by substitut-
ing λP for P; this is indicated in the table.



240 / ENGINEERING JOURNAL / FOURTH QUARTER / 2021

Table 2.  Brace Forces

P
(kips)

Pcosθθ
(kips)

Psinθθ
(kips)

P1,1 550 352 423

P1,2 460 295 353

Fig. 11.  Design example connection.

DESIGN EXAMPLES

The connection shown in Figure 11 will be designed using the methods developed in this study.

The design is performed three times:

•	 Preliminary design (wind loads). The gusset is designed using UFM method without bypass forces.

•	 Redesign with bypass forces (wind loads). The gusset is redesigned using UFM and bypass to eliminate web reinforcement.

•	 Seismic design including haunch forces (and bypass forces).

The design forces are presented in Table 2. To facilitate subsequent calculations, the horizontal and vertical components of the 
brace forces are determined and presented in the table. (P denotes the axial force in the brace.) The angle from vertical, θ, is 
50.2°.

To facilitate comparison, the same brace axial forces are used for both the wind-load and seismic-load designs.

The beam and column forces delivered to the connection are shown in Table 3.

The seismic forces correspond to the formation of plastic hinges at each end of the beam, represented by the symbol Ecl. The 
plastic-hinge moment is the maximum flexure that the beam can deliver and is thus not combined with the gravity moment, 
although the corresponding shear is additive to the gravity shear. The plastic-hinge moment is 1.1 times the beam expected 
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beam flexural strength, as required for the design of Special Concentrically Braced Frames and Buckling-Restrained Braced 
Frames in the AISC Seismic Provisions (AISC, 2016) Sections F2.6b(b) and F4.6b(b), respectively.

The member sizes and materials are shown in Table 4. Members are ASTM A992 material, and plate is ASTM A572 material.

The connection strength is based on a 15-in.-deep portion of the beam complete-joint-penetration (CJP) welded to the column 
flange:

ϕRn ≥ 176 kips

Based on the brace-to-gusset connection (not shown in this example), minimum dimensions for the gusset plate are 23  in. 
wide and 17 in. high. The dimensions used for calculation allow for an extra inch for weld termination. The minimum gusset 
interface centroids are:

8 in.β ≥

11 in.≥α

1.	Preliminary Design: Design of Top Gusset (with No Bypass or Haunch Force)

The following example shows the design of the top gusset to resist the force P1,2. The design considers the effect of the force 
P1,1 on the beam, but otherwise the two gusset designs are independent of each other.

For preliminary design, the gusset will be proportioned to resist brace forces only, assuming the beam moment is transferred 
to the column by the flanges (i.e., ρ = 1.0). Similarly, the bypass-force method will not be used. Both of these methods are 
addressed in a gusset redesign.

Table 3.  Beam and Column Forces

Load Case or Combination Load Force

Gravity 1.2D + L
Vg 10 kips

Mf 100 kip-in.

Wind 1.0W

VBMF 7.1 kips 

Mf not used

Vcol 17.1 kips

Seismic Ecl

VBMF 44.9 kips 

Mf 7770 kip-in.

Vcol 108 kips

Gravity + wind 1.2D + L + 1.0W
Vg + VBMF 17.1 kips 

Mf not used

Gravity + seismic 
1.2D + L + 1.0Ecl Vg + VBMF 54.9 kips 

0D + 0L+ Ecl Mf 7770 kip-in.

Table 4.  Member Sizes and Grades

Member Size Grade

Column W14×120 50 ksi

Beam W18×55 50 ksi

Gussets — 50 ksi
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Column Effective Shear Strength

The effective column shear strength is reduced considering the column shear.

Vcol = 17.1 kips

VefCol = Vn Vcol
= 257 kips 17.1 kips 

= 240 kips

−
−ϕ

�

(17)

Using Equation 35, the minimum shear strength is:

VefCol =VefC
ec cos P
3
2

+ eb

=
7.25 in.( )0.640 460 kips( )

3
2

8.0 in.( ) + 9.05 in.( )

= 101 kips

≥ θ

β−

�

(35)

Beam Effective Shear Strength

The effective beam shear strength is limited by the strength of the connection and is reduced considering the beam shear:

VefBm = Vn Vg VBMF
= 212 kips 10.0 kips 7.1 kips 

= 195 kips

ϕ
− −

− −

�

(18)

VefConn = Rn Vg VBMF
= 176 kips 10.0 kips 7.1 kips 

= 158 kips

−−
−−ϕ

�

(19)

UC =
VefConn
VefBm

= 158 kips

195 kips

= 0.814 �

(20)

The apportioned effective beam shear strength that can be utilized for each gusset can be apportioned considering the vertical 
components of the brace forces:

UCVefB1,1 =UCVefBm
P1,1 cos

P1,1 cos + P1,2 cos

= 0.814 195 kips( ) 352 kips

352 kips+ 295 kips

= 86.2 kips

θ θ
θ

�

(from Eq. 24)

UCVefB1,2 =UCVefBm
P1,2 cos

P1,1 cos + P1,2 cos

= 0.814 195 kips( )  295 kips

352 kips+ 295 kips

= 72.1 kips

θ
θθ

�

(from Eq. 25)
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Using Equation 42, the minimum apportioned effective connection shear strength is:

UCVefB1,2
eb sin P
3
2

+ ec

=
9.05 in.( ) 0.768( () )460 kips

3
2

11.0 in.( ) + 7.25 in.( )

= 135 kips > 72.1 kips 

θ≥
α

�

(from Eq. 42)

Reinforcement is therefore required.

The beam shear strength is apportioned:

VefB1,2 =VefBm
P1,2 cos

P1,1 cos + P1,2 cos

= 195 kips 0.455(( ))
= 88.7 kips

θ θ

�

(25)

The minimum apportioned effective beam shear strength is:

VefB
ebPsin

1+UC

2
+UCec

=
9.05 in.( () )460 kips 0.768( )

11.0 in.( ) 1+ 0.814
2

+ 0.814 7.25 in.( )

= 150 kips > 88.7 kips 

θ≥
α

⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

�

(43)

Because VefB > VefB1,2, reinforcement is required.

If the proposed gusset length is to be used, both the connection strength and the beam strength are insufficient. Based on the 
degree of this deficiency, it is anticipated that an unreinforced beam will require an excessively long gusset. (In fact, calcula-
tions were performed, and the required horizontal length exceeds 42 in.) Instead, the web will be reinforced with a a-in. dou-
bler, 15 in. deep (matching the available web depth of the connection) and extending horizontally to match the gusset length. 
The reinforced strength for both the connection and the beam is determined and apportioned as before. The additional strength 
is:

Rn 0.6Fydt

= 1.0( ) 0.6( ) 50 ksi( ) 15 in.( ) in.)
= 169 kips

ϕϕ ≥
a(

The beam strength is:

Vn = 212 kips+169 kips

= 381 kips

ϕ

The connection strength is:

Vn = 176 kips+169 kips

= 344 kips

ϕ
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The effective strengths are recalculated:

VefBm = Vn Vg VBMF
= 381 kips 10.0 kips 7.1 kips 

= 363 kips

ϕ
−
−−

−

�

(18)

VefConn = Rn Vg VBMF
= 344 kips 10.0 kips 7.1 kips

= 327 kips

ϕ − −
− −

�

(19)

With this reinforcement, the value of Uc is:

UC =
VefConn
VefBm

= 0.900
�

(20)

UCVefB1,2 = 0.455 327 kips( )
= 149 kips > 135 kips o.k.

With this additional beam web reinforcement, the effective beam and effective connection capacities will be increased.

VefB1,2 = 0.455 363 kips( )
= 166 kips > 150 kips     o.k. 

Minimum Virtual Gusset Dimensions

The virtual gusset dimensions are determined based on the effective column and beam shear strengths calculated earlier.

rminCol =
ecP

VefC

=
7.25 in( () )460 kips

240 kips

= 13.9 in. �

(26)

rminBm = ebP

UCVefB1,2

=
9.05 in( () )460 kips

166 kips

= 27.9 in.

( )0.900

�

(from Eq. 28)

r max rminCol ,rminBm( )
max 13.9 in.,27.9 in.( )

= 27.9 in.

≥
≥

�

(29)

This value will be used for subsequent calculations. The corresponding virtual dimensions are:

= r sin ec

= (27.9 in.) 0.768( ) 7.25 in.

= 14.2 in.

θα −
−

�

(10)

= r cos eb

= 27.9 in.( ) 0.640( ) 9.05 in.

= 8.80 in.

−
−θβ

�

(11)
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Gusset Forces and Member Shear Checks (at Connection)

The virtual gusset dimensions are used to determine the forces acting at the centroids of the virtual gusset interfaces with the 
beam and the column:

Vc = r
P

= 8.80 in.

27.9 in.
460 kips( )

= 146 kips

β

⎛
⎝

⎞
⎠

�

(2)

Hc =
ec
r
P

= 7.25 in.

27.9 in.
460 kips( )

= 119 kips <VefC o.k.

⎛
⎝

⎞
⎠

�

(4)

Vb =
eb
r
P

= 9.05 in.

27.9 in.
460 kips( )

= 149 kips <UCVefB1,2 o.k.

⎛
⎝

⎞
⎠

�

(5)

Hb =
r
P

= 14.2 in.

27.9 in.
460 kips( )

= 234 kips

⎛
⎝

⎞
⎠

α

�

(6)

Minimum Actual Gusset Dimensions and Member Shear Checks (at Mid-Length of Gusset)

The value of rminBm controls; therefore, r = rminBm and r > rminCol. The dimensions for α and β are calculated as follows:

VefC
Hc

+ 1
2

= 8.80 in.

240 kips
119 kips

+ 1
2

= 3.50 in.

β
β ≥

�

(33)

1
UC

+ 1
2

= 14.2 in.
1

0.900
+ 1

2
= 8.81 in.

αα ≥

�

(40)

The following values will be used:

= 8 in.β

= 11 in.α



246 / ENGINEERING JOURNAL / FOURTH QUARTER / 2021

Both of these values exceed two-thirds of the corresponding virtual dimensions:

= 8 in.

8.80 in.

= 0.909 >q

β
β

= 11 in.
14.2 in.

= 0.775 >q
α
α

As such, the maximum member shear will be at sections C1 and B1 rather than C2 and B2. For completeness, the evaluation 
is shown next.

The moments due to the eccentricities between the actual dimensions and the virtual dimensions are:

Mc = Hc ( )
= −

−

119 kips 8.80 in. 8 in.( )
= 100 kip-in.

β β

�

(30)

Mb =Vb ( )
= 149 kips 14.2 in. 11 in.( )
= 479 kip-in.

α α
−

−

�

(36)

Check column shear:

Vmid =
Hc

2
+ Mc

= 119 kips

2
+ 100 kip-in.

8 in.
= 72.8 kips < VefCol o.k.

β

�

(31)

Check beam shear:

Vmid =
Vb
2
+ Mb

= 149 kips

2
+ 479 kip-in.

11 in.
= 118 kips <VefBm o.k.

α

�

(37)

Gusset Thickness

The gusset thickness is selected considering the combined forces on the gusset-to-column interface and the gusset-to-beam 
interface. Considering the column side, the minimum thickness is:

tg
1

Fy2

Vc
0.6

2

+ Hc + 2 Mc
2

= 1

0.90 50 ksi( )2 8 in.( )
146 kips

0.6

2

+ 119 kips +
2 100 kip-in.

8 in.

2

= 0.390 in.

ϕ β β
≥

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

�

(44)
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Considering the beam side, the minimum thickness is:

tg
1

Fy2

Hb

0.6

2

+ Vb + 2 Mb
2

= 1

0.90 50 ksi( )2 11 in.( )
234 kips

0.6

2

+ 149 kips +
2 479 kip-in.

11 in.

2

= 0.460 in.

≥
ϕ α α

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

�

(45)

A 2- in.-thick gusset is required, with overall dimensions of 23 in. wide by 17 in. high (providing extra length for weld termina-
tion). The gusset design is shown in Figure 12.

2.	Redesign with Bypass Forces

The connection in this example is redesigned using the bypass method in order to avoid the need for the beam-web doubler. 
Values for VefB and Uc correspond to the unreinforced condition.

The transfer factor λ is obtained from Equation 52:

VefB
eb sin P

1+UC

2
+UCec

=
88.6 kips

9.05 in.( () )0.768 460 kips
11 in.( ) 1+ 0.814

2
+ 0.814 7.25 in.( )

= 0.592

λ ≤
θ

⎡
⎣⎢

⎡
⎣⎢

⎤
⎦⎥

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

α

�

(52)

Bypass forces are calculated:

HcBP = 1( )Psin

= 1 0.592( () )460 kips 0.768

= 144 kips

λ θ−

−

�

(48)

Fig. 12.  Preliminary gusset design.
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VcBP = HcBP

tan

= 144 kips

1.20
= 120 kips

θ

�

(49)

Minimum Virtual Gusset Dimensions

The virtual gusset dimensions are determined:

rminCol =
Pec

VefC HcBP

=
0.592( ( () ) )460 kips 7.25 in.

240 kips( () )144 kips

= 20.7 in.

−

−

λ

�

(53)

rminBm = Peb
UCVefB

=
0.592( () )460 kips 9.05 in.( )

0.814 88.6 kips( )
= 34.2 in.

λ

�

(54)

r max rminCol ,rminBm( )
= max 20.7 in.,34.2 in.( )
= 34.2 in.

≥

�

(29)

This value will be used for subsequent calculations. The corresponding virtual dimensions

= r sin ec

= 34.2 in.( ) 0.768( ) 7.25 in,

= 19.0 in.

θα
−

−

�

(10)

= r cos eb

= 34.2 in.( ) 0.640( ) 9.05 in.

=  12.8 in.

−
−β θ

�

(11)

Gusset Forces and Member Shear Checks (at Connection)

The virtual gusset dimensions are used to determine the forces acting at the centroids of the virtual gusset interfaces with the 
beam and the column:

Vc =
r

P

= 12.8 in.

34.2 in.
0.592( () )460 kips

= 102 kips

β
λ λ

⎛
⎝

⎞
⎠

�

(from Eq. 2)
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Hc =
ec
r

P

= 7.25 in.

34.2 in.
0.592( () )460 kips

= 57.8 kips

⎛
⎝

⎞
⎠

λλ

�

(from Eq. 4)

Vb =
eb
r

P

= 9.05 in.

34.2 in.
0.592( () )460 kips

= 72.1 kips 

λ λ

⎛
⎝

⎞
⎠

�

(from Eq. 5)

Hb =
r

P

= 19.0 in.

34.2 in.
0.592( () )460 kips

= 151 kips

⎛
⎝

⎞
⎠

λ α λ

�

(from Eq. 6)

Determination of Total Forces and Member Shear Checks (at Connection)

The total vertical and horizontal forces are used in the determination of minimum required gusset dimensions. (Moments can-
not be computed until the actual gusset dimensions are set.) The forces on the column edge of the gusset are:

HcTot = Hc + HcBP

= 57.8 kips+144 kips

= 202 kips <VefC o.k. 

λ

�

(from Eq. 68)

VcTot = Vc +VcBP
= 102 kips+120 kips

= 222 kips

λ

�

(from Eq. 69)

The forces on the beam edge of the gusset are:

HbTot = Hb

= 151 kips

λ

�

(from Eq. 72)

VbTot = Vb
= 72.1 kips <UCVefB o.k. 

λ

�

(from Eq. 73)

Determination of Minimum Actual Gusset Dimensions

tan

HcBP

HcTot

1

VefC
HcTot

+ 1
2

=
12.8 in.

19.0 in.
1.20

144 kips
202 kips

240 kips
202 kips

+ 1
2

= 0.900 in.

αββ ≥ −

−

θ

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

�

(77)
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VefB
VbTot

+ 1
2

= 19.0 in.

88.6 kips
72.1 kips

+ 1
2

= 11.0 in.

α
α ≥

�

(78)

The following values will be used:

= 8 in.β

= 11 in.α

Determination of Moments at Interfaces and Member Shear Checks (at Mid-Length of Gusset)

The moments on the column edge of the gusset are:

Mc = Hc ( )
= 57.8 kips 12.8 in. 8 in.(( ))
= 279 kip-in.

ββλ λ −

−

�

(from Eq. 30)

McBP = HcBP eb +( ) VcBPec

= 144 kips 9.05 in.+8 in.( (( ) )) 120 kips 7.25 in.( )
= 1,590 kip-in.

β

−

−

�

(50)

McTot = Mc McBP

= 279 kip-in. 1,590 kip-in.

= 1,310 kip-in.

−
−

−

λ

�

(from Eq. 70)

The moments on the beam edge of the gusset are:

MbTot = Mb

= Vb ( )
= 72.1 kips 19.0 in. 11 in.(( ))
= 577 kip-in.

α α
λ
λ

−

−

�

(from Eq. 74)

Check column shear:

Vmid =
HcTot

2
+ McTot

= 202 kips

2
+ 1,310 kip-in.

8 in.
= 62.6 kips <VefC o.k.

β
−

�

(from Eq. 31)

Check beam shear:

Vmid =
VbTot

2
+ MbTot

= 72.1 kips

2
+ 577 kip-in.

11 in.
= 88.5 kips <VefB o.k.

α

�

(from Eq. 37)

(from Eq. 36)
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Note that Equations 31 and 37 are modified to utilize total forces (HcTot, etc.).

Determination of Required Gusset Thickness

Considering the column side, the minimum thickness is:

tg
1

Fy2

VcTot
0.6

2

+ HcTot +
2 McTot

2

= 1

0.90 50 ksi( )2 8 in.( )
222 kips

0.6

2

+ 202 kips +
2 1,310 kip-in.

8 in.

2

= 0.897 in.

ϕ
≥

β β

−⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

�

(from Eq. 44)

Considering the beam side, the minimum thickness is:

tg
1

Fy2

HbTot

0.6

2

+ VbTot +
2 MbTot

2

= 1

0.90 50 ksi( )2 11 in.( )
151 kips

0.6

2

+ 72.11 kips +
2 577 kip-in.

11 in.

2

= 0.311 in.

α αϕ
≥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

�

(from Eq. 45)

The minimum thickness is taken as the maximum of Equations 44 and 45. Thus, a plate 1 in. × 17 in. high × 23 in. wide can 
be used. The web doubler in the beam is eliminated (as are the CJP welds of the doubler and beam web to the column) at the 
cost of a thicker gusset (and larger gusset-to-column welds). Alternatively, if a thinner gusset is desired, the dimension β could 
be increased beyond the original target value. Fillet welds are based on the strength of the gusset plate. The gusset design is 
shown in Figure 13.

3.	Design Considering Haunch Force (with Bypass Method)

In this example, a design of the connection will be performed considering requirements for buckling restrained braced frames. 
(As discussed earlier, inelastic demands on the gusset plate due to brace buckling, as would be expected for the seismic 
response of other braced-frame systems, are not addressed in this design method.) The example considers seismic forces, but 
the method illustrated is applicable to design for wind loads as well.

For seismic design, the beam moments and shears considered correspond to the flexural yielding of the beam because the 
frame is expected to undergo large displacements. While the beam end moment could be resisted by the beam-to-column 
connection (as it was for the previous examples for wind load), there can be significant economy in utilizing the gussets as 
haunches and eliminating beam-flange-to-column-flange welds. In this example, the haunch method is used in conjunction 
with the bypass method utilized in the previous example.

The designer should consider the range of possible beam-end moments that could coincide with maximum brace forces (and 
vice versa), as the drift ranges for the beam and for the braces are likely to be substantially different. For this example, the range 
of moments is based on the beam expected moment strength in one direction (positive Mf) and zero in the opposite direction. 
The authors do not intend to imply that this range is adequate for all (or even most) conditions. Determination of the appropriate 
combinations of beam moment and brace axial forces for systems subject to inelastic drift requires further study and is outside 
of the scope of this paper.

Values are presented in pairs in braces (“{}”), with the first value corresponding to the inclusion of forces (both shears and 
moments) corresponding to moment-frame action (condition 1) and the second value without (condition 2). A separate final 
check is performed using only the haunch forces from beam moment with brace forces taken as zero.

Given the difference in the drift that results in yield of the braces and that corresponding to yield of the beam, it is possible for 
cyclic inelastic drift to result in a condition in which the value of beam moment is negative and the forces λHc and HcH (Eq. 68) 
are additive. Consideration of such a condition is beyond the scope of this study.

The haunch force is based on an apportionment factor ρ = 0.0.
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Mf = 7770,0{ } kip-in.

MH = 1( ) Mfi

2

= 1 0( ) 7770, 0{ } kip-in.

2
= 3880,0{ } kip-in.

ρ−

−

�

(59)

Vcol = 108,0{ } kips

VBMF = 44.9, 0{ } kips

VefCol = Vn Vcol

= 257 kips 108, 0{ } kips

= 149, 257{ } kips

−
−

ϕ

�

(17)

VefBm = Vn Vg VBMF( ) P1,2 cos

P1,1 cos + P1,2 cos

= 212 kips 10.0 kips 44.9, 0{ }kips( ) 295 kips

352 kips+ 295 kips

= 71.4, 91.9{ } kips

ϕ
θ

θθ
− −

− − ⎛
⎝

⎞
⎠

�

(from Eqs. 18, 25)

VefConn = Rn Vg VBmF( ) P1,2 cos

P1,1 cos + P1,2 cos

= 176 kips 10.0 kips 44.9, 0{ }kips( ) 295 kips

352 kips+ 295 kips

= 54.9, 91.9{ } kips

ϕ
θ θ

θ− −

− − ⎛
⎝

⎞
⎠

�

(from Eqs. 19, 25)

Fig. 13.  Gusset design with bypass forces.
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UC =
VefConn
VefBm

= 57.5 kips

74.0 kips
,
75.4 kips

91.9 kips

= 0.769, 0.820{ }

⎧
⎨
⎩

⎫
⎬
⎭

�

(20)

The apportionment factor λ is determined for condition 2 (Mf = 0) using the corresponding effective beam and connection 
strength.

VefB
eb sin P

1+ UC
2

+ ecUC

=
91.9 kips( )

9.05 in. 0.768(( ()) )460 kips
11 in.( ) 1+ 0.820

2
+ 0.820( ) 7.25 in.( )

= 0.617

λ ≤ α
θ

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

�

(52)

This apportionment factor based on condition 2 will be used for both conditions 1 and 2.

HcBP = 1( )Psin

= 1 0.617( () )460 kips 0.768

= 135 kips

θλ−

−

�

(48)

Determination of Minimum Virtual Gusset Dimensions

The minimum required gusset dimension, r, is determined for each case:

	

rminCol
2 VefC HcBP( ( (() ) ))cos + rminCol VefC HcBP ec eb + 1

Mf

2
Pec cos + Pec eb ec( )[ ] 0

rminCol
2 163, 257{ } 135( )0.640

+ rminCol 163, 257{ }  kips 135 kips 7.25 in. 9.05 in.( (( ) )) + 7765, 0{ }  kip-in.

2
0.617 460 kips 7.25 in.( ) 0.640( )

+ 0.617 460 kips 7.25 in.(( )) 9.05 in. 7.25 in.( ) 0

ρ θθ λ λ ≥

≥

−−−−−−

−

− −

−

−

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

�

(75)

This is solved by the quadratic formula:

rminCol = 1.50, 17.0{ } in.−

rminBm
2 sin UcVefBm + rminBm MH ecUcVefBm PFeb sin + Pebec MH

eb
cos

0

rminBm
2 0.768 54.9, 91.9{ }  kips[ ]

+ rminBm 3880, 0{ }  kip-in. 7.25 in.( ) 54.9, 91.9{ }  kips 0.617 460 kips( ) 9.05 in.( )0.768

+ 0.617 460 kips( ) 9.05 in.( ) 7.25 in.( ) 3880, 0{ }  kip-in.
9.05 in.

0.640
0

− − −

−

−

−

≥

≥θθ
θ

⎡⎣ ⎡⎣ ⎤⎦⎤⎦

⎡⎣ ⎤⎦
⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

λ

�

(76)

This is solved by the quadratic formula:

rminBm = 16.4, 34.1{ } in.

r max rminCol ,rminBm( )
= max 1.50, 16.4( ),max 17.0,34.1( ){ } in.

= 16.4, 34.1{ } in.

≥

−

�

(29)
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As discussed in the derivation of Equations 75 and 76, for cases in which the member shear is not a governing consideration, 
selection of a higher value of the virtual dimension, r, could result in lower required gusset thickness. By trial and error, a value 
of the virtual dimension r = 18.9 in. was found to optimize the required gusset thickness for condition 1. (The same gusset-edge 
forces could also be obtained with λ = 1.0 and r = 35.2.) However, because this example also considers the zero-moment condi-
tion 2, no reduction results from such optimization, and such trial-and-error methods are generally not beneficial.

= r sin ec

= 18.9, 34.1{ } in. 0.768( ) 7.25 in.

= 7.20, 18.9{ } in.

−
−α θ

�

(10)

= r cos eb

= 18.9, 34.1{ } in. 0.640( ) 9.05 in.

= 3.00, 12.8{ } in.

θβ
−

−

�

(11)

Determination of Forces at Interfaces

The minimum actual gusset dimensions β and α are functions of the UFM, bypass, and haunch forces:

Vc = r
P

= 0.617
3.00, 12.8{ } in.

18.9, 34.1{ } in.
460 kips( )

= 45.5, 106{ } kips

β
λ λ

�

(from Eq. 2)

Hc =
ec
r
P

= 0.617
7.25 in.

18.9, 34.1{ } in.
460 kips( )

= 109, 60.4{ } kips

λλ

�

(from Eq. 4)

Vb =
eb
r
P

= 0.617
9.05 in.

18.9, 34.1{ } in.
460 kips( )

= 136, 75.4{ }kips

λλ

�

(from Eq. 5)

Hb = r
P

= 0.617
7.20, 18.9{ } in.

18.9, 34.1{ } in.
460 kips( )

= 109, 158{ } kips

λ λ α

�

(from Eq. 6)

VcBP = HcBP

tan

= 135 kips

1.20
= 113 kips

θ

�

(49)
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HcH = HbH

= MH

eb +

= 3880, 0{ } kip-in.

9.05 in.+ 3.00, 12.8{ } in.

= 322, 0{ } kips

β

�

(from Eqs. 62, 63)

VbH =VcH

= HcH

= 322, 0{ } kips
3.00, 12.8{ } in.

7.20, 18.9{ } in.

= 134, 0{ } kips

β
α

�

(64)

Determination of Total Forces and Member Shear Checks (at Connection)

The total vertical and horizontal forces are used in the determination of minimum required gusset dimensions. (Moments can-
not be computed until the actual gusset dimensions are set.) The forces on the column edge of the gusset are:

HcTot = Hc + HcBP HcH

= 109, 60.4{ }kips+135 kips 322, 0{ }kips

= 77.1, 196{ }kips <VefC =VefCol o.k.

λ −

−
−

�

(68)

VcTot = Vc +VcBP +VcH
= 45.5, 106{ } kips+113 kips 134, 0{ } kips

= 293, 219{ } kips

−
λ

�

(69)

The forces on the beam edge of the gusset are:

HbTot = Hb + HbH

= 109, 158{ } kips + 322, 0{ } kips

= 431, 158{ } kips

λ

�

(72)

VbTot = Vb VbH

= 136, 75.4{ }kips 134, 0{ } kips

= 1.90, 75.4{ }kips <UCVefB o.k.

λ
−

−

�

(73)

Determination of Minimum Actual Gusset Dimensions

HcTot HcBP + eb
ec

tan

VefC + 1
2
HcTot

=
3.00, 12.8{ }in. 77.1, 196{ }kips 135 kips 3.00, 12.8{ }in.+ 9.05 in.

7.25 in.
1.20

149, 257{ }kips+ 1
2

77.1, 196{ } kips

= 5.60, 1.00{ } in.

β
β

β
θ≥

−−

−−

−

−⎛
⎝

⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

⎞
⎠

⎛
⎝

⎞
⎠

�

(77)



256 / ENGINEERING JOURNAL / FOURTH QUARTER / 2021

VefB
VbTot

+ 1
2

= 7.20, 18.9{ } in.

71.4, 91.9{ }kips
1.90, 75.4{ }kips

+ 1
2

= 0.200, 11.0{ }in.

αα ≥

�

(78)

The following values will be used for the actual gusset:

= 8 in.β

= 11 in.α

It should be noted that condition 2 (which does not include the beam moment) is the governing condition. This is because the 
beam shear is the governing consideration in selecting the gusset size, and beam shear induced by the haunch forces counter-
acts that due to the brace force. This highlights the need to consider the minimum value of the beam moment in design. It also 
shows that in some cases the gussets can provide flexural resistance at essentially no cost.

Determination of Moments at Interfaces and Member Shear Checks (at Mid-Length of Gusset)

The moments on the column edge of the gusset are:

Mc = Hc )(
= 109, 60.4{ } kips 3.00, 12.8{ }in. 8 in.( )
= 543, 288{ } kip-in.

ββλ λ −

−
− �

(from Eq. 30)

McBP = HcBP eb +( ) VcBPec

=135 kips 7.25 in.+8 in.( ) 113 kips 7.25 in.( )
= 1490, 1490{ } kip-in.

β

−

−

�

(50)

McH = ( )HcH

= 3.00, 12.8{ }in. 8 in.( ) 32.6, 0{ } kips

= 1600, 0{ }kip-in.

−
−

−β β

�

(65)

McTot = Mc McBP McH

= 543, 288{ }kip-in. 1490, 1490{ }kip-in. 1600, 0{ }kip-in.

= 433, 1200{ }kip-in.−−
− − − −

−−λ

�

(70)

The moments on the beam edge of the gusset are:

Mb = Vb ( )
= 136, 75.4{ } kips 7.2, 18.9{ } in. 11 in.( )
= 512, 597{ } kip-in.

λλ α α−

−
− �

(from Eq. 36)

MbH = ( )VbH
= 7.20, 18.9{ }in. 11 in.( ) 134, 0{ } kips

= 505, 0{ } kip-in.

−

−

−

α α

�

(66)

MbTot = Mb MbH

= 512, 597{ } kip-in. 505, 0{ } kip-in.

= 7.00, 597{ } kip-in.

λ
− −−

−

−

�

(74)
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Check column shear:

Vmid =
HcTot

2
+ McTot

= 77.1, 196{ } kips

2
+ 433, 1200{ } kip-in.

8 in.
= 92.6, 52.4{ } kips <VefC o.k.

β
− −−

−− �

(from Eq. 31)

Check beam shear:

Vmid =
VbTot

2
+ MbTot

= 1.90, 75.4{ } kips

2
+ 7.00, 597{ }kip-in.

11 in.
= 0.300, 91.9{ }kips <VefB o.k.

−
α

�

(from Eq. 37)

Determination of Required Gusset Thickness

Considering the column side, the minimum thickness is:

tg
1

Fy2

VcTot
0.6

2

+ HcTot +
2 McTot

2

= 1

0.90 50 ksi( )2 8 in.( )
293, 219{ }kips

0.6

2

+ 77.1, 196{ } kips +
2 433, 1200{ }kip-in.

8 in.

2

= 0.725, 0.856{ }in.

ββϕ
≥

−−
−

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

�

(from Eq. 44)

Considering the beam side, the minimum thickness is:

tg
1

Fy2

HbTot

0.6

2

+ VbTot +
2 MbTot

2

= 1

0.90 50 ksi( )2 11 in.( )
431, 158{ }kips

0.6

2

+ 1.90, 75.4{ }kips +
2 7.00, 597{ }kip-in.

11 in.

2

= 0.725, 0.324{ }in.

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎛
⎝⎜

⎞
⎠⎟

⎛
⎝⎜

⎞
⎠⎟

−

ααϕ
≥

�

(from Eq. 45)

The minimum thickness is taken as the maximum of Equations 44 and 45.

Evaluation of Connection for Moment Only

As discussed earlier, the connection should have sufficient strength to resist the required moment without the offsetting effects 
of the brace forces.

The effective column shear strength in this case is increased due to the column shear (similar to column shear in a moment 
frame being in the opposite direction from the beam flange force and thus reducing the panel-zone shear demand).

VefCol = Vn +Vcol
= 257 kips+108 kips

= 365 kips

ϕ

Similarly, the shear in the beam due to moment-frame behavior, VBMF, is in the opposite direction from the shear induced by 
the haunch force, effectively increasing the effective beam shear:
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VefBm = Vn Vg +VBMF( ) P1,2 cos

P1,1 cos + P1,2 cos

= 212 kips 10.0 kips+ 44.9 kips 0.455(( ))
= 112 kips

ϕ
θ

θ θ
−

−

�

(from Eqs. 18, 25)

The forces on the column edge of the gusset are:

HcTot = HcH

= 322 kips <VefCol o.k.�

(from Eq. 68)

VcTot =VcH
= 134 kips�

(from Eq. 69)

The forces on the beam edge of the gusset are:

HbTot = HbH

= 322 kips�

(from Eq. 72)

VbTot =VbH
= 134 kips�

(from Eq. 73)

Because VbTot > UCVefB, reinforcement is required.

The moments on the column edge of the gusset are:

McTot = McH

= 1,600 kip-in.�

(from Eq. 70)

The moments on the beam edge of the gusset are:

MbTot = MbH

= 505 kip-in.�

(from Eq. 74)

Check column shear:

Vmid =
HcTot

2
+ McTot

= 322 kips

2
+ 1,600 kip-in.

8 in.
= 361 kips <VefC o.k.

β

�

(from Eq. 31)

Check beam shear:

Vmid =
VbTot

2
+ MbTot

= 134 kips

2
+ 505 kip-in.

11 in.
= ≈113 kips VefB o.k.

α

�

(from Eq. 37)

Check gusset on column edge:
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tg
1

Fy2

VcTot
0.6

2

+ HcTot +
2 McTot

2

= 1

0.90 50 ksi( )2 8 in.( )
134 kips

0.6

2

+ 322 kips +
2 1,600 kip-in.

8 in.

2

= 1.05 in.

ββϕ
≥

⎛
⎝

⎞
⎠

⎛
⎝
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⎠
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⎝
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⎛
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⎞
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�

(from Eq. 44)

Considering the beam side, the minimum thickness is:

tg
1

Fy2

HbTot

0.6

2

+ VbTot +
2 MbTot

2

= 1

0.90 50 ksi( )2 11 in.( )
322 kips

0.6

2

+ 134 kips +
2 505 kip-in.

11 in.

2

= 0.588 in.

⎛
⎝

⎞
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⎛
⎝
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⎛
⎝

⎞
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⎛
⎝

⎞
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ϕ
≥

α α

�

(from Eq. 45)

The use of the gusset plates as haunches, in the absence of the offsetting brace forces, requires increasing the gusset thickness 
and providing modest beam reinforcement. Alternatively, the gusset could be enlarged. For wind loading, it may be possible to 
rely on the offsetting effects of the beam moment and brace forces to be in phase; for seismic loading consideration of out-of-
phase behavior is prudent.

The design is shown in Figure 14. Note that beam-flange-to-column-flange welds are not required due to the entire beam-end 
moment being resisted by the gussets. As with the previous example, fillet welds are based on the strength of the gusset plate.

Fig. 14.  Gusset design considering haunch forces.
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VALIDATION

In order to demonstrate that the design methods presented 
in this study produce adequate designs, finite element anal-
yses were conducted on two models representing the design 
in Example 3. The analyses corresponded to both the con-
dition with the full expected beam moment (condition 1) 
and the condition with zero moment (condition 2), which 
governed the design.

The two analysis models were constructed using Abaqus 
software. Flanges, webs, and gussets were meshed with 
shell elements in the connection region. Columns were 
meshed from the connection region to the column mid-
height. Beams were meshed from the connection region to 
the beam quarter-length for condition 1. Frame members 
were used for columns and beams outside these regions. 
The models use an expected material strength of 55 ksi for 
all elements, moderately higher than the design strength 
employed in the design model (ϕFy  = 45 ksi). Consistent 
with the design, beam flanges are not connected to the 
column flange and are separated by a small gap. A web-
connection plate is joined to the beam web with a vertical 
line of tie elements and two 2-in. returns.

The analysis for condition 1 is displacement controlled, 
with the displacements at the two levels constrained to a 

Fig. 15.  Diagrams of finite element models for condition 1 (a) and condition 2 (b).

proportion of 2:1. Brace axial post-elastic stiffness in the 
model is tuned such that the brace axial forces used in 
design from Table 2 develop at a drift of 2.46%, which is the 
drift that results in the design moment from beam plastic 
hinging from Table 3. Thus, brace and beam forces trans-
mitted to the connection area closely match those used in 
Example 3.

For condition 2, no lateral drift is imposed, and the analy-
sis is force controlled. The design forces (brace axial forces 
from Table 2 and beam shear from Table 3) are imposed on 
a constrained section of the beam at the connection bound-
ary. Figure 15 shows diagrams of the models for conditions 
1 and 2.

Figure 16 shows the von Mises stresses and equivalent 
plastic strains in the connection region, with gusset inter-
face forces determined by stress integration. The analysis 
for condition 1 shows the formation of a beam plastic hinge 
close to the edge of the gusset. With the exception of the 
plastic hinge region, the stress in the beam web is low, con-
sistent with the low forces indicated at section B2  in the 
design calculations (Equation 37, which indicates 1.2 kips 
of beam shear from the top gusset).

The analysis confirms that the connection can resist the 
design forces, including the beam plastic-hinge moment. 
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	 (a) Von Mises stress contour	 (b) Equivalent plastic stain contour

Fig. 16.  Finite element analysis results of Example 3, condition 1.

This supports the validity of the haunch method, which uti-
lizes the gussets to transmit the beam moment to the col-
umn (rather than beam flange welds). As the plastic strain 
is limited to the beam plastic hinge, the analysis confirms 
that the design resistance can be achieved without excessive 
ductility demand in any part of the gusset connection.

While an accurate design model is not required by the 
lower-bound theorem, the forces at the interfaces are rea-
sonably close to those in the design example: the difference 
between the design and analysis model values is small com-
pared to the vertical or horizontal component of the brace 
force, as shown in Tables 5 and 6.

Table  5 shows that the apportionment of vertical and 
horizontal forces between the beam and column is roughly 
consistent between the design and the analysis. Table  6 
includes normal, shear, and flexural force at the gusset 
edge at the column and at the gusset edge at the beam, for 
both the example calculation and from the finite element 
analysis. For both, stresses are calculated using the conven-
tional plastic method utilizing the plastic section modulus 
and computing a vector sum of normal and shear stress. 
(Stresses listed for the finite element analysis are computed 
from total forces on the gusset edges; the stresses are not 
those directly reported from the analysis. These stresses 
are only presented as a means of quantifying the com-
bined effect of shear, normal, and flexural force at the gus-
set edge.) The comparison shows that design gusset-edge 

stresses so calculated also correspond roughly. Neverthe-
less, the difference is large enough in the case of the ver-
tical force to the beam to warrant caution in reliance on 
small values obtained from the difference of large forces, 
and the peak design stress is below the peak stress shown 
in Figure 16, suggesting that providing for the full gusset 
yield strength is prudent. Note that the edge forces from 
the finite element analysis are computed in the deformed 
condition, and thus are slightly out of alignment with the 
design calculations.

It should be noted, however, that the values determined 
by the haunch design method are moderately influenced 
by some of the simplifying assumptions. First, the value of 
the virtual dimension, r, was taken as the optimum value 
using trial and error; the method allows for other values 
to be used. Second, the haunch forces are set to the same 
locations as the UFM forces, as shown in Figure 10. Third, 
the apportionment factor, λ, employed for condition 1 is for 
convenience set equal to that for condition 2. Changes to 
any of these assumptions would result in somewhat differ-
ent design forces, and possibly greater difference between 
calculated and analyzed values.

In contrast to condition 1, the finite element analysis of 
condition 2 (Figure 17) shows high beam shear in the con-
nection region with substantial yielding both in the beam 
web (section B2) and in the connection plate (approxi-
mately at section B1). In the design method (with the virtual 
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Table 5.  Comparison of Analysis and Design Vertical and Horizontal Forces for Condition 1

Horizontal Forces
HcTot

(kips)
HbTot

(kips)
Sum
(kips) % Column % Beam

Example 3 calculation −77.1 431 353 −22% 122%

Finite element analysis −60.2 410 350 −17% 117%

Vertical Forces
VcTot
(kips)

VbTot
(kips)

Sum
(kips) % Column % Beam

Example 3 calculation 292 2.70 295 99% 1%

Finite element analysis 268 29.1 297 90% 10%

Table 6.  Comparison of Analysis and Design Gusset-Edge Forces for Condition 1

Forces at Column
HcTot

(kips)
VcTot
(kips)

McTot

(kip-in.)

Normal 
Stress
(ksi)

Shear 
Stress
(ksi)

Resultant 
Stress
(ksi)

Angle
(deg)

Example 3 calculation −77.1 292 −459 13.7 20.8 24.9 33.3

Finite element analysis −60.2 268 −576

Stress calculated from finite element analysis forces 14.6 19.1 24.1 37.3

Forces at Beam
VbTot
(kips)

HbTot

(kips)
Mbot

(kip-in.)

Normal 
Stress
(ksi)

Shear 
Stress
(ksi)

Resultant 
Stress
(ksi)

Angle
(deg)

Example 3 calculation 2.70 431 0.0 0.100 22.4 22.4 0.40

Finite element analysis 29.1 410 −285

Stress calculated from finite element analysis forces 4.20 21.3 21.7 11.2 

	 (a)  Von Mises stress contour	 (b)  Equivalent plastic stain conto

Fig. 17.  Finite element analysis results of Example 3, condition 2.
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dimension, r, set equal to rminBm), section B1 is constrained 
to have a demand-to-capacity ratio of 1.0. Section B2 (using 
Equation 37) has a calculated demand of 91.9 kips, equal 
to the effective capacity of the beam (Equation 18). Thus, 
the analysis and design are consistent on a fundamental 
point: As the beam yields at these sections, the column can 
still continue to resist higher forces. Of note is that while 
the beam web and its connection to the column reach yield 
stress, the plastic strains remain low due to the redistribu-
tion of the forces in the connection to the column, consis-
tent with the bypass design method.

The analysis confirms that the connection can support 
the design loads for condition 2. This supports the use of the 
bypass method. It should be noted that the Uniform Force 
Method without the bypass modification would indicate 
that this connection was inadequate. The plastic strains in 
the beam web are small, confirming that after beam-web 
yielding, the bypass mechanism provides sufficient strength 

Table 7.  Comparison of Analysis and Design Vertical and Horizontal Forces for Condition 2

Horizontal Forces
HcTot

(kips)
HbTot

(kips)
Sum
(kips)

% 
Column

%  
Beam

Example 3 calculation 196 158 354 55% 45%

Calculation with ϕFy = 55 ksi 159 194 353 45% 55%

Finite element analysis 163 190 353 46% 54%

Vertical Forces
VcTot
(kips)

VbTot
(kips)

Sum
(kips)

% 
Column

%  
Beam

Example 3 calculation 219 75.4 294 74% 26%

Calculation with ϕFy = 55 ksi 201 93.1 294 68% 32%

Finite element analysis 209 85.0 294 71% 29%

Table 8.  Comparison of Analysis and Design Gusset-Edge Forces for Condition 2

Forces at Column
HcTot

(kips)
VcTot
(kips)

McTot

(kip-in.)

Normal 
Stress
(ksi)

Shear 
Stress
(ksi)

Resultant 
Stress
(ksi)

Angle
(deg)

Example 3 calculation 196 219 −1200 35.4 15.7 38.7 66.2

Calculation with ϕFy = 55 ksi 159 201 −583 21.8 14.4 26.1 56.6

Finite element analysis 140 181 −403

Stress calculated from finite element analysis forces 17.2 13.0 21.5 53.0

Forces at Beam
VbTot
(kips)

HbTot

(kips)
Mbot

(kip-in.)

Normal 
Stress
(ksi)

Shear 
Stress
(ksi)

Resultant 
Stress
(ksi)

Angle
(deg)

Example 3 calculation 75.4 158 597 9.6 8.2 12.6 49.4

Calculation with ϕFy = 55 ksi 93.1 194 731 11.7 10.1 15.5 49.4

Finite element analysis 107 203 1030

Stress calculated from finite element analysis forces 15.3 10.5 18.6 55.4

and stiffness to preclude significant ductility demands. The 
analysis also confirms that condition 2 is more critical than 
condition 1 for this design.

The comparison of design forces from Example 3 to the 
analysis forces for condition 2 shows that the design model 
(which utilizes a specified minimum yield stress and a resis-
tance factor) requires a greater portion of the brace force to 
bypass the beam. The more accurate finite element analysis 
shows a distribution closer to the Uniform Force method, 
with somewhat less force bypassing the beam than in the 
calculations, as shown in Tables 7 and 8. This difference is 
due in part to the disparity between the stresses permitted 
in the design model and the greater expected strength used 
in the analysis. For comparison, design calculations were 
performed using ϕFy = 55 ksi (which required a bypass fac-
tor, λ, of 0.76, as compared to the value of 0.617 from the 
design example, corresponding to ϕFy = 50 ksi). Forces cor-
responding to that analysis are also in Tables 7 and 8.
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MBC	 Moment at column face resisted by beam-to-column 
connection, kip-in.

Mb	 Moment at gusset–beam interface (from Uniform 
Force Method analysis), kip-in.

MbH	 Moment at gusset–beam interface from haunch 
force, kip-in.

MbTot	 Total moment at gusset–beam interface, kip-in.

MBM	 Moment at a beam section aligned with the gusset 
edge face, kip-in.

Mc	 Moment at gusset–column interface (from Uniform 
Force Method analysis), kip-in.

McBP	 Moment at gusset–column interface from bypass 
force, kip-in.

McH	 Moment at gusset–column interface from haunch 
force, kip-in.

McTot	 Total moment at gusset–column interface, kip-in.

Mf	 Moment at column face (from beam), kip-in.

MH	 Moment at column face resisted by gusset, kip-in.

N	 Normal force on beam or column flange, kips

NB	 Beam axial force delivered to the connection, kips

NH	 Horizontal force at beam-to-column web connection 
due to haunch forces, kips

Pf	 Beam flange force at connection to column, kips

Pi,j	 Brace axial force for brace j connecting to gusset i; 
sign conventions are per the figures, kips

Rn	 Nominal strength (of beam-to-column connection), 
kips

Ru	 Required strength, kips

UC	 Ratio of connection effective strength, VefConn, to 
beam effective strength, VefBm

Vb	 Vertical force transferred to beam by gusset (from 
Uniform Force Method analysis), kips

VbH	 Vertical force transferred to beam by gusset to resist 
beam moment, kips

VBMF	 Beam shear due to moment-frame behavior, kips

VbW	 Vertical force at beam-web-to-column connection, 
kips

Vg	 Beam shear due to gravity, kips

Vc	 Vertical force transferred to column by gusset (from 
Uniform Force Method analysis), kips

CONCLUSIONS AND RECOMMENDATIONS

This study provides design equations that can be used in 
the design of gussets in braced frames to minimize the 
required shear strength of the beams and columns in order 
to avoid the need for reinforcement. The design method 
allows engineers to select the proportion of the load that 
will contribute to beam or column shear and to redistribute 
the load between beam and column. Additionally, equa-
tions are provided that allow the gussets to be used to resist 
beam-connection moment, which potentially allows for a 
very economical design by eliminating the need for beam-
flange-to-column-flange welds.

The authors recommend this modified implementation 
of the Uniform Force Method, especially for conditions in 
which web doublers would otherwise be required. The use of 
the bypass method provides additional economy, but engi-
neers should be cognizant of the limited study performed 
to date. Without additional study, the authors do not recom-
mend bypass factors λ less than 0.6. The use of the haunch 
method (with or without the bypass method) similarly pro-
vides for greater economy for connections with beam fixity. 
Based on the limited study performed to date, the authors 
recommend that the haunch method be implemented con-
sidering both the upper and lower bounds of beam moment 
(conditions 1 and 2). Further study is required to establish 
the lower bound of this moment, especially for systems with 
cyclic inelastic drift, for which the brace forces may reverse 
within the elastic drift range of the beam.

SYMBOLS

Fy	 Material specified minimum yield stress, ksi

Hb	 Horizontal force transferred to beam by gusset 
(from Uniform Force Method analysis), kips

HbH	 Horizontal force transferred to beam due to haunch 
force, kips

HbW	 Horizontal force at beam-web-to-column 
connection, kips

HbTot	 Total horizontal force transferred to beam, kips

Hc	 Horizontal force transferred to column by gusset 
(from Uniform Force Method analysis), kips

HcBP	 Horizontal force transferred to column by gusset 
from bypass force, kips

HcH	 Horizontal force transferred to column by gusset to 
resist beam moment, kips

HcTot	 Total horizontal force transferred to column by 
gusset, kips
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VcH	 Vertical force transferred to column by gusset to 
resist beam moment, kips

VCol	 Column shear due to moment-frame behavior, kips

VcBP	 Vertical force transferred to column by gusset from 
bypass force, kips

VcTot	 Total vertical force transferred to column by gusset, 
kips

VefBm	 Effective beam shear strength, kips

VefBi,j	 Apportioned effective beam shear strength that can 
be used to resist the force for brace j connecting to 
gusset i; sign conventions are per the figures, kips

VefCol	 Effective column shear strength, kips

VefCi,j	 Apportioned effective column shear strength that 
can be used to resist the force for brace j connecting 
to gusset i; sign conventions are per the figures, kips

VefConn	 Effective beam-to-column connection shear 
strength, kips

Vmid	 Shear in beam or column at mid-length or mid-
height of gusset, kips

Vn	 Nominal member shear strength, kips

db	 Beam depth, in.

eb	 Eccentricity from beam flange to beam centerline, 
equal to half the beam depth, in.

ec	 Eccentricity from column flange to column 
centerline, equal to half the column depth, in.

ho	 Distance between beam flange centroids, in.

r	 Gusset centroid offset (dimension from workpoint 
to brace control point in Uniform Force Method), 
in.

rminBm	 Minimum dimension r based on beam shear 
yielding, in.

rminCol	 Minimum dimension r based on column shear 
yielding, in.

tg	 Gusset thickness, in.

α	 Distance from column face to centroid of Uniform 
Force Method force acting on beam flange, in.

α	 Half of gusset horizontal dimension (centroid of 
gusset–beam interface), in.

β	 Distance from beam flange to centroid of Uniform 
Force Method force acting on column face, in.

β	 Half of gusset vertical dimension (centroid of 
gusset–column interface), in.

ϕ	 Resistance factor

λ	 Brace force apportionment factor (between Uniform 
Force Method and “bypass force”)

ρ	 Beam moment apportionment factor (between beam 
flange and haunch force in gusset)

θ	 Brace angle from vertical, deg
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ABSTRACT

The maximum bending moment capacity of steel-concrete composite column cross sections occurs with concurrently applied axial com-
pression. This is seen in the shape of the interaction diagram, where the bending moment capacity increases with increasing axial com-
pression before reaching the balance point. The size of this bulged region of the interaction diagram can be significant, especially for 
concrete-dominant sections. However, it is often neglected in design because of two stability-related concerns. First, the simple transfor-
mations that are recommended to convert cross-section strength to member strength produce illogical results near the balance point, with 
member strength exceeding cross-section strength. Second, research has shown that the stiffness reductions used in elastic analyses are 
not sufficient for highly slender concrete-dominant composite members subjected to high bending moments. This work seeks to address 
these issues through the development of more advanced transformations and stiffness reductions. These new recommendations will more 
accurately capture the strength of composite members and allow for more efficient designs.

Keywords:  composite construction, interaction strength, balance point, stiffness reduction.

INTRODUCTION

S teel-concrete composite frames are an effective alterna-
tive to structural steel or reinforced concrete frames for 

use as the primary lateral-force-resisting system of build-
ing structures. However, they have not yet been as widely 
adopted in United States practice as they have in other parts 
of the world, notably East Asia. There are several barri-
ers to the broader use of composite structures. Sequencing 
issues in construction, which can lead to complications such 
as difficult coordination of trades, can be a barrier. On the 
other hand, innovative composite construction methods that 
resolve the sequencing issues can be highly efficient and 
can reduce construction time (Griffis, 1992; Traut-Todaro, 
2019). Current design provisions are another barrier to the 
wider adoption of composite construction. Despite recent 
advances (e.g., Lai et al., 2015; Denavit et al., 2016; Bruneau 
et al., 2018), design provisions for composite frames are 
not yet as comprehensive as those for the more traditional 
systems, nor do they consistently reflect the advantages of 
composite framing.

Composite columns were introduced to the AISC Speci-
fication for Structural Steel Buildings, hereafter referred 

to as the AISC Specification, in the 1986 edition (AISC, 
1986). From that time until major revisions were made in the 
2005 edition (AISC, 2005), the axial and flexural strengths 
of composite beam-columns were based on calculations 
that determined an equivalent steel section. This approach 
had limitations in that it was not applicable to columns 
with steel ratios below 4%, and it often underestimated 
the contribution of the concrete, particularly for concrete-
dominant composite beam-columns with low steel ratios 
(Griffis, 2005). The current beam-column strength inter-
action provisions (AISC, 2016) are based more directly on 
mechanics principles. The cross-section strength may now 
be determined using one of several methods; the two most 
commonly used are the plastic stress distribution method, 
which is applicable to most common composite column 
cross sections, and the more general strain-compatibility 
method, which is comparable to approaches often taken 
to compute reinforced concrete section strength. The plas-
tic stress distribution method is the primary method for 
assessing steel-concrete composite columns in the AISC 
Specification (AISC, 2016) and other standards worldwide 
(CEN, 2004; SAC, 2014). It is accurate over a wide range 
of materials, cross-sectional geometries, and loading con-
ditions, but the method does result in significant unconser-
vative error for some cases. Cases of unconservative error 
include encased composite members, also known as steel-
reinforced concrete (SRC) members, with high steel ratio, 
high steel yield stress, or both (Behnam and Denavit, 2020). 
The strain-compatibility method is conservative in nearly 
all cases but can be overly conservative in many cases. The 
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revisions in the 2005 edition also included an expansion of 
the range of applicability of the provisions to members with 
steel ratios as low as 1%.

Using the plastic stress distribution method, pairs of axial 
compression and bending moment strength are computed 
based on assumed plastic neutral axis locations. Selecting 
many possible locations for the plastic neutral axis results 
in an essentially continuous curve for the interaction dia-
gram. For example, the interaction diagram for the SRC 
cross section shown in Figure 1 for bending about the major 
axis of the steel shape is shown in Figure 2(a). This cross 
section has outside dimensions of 28 in. × 28 in., a W10×49 
wide-flange steel shape, and four #8 reinforcing steel bars. 
The steel ratio (i.e., the ratio of area of steel to gross area 
of the cross section) for this cross section is ρs = As/Ag = 

1.81% (note that, for simplicity, the fillets between the web 
and the flange are neglected in this work). The reinforcing 
ratio (i.e., the ratio of area of reinforcing steel to gross area 
of the cross section) for this cross section is ρsr = Asr/Ag = 
0.40%. The concrete compressive strength is f ′c  = 8 ksi, the 
steel yield stress is Fy = 50 ksi, and reinforcing steel yield 
strength is Fyr = 60 ksi. The longitudinal reinforcing has a 
cover of 1d in. from the edge of the concrete to the edge of 
the bar.

The example cross section shown in Figure 1 was selected 
to have low steel ratios, near the lower limits given in the 
AISC Specification (AISC, 2016) since neglecting the 
balance point reduces the available strength for concrete-
dominant members more than it does for steel-dominant 
members. This cross section is used in example analyses 
described throughout this paper.

While the plastic stress distribution method can be used 
to compute a continuous cross-section interaction diagram 
by selecting many different plastic neutral axis locations, 
doing so is burdensome by hand or spreadsheet. A set of 
closed-form equations (AISC, 2017) has been developed to 
compute key points on the curve which can then be used to 
construct a multilinear interaction diagram. The points are 
labeled A, C, D, and B as shown in Figure 2(a). Point A rep-
resents the pure axial strength; point B represents the pure 
bending strength; point C has the same bending moment as 
point B, but with axial compression; point D represents the 
balance point, the point of maximum bending moment.

Computing the cross-section interaction strength is rela-
tively straightforward; however, it is not directly used in Fig. 1.  Example SRC cross section.
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Fig. 2.  Interaction strength diagrams for the example SRC cross section.
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design. As described in the AISC Specification Commen-
tary (AISC, 2016), two reductions are applied to the nomi-
nal cross-section interaction strength to obtain the available 
beam-column interaction strength.

The first is a stability reduction, where a factor equal 
to the ratio of the nominal axial compression strength 
with and without length effects (χ = Pn/Pno) is applied to 
the ordinate (i.e., axial compression) of each point on the 
interaction diagram, leaving the abscissa (i.e., bending 
moment) unchanged. This method is logical in that it yields 
the proper results for pure axial compression (point A) 
and for pure bending moment (point B), but illogical and 
potentially unconservative results arise in the intermediate 
points, particularly the balance point (point D). The balance 
point is the point of maximum moment and it occurs for a 
nonzero axial compression. When the stability reduction is 
applied in this simple manner, the resulting beam-column 
interaction point D lies outside of the cross-section interac-
tion diagram, as shown in Figure 2(b). Note that the beam-
column strength interaction diagram shown in Figure 2(b) 
was constructed with χ = 0.5, which corresponds to Lc/H = 
18.6 for the example cross section.

The second reduction is to apply the resistance factors. 
The resistance factors for composite columns are defined 
as ϕc = 0.75 for axial compression and ϕb = 0.90 for flexure 
in AISC Specification Chapter I (AISC, 2016). For com-
bined bending and axial load, the AISC Specification Com-
mentary recommends that axial compression of each point 
be multiplied by ϕc and the bending moment of each point 
be multiplied by ϕb. This simple procedure may be uncon-
servative because it can lead to strength reductions which 
imply resistance factors greater than 0.90 for the intermedi-
ate points (Denavit, 2017).

Furthermore, when evaluated against advanced second-
order inelastic analyses, current design provisions can 
result in unconservative errors for highly slender, concrete-
dominant composite members subject to low axial loads 
and high bending moments (Denavit et al., 2016). Con-
cerns resulting from the simple reductions and potential 
unconservative error have led to the recommendation in the 
AISC Specification Commentary to neglect point D in the 
strength interaction diagram and to only consider points A, 
C, and B (AISC, 2016).

Neglecting the balance point can be highly conserva-
tive, especially for stocky concrete-dominant columns. 
Improved methods of determining interaction strength of 
steel-concrete composite beam-columns would have the 
potential of unlocking large amounts of strength and allow-
ing composite columns to fulfil more of their potential. 
This work explores potential alternative approaches for 
including the balance point within the interaction strength 
of steel-concrete composite beam-columns. This work 
has two complimentary goals. The first goal is to reduce 

conservative error introduced by neglecting the balance 
point. The second goal is to reduce the unconservative error 
observed for highly slender, concrete-dominant composite 
members, which may be exacerbated by the inclusion of the 
balance point. To accomplish these goals, an alternative 
stability reduction for interaction diagrams and an alterna-
tive stiffness reduction to be used with the direct analysis 
method are evaluated.

ALTERNATIVE STABILITY REDUCTION  
FOR INTERACTION DIAGRAMS

As described in the previous section, the method for com-
puting the interaction strength of steel-concrete composite 
columns, which is referred to as Simplified Method 2 in the 
AISC Specification Commentary (AISC, 2016), neglects 
the balance point (point D). While any number of points 
on the cross-section interaction diagram can be computed, 
only three points, A, C, and B are utilized for the avail-
able strength of composite beam-columns. Interaction dia-
grams computed following these recommendations for the 
example SRC cross section and for a variety of effective 
lengths are shown in Figure 3(a). The conservativeness of 
neglecting point D can be seen by comparing the interac-
tion diagrams in Figure  3(a) to the cross-section interac-
tion diagram shown in Figure 2(a). The example SRC cross 
section is concrete-dominant, so the moment strength at 
point D is significantly greater than that at point B.

Interaction diagrams using an alternative method of 
applying the stability reduction are shown in Figure 3(b). 
In this alternative method, points A, C, and B are computed 
and reduced as before (i.e., factoring the ordinate by χ = 
Pn/Pno). Noting that factoring just the ordinate for point D 
gives the illogical result of a point on the beam-column 
interaction strength diagram outside of the cross-section 
interaction strength diagram, both the ordinate and the 
abscissa of point D are reduced. The ordinate of point D is 
reduced by the same factor as the other points. The abscissa 
is reduced such that the reduced point D remains on the line 
between point B and the original point D, thus ensuring that 
the beam-column interaction strength does not exceed the 
cross-section interaction strength. A summary of the reduc-
tion applied to each point is presented in Table 1.

The interaction diagram including point D and con-
structed using the alternative stability reduction (denoted 
as the ACDB interaction) provides a plausible alternative 
to the interaction diagram currently recommended in the 
AISC Specification Commentary (AISC, 2016) (denoted 
as the ACB interaction). However, the new interaction dia-
gram must be rigorously evaluated to ensure that it results 
in safe designs.

When evaluating design provisions for beam-column 
interaction strength, simply comparing available strengths 
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approaches. This work expands upon the results presented 
by Denavit et al. (2016). The approach taken is to compare, 
for many different individual cases, the maximum applied 
loads permitted by the design methodology to the applied 
loads at which failure occurs according to second-order 
inelastic analyses.

Benchmark Frames

The cases investigated are small frames that consist of a 
single composite column as shown in Figure 4. The same 
broad range of cross-section and frame parameters investi-
gated by Denavit et al. (2016) were used in this work.

Four categories of cross section were investigated: 
(1) circular concrete-filled steel tubes (CCFT), (2) rectan-
gular concrete-filled steel tubes (RCFT), (3) SRC subjected 
to major-axis bending, and (4) SRC subjected to minor-axis 
bending. Within these groups, sections were selected to 

computed per design equations to the results of physical 
experiments or advanced inelastic analyses can be mislead-
ing. In practice, available strengths are evaluated against 
required strengths and required strengths are computed 
following particular rules (e.g., specific type of analysis, 
defined stiffness). The provisions for an entire method 
of design, encompassing both the available and required 
strengths, must be considered in the evaluation.

Many notable studies have been conducted in this way, 
including for structural steel columns and the development 
of the interaction equations in use today (Kanchanalai, 
1977), for reinforced concrete columns (Hage and Mac-
Gregor, 1974), for the development of the direct analysis 
method (Surovek-Maleck and White, 2004), and for the 
extension of the direct analysis method to composite frames 
(Denavit et al., 2016). Each of these studies duly consid-
ered both the calculation of available strength and required 
strength in their evaluations, albeit using somewhat different 
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Fig. 3.  Interaction strength diagrams for beam-columns with the example SRC cross section.

Table 1.  Points on the Interaction Diagram

Cross-Section Strength Beam-Column Strength

Point M P M P

A 0 PA 0 χPA

C MC PC MC χPC

Da MD PD (1 − χ)MB + χMD χPD

B MB 0 MB 0
a  Point D is not included with the ACB interaction diagram.
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L, leaning column load ratios, γ, and end restraints (rota-
tional spring stiffnesses, kθ,top and kθ,bot) were investigated. 
Each cross section was run with each frame resulting in 
1,200  individual cases for each of the CCFT and RCFT 
groups and 2,880  individual cases for each of the SRC 
groups. Full details of the selected benchmark frames are 
reported by Denavit et al. (2016).

Second-Order Inelastic Analysis

Geometric and material nonlinear analyses using fiber-
based beam finite elements were used to obtain results 
against which the design methodologies are benchmarked. 
These analyses represent the “best guess” of the true behav-
ior of the frames. The uniaxial constitutive relations defined 
within the fiber representations of the cross sections were 
calibrated specifically for composite columns. As noted 
previously, local buckling of the steel tube and other steel 
components was neglected. Initial system and member geo-
metric imperfections were directly modeled. Full details of 
the analyses, including validation against the results of hun-
dreds of physical experiments are reported by Denavit et al. 
(2016) and Denavit and Hajjar (2014).

A sample of analysis results is presented in Figure 5 for 
various lengths of the sidesway inhibited frame with β = 1 
and with the example SRC cross section shown in Figure 1 
and described previously. A series of analyses was per-
formed to obtain the results for each individual case shown 
in Figure 5. First, an analysis applying only vertical load 
(i.e., M = 0; see Figure 4) was performed to determine the 
peak load. In this analysis, load was applied and increased 
in displacement control until a limit point was determined. 
The limit point was defined as when the lowest eigenvalue 

span practical ranges of concrete strength; steel ratio; and, 
for the SRC sections, reinforcing ratio. Steel yield strengths 
were selected as Fy = 50 ksi for wide-flange shapes, Fy = 
42 ksi for round HSS shapes, Fy = 46 ksi for rectangular 
HSS shapes, and Fysr = 60 ksi for reinforcing bars. Three 
concrete strengths were selected: f ′c  = 4, 8, and 16 ksi. Note 
that the AISC Specification (AISC, 2016) limits concrete 
strength to a maximum of 10 ksi. Concrete exceeding 
this limit was included to investigate an extreme case and 
because the limits may be revised in future editions.

With the selected CFT sections, the full range of permit-
ted steel ratios is examined, including those associated with 
noncompact and slender sections. However, local buckling 
is neglected in this study, both by not modeling it in the 
inelastic analyses and by not including the strength reduc-
tions in the design strength calculations. The effects of local 
buckling on the interaction strength of filled composite 
members can be captured in design through the use of the 
effective stress-strain method defined in AISC Specifica-
tion Section I1.2 (AISC, 2016) and in analysis through the 
use of beam elements with specialized constitutive relations 
or shell elements (Lai and Varma, 2016). Nonetheless, local 
buckling remains a complicated issue that was excluded 
from this work for simplicity. Thus, the results of this study 
are only strictly applicable to compact sections.

As shown in Figure 4, both sidesway inhibited and side-
sway uninhibited cases were investigated. The frames are 
based on and expanded from those used in previous studies 
(Kanchanalai, 1977; Surovek-Maleck and White, 2004). For 
the sidesway inhibited frames, a range of column lengths, 
L, and end moment ratios, β, were investigated. For the 
sidesway uninhibited frames, a range of column lengths, 
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Fig. 4.  Benchmark frames.
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of the stiffness matrix was equal to zero. This coincides 
with the maximum applied axial compression. Then, eight 
separate nonproportional analyses were performed with 
different values of axial compression equally spaced from 
zero to the maximum applied axial compression from the 
axial-only analysis. In each of these nonproportional analy-
ses, the specified level of axial compression is applied in 
load control then held constant. Subsequently, the lateral 
load is applied and increased in displacement control until 
a limit point was determined. The limit point was defined 
as when the lowest eigenvalue of the stiffness matrix was 
equal to zero. This coincides with the maximum applied 
moment. In each analysis, the applied loads and maximum 
internal forces at the limit point are recorded. These are 
the values shown in Figure 5. The same process was used 
for all other interaction diagrams developed using second-
order inelastic analyses in this work.

Design Methodology

The maximum applied loads permitted by the design meth-
odology are obtained from an automated iterative process 
as the applied loads that produce maximum internal forces 
from an elastic analysis that lay directly on the design 
interaction diagram [either the ACB such as shown in Fig-
ure  3(a) or the ACDB interaction such as shown in Fig-
ure 3(b)]. The elastic analyses are performed by evaluating 
closed-form solutions to the governing differential equa-
tion for the benchmark frames obtained from a computer 
algebra system. Only flexural deformations are considered. 

The nominal flexural stiffness of the composite columns is 
taken as EIeff as defined in the AISC Specification (AISC, 
2016). All stiffnesses are reduced by 0.8, and the flexural 
stiffness of the composite column is reduced by an addi-
tional factor τb = 0.8. A notional lateral load of 0.002 times 
the vertical load was included. The notional load was taken 
as an additive load when the ratio of second-order drift to 
first-order drift was greater than or equal to 1.7. It was taken 
as a minimum lateral load otherwise. A sample of results is 
presented in Figure 6(a) for the example SRC cross section 
and the same frames investigated in Figure 5.

Results

The key result from these analyses is the error measured 
along a radial line from the origin between the interaction 
diagrams constructed from the maximum applied loads per-
mitted by the design methodology and the applied loads at 
which failure occurs according to the second-order inelastic 
analyses. A sample comparison is shown in Figure 6(b) for 
the example SRC cross section and the sidesway inhibited 
frame with L/H = 40, where H is the lateral dimension of 
the cross section. For higher axial loads the interaction dia-
gram constructed from the inelastic analyses is outside the 
interaction diagram constructed from the design methodol-
ogy, indicating conservative error of up to 70%. For higher 
bending moments the opposite is true, albeit to a lesser 
degree, with maximum unconservative error of up to 8%. 
In this range, the design methodology permits applied loads 
that the inelastic analysis indicates would result in failure.
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Fig. 5.  Second-order inelastic analysis results for frames with the example SRC cross section.
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The error was evaluated for all benchmark frames, at 
many angles within the M-P plane, and for both the ACB 
and ACDB interaction diagrams. While the selected cross 
sections and frame parameters can be considered to span 
the practical range, the distribution of parameters within the 
selection may not be representative of what is expected in 
practice. For instance, the selected set contains a far higher 
proportion of very slender frames than would be expected 
in typical construction. Accordingly, maximum and mini-
mum error values are more meaningful than median or 
average error values. Two of the most influential parame-
ters within the set are the steel ratio, ρs, and the slenderness. 
Slenderness is defined by the parameter λoe (Equation  1) 
which is proportional to the effective length of the columns. 
An effective length factor was computed and used for 
determining λoe (note, however, that the available strength 
was computed with an effective length factor of unity in 
accordance with the direct analysis method). The frames 
were separated into bins based on ranges of steel ratio and 
slenderness to better understand the error. The ranges used 
to separate the frames based on slenderness are shown in 
Table 2. The maximum unconservative error for each of the 
bins for the ACDB interaction is shown in Table 3.
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The maximum unconservative error varies significantly 
with section type, slenderness, and steel ratio. The greatest 
unconservative errors are seen for the slenderest and most 
concrete-dominant cases. There is no specified limit on the 
level of unconservative error that can be tolerated within a 
design methodology. One reference identifies a 5% uncon-
servative error as a reasonable maximum (ASCE, 1997). 
Another study identified unconservative errors as large as 
16% for structural steel columns designed according to the 
direct analysis method with direct modeling of member 
imperfections (Wang and Ziemian, 2019). It is important to 
note that large unconservative errors have been found using 
the ACB interaction as well (Denavit et al., 2016). Given 
that the ACDB interaction diagram is larger than the ACB 
interaction diagram, use of the ACDB interaction diagram 
can only increase the maximum unconservative errors. The 
increase in maximum unconservative error for each bin is 
presented in Table 4. Compared to the magnitude of error, 
the increase due to the inclusion of point D is modest.

The primary reason to include point D is to reduce con-
servative error in the evaluation of strength. The decrease 
in maximum conservative error by including point D for 
each bin is presented in Table  5. As expected, the larg-
est decreases in conservative error occur for stockier and 
more concrete-dominant frames. This range is likely more 
practical and common in construction than the highly 
slender members for which the high unconservative errors 
are seen, indicating that the addition of point D would 
be highly beneficial. Nonetheless, given the increases in 

	 Bending Moment (kip-ft)

A
xi

al
 C

om
pr

es
si

on
 (k

ip
s)

	

0 200 400 600 800 1000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Second-order inelastic analysis
Design methodology (ACDB)

Bending Moment (kip-ft)

A
xi

al
 C

om
pr

es
si

on
 (k

ip
s)

8% maximum 
unconservative error

	 (a)  Design methodology—ACDB interaction	 (b)  Comparison with OpenSees (L/H = 40)

Fig. 6.  Maximum permitted applied loads for frames with the example SRC cross section.



274 / ENGINEERING JOURNAL / FOURTH QUARTER / 2021

maximum unconservative error, this approach cannot be 
recommended for general use unless paired with additional 
changes that reduce the maximum unconservative errors.

ALTERNATIVE STIFFNESS REDUCTION

The previous section addressed the source of some of the 
greatest conservative errors that exist in the provisions for 
steel-concrete composite columns. The ACDB interaction 
diagram significantly reduced the level of conservative 
error while only modestly increasing the unconservative 
error. However, the unconservative error was already high 
in some cases. The greatest unconservative errors occur 
for highly slender, concrete-dominant members with large 

flexural demands. Cases such as these are perhaps not 
often seen in practice, since most engineers wisely avoid 
this range. However, there is no slenderness limit within the 
AISC Specification (AISC, 2016) and thus cases for which 
large errors are recorded are permitted. One remedy to 
these high errors would be to further reduce the size of the 
interaction diagram. However, a different remedy related to 
the stiffness reduction may be more appropriate.

The errors occur with low axial loads and high bending 
moments. High levels of concrete cracking are expected 
in composite columns under this loading, which is more 
beam-like than column-like. The flexural rigidity used for 
composite columns when determining required strengths 
within the direct analysis method is 0.8τbEIeff, where  

Table 2.  Definition of Slenderness Ranges

Range Slenderness

I λoe ≤ 0.5

II 0.5 < λoe ≤ 1.0

III 1.0 < λoe ≤ 1.5

IV 1.5 < λoe ≤ 2.0

V 2.0 < λoe ≤ 3.0

VI 3.0 < λoe

Table 3.  Maximum Unconservative Error Based on Slenderness and Steel Ratio, ACDB Interaction

ρρs I II III IV V VI

C
C

FT

0.25 6.00% 14.6% 12.5% 13.7% 5.70% 5.90%

0.18 4.40% 12.4% 14.0% 15.9% 8.60% 9.10%

0.11 5.20% 9.50% 14.4% 17.9% 11.4% 12.8%

0.06 6.40% 8.90% 11.7% 12.7% 19.3% 17.9%

0.02 5.40% 6.70% 7.00% 15.6% 24.8% 36.3%

R
C

FT

0.28 1.70% 2.40% 1.90% 3.00% 0.00% 0.00%

0.19 4.30% 3.60% 5.20% 7.00% 0.90% 1.30%

0.11 4.00% 4.60% 8.20% 11.4% 6.30% 7.10%

0.06 3.90% 4.90% 8.70% 6.20% 16.3% 15.7%

0.03 1.60% 0.50% 4.80% 10.5% 18.7% 21.8%

S
R

C
m

aj
o

r-
ax

is 0.12 6.90% 5.90% 3.60% 4.70% 6.80% 2.10%

0.09 4.70% 3.60% 3.80% 6.70% 8.90% 4.00%

0.04 2.00% 0.90% 2.40% 9.70% 14.3% 13.1%

0.01 2.10% 2.10% 5.00% 7.40% 14.7% 29.2%

S
R

C
m

in
o

r-
ax

is 0.12 17.4% 15.8% 14.9% 13.9% 14.1% 8.60%

0.09 13.8% 14.6% 10.3% 12.8% 13.0% 6.80%

0.04 5.50% 5.70% 8.00% 11.0% 13.8% 11.4%

0.01 2.10% 2.10% 4.30% 7.50% 11.2% 28.1%
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Table 4.  Percentage Point Increase in Maximum Unconservative Error Based on Slenderness and Steel Ratio

ρρs I II III IV V VI

C
C

FT

0.25 3.00% 0.00% 2.50% 1.50% 1.00% 0.70%

0.18 2.00% 0.00% 3.90% 2.20% 1.30% 1.00%

0.11 2.40% 2.70% 5.10% 4.00% 3.10% 1.70%

0.06 0.40% 3.20% 3.20% 6.40% 6.30% 3.10%

0.02 0.00% 0.40% 7.00% 9.20% 7.70% 7.50%

R
C

FT

0.28 0.00% 0.00% 1.90% 1.20% 0.00% 0.00%

0.19 0.00% 0.00% 2.40% 1.90% 0.90% 0.90%

0.11 0.00% 1.70% 4.00% 3.70% 2.20% 1.70%

0.06 0.10% 2.60% 4.50% 5.50% 7.10% 3.50%

0.03 0.00% 0.00% 4.80% 6.20% 7.70% 4.80%

S
R

C
 

m
aj

o
r-

ax
is 0.12 0.00% 0.00% 2.20% 2.30% 2.40% 0.70%

0.09 0.20% 0.30% 2.30% 4.80% 2.60% 1.20%

0.04 1.00% 0.20% 1.70% 6.20% 4.70% 2.00%

0.01 0.00% 0.00% 2.90% 3.30% 3.00% 4.80%

S
R

C
 

m
in

o
r-

ax
is 0.12 0.00% 0.50% 0.20% 0.40% 0.20% 0.10%

0.09 0.30% 0.30% 0.70% 0.40% 0.20% 0.50%

0.04 0.00% 1.90% 1.80% 0.80% 2.70% 1.40%

0.01 0.00% 0.00% 2.20% 3.10% 3.40% 4.50%

Table 5.  Percentage Point Decrease in Maximum Conservative Error Based on Slenderness and Steel Ratio

ρρs I II III IV V VI

C
C

FT

0.25 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.18 0.00% 5.40% 0.00% 0.30% 0.00% 0.00%

0.11 14.4% 16.5% 1.40% 0.60% 0.80% 0.10%

0.06 32.4% 28.8% 11.7% 3.20% 1.10% 0.70%

0.02 33.6% 32.3% 25.5% 9.20% 4.50% 2.10%

R
C

FT

0.28 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%

0.19 5.20% 0.00% 0.20% 0.40% 0.00% 0.00%

0.11 16.9% 10.6% 1.80% 0.70% 0.80% 0.00%

0.06 31.9% 21.1% 4.70% 2.70% 0.00% 0.70%

0.03 34.4% 33.4% 18.2% 4.40% 1.60% 1.20%

S
R

C
  

m
aj

o
r-

ax
is 0.12 13.7% 0.00% 0.80% 0.50% 0.30% 0.30%

0.09 20.6% 6.20% 1.00% 0.80% 0.30% 0.30%

0.04 30.7% 12.6% 2.20% 0.70% 1.10% 0.30%

0.01 30.3% 29.0% 10.6% 2.40% 2.20% 0.00%

S
R

C
  

m
in

o
r-

ax
is 0.12 0.00% 0.00% 0.30% 0.40% 0.00% 0.20%

0.09 5.90% 4.10% 1.10% 0.50% 0.00% 0.10%

0.04 28.2% 9.50% 0.90% 0.40% 0.70% 0.20%

0.01 30.2% 28.5% 10.0% 2.20% 2.10% 0.00%
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(ACI, 2019) includes provisions for an effective flexural 
rigidity that varies with both axial compression and bend-
ing moment.

The effect of the alternative stiffness reduction on the 
maximum permitted applied loads for the example SRC 
cross section is shown in Figure 8(a). The solid lines repre-
sent the maximum permitted applied loads using a constant 
τb = 0.8; the dashed lines represent the maximum permitted 
applied loads using Equation 3. The percentage difference 
between the two is shown in Figure  8(b). The reduction 
is sufficient to eliminate the unconservative error [e.g., as 
shown in Figure 6(b).] There are also other attractive fea-
tures. The alternative stiffness reduction has no effect on 
the pure bending strength, nor does it affect the strength 
when the axial compression is high. Also, as seen in Fig-
ure 8(b), it has a greater effect on more slender members, 
for which additional conservatism is likely warranted. The 
specific factors in Equation 3 should be refined and a wide 
ranging evaluation should be performed to ensure safety 
and accuracy, but these limited results show the promise of 
a moment-based stiffness reduction in efficiently eliminat-
ing some of the largest unconservative errors observed in 
the design provisions for steel-concrete composite framing 
systems.

τb = 0.8 and EIeff is the flexural rigidity used within the col-
umn curve for determination of axial compression strength. 
Further reductions to the stiffness would help eliminate the 
observed unconservative errors. An example alternative 
stiffness reduction factor, τb, is shown in Equation 3:
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This equation is based on prior work (Denavit and Hajjar, 
2014). Data on the secant flexural rigidity was computed 
based on results from second-order inelastic analysis; an 
equation was then fit to the data. The variation of the τb 

described by Equation  3 with internal forces is shown in 
Figure 7. The reduction factor is a constant τb = 0.8 for much 
of the range. Only with high bending moment and low axial 
loads, where high levels of cracking are expected, does τb 
become less than 0.8 and vary with the axial compression 
and bending moment.

Performing an elastic analysis with a stiffness reduc-
tion that varies with internal forces can be cumbersome. 
However, there is precedent in U.S. practice. For structural 
steel members, the factor τb varies with axial compression. 
For reinforced concrete members, the ACI Building Code 
Requirements for Structural Concrete and Commentary 
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Fig. 7.  Contour plot showing the variation of the alternative stiffness reduction factor.
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Fig. 8.  Results using the alternative stiffness reduction.

CONCLUSIONS

This work has highlighted some of the most pressing 
unresolved issues in stability and strength design of steel-
concrete composite framing systems: (1)  the large conser-
vative errors that result from neglecting the balance point 
in the calculation of available strength and (2)  the large 
unconservative errors that result from overestimation of the 
stiffness for very slender concrete-dominant members sub-
jected to high bending moments. An alternative method of 
computing the available strength interaction diagram was 
proposed and evaluated against second-order inelastic anal-
yses for a broad range of cases. The results show that using 
the proposed interaction diagram reduces the largest con-
servative errors but worsens existing unconservative errors. 
To address this issue, an alternative stiffness reduction that 
varies with internal forces was proposed to better capture 
the occurrence of high levels of cracking and eliminate the 
unconservative errors. Initial studies with this alternative 
stiffness reduction showed promising results. Both alter-
native approaches, once fully validated, have the potential 
to improve the accuracy and safety of the stability design 
provisions for steel-concrete composite framing. They can 
also set the stage for future developments such as design 
provisions based on cross-section strength and the use of 
high-strength materials.
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ABSTRACT

The AISC Specification Chapter F I-section member flexural resistance equations are a central part of structural steel design in the United 
States. The provisions of Sections F4 and F5 address general singly and doubly symmetric I-section members. Analytical studies and 
experimental tests subsequent to the implementation of these provisions within the 2005 AISC Specification suggest that the corresponding 
inelastic lateral-torsional buckling (LTB) and tension flange yielding (TFY) resistance equations can be improved, resulting in significantly 
larger predicted strengths in certain cases and somewhat smaller predicted strengths in other cases. Additional large-scale experimental 
tests, specifically pushing into the inelastic LTB range, need to be conducted to further investigate these predictions. The broad objective 
of the additional tests is to achieve a target reliability index of β = 2.6 for building design at a live-to-dead load ratio of 3.0 throughout the 
design space involving all types of statically determinate I-section flexural members.

This paper discusses the need for these tests, specifically focusing on the details of how the test fixtures and bracing systems were config-
ured to minimize incidental restraint, which is a critical consideration when conducting flexural experimental testing. The paper discusses 
the validation of the testing system by comparison of elastic buckling experimental results to analytical and numerical solutions.

Keywords:  lateral-torsional buckling, experimental testing, incidental restraint.

INTRODUCTION

The Chapter F equations in the AISC Specification for 
Structural Steel Buildings, hereafter referred to as the 

AISC Specification (AISC, 2016b), provide a broad charac-
terization of the flexural resistance of all types of I-section 
members, including rolled and welded members; members 
with doubly and singly symmetric cross-section profiles; 

and members with compact, noncompact, or slender flanges 
and/or webs, failing by plastic, inelastic, or elastic lateral-
torsional buckling (LTB). Closely related equations exist 
within the AASHTO LRFD Bridge Design Specifications 
(AASHTO, 2020).

Relatively comprehensive assessments of analytical stud-
ies and experimental test results conducted to date have 
raised concerns that AISC Specification Sections F4 and 
F5 flexural resistance provisions may not satisfy accepted 
target reliability indices in certain cases pertaining to the 
LTB of I-section members (Subramanian et al., 2018; Sub-
ramanian and White, 2017). However, the experimental test 
data are quite sparse within a number of “regions” of the 
corresponding design space. Additionally, AISC Specifica-
tion Sections F4 and F5 can be enhanced by eliminating 
the current tension flange yielding (TFY) limit state pro-
visions. Allowing for development of significant reserve 
capacity involving yielding in flexural tension by incorpo-
rating early tension yielding effects into the calculation of 
the cross-section yield moment to the compression flange, 
Myc (Toğay and White, 2018).

Quality experimental data is critical for the validation 
of refined shell finite element analysis (FEA) procedures 
that can be employed to investigate the flexural resistances 
within the design space more comprehensively.

This paper focuses on the validation of the testing con-
figuration used to conduct inelastic tests to achieve the 
above objectives. Lateral-torsional buckling experimental 
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results can be sensitive to incidental restraint in the testing 
configuration (Ziemian, 2010). The testing configuration 
described in this paper utilizes polytetrafluoroethylene- 
(PTFE-) coated spherical bearings for multi-rotational 
degree-of-freedom releases, mechanical bearings for the 
single rotational degree-of-freedom releases (as part of a 
Watt’s linkage bracing system), and lubricated roller packs 
for single translational degree-of-freedom releases. The 
effectiveness of these “releases” of rotational and transla-
tional constraints is evaluated directly by testing a speci-
men in the elastic LTB range and comparing the measured 
responses to various analytical and numerical solutions.

TEST CONFIGURATION

The experimental test setup was designed to minimize inci-
dental restraint and remove load-height effects. Inciden-
tal restraint can have a measurable impact on large-scale 
experimental LTB beam results by increasing the capacity 
beyond that based on the ideal boundary conditions (Zie-
mian, 2010). The test configuration was designed to fully 
release or fix selected degrees-of-freedom at the bearing, 
load, and bracing points. Load-height effects at the load 
points can make the calibration of design equations to 
observed specimen behavior more complex. To eliminate 
load-height effects, the lateral and torsional displacements 
were restrained at the bearing and load points in all the 
experiments conducted in this research. The design of the 
test setup involved an extension of the concepts discussed in 
the Structural Stability Research Council (SSRC) Technical 
Memorandum No. 9 on flexural testing (Ziemian, 2010).

Figure 1 provides an elevation view of a test specimen, 
discussed throughout this paper, under three-point bend-
ing. The elevation view and measured section dimensions 
in Figure  1 are drawn to scale and show instrumentation 
locations and the corresponding moment diagram.

Figure  2 is a photograph of the test specimen within 
testing frame. The white member is the test specimen, 

the blue members are the bracing reaction system, and the 
gray members are the load frame. The loading and support 
fixtures and bracing details are discussed in the following 
sections.

Load and Bearing Fixtures

Roller boundary conditions were provided at the bearing 
locations. The overall boundary conditions were symmetric 
about the mid-length of the test specimens. Longitudinal 
translation was permitted via a lubricated roller pack com-
posed of four 2.5-in.-diameter solid steel rods. A 100-kip 
load cell was located above each roller pack. Transverse dis-
placement was restrained at the bearing locations via Watt’s 
linkage braces discussed in the following section. The three 
rotational degrees-of-freedom at the supports were released 
via PTFE-lined spherical thrust bearings. The PTFE thrust 
bearings allowed free in-plane rotation due to the major-
axis bending of the specimens and free out-of-plane rota-
tion associated with flange warping and/or lateral bending. 
The spherical bearing was seated in a counter-bored plate 
on top of the load cell. Weld beads were placed on the 
flange of the specimen to securely seat the opposite side of 
the spherical bearing on the specimen. Figure 3 provides a 
conceptual drawing of the bearing detail used for all tests 
as well as a photograph of the final bearing detail prior to 
placing the spherical thrust bearing at the top.

In addition, a PTFE spherical thrust bearing was located 
at the point of load application (e.g., at the midspan of the 
three-point bending test specimens). Load-point bracing 
was provided via a Watt’s linkage system. Figure 4 shows 
the conceptual and implemented boundary condition at the 
point of load application.

Bracing

The bracing system was designed using a mechanical system 
known as a Watt’s linkage. The Watt’s linkage restrains dis-
placement perpendicular to the girder web, while allowing 

8.5 ft 17 ft 17 ft 8.5 ft

SP-1 SP-2 & 
SP-3

SP-4

SP-6 SP-5SP-7

SP-8

Cb = 1.38, Ke = 0.82

Mmid

= horizontal string pot.
= vertical string pot.

Brace point (typ.)

Fyf  = 58.2 ksi
Fyw = 61.9 ksi

bf  = 4.963 in. 
tf = 0.307 in.

h = 29.993 in. 

tw =  0.246 in.

Fig. 1.  South-facing elevation view of the elastic test specimen showing the instrumentation locations,  
corresponding moment diagram, measured section dimensions and properties, and key design parameters Cb and Ke.
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Fig. 2.  Perspective view of the test configuration.

Fig. 3.  Bearing boundary condition detail: schematic (left) and implementation (right). The  
spherical bearing was excluded in the photo to show the counter-bore. The roller pack was chocked  

in the photo to prevent incidental movement during installation of the test specimen.
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the linkage system to prevent deflections in the direction 
perpendicular to the girder webs (i.e., the horizontal direc-
tion in the figure) under large longitudinal displacements 
(i.e., displacements in the vertical direction in the figure). 
In addition, girder vertical deflections (i.e., deflections into 
and out of the page in the figure) are accommodated by the 
rotation of the center link about a vertical axis.

The Watt’s linkage system does an excellent job of releas-
ing incidental constraint. Annotated photos describing the 
system are provided in Figure 6 and 7. Several additional 
unique features added to the design of the bracing system 
include the following:

free translation in the longitudinal and vertical directions. 
Watt’s linkage bracing has been used previously by Yarimci 
et al. (1967), Smith et al. (2013), and others. For the cur-
rent study, the system was comprised of two 4-ft-long tie 
rods with ball joint rod ends attached to the stiff reaction 
frames (painted blue in Figure 2) and a 6.5-in.-long center 
link. The center link is free to rotate about a vertical axis 
and transfers lateral forces to the girder through a cylindri-
cal mechanical bearing referred to as a flange block. The 
center link is attached at its mid-length to a pillow block on 
each side of the 2.5-in.-thick plate containing the counter-
bore at the load and support points and to a flange block 
at the other brace points. Figure 5 illustrates the ability of 

Fig. 4.  Load point boundary condition detail: schematic (left) and implementation (right).

Longitudinal axis of 
the test specimen

Fig. 5.  Plan view illustration of a Watt’s linkage movement under a large deflection along the axis of the test specimen. The heavy 
dashed blue lines represent the initial geometry of the linkage, the solid black lines represent a deformed geometry of the linkage, and 

the red dashed line illustrates the path of the brace point (i.e., the middle of the center link) between the two geometries.
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NUMERICAL MODELING

Finite element methods can predict incipient buckling 
(bifurcation) by calculating the lowest eigenvalue using the 
equation

	 Ke. ff f{ } = Kg. ff f{ }ΔΔ λ −⎡⎣ ⎡⎣⎤⎦ ⎤⎦ � (1)

where Ke.ff is the elastic stiffness matrix only considering 
free degrees of freedom, Kg.ff is the geometric stiffness 
matrix calculated from element forces (or stresses) from a 
linear elastic analysis for a known reference load Pref, Δf is 
the displacement vector associated with the free degrees of 
freedom, and λ is the lowest eigenvalue representing the 
ratio of the elastic critical load to Pref (McGuire et al., 2000).

Iterating Pref until λ goes to 1.0 results in a predicted 
elastic linear buckling strength. For the test specimens, 
self-weight and the weight of the bracing components are 
a constant value, so it is inappropriate to scale a constant 
reference applied load, Pref, solely by λ. That is, the load-
ing on the system includes a constant load due to the ini-
tial self-weight of the specimen and bracing attachments 
to the specimen, plus the reference load multiplied by the 
applied load parameter, λ. Once the initial load due to the 
self-weight is established, then either Pref can be varied and 
an eigenvalue solution sought such that λ = 1.0, or a con-
stant applied reference load can be specified and an eigen-
value multiple of this reference load sought corresponding 
to the buckling of the specimen. In either case, the internal 
forces are the sum of the constant forces due to the initial 

•	 Each end of the tie rods was threaded—left-hand threads 
on one end and right-hand threads on the other. The 
opposing threads allowed for quick length adjustments 
via rotation of the rod about its axis, without having to 
unbolt the ends, allowing for fine adjustments to ensure 
the test specimen was plumb at each brace point.

•	 Jam nuts were used to ensure the tie rod length did not 
change during the loading of the test specimens.

•	 A rail system was implemented for rapid reconfiguration 
between different unbraced lengths and bracing 
configurations. The tie rods were bolted to vertical WT 
members containing a series of holes accommodating 
varying specimen heights. The bracing reaction frame 
was composed of wide flange rails that extended the 
entire length of the test setup. Friction-based connections 
by Lindapter (2019) were used to connect the vertical 
WT sections to the wide flange rails. Each WT slid along 
the rails to accommodate a range of specimen unbraced 
lengths.

•	 Each brace point, including the Lindapter friction-based 
connection, was designed to accommodate a transverse 
force of 20 kips. A flange block (a housed cylindrical 
bearing) was used to release the rotation about the vertical 
axis at the girder flanges for the Watt’s linkage system. At 
the load application and bearing locations, pillow blocks, 
with a different housing but the same internal cylindrical 
bearing, were selected. To prevent pull-out, the outside 
diameter of the stem connecting the center link to the 
pillow block was match-machined to the inside diameter 
of the bearing for a press-fit connection. Additionally, 
four set screws bear on flats on the center-link stem.

Fig. 6.  Components of the boundary conditions. Fig. 7.  Components of the bracing system.
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self-weight plus the forces due to the additional applied load 
at buckling. In this research, these elastic buckling calcu-
lations were conducted using the finite element software 
system SABRE2 (White et al., 2020) based on thin-walled 
open-section (TWOS) beam theory considering warping 
torsion.

The elastic effective length factor, Ke, is back-calculated 
by equating the maximum internal moment within the criti-
cal unbraced length, at the elastic buckling load level deter-
mined by the computational solution, to the equation for the 
elastic critical moment, Mcr, from recommended and AISC 
Specification (2016b) provisions:

	

Mcr =
CbSxc

2E

KeLb rt( )2
1+ 0.078

J

Sxcho

KeLb
rt

2π ⎛
⎝

⎞
⎠

�

(2)

An expedient process to determine Ke is to employ the goal-
seek root-finding capability in Excel to iteratively solve for 
the value of Ke that satisfies the equality.

In Equation  2, Cb is the moment gradient factor, E is 
the elastic modulus, Sxc is the section modulus, Lb is the 
unbraced length of the critical section, rt is the radius of 
gyration for LTB, J is the St. Venant torsion constant, and 
ho is the distance between the flange centroids. For the 
slender-web members, J was taken equal to zero in Equa-
tion  2, as well as in the calculation of the buckling load 
from SABRE2. The calculated value of Ke is used in all rec-
ommended and AISC Specification strength calculations of 
this research to directly account for the end restraint from 
adjacent less-critical unbraced lengths due to continuity 
effects. An alternative means of calculating Ke is to use an 
approximate method such as that proposed by Nethercot 
and Trahair (1976). However, with the increased availabil-
ity of software capable of conducting basic elastic linear 
buckling analysis (ELBA), the “exact” calculation of Ke is 
the more appropriate solution for research evaluations.

ABAQUS Version 6.13 (Simulia, 2021) finite element 
analysis software was employed for developing GMNIA 
(geometric nonlinear material linear-elastic analysis with 
imperfections) finite element simulations in this research. 
The finite element mesh consisted of B31 beam elements 
for transverse stiffeners and S4R nonlinear shell elements 
for all other components. The B31 is a two-node, three-
dimensional beam element that allows for transverse shear 
deformation. The B31 element is based on linear-order 
displacement interpolation and is compatible with the 
S4R shell element. The S4R is a four-node, quadrilateral 
displacement-based shell element with reduced integration. 
Both the B31 and the S4R elements are based on large-
strain formulations. The shell finite element mesh for the 
I-section specimens was generated using 12 elements across 
the flange width and a minimum of 16 elements through 
the web depth. The dimension of the shell elements along 

the length of the members was selected such that the aspect 
ratio of the web elements was close to 1.0. This mesh den-
sity has been determined to be sufficient for convergence of 
full nonlinear FEA solutions of various I-section members 
in prior research—for example, Prado and White (2015)—
as well as in these research studies.

The nonlinear shell FEA solutions in ABAQUS were 
implemented through a modified RIKS arc length proce-
dure. The modified RIKS algorithm is particularly useful 
in obtaining the post-buckling response for cases where the 
loading is proportional—that is, where the load magnitudes 
are governed by a single parameter (Simulia, 2021). The 
modified RIKS algorithm conducts a load-deflection analy-
sis where the load is incremented by scaling the reference 
load, or a set of applied reference loads, by the load parame-
ter. The definition of initial residual stresses, and the appli-
cation of the applied loads to the test specimens starting 
from their loaded state under their self-weight, was accom-
plished by subdividing the analysis into multiple steps. Note 
that the residual stress pattern follows half the magnitude 
of the best-fit Prawel pattern based on recommendations 
from Subramanian and White (2017), who state that this 
provides reasonable correlation with the mean results from 
experimental tests. A first step was employed to solve for 
the equilibration of the initial residual stresses on the geo-
metrically imperfect model (the initial residual stress pat-
tern generally does not satisfy equilibrium on the imperfect 
structure geometry, nor at free-ends of the specimens). A 
second step was then employed to apply the constant self-
weight loads. Finally, the modified RIKS algorithm was 
applied in a third step to place the applied load incremen-
tally on the model.

VALIDATION OF THE TEST SETUP  
THROUGH AN ELASTIC LTB TEST

A benchmark elastic LTB experiment was conducted to 
evaluate the effectiveness of the translation and rotational 
releases in the test setup. Figure  1 provides an elevation 
view of the test specimen as well as the moment diagram. 
The elevation view and measured section dimensions 
in Figure  1 is drawn to scale and shows instrumentation 
locations. For the critical unbraced lengths adjacent to the 
mid-span, Cb  = 1.38 from AISC Specification Commen-
tary Equation C-F1-2b (AISC, 2016b) and Ke = 0.82 for the 
critical unbraced lengths adjacent to the mid-span (back-
calculated from an elastic buckling analysis conducted 
using SABRE2). The resulting configuration slenderness 
was well within the elastic LTB range.

It is important to note that due to stable elastic post-
buckling response in the governing LTB mode, the speci-
men potentially can develop a maximum load capacity 
larger than the elastic critical load, due to the large LTB 
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slenderness for the elastic LTB testing arrangements. Any 
actual post-buckling strength is directly dependent upon the 
extent of early yielding due to the combined effects of the 
girder loads, the initial geometric imperfections, the initial 
residual stresses, and the amplified lateral bending of the 
compression flange as the theoretical elastic critical load 
is approached. The peak load at which the elastic LTB test 
reached is compared directly to the theoretical elastic LTB 
resistance and to the capacity predicted from shell FEA test 
simulation. The FEA simulation models included the evalu-
ation of the post-peak response. Additionally, plots of the 
horizontal displacement of the flanges versus the load were 
employed to estimate the theoretical elastic LTB moments 
via Southwell, Meck, and Massey plots (Mandal and Cal-
ladine, 2002).

The test specimen was fabricated by a prominent metal 
building manufacturer and is representative of main frame 
members in typical metal building frames. The web-to-
flange welds are minimum size single-sided fillet welds. 
Both flanges are fabricated from rolled bar stock, while 
the web was cut from a coil. In addition, the specimen has 
double-sided stiffener plates at all the brace points, includ-
ing load and bearing locations, to control cross-sectional 
distortion.

Measured compression flange sweep and web out-of-
flatness of the test specimen are shown in Figures 8 and 9, 
respectively. Geometric imperfection measurements were 
taken after the beam was installed and plumbed. Allowable 
tolerances of Lb/480 for compression flange sweep and h/ 72 
for web out-of-flatness are specified in the Metal Building 

Fig. 8.  Measured compression flange sweep.

Fig. 9.  Measured web out-of-flatness.
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Systems Manual (MBMA, 2018). These tolerances are 
approximately double the imperfection limits given by the 
AISC Code of Standard Practice (AISC, 2016a). The other 
measured imperfections—that is, tension flange sweep, 
combined flange warpage and tilt, and web off-center—
were documented but are not specified in this paper. A 
detailed force and moment tabulation is summarized in 
Table  1, including the influence of all self-weights of the 
testing specimen and bracing components, load applied 
prior to zeroing the load cells at the start of the experiment, 
and the measured peak load during the experiment.

The experimental strength of 1,600 kip-in. is normal-
ized by the moment corresponding to compression flange 
yielding, Myc, of 4,760 kip-in. and plotted in Figure 10 at 
the effective length, KeLb = 13.9 ft. Furthermore, Figure 10 

shows numerical strength predictions from an ABAQUS 
nonlinear shell FEA test simulation and from a thin-walled 
open-section (TWOS) beam theory inelastic buckling anal-
ysis using SABRE2, as well as estimates of the theoretical 
elastic buckling load from a Southwell plot based on the 
measured experimental displacements.

In addition, Figure 10 shows the normalized theoretical 
elastic buckling curve from Equation 2 for a range of mem-
bers having the same configuration as in Figure 1 but with 
different effective unbraced lengths, using the calculated 
finite J for the specific specimen. This is the dashed black 
curve in the figure. Also shown in light gray is the LTB 
strength curve from the recommended provisions presented 
in Slein et al. (2021). This curve is based on J  = 0 since 
the web for this cross section classifies as slender using 
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Fig. 10.  Comparison of experimental test results to numerical results from ABAQUS and SABRE2 to a  
Southwell plot estimate of the elastic buckling load and to elastic LTB and design strength curves.

Table 1.  Peak Moment Contributions

Maximum Moment at Mid-Span Due to Dead Loads

Dead Load Calculation
Moment 

kip-ft (kip-in.)

Girder self-weight (0.036 klf) (51 ft)2/8 11.6 (139)

Mid-span attachments (0.38 kip) (51 ft)/4 4.95 (59.4)

Bracing attachments (0.07 kip) (8 ft) 0.540 (6.50)

Maximum Moment at Mid-Span Due to Applied Loads

Applied Load Calculation
Moment

kip-ft (kip-in.)

Initial seating preload (0.50 kip) (51 ft)/4 6.38 (76.5)

Actuator load at failure (8.51 kips) (51 ft)/4 109 (1300)

Maximum moment at mid-span 133 (1600)
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the recommended provisions. The “exact” elastic critical 
moment for the specimen is determined using SABRE2, 
and the Ke value is determined using Equation 2 (using the 
solution based on J = 0 for this member because its web is 
classified as slender in the recommended provisions).

Figure  11 shows the measured moment versus vertical 
displacement for SP-2, overlaying the predicted moment-
maximum vertical displacement from the shell FEA. 
Figure 12 shows the measured moment versus lateral dis-
placements for SP-7 and SP-8, overlaying the predicted 
moment-maximum horizontal displacement of the com-
pression flange and the corresponding horizontal displace-
ment of the tension flange from the shell FEA. Figure 13 

shows the measured moment versus section twist at the 
cross section where SP-7 and SP-8 are attached, overlaying 
the predicted moment-twist from the shell FEA.

The GMNIA solution from ABAQUS is capable of cap-
turing a capacity in the elastic test that is larger than the 
theoretical elastic LTB strength due to the stable elastic 
post-buckling response of the member. The contributions 
from elastic post-buckling strength are negligible for most 
practical LTB slenderness values; however, given the large 
slenderness in this elastic LTB test, strengths larger than 
the theoretical elastic LTB resistance are possible. Fig-
ure 14 shows the midspan moment versus the compression 
flange lateral deflection from the GMNIA solution, a shell 

Fig. 11.  Moment-vertical deflection.

Fig. 12.  Moment-horizontal deflection of both flanges.
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FEA geometric nonlinear (material linear-elastic) analysis 
with imperfections using the same model as in the GMNIA 
solution (referred to in the literature as a GNIA solution), 
and the ELBA solution obtained from SABRE2.

As the theoretical elastic critical moment is approached, 
the compression flange lateral displacement increases 
rapidly, both in the full nonlinear (GMNIA) and the geo-
metrically nonlinear (GNIA) shell FEA solutions. The cor-
responding rapid increase in the compression flange lateral 
bending strains induces the onset of yielding within the 
compression flange, resulting in a limit load in the GMNIA 
solution. This behavior was observed during the experi-
ment, that when the rate of change of the compression 

flange lateral displacements increases abruptly, the mem-
ber was very close to maximum capacity. The second-order 
amplifications of the girder lateral displacements and twists 
in the experiment matched well with the theory.

Experimental Estimation of Elastic Buckling Load by 
Southwell, Meck, and Massey Plots

As a final evaluation of the test setup effectiveness— 
specifically the minimization of incidental restraint— 
measured displacements and loads were used to generate 
Southwell, Meck, and Massey plots for the elastic tests. 
These plots allow estimation of the elastic critical moment 

Fig. 13.  Moment-twist of the section.

Fig. 14.  Load-horizontal displacement curves from ABAQUS GMNIA  
and GNIA solutions compared to the ELBA solution from SABRE2.
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φ/M versus u) and β (the inverse slope of u/M versus φ)—
that is, the geometric mean of α and β,

	 Mcr = αβ� (5)

The Massey plot takes Mcr as the geometric mean of α 
(taken as the inverse slope of φ/M2 versus φ), and β (taken 
as the inverse slope of u/M2 versus u). The values of α and 
β for the Meck and Massey plots are defined by the slope 
of the corresponding plots, similar to Mcr on the Southwell 
plot. There is some complexity that is not captured by these 
methods since the critical unbraced lengths of the speci-
men are not flexurally and torsionally simply supported. As 
such, the second-order amplifications of the compression 
flange lateral deflection, u, and the twist, φ, do not have the 
same mathematical form as that of a simply supported col-
umn (for that matter, they do not have the same form when 
the LTB specimen is torsionally and simply supported, 
which leads to the consideration of the alternative estima-
tion procedures other than the basic Southwell plot). How-
ever, the methods agree reasonably well with each other 
for the elastic test. In the limit that the moment approaches 
the theoretical elastic buckling moment, it appears that the 
simple assumptions for the form of the second-order ampli-
fication of the displacements, embedded within the South-
well, Meck, and Massey plots, apply reasonably well. The 
calculated maximum moments are 1,660 kip-in. (0.348Myc), 
1,640 kip-in. (0.344Myc), and 1,570 kip-in. (0.329Myc) from 
the Southwell, Meck, and Massey procedures, respectively. 
These theoretical estimates show good agreement with 
the maximum moment of 1,600 kip-in. measured in the 
experiment.

of the specimen, Mcr. Mandal and Calladine (2002) discuss 
the effectiveness and theoretical underpinnings of these 
plots for LTB problems. Each of the methods plot a varia-
tion of a displacement divided by a load term versus dis-
placement, then use the inverse of the slope of this curve to 
estimate Mcr. The authors interpreted the application of the 
different estimation methods as described in the following 
discussion.

The Southwell plot for LTB was generated using the 
lateral displacement of the compression flange, u, as the 
abscissa versus u/M as the ordinate. The lateral displace-
ment was measured using a linear string potentiometer, 
located at the expected position of the maximum com-
pression flange lateral displacement. The estimate is not 
sensitive to the specific selected location as long as the 
magnitude of the instrumentation noise is low compared to 
the magnitude of the measurement. The maximum moment 
at mid-span was calculated as

	
M = PL

4
+Mo

�
(4)

where P is the summation of load cell measurements at the 
end supports, L is the distance between the end supports, 
and Mo is the mid-span dead load moment. Figure 15 shows 
the resulting Southwell plot for the elastic test.

The Meck plot was similar to the Southwell plot, but it 
also considers the twist of the cross section, φ. During the 
elastic test the tension flange had negligible out-of-plane 
motion, as shown in Figure 12; therefore, the twist of the 
cross section is directly proportional to the lateral displace-
ment of the compression flange. The Meck plot takes Mcr 
as the square root of the product of α (the inverse slope of  

Fig. 15.  Southwell plot.
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QUANTIFICATION OF  
INCIDENTAL RESTRAINT

To quantify the ability of the testing system to minimize 
incidental restraint, the buckling load solutions from South-
well, Meck, and Massey are compared with the result from 
an elastic linear buckling analysis (ELBA). The effective 
length in the theoretical elastic buckling solution is back-
calculated directly from an ELBA in SABRE2, so the 
theoretical elastic buckling solution from Equation  2 and 
the SABRE2 ELBA are the same. The reported SABRE2 
solutions are from an inelastic nonlinear buckling analysis 
(INBA). Note that KeLb in the elastic test is much larger 
than Lr; therefore, the major-axis bending moment is at a 
level where there is not a significant onset of yielding prior 
to reaching the maximum capacity, resulting in a similar 
INBA solution as ELBA. Structural steels such as ASTM 
A572 Grade 55 generally have a mean elastic modulus 
close to 29,500 ksi with a small coefficient of variation 
(Hartmann, 2005). Using this larger elastic modulus in the 
ELBA solution gives a more accurate representation of the 
physical response. The elastic critical moment scales by 
29,500/29,000 given this change.

For the elastic test, the Southwell, Meck, and Massey esti-
mates give Mcr/Myc ranging from 0.329 to 0.348. The ELBA 
eigenvalue result from SABRE2, with E = 29,500 ksi, gives 
Mcr/Myc of 0.312. Therefore, in terms of elastic buckling 
load, the test shows an influence of incidental constraint of 
5 to 12%, depending on which estimates are used for deter-
mining the elastic critical moment experimentally.

To a lesser extent, the ability of the testing system to 
minimize incidental restraint can be quantified by compar-
ing the experimental load to the shell FEA load-deflection 
solution. The Mtest/MnFEA value was 1.03 for the elastic test. 
However, the elastic test was halted prior to reaching the 
limit load (when the compression flange lateral bending 
started to increase significantly) to ensure that no signifi-
cant yielding occurred, since the specimen is subsequently 
used for an inelastic LTB test, resulting in slightly low 
measured experimental strengths. This is more of a prob-
lem when KLb is in the proximity to Lr, due to the greater 
propensity for the onset of yielding due to the addition of 
amplified flange lateral bending stresses as the theoretical 
elastic buckling load was approached. Additionally, poten-
tial overprediction of MnFEA can be a source of error. The 
shell FEA test simulation potentially could have overpre-
dicted the strength, for example, by its use of one-half of 
the best-fit Prawel residual stress profile (i.e., by assuming 
residual stresses that are relatively small and symmetric 
about the mid-width of the flanges), as well as by exclud-
ing the web off-center imperfections in the modeling of the 
specimen geometry, in this test. The maximum strength 

obtained in the FEA solution can be sensitive to varia-
tions in the residual stresses and geometric imperfections 
when the compression flange major-axis bending stress is 
relatively large at the LTB strength condition. The expected 
sensitivities of Mtest and MnFEA to the residual stresses 
and geometric imperfections when KLb is close to Lr, and 
the uncertainties in the precise values of these quantities, 
makes the use of Mtest/MnFEA less of a useful measure of 
incidental constraint within the testing system.

CONCLUSIONS

Incidental restraint can have a measurable impact on exper-
imental LTB test results. Substantial attention was given 
to minimizing the constraint in the experimental setup 
described in this paper. The setup design consists of ide-
ally released degrees of freedom, while restraining speci-
fied degrees of freedom, using mechanical bearings in a 
Watt’s linkage bracing system. PTFE spherical thrust bear-
ing allowed for free flange lateral bending and major-axis 
and weak-axis rotation. Complications of load height were 
bypassed with placing stiffeners at points of load application 
and bearing, along with a lateral brace of both flanges. For 
an accurate comparison to strength predictions, numerical 
solutions were modeled to be representative of the physical 
specimen and manual predictions utilized a rigorously cal-
culated effective length factor.

To validate the effectiveness of the testing setup, an elas-
tic LTB test was conducted and compared to analytical 
and numerical predictions, as well as to theoretical elastic 
critical moment estimates. The most direct prediction of 
the effectiveness of the setup is believed to be the compari-
son of the buckling load solutions from Southwell, Meck, 
and Massey to an elastic linear buckling analysis. Result-
ing data indicated an influence from incidental restraint on 
the LTB strength ranging between 5 and 12%, depending 
on the methodology. The nominal difference can be attrib-
uted to the small amount of remaining restraint as well as 
other factors influencing the predictions, such as discrete 
measurements of plate dimensions, material properties, 
and geometric imperfections. Ultimately, the results dem-
onstrate the designed test configuration minimizes inci-
dental constraint, resulting in accurate experimental LTB 
test data.
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INTRODUCTION

A cross the United States, researchers are making exciting 
discoveries and advances in structural fire engineer-

ing. Eleven of the leading scholars in the field are featured. 
Brief research highlights are organized by the topic areas 
of behavior and design of steel and composite structures 
for fire, fire following earthquakes, and performance-based 
fire engineering. For each individual, related steel and fire 
research is also noted. Meanwhile, due to timing and cir-
cumstances, there are structural fire engineering research-
ers who do not appear in this article. You may find some of 
their structural steel research in past articles or perhaps a 
future research update.

BEHAVIOR AND DESIGN OF STEEL AND 
COMPOSITE STRUCTURES FOR FIRE

Dr. Lisa Choe, Dr. Venkatesh Kodur, Dr. M.Z. Naser, Dr. 
Erica Fischer, and Dr. Amit Varma are contributing in 
various ways to the behavior and design of steel and com-
posite structures for fire. A two-story steel framed build-
ing specimen is used for fire tests of full-scale composite 
floor assemblies. System behavior and onset of collapse are 
investigated in a numerical study of braced frame build-
ings. Machine learning is used for autonomous evaluation 
of fire resistance. Validated modeling techniques are used 
to study fire and fire following earthquake behavior of 
steel moment-resisting frames. Comprehensive design pro-
cedures are developed for a new concrete-filled steel plate 
shear wall system.

Fire Resistance of a Full-Scale Composite 
Floor Assembly

Under way at the National Institute of Standards and 
Technology (NIST) is a series of four compartment fire 
experiments on a full-scale two-story steel-framed build-
ing with composite floor slabs. Research structural engi-
neer Dr. Lisa Choe is leading the team: Matthew Hoehler 

(associate project leader), Matthew Bundy, Brian Story, 
Anthony Chakalis, Philip Deardorff, Selvarajah Ramesh, 
Xu Dai, and William Grosshandler. Team members Choe, 
Ramesh, Dai, Hoehler, and Bundy won the Best Paper 
Award at the 11th International Conference on Structures 
in Fire (SiF2020) for their paper, “Experimental Study on 
Fire Resistance of a Full-Scale Composite Floor Assembly 
in a Two-Story Steel Framed Building” (Choe et al., 2020b). 
Dr. Choe’s honors also include the Department of Com-
merce Gold Medal in 2019, a group award for development 
of unique measurement capabilities for research at NIST’s 
National Fire Research Laboratory (NFRL).

The research seeks to fill gaps in knowledge in the 
behavior of steel-concrete composite floors and beams with 
simple shear connections subjected to fire. Previous studies 
were limited with regard to beam span, boundary condi-
tions for the concrete on metal deck slabs, and other details 
for the composite system (Choe et al. 2020a). Four 42-ft 
partially composite beam specimens were explored in the 
first phase of the work. Type of shear connection (welded-
bolted double angle or shear tab) and slab continuity over 
the girder were the main parameters. The double angles 
had greater rotational ductility than the shear tabs in fire 
but could fail due to axial restraints in the cooling phase. 
The shear tabs were sensitive to the slab continuity in both 
the heating and cooling phases (Choe et al. 2020a). In the 
second phase, 20-ft × 30-ft composite floor assemblies are 
exposed to natural gas-fueled compartment fires simulat-
ing standard fire environments [Figure 1(a)]. Gravity loads 
are applied by frames connected to hydraulic actuators in 
the basement; adjacent bays are loaded with water-filled 
drums [Figure 1(b)]. Test variables include area and type of 
steel reinforcement in composite floor slabs; fire protection 
on exposed beams; and thermal restraints provided by the 
adjacent bays, such as bay beam framing, beam-end connec-
tions, and slab continuity. In the first experiment, the fire 
test compartment represented an edge bay on the first floor 
of the building. Prescriptive details of the floor specimen 
complied with a 2-hr fire resistance rating. Connections 
were shear tabs, and the minimum shrinkage reinforcement 
was used in the floor slab. The reinforcement ruptured 
before any membrane action could be developed, leading 
to integrity failure of the floor slab prior to the specified 
rating period (Choe et al., 2020b). Slab reinforcement and 
fire performance of composite floor systems were explored 
further with the second test in 2021 (Choe et al., 2021).
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Design and Construction of Fire-Resistant Structures

Dr. Venkatesh Kodur contributes practical structural fire 
engineering tools and strategies founded on comprehensive 
numerical simulations and case studies. Dr. Kodur, Univer-
sity Distinguished Professor in Civil and Environmental 
Engineering at Michigan State University, also serves as 
the Director of the Centre on Structural Fire Engineering 
and Diagnostics. Dr. Kodur’s research includes mitigation 
of fire-induced collapse of steel framed structures, utiliz-
ing comprehensive numerical models, and incorporating 
the development of temperature-induced strength degrada-
tion and instability in critical structural members with the 
progression of horizontal and vertical fire spread in differ-
ent compartments and stories. One example is a simplified 
approach for evaluating shear degradation in fire-exposed 
steel and composite beams (Kodur and Naser, 2018). Fire 
safety of steel and composite bridges is another focus area; a 
specific aim is to develop practical tools for identifying vul-
nerable bridges and developing mitigation strategies. Hon-
ors include a 2018 Literati Award for Best Research Paper, 
“Effect of Local Instability on Fire Response of Steel Gird-
ers” (Kodur and Naser, 2017) and a 2019 Outstanding Paper 
Award at the 6th International Conference on Applications 
in Structural Fire Engineering, Singapore, for “Evaluating 
Fire Resistance of Composite Box Bridge Girders” (Zhang 
and Kodur, 2019). Dr. Kodur has also co-authored a text-
book, Structural Fire Engineering. This comprehensive 
book explains codes and standards; high-temperature mate-
rial properties; and behavior and strategies for enhancing 
fire resistance of steel, concrete, composite, and timber 
structures (Kodur and Naser, 2020).

The work on steel and composite structures includes 
system-level response of braced frame structures in fire 
scenarios (Venkatachari and Kodur, 2020). This work 
sought to fill knowledge gaps with respect to system behav-
ior and the onset of collapse (Figure 2). The literature shows 
that “limited attention is given to the effect of parameters 

such as realistic loading, restraint and fire exposure scenar-
ios which can significantly influence the onset of instabil-
ity in the structure” (Venkatachari and Kodur, 2020). The 
analysis of a 10-story braced frame building was conducted 
for different fire scenarios. The likelihood of collapse was 
examined for parameters including fire location, tempera-
ture and duration of the fire exposure, and number of com-
partments with fire exposure. Additional details can be 
found in Venkatachari and Kodur (2020).

Autonomous Evaluation of Concrete-Filled 
Tube Columns

Performance of structures under extreme conditions, arti-
ficial intelligence, and smart materials and structures are 
core interests for Dr. M.Z. Naser, an Assistant Professor in 
Civil Engineering at Clemson University. Investigation into 
temperature-induced moment-shear interaction (Naser and 
Kodur, 2020) and performance evaluation of concrete-filled 
tubes through machine learning (Naser et al., 2021) are just 
some of Dr. Naser’s recent works. Honors include the 2018 
Literati Award for Best Research Paper with Dr. Kodur. 
Dr. Naser has published extensively in structural fire engi-
neering and machine learning, with a focus on “intelligent 
tools that can accurately evaluate fire resistance and iden-
tify damage mechanisms in structures” and an eye toward 
“technologies to realize autonomous and self-diagnosing 
structures that can facilitate safe post-fire inspections and 
timely repairs” (Naser, 2020). His publications include the 
Structural Fire Engineering textbook co-authored with Dr. 
Kodur (Kodur and Naser, 2020) and the Handbook of Cog-
nitive and Autonomous Systems for Fire Resilient Infra-
structures (Naser and Corbett, 2022).

Briefly highlighted here is Dr. Naser’s work on the struc-
tural response evaluation of concrete-filled tube (CFT) col-
umns using machine learning (Naser et al., 2021). Dr. Naser 
and collaborators noted the benefits of CFTs for building 
design and construction, including strength, ductility, and 

 

Fig. 1.  (a) Compartment fires with natural gas burners and (b) floor loading.
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inherent fire resistance. They also noted that the adoption 
of high-strength materials might be inhibited by the range 
of applicability of current code provisions and supporting 
test data. The researchers used artificial intelligence (AI) 
to analyze a database of 3103 CFT columns tested under 
different loading conditions and with a range of material 
and geometric properties. Circular and square or rectan-
gular cross sections, with a maximum outside dimension 
of 40  in., had been tested under concentric and eccentric 
loading. The research team used genetic algorithms (GA) 
and gene expression programming (GEP) to develop mod-
els capable of predicting the CFT column load capacities. 

“These algorithms incorporate a supervised learning pro-
cess that mimics the natural selection process (i.e., Darwin-
ian evolution) to express hidden relations between a number 
of factors … The main advantage of these approaches over 
traditional soft computing techniques is their capability 
to produce predictive expressions without relying on past 
formula or relationship” (Naser et al. 2021). As shown in 
the measured versus predicted capacity graphs in Figure 3, 
the predictions were generally better than those obtained 
using AISC  360 (AISC,  2016), Eurocode  4 (CEN,  2009), 
and AS 2327 (ASI, 2017). Additional details of this study 
can be found in Naser et al. (2021).

Fig. 2.  Deformed configuration of the building at the onset of fire-induced progressive collapse (time = 154 min).

  
	 (a)  AISC 360	 (b)  AISC 360, Eurocode 4, and AS 2327

Fig. 3.  Measured versus predicted capacities for circular CFT columns under eccentric  
loading; genetic algorithms (GA) and genetic expression programming (GEP) predictions.
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structural fire engineering, and the modules are designed to 
be integrated into courses across civil engineering under-
graduate curricula.

Simulation of fire performance of steel-frame build-
ings is a theme area with multiple facets. Dr. Fischer’s 
research includes simulation of post-earthquake fire behav-
ior of industrial facilities, benchmarking of structural fire 
engineering modeling to large-scale experimental tests, 
and development of OpenSees capabilities to simulate 
steel gravity framing systems in fire. Some work to date 
includes use of validated OpenSees modeling techniques 
to investigate fire and fire following earthquake behavior 
of a three-story, three-bay moment-resisting frame (Mad-
dalozzo and Fischer, 2020). Five validation studies were 
used to test component and system behavior, considering 
temperature, forces, and displacements. Parameters for the 
fire and fire following earthquake investigations included 
locations of the compartment fire and the fuel load (Fig-
ure 4). Additional details can be found in Maddalozzo and 
Fischer (2020).

SpeedCore—Concrete-Filled Composite Steel Plate 
Shear Wall (CF-CPSW) Core

Dr. Amit Varma is well known for research on the behavior 
and analysis of steel and composite structures under fire 
loading and the development of design provisions for fire 
and collapse resistance. Dr. Varma is the Karl H. Kettel-
hut Professor in the Lyles School of Civil Engineering at 

Development of Fire Modeling Capabilities  
in OpenSees

Simulating the behavior of steel and composite structures in 
fire, educating the next generation of structural engineers, 
and designing simple connections for fire conditions are 
three primary themes for Dr. Erica Fischer. Dr. Fischer is 
an Assistant Professor in the School of Civil and Construc-
tion Engineering at Oregon State University. Recognized 
locally and nationally for research and teaching excellence, 
Dr. Fischer’s awards include AISC’s Terry Peshia Early 
Career Faculty Award (2021). The American Society of 
Civil Engineers (ASCE) honored Dr. Fischer with the 2019 
Collingwood Prize for her paper, “Experimental Evalua-
tion of Single-Bolted Lap Joints at Elevated Temperatures” 
(Fischer and Varma, 2018). Her more recent work on con-
nections includes advanced connection modeling, leading a 
working group within one of AISC’s technical committees 
to synthesize numerical and experimental data on connec-
tion performance in fires and developing design provi-
sions for connections exposed to various fire conditions. 
Dr. Fischer also led a collaborative research review on the 
fire behavior of steel simple connections, identifying gaps 
in knowledge and inconsistencies in testing methodologies 
and reporting of results (Fischer et al., 2021). Education on 
structural fire engineering extends past Dr. Fischer’s class-
room and to development of teaching modules with the sup-
port of AISC and the Structural Engineering Institute (SEI). 
The scope ranges from prescriptive fire protection design to 

Fig. 4.  Locations of compartment fires for moment-resisting frame study.
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plate shear wall system with cost, safety, and construction 
schedule benefits, among others. An increased speed of 
construction is partly because no fireproofing is required 
for SpeedCore walls at least 18  in. thick (AISC, 2021). 
Dr. Varma’s selections for 2017 and 2020 AISC Special 
Achievement Awards and the 2021 AISC T.R. Higgins Lec-
tureship Award were based on his collection of work on the 
composite shear walls. More information about this hybrid 
core system, how it is designed and built, and how it works 
in fire can be found at AISC’s SpeedCore webpage (AISC, 
2021). Those looking for more information on the structural 
fire engineering and design of SpeedCore walls can view a 
series of recorded presentations on the “SpeedCore-Fire-
Research” YouTube playlist (Figure 5; Varma, 2021). Com-
puter programs to analyze and design SpeedCore walls for 
fire are available through an online repository (Varma and 
Anvari, 2020).

FIRE FOLLOWING EARTHQUAKES

Dr. Rachel Chicchi, Dr. Hussam Mahmoud, and Dr. Maria 
Garlock are advancing methods for fire following earth-
quake (FFE) evaluations. Three-dimensional nonlinear 
finite element building models explicitly include details of 
the gravity framing system and are used to compare dif-
ferent seismic damage–fire scenarios. A hybrid simulation 
framework incorporates thermal loads and seismic damage 
in the physical substructure. The seismic performance of 
nonstructural components (e.g., sprinklers) is incorporated 
into post-earthquake fire evaluations of steel frames.

Purdue University and the Director of the Bowen Labora-
tory for Large-Scale Civil Engineering Research. While 
seeking to fill knowledge gaps in the fundamental behavior 
of structural steel components and assemblies, Dr. Varma 
pioneered an innovative method for realistic structural fire 
tests without the traditional gas furnace. Replication of this 
unique test method at several structural engineering labora-
tories across the world is just one indicator of Dr. Varma’s 
global impact in this field. His research group has produced 
numerous works advancing the state of the art in behavior, 
analysis, and design for fire. Their achievements include 
publications on the fire behavior of steel and composite 
columns, composite floor assemblies, composite beams, 
and steel connections (e.g., Hong and Varma, 2010; Well-
man et al., 2011; Selden et al., 2016; Fischer and Varma, 
2018). Dr. Varma’s group has also developed and bench-
marked detailed 3D nonlinear finite element models for 
predicting the observed experimental behavior of steel con-
nections and of steel and composite columns, floor assem-
blies, and beams (e.g., Agarwal and Varma, 2011; Selden 
and Varma, 2016; Choe et al., 2017; Fischer and Varma, 
2017). The benchmarked modeling approaches have been 
used to investigate the fire behavior, resistance, and overall 
collapse of 3D steel and composite building structures (e.g., 
Agarwal and Varma, 2014; Agarwal et al., 2014; Fischer et 
al., 2019). The work has also been extended to evaluation 
of multi-hazard behavior and design of steel building struc-
tures under post-earthquake fire loading (e.g., Bhardwaj et 
al., 2019; Alasiri et al., 2020).

Dr. Varma’s most recent accolades recognize his achieve-
ments in developing SpeedCore, a concrete-filled steel 

Fig. 5.  Screenshot of video presentation on SpeedCore fire resistance experiments (Varma, 2021).
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Post-Earthquake Fire Assessment

Post-earthquake fire assessment, critical temperature, sim-
ple methods of analysis for fire-resistant design, and con-
nections are among Dr. Rachel Chicchi’s topics of study. 
Dr. Chicchi is an Assistant Professor in the University of 
Cincinnati’s Civil and Architectural Engineering and Con-
struction Management department. She has collaborated 
with Dr. Fischer and Dr. Choe on a research review for fire 
behavior of simple shear connections (Fischer et al., 2021). 
Analysis of single-angle connections by her research group 
will address one of the knowledge gaps identified in the 
review. Work continues on simple methods of analysis to 
determine demands on the structure at elevated tempera-
tures (Chicchi and Varma, 2021). One extension of the work 
is incorporation of local buckling for wide-flange columns 
into the simple equations. Another is an investigation into 
the applicability of the column flexural buckling equa-
tion for high-strength steel. In a separate study, important 
parameters affecting the critical temperatures of axially 
loaded wide-flange columns were identified and a closed-
form equation proposed (Sauca et al., 2021). Meanwhile, 
post-earthquake fire assessment has evolved past an initial 
research review (Chicchi and Varma, 2017) into detailed 
studies and methods (e.g., Chicchi and Varma, 2018).

Dr. Chicchi’s post-earthquake fire research includes 
methods for post-earthquake fire assessment of steel 
moment frame buildings (Alasiri et al. 2020). A detailed 
numerical methodology has been proposed and illustrated 
with a 10-story perimeter steel moment frame building 
case study. The nonlinear finite element model of the 3D 
building structure explicitly included the gravity framing 
system, including connections and composite slabs. “The 

model accounted for various limit states and failure modes 
resulting from inelastic deformations, local and global 
instability, and connection damage/failure at elevated tem-
peratures, while incorporating the effects of temperature 
on steel and concrete material properties” (Alasiri et al., 
2020). Buildings with different levels of seismic damage 
were subjected to various fire scenarios. Shown in Figure 6 
is a fifth-story interior compartment fire and plots of the 
vertical deformation and temperature versus time for the 
failed interior gravity column. The researchers discovered 
that the seismic and fire behaviors were largely decoupled; 
the gravity columns were the most critical components in 
the post-earthquake fire. Additional details and design rec-
ommendations can be found in Alasiri et al. (2020).

Multi-Hazard Simulation and Testing

A primary research thrust for Dr. Hussam Mahmoud is the 
assessment and development of resilient and sustainable 
structural systems subjected to multiple hazards such as fire, 
blasts, earthquakes, and/or wind loading. Dr. Mahmoud 
is the George T. Abell Professor of Infrastructure in the 
Department of Civil Engineering at Colorado State Univer-
sity. He is also Director of the Structural Laboratory at Col-
orado State. Among his numerous recognitions and honors 
is the 2017 Terry Peshia Early Career Faculty Award from 
AISC. Dr. Mahmoud’s contributions include new structural 
systems as well as new performance-based design and life-
cycle analysis frameworks. Methods proposed include an 
approach for assessing steel column response under fire 
loads considering with various boundary conditions and 
temperature profiles (Memari and Mahmoud, 2018a). Also 
considered are factors such as second-order effects and 
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residual stresses. A proposed framework for performance-
based analysis of fires following earthquakes incorporates 
uncertainties associated with fire hazard, gravity loads, 
passive fire protection, and earthquake intensity (Memari 
and Mahmoud, 2018b).

A hybrid simulation framework was developed and illus-
trated with a test of a small-scale specimen (Memari et al., 
2020). The four-story special concentrically braced frame 
(SCBF) building was 5 ft × 5 ft in plan, with four bays in 
each direction. A first story column was the physical test 
specimen, the substructure model. The rest of the planar 
frame was the numerical integration model (Figure  7). 
Leaning columns in the model represented the gravity 
frames. The framework was first tested using a numerical 
substructure-numerical integration model. For the physical 
substructure model, a small fire furnace with four radiative 
heaters and a self-reacting steel frame was used for thermal 
loads, and residual interstory drifts were used to represent 
different seismic damage levels in the frame. The level of 
residual interstory drift proved to be a significant factor in 
the fire performance of the column. Additional details and 
commentary on future studies can be found in Memari et 
al. (2020).

Community Level Studies and Nonstructural 
Components

From steel connections for fire to community resilience 
to the Creative Art of Structural and Civil Engineering 
(CASCE, https://casce.princeton.edu/), Dr. Maria Garlock 
is advancing structural engineering design and the educa-
tion of future engineers. Dr. Garlock is a Professor of Civil 
and Environmental Engineering at Princeton University. 

She also serves as the program director of the Architecture 
and Engineering Program, is the Head of Forbes College at 
Princeton University, and is Associated Faculty in both the 
School of Architecture and the Program in Latin Ameri-
can Studies. Of her many accolades, perhaps the most 
notable in structural steel is the 2016 T.R. Higgins Lecture-
ship Award for her steel structure-fire interaction research 
(Garlock, 2016). Other awards include the Bronze Award 
for the Advancement of Arc Welded Design, Engineering 
and Fabrication, given by The James Lincoln Arc Welding 
Foundation (2003) and a first-place poster in the category 
of Steel Structures, Composite Structures, and Connections 
in the 5th International Conference for Structures in Fire in 
East Lansing, Michigan, in 2010. The poster, co-authored 
with former student Spencer Quiel, was titled “Stress-Based 
Equations  for Predicting the Buckling Capacity of Steel 
Plates Exposed to Fire” (Quiel and Garlock, 2010).

Dr. Garlock notes that her research on fire has evolved 
into fire following earthquake (FFE) community-level 
studies, specifically considering deep-basin seismic effects 
such as those found in Seattle. A paper on FFE scenario 
studies in Seattle is forthcoming (Coar et al. 2021). Not 
published, but in preparation, is a paper that examines the 
effects of different earthquake types on passive and active 
fire protection systems, and consequential structural-fire 
interaction performance. Meanwhile, an archetype nine-
story steel moment-resisting frame (MRF) structure is 
modeled using OpenSees finite element analysis software 
and subjected to a suite of basin (Seattle) and non-basin 
(Los Angeles) earthquake records as developed by the Uni-
versity of Washington M9 Project (Frankel et al., 2018). 
The resulting peak floor accelerations and interstory drift 

Fig. 7.  Physical and numerical substructure, residual damage state.
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ratios are used as intensity measures for existing component 
fragility curves of the active (sprinkler) and passive (com-
partment divider) fire protection systems (Pali et al., 2018; 
Soroushian et al., 2014). The seismic performance of these 
nonstructural components modifies the single-structure fire 
spread model based on the University of Delaware Disaster 
Research Center (Lee and Davidson 2010a, 2010b; Li and 
Davidson, 2013). The results of the fire spread model are 
used to apply time-dependent thermal loads to the seismi-
cally damaged OpenSees finite element structural model 
for structural performance evaluation of the steel frame 
(Figure 8).

PERFORMANCE-BASED  
FIRE ENGINEERING (PBFE)

Dr. Spencer Quiel, Dr. Negar Elhami-Khorasani, and Dr. 
Thomas Gernay are improving simulations for perfor-
mance-based fire engineering (PBFE). A coordinated  
computational-experimental investigation supports a 
framework for realistic models of composite floor systems 
with different fire ratings. A cost-effective hybrid simula-
tion incorporates realistic boundary conditions and system 
as well as element level response. Experimental character-
ization of advanced high-strength steels tests the range of 
applicability of current provisions.

Performance-Based Design of Passive Fire Protection 
for Floor Systems

Dr. Spencer Quiel is known for his research on buildings 
subjected to extreme loads such as fire, blast, and progres-
sive collapse. Dr. Quiel is an Associate Professor in Civil 
and Environmental Engineering at Lehigh University. His 
experience in analysis and design of structures to resist 
extreme loads includes four years at Hinman Consulting 
Engineers. As a Department of Homeland Security Grad-
uate Fellow, Dr. Quiel also spent two months of his doc-
toral studies at the Building and Fire Research Laboratory 
(BFRL) at the National Institute of Standards and Technol-
ogy (NIST). Dr. Quiel was the 2016 recipient of AISC’s 
Milek Fellowship for his research on “Performance-Based 
Design of Passive Fire Protection for Floor Systems in 
Steel-Framed Buildings.”

For the Milek Fellowship, Dr. Quiel’s research group is 
building a framework for performance-based design and 
analysis of steel-concrete composite floor systems to resist 
fire. The development of this framework for steel-framed 
buildings, motivated by the lack of design and analysis 
guidance, is founded on a coordinated computational-
experimental investigation. Methods for quantifying real-
istic restraint of floor systems and modeling tools are being 
produced. The laboratory experiments include five large-
scale structural-fire tests of partially restrained, partially 

Fig. 8.  Fire spread model for structural performance evaluation of steel frame.
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composite steel floor beam assemblies and a number of 
small-scale, spray-applied fire resistive material (SFRM) 
tests. Parameters for the large-scale tests included passive 
fire protection (i.e., unprotected, coated with SFRM) and 
level of axial restraint (Kordosky et al. 2020). The experi-
mental results have been used for validation of “thermal 
and structural analysis methods of varying complexity to 
capture the flexural response and failure of the fire-exposed 
composite floor beam specimens. The goal of this model-
ing effort is to develop accurate, conservative predictions 
of fire-induced mechanics and limit states at reduced com-
putational cost, thus increasing the accessibility of these 
methods to practicing engineers” (Drury et al., 2020). A 
major outcome of the research will be tools for translat-
ing fire resistance ratings into realistic models of composite 
floor systems for performance-based design of steel build-
ings. Results have been promising, as demonstrated by com-
parisons of the final deflected shapes of the modeled and 
tested floor beam assemblies (Figure 9). Additional details 
of the experiments and modeling efforts can be found in 
Kordosky et al. (2020) and Drury et al. (2020).

Methods and Models to Advance Performance-Based 
Fire Engineering

Fire and elevated temperatures on steel structures is a 
primary focus for Dr. Negar Elhami-Khorasani, whose 
research encompasses resilient communities, performance-
based design, reliability, and multi-hazard analysis. Dr. 
Elhami-Khorasani is an Assistant Professor in the Depart-
ment of Civil, Structural and Environmental Engineering 
at the University at Buffalo. In Dr. Elhami-Khorasani’s 
portfolio of work are topics such as parametric stud-
ies for performance-based fire design of composite floor 

systems and fire fragility functions for steel frame build-
ings (Elhami-Khorasani et al., 2019; Gernay et al., 2018). 
More recent research includes “Probabilistic Models for 
Temperature Dependent Strength of Steel and Concrete” 
and “Developing Real-Time Hybrid Simulation to Capture 
Column Buckling in a Steel Frame under Fire” (Qureshi 
et al., 2020a, 2020b). Qureshi et al. (2020b) received the 
best student paper award at the International Structures in 
Fire Conference in 2020. Dr. Elhami-Khorasani was also 
honored in 2020 with AISC’s Terry Peshia Early Career 
Faculty Award, recognizing her structural steel research, 
teaching, technical service, and community outreach.

Dr. Elhami-Khorasani seeks to advance performance-
based fire engineering (PBFE) through the development 
of methods and models for explicit evaluation of reliabil-
ity and fire safety. Probabilistic material models for steel 
and concrete incorporate uncertainties in material behav-
ior at elevated temperatures (Qureshi et al. 2020a). Qureshi 
et al. (2020a) also studied the influence of model choice 
on structural failure assessment of steel and concrete col-
umns exposed to fire. This work was in collaboration with 
Dr. Thomas Gernay from Johns Hopkins University, Dr. 
Ruben Van Coile from Ghent University in Belgium, and 
Dr. Danny Hopkin from Olsson Fire & Risk and the Uni-
versity of Sheffield in the UK. Meanwhile, Dr. Elhami-
Khorasani’s work on real-time hybrid simulation provides 
a cost-effective method for obtaining realistic element-level 
response of the physical substructure by properly incor-
porating system-level response and interfacing boundary 
conditions during the fire event through a numerical sub-
structure (Qureshi et al., 2020b). The proposed method was 
successfully applied to a benchmark study of a large-scale 
moment frame with buckling of one tube column subjected 

(a)  Post-test photo

(b)  Model at failure: S-TT  
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Fig. 9.  Results of testing and modeling for a protected W12×26 composite beam.



302 / ENGINEERING JOURNAL / FOURTH QUARTER / 2021

to fire and subsequent frame collapse (Figure  10). “The 
real-time hybrid fire simulation is able to capture the 
dynamic behavior at the time of column failure, for which 
the obtained result is also applicable to progressive collapse 
applications in general” (Qureshi, 2021).

Characterization of New Steels at Elevated 
Temperatures

Risk-based methodologies, numerical modeling, and char-
acterization of materials at elevated temperatures form the 
core of Dr. Thomas Gernay’s contributions to performance-
based fire engineering (PBFE). Dr. Gernay is an Assistant 
Professor in the Department of Civil and Systems Engineer-
ing at Johns Hopkins University. The founder and principal 
investigator for Johns Hopkins’ Multi-Hazard Resilient 
Structures research group, Dr. Gernay actively develops 
SAFIR, a nonlinear finite element software for modeling 
the behavior of structures in fire, and conducts research on 
topics ranging from properties of advanced high-strength 
steels at elevated temperatures (Yan et al., 2020, 2021a, 
2021b) to behavior of cold-formed steel structures during 
and after fire exposure (Batista Abreu et al., 2020, 2021). 
Dr. Gernay’s research portfolio also includes fire fragility 
functions, probabilistic material models, and performance-
based fire design and tensile membrane action in composite 
structures (Qureshi et al., 2020a; Gernay et al., 2018; Ger-
nay and Khorasani, 2020).

Dr. Gernay’s experimental materials characterization at 
elevated temperatures continues to strengthen computer 
simulation capabilities, especially with respect to behavior 
of new steels. This includes steels more commonly found 
in the automotive industry. Yan et al. (2020) investigated 
advanced high-strength steels (AHSS), taking the recent 
demand for high-performance steels in the major projects 
such One World Trade Center as a harbinger of the adoption 

of “next-generation” materials for economy, safety, and 
construction efficiency. Dual-phase (DP) and martens-
itic (MS) steels were tested at elevated temperatures and 
under steady-state (66 specimens) and transient-state con-
ditions (22 specimens). Steady-state tests began with heat-
ing to a target temperature and then loading until fracture. 
Transient-state conditions involved loading to target stress 
levels and then heating at a constant rate. Several materi-
als and a half a dozen different grades of steel were evalu-
ated for strength, ductility, and stress-strain behavior under 
temperatures ranging from ambient to 1290°F. Figure  11 
shows the test set-up and a set of AHSS specimens after the 
steady-state tests. “With increasing temperature, the speci-
mens became softer and showed more ductile failures, with 
increasing fracture strain and clear necking phenomena” 
(Yan et al., 2020). Retention factors and predictive mod-
els were developed for the different materials. At elevated 
temperatures, the tested AHSS showed larger reductions in 
properties than their lower-grade counterparts. Revisions 
are needed to expand the applicability of current provi-
sions to AHSS. Additional details can be found in Yan et 
al. (2020).

SUMMARY

Structural fire engineering researchers are making 
advances in the broad topic areas of behavior and design 
of steel and composite structures for fire, fire following 
earthquakes, and performance-based fire engineering. Spe-
cific topics include behavior of full-scale composite floor 
assemblies in fire, system behavior and onset of collapse of 
braced frame buildings, and machine learning for autono-
mous evaluation of fire resistance. Comprehensive design 
procedures are developed for composite core wall systems. 
Hybrid simulation frameworks incorporate thermal loads, 

Fig. 10.  Substructuring configuration for the benchmark study.
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Agarwal, A. and Varma, A.H. (2011), “Design of Steel Col-
umns for Fire Loading Including Effects of Rotational 
Restraints,” Engineering Journal, AISC, Vol. 48, No. 4, 
pp. 297–314.

Agarwal, A. and Varma, A.H. (2014), “Fire Induced Progres-
sive Collapse of Steel Building Structures: The Role of 
Interior Gravity Columns,” Engineering Structures, Spe-
cial Issue on Fire Analysis of Structures, Vol. 58, pp. 129–
140. http://dx.doi.org/10.1016/j.engstruct.2013.09.020

Alasiri, M., Chicchi, R., and Varma, A.H. (2020), “Post-
Earthquake Fire Behavior and Structural Performance-
Based Fire Design of a Steel Moment Frame Building,” 
Journal of Constructional Steel Research, Vol. 177.

ASI (2017), Australian Composite Structures Standard, AS 
2327, Australian Steel Institute, Sydney, Australia.

Batista Abreu, J.C., Vieira Jr., L.C.M., Moreno Jr., A.L., 
Gernay, T., and Schafer, B.W. (2020), “Experiments on 
Load-Bearing Cold-Formed Steel Sheathed Studs at Ele-
vated Temperatures,” Thin-Walled Structures, Vol.  156, 
106968.

Batista Abreu, J.C., Vieira Jr., L.C.M., Gernay, T., and Scha-
fer, B.W. (2021), “Cold-Formed Steel Sheathing Con-
nections at Elevated Temperature,” Fire Safety Journal, 
Vol. 123, 103358.

Bhardwaj, S.R., Sener, K.C., and Varma, A.H. (2019), 
“Multi-Hazard Investigation and Testing of Composite 
(SC) Wall Piers: Seismic and Thermal Loads,” Nuclear 
Engineering and Design, Vol. 348, pp. 121–130. https://
doi.org/10.1016/j.nucengdes.2019.03.026

seismic damage, and realistic boundary conditions. Vali-
dated modeling techniques are being used to study fire and 
fire following earthquake behavior of steel frames; realistic 
models of composite floor systems are developed, and dif-
ferent seismic damage–fire scenarios are explored. Materi-
als characterization expands modeling capabilities to new 
steels. The seismic performance of nonstructural compo-
nents (e.g., sprinklers) is incorporated into post-earthquake 
fire evaluations of steel frames, and fire following earth-
quake is investigated at a community level.
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