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ABSTRACT

Rectangular HSS tension members are often connected by slotting two opposite walls and welding the slotted walls to a gusset plate. Due 
to a nonuniform stress distribution in these connections, the tensile rupture strength of the member is dependent on a shear lag factor. The 
accuracy of the 2016 AISC Specification provisions for the tensile rupture strength of slotted HSS tension members was evaluated using 
existing data from five previous research projects. The results revealed that the current equations are excessively conservative. The accu-
racy can be improved by replacing the existing equation for the connection eccentricity with the equation proposed in this paper.

Keywords: shear lag factor, HSS, gusset plate, tensile rupture, nonuniform stress distribution.

INTRODUCTION

R ectangular hollow structural sections (HSS) are often 
used as vertical bracing members in steel structures. A 

common connection detail for these members is shown in 
Figure 1, where two opposite walls are slotted to allow the 
brace to be inserted over the gusset plate. The brace is then 
connected to the gusset plate with four fillet welds.

A nonuniform stress distribution exists at the connec-
tion, which can reduce the tensile rupture strength of the 
member. This effect is addressed in the 2016 AISC Speci-
fication for Structural Steel Buildings (AISC, 2016), here-
after referred to as the AISC Specification, with a shear 
lag factor, U. For conditions where some cross-sectional 
elements are unconnected, the AISC Specification equa-
tion (Equation 3) was empirically derived using experimen-
tal results on open structural shapes (Chesson and Munse, 
1963). However, the reliability of this equation has not been 
documented for slotted rectangular HSS connections. The 
objective of this paper is to analyze the existing data from 
previous research projects to determine the accuracy of the 
AISC Specification provisions for these connections.

TENSILE RUPTURE STRENGTH

AISC Specification Section D2 defines the nominal tensile 
rupture strength as

 Pn = FuAe (Spec. Eq. D2-2)

where ϕ = 0.75 (LRFD), Ω = 1.67 (ASD), Fu is the speci-
fied minimum tensile strength of the HSS, and Ae is the 
effective net area, which is defined in AISC Specification 
Section D3 as

 Ae = AnU (Spec. Eq. D3-1)

where An is the net area, calculated by subtracting the slot 
area from the gross area according to Equation 1:

 An = −Ag 2tws (1)

where t is the HSS wall thickness and ws is the slot width, 
as shown in Figure 2.

The gross area, calculated with Equation 2, is based on a 
corner radius equal to twice the wall thickness. Equation 2 
was used to calculate the areas listed in AISC Steel Cons-
struction Manual (AISC, 2017) Tables 1-11 and 1-12.

 Ag = 2t H + B( ) + −πt2 3 16( ) (2)

where B is the width of the HSS member perpendicular 
to the gusset plate and H is the width of the HSS mem-
ber parallel to the gusset plate. Case 6 in AISC Specifica-
tion Table  D3.1 corresponds to slotted rectangular HSS 
members, where the shear lag factor, U, is defined with 
Equation 3.

 
U = 1

x

l
−

 
(3)

where l is the connection length. For the 2016 AISC Speci-
fication, l must be greater than H.

The connection eccentricity, x, calculated with Equa-
tion 4, is the distance from the center of the gusset plate 
to the centroid of the C-shaped portion of the HSS on each 
side of the gusset plate. Equation 4 is conservative because 
the derivation was based on the outside HSS dimensions, 
while neglecting the gusset plate thickness.
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Fig. 1. Slotted rectangular HSS brace connection.

 
= B2 + 2BH

4 B + H( )x
 

(4)

The accuracy can be improved by defining x as the dis-
tance from the edge of the gusset plate to the centroid of 
the C-shaped portion of the HSS on each side of the gusset 
plate. In this case, x is calculated with Equation 5, which 
is less conservative than Equation 4 because both the HSS 
wall thickness and the gusset plate thickness were consid-
ered in the derivation.

 
= b

2b2 + Ht 2t2

2H + 4b 4t
x − −

−  
(5)

where b is the distance from the HSS outer surface to the 
gusset edge as shown in Figure 2.

 
b =

B tg

2

−

 
(6)

DATA ANALYSIS

Existing Data

Slotted rectangular HSS connections have been studied 
using both finite element models (Girard et al., 1995; Zhao 
et al., 2009) and experimental specimens. As noted by 

Martinez-Saucedo and Packer (2007), many of the available 
experimental specimens failed by either block shear rup-
ture (Zhao et al., 1999; Zhao and Hancock, 1995) or weld 
rupture (Wilkinson et al., 2002), not circumferential rup-
ture, which is indicative of a tension rupture failure. Due to 
inconsistent results from the finite element models, the data 
for this study includes only the experimental specimens that 
failed by circumferential rupture at the connection.

A total of 47 specimens from five research projects were 
analyzed. All specimens were connected by four longitudi-
nal fillet welds as shown in Figure 1. For the 10 specimens 
tested by Yeomans (1993), additional transverse welds con-
nected the HSS walls to the edge of the gusset plates. The 
geometric and material variables for the test specimens are 
listed in columns 2 through 8 of Table 1, and the experi-
mental rupture load, Pe, is listed in column 9. The speci-
mens tested by Zhao et al. (2008), Korol et al. (1994), and 
Yeomans (1993) were loaded statically, and the specimens 
tested by Han et al. (2007) and Yang and Mahin (2005) 
were loaded cyclically to simulate seismic loading.

Using the measured dimensions and tensile strengths 
(where available), the tension rupture strength, Pc, was cal-
culated for each specimen. For the 10 specimens tested by 
Yeomans (1993), the transverse welds were considered in 
the calculations by setting the net area equal to the gross 
area. The strengths, with x calculated with Equations 4 and 
5 are listed in columns  5 and 6 of Table  2, respectively. 
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The measured tensile strength, σu, was not reported for the 
specimens tested by Korol et al. (1994); therefore, the calcu-
lated strength was based on the specified minimum tensile 
strength, Fu. The experimental-to-calculated load ratios, 
Pe/Pc, are listed in columns 7 and 8.

Reliability Analysis

The reduction factor required to obtain a specific reliability 
level is (Galambos and Ravinda, 1978):

 ϕ R= Cρ e −βαR RV
 (7)

where
C = correction factor

VR = coefficient of variation

αR = separation factor

β = reliability index

ρR = bias coefficient

Based on AISC Specification Section B3.1 Commentary, 
the target reliability index used in this paper is 4.0. Galam-
bos and Ravinda (1973) proposed a separation factor, αR, of 
0.55. For a live-to-dead load ratio, L/D, of 3.0, Grondin et al. 
(2007) developed Equation 8 for calculating the correction 
factor.

 C = 1.4056 − 0.1584β + 0.008β2 (8)

The bias coefficient is

 ρR = ρMρGρP (9)

where
ρG = bias coefficient for the geometric properties

ρM = bias coefficient for the material properties

ρP =  bias coefficient for the test-to-predicted strength 
ratios. Mean value of the professional factor cal-
culated with the measured geometric and material 
properties

The coefficient of variation is

 V VR M
2= + VG

2 VP
2+  (10)

where
VG = coefficient of variation for the geometric properties

VM = coefficient of variation for the material properties

VP =  coefficient of variation for the test-to-predicted 
strength ratios

The relevant geometric parameters for slotted HSS con-
nections are the wall thickness and weld length. Wall 
thickness measurements for the 30 ASTM A500 Grade C 
specimens tested by Zhao et al. (2008) resulted in a mean 
measured-to-nominal thickness ratio of 0.924. Using a 

design wall thickness equal to 0.93 times the nominal wall 
thickness according to AISC Specification Section B4.2, the 
mean measured-to-design thickness ratio is 0.994, with a 
coefficient of variation of 0.00710.

To the author’s knowledge, the required statistical infor-
mation on weld length is not available. For the block shear 
limit state of slotted HSS connections, Oosterhof and Driver 
(2011) used ρG = 1.00 and VG = 0.050. These values were 
originally used by Hardash and Bjorhovde (1984) for bolted 
gusset plates, and they were “assumed to be appropriate in 
the absence of better statistical data” for slotted HSS con-
nections. Because the same parameters are relevant for 
the tensile rupture limit state, VG = 0.050 was used for the 
analysis in this paper. The slightly more conservative value 
of ρG = 0.994, which was based on the wall thickness mea-
surements by Zhao et al. (2008), was used in the analysis.

Statistical values for the tensile strength of as-formed 
rectangular HSS shapes, summarized by Schmidt and 
Bartlett (2002), are ρM = 1.18 and VM = 0.063. A more recent 
data set compiled by Liu et al. (2007) resulted in ρM = 1.27 
and VM = 0.04 based on 309 specimens from rectangular 
ASTM A500 Grade B shapes.

For five of the projects discussed in this paper (Zhao et 
al., 2008; Han et al., 2007; Yang and Mahin, 2005; Zhao 
et al., 1999; Zhao and Hancock, 1995), 20 data points are 
available with coupons extracted from the flat portions of 
the HSS walls. These tests—on ASTM A500 Grade B, 
ASTM A500 Grade C, and similar international grades—
resulted in ρM = 1.12 and VM = 0.0405, with only a small 
variation between grades.

Three tension specimens were extracted from the HSS 
corners and tested by Zhao et al. (2008). Due to the cold-
bending of the corners, the tensile strength at the corners 
was 23% higher than the tensile strength at the flat portions 
of the walls.

Fig. 2. HSS section at slot.
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reported for the specimens tested by Korol et al. (1994), 
the experimental-to-calculated load ratio, Pe/Pc, for these 
specimens was divided by ρM prior to the calculation of ρP. 
For all 47 specimens, ρP = 1.22, VP = 0.104, ρR = 1.36, and 
VR = 0.132. Using Equations 7 and 8, ϕ = 0.916 at β = 4.0 
and β = 5.15 at ϕ = 0.75.

The analysis showed that the reliability index, with x  
calculated using Equation 5, is greater than the target reli-
ability index of 4.0. Therefore, ϕ = 0.75 is conservative. At 
least a portion of this conservatism can be attributed to the 
increase in tensile strength at the corners that is caused by 
cold-working.

Discussion

For the 2016 AISC Specification, l must be greater than H. 
This requirement evolved from the 1986 AISC Specifica-
tion (AISC, 1986) limit that was initially applicable only to 
plates with longitudinal welds along both edges. In the 2016 

Results

Conservative values for the geometric and material proper-
ties are ρG = 0.994, VG = 0.050, ρM = 1.12, and VM = 0.063. 
These values were used to analyze two data sets: (1) the 36 
specimens tested by Zhao et al. (2008) and Yeomans (1993) 
and (2) all 47 specimens listed in Table 1.

The rupture strengths calculated with Equation 4 varied 
from 0.865 to 0.968 times the values calculated with Equa-
tion 5, with an average of 0.935. Because Equation 4 is more 
conservative than Equation 5, only Equation 5 was used in 
the analysis.

For the 36 specimens tested by Zhao et al. (2008) and 
Yeomans (1993), the average test-to-predicted strength 
ratio, ρP, is 1.26 with a coefficient of variation, VP, of 
0.0872. Substituting these values into Equations 9 and 10 
results in ρR = 1.40 and VR = 0.119. Using Equations 7 and 
8, ϕ = 0.970 at β = 4.0 and β = 5.57 at ϕ = 0.75.

Because the measured tensile strength, σu, was not 
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Fig. 3. Nominal strength of a slotted HSS8×8×a connection vs. length-to-height ratio.
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Fig. 4. Test-to-predicted strength ratio vs. width-to-height ratio.

Specification provisions, this limit is not required for plates 
with longitudinal welds.

Column  10 in Table  1 shows only one specimen with 
an l/H ratio less than 1.0. For Zhao et al. (2008) speci-
men RS3G05P16, l/H  = 0.924 and the experimental-to-
calculated strength ratio, Pe/Pc  = 1.24 with x calculated 
using Equation 5. However, only the specimens that failed 
by circumferential rupture at the net section were included 
in Table 1.

Figure  3 shows the variation in nominal strength with 
the l/H ratio for a slotted HSS8×8×a connection of ASTM 
A500 Grade C material. In this case, the strength is con-
trolled by the block shear limit state for 0.504 < l/H < 0.951, 
and the tensile rupture limit state controls the strength for 
other l/H ratios. The curves for rectangular HSS with H/B > 
1.0 are similar to the curve for square HSS in Figure 3. For 
example, for an HSS12×4×a, the strength is controlled 
by the block shear limit state for 0.125 < l/H < 0.845. For 
some conditions with H/B < 1, the tensile rupture strength 

is always lower than the block shear strength, potentially 
leading to uneconomical designs when both H/B < 0.50 and 
l/H < 1.0.

The 72 slotted HSS specimens that were tested by Zhao 
et al. (1999) and Zhao and Hancock (1995) failed by block 
shear. For these specimens, the l/H ratios were between 
0.533 and 1.10, and most of the specimens had l/H < 1.0. 
Oosterhof and Driver (2011) showed that the 2016 AISC 
Specification equations for block shear are appropriate but 
slightly conservative for calculating the strength of these 
specimens.

Column 11 in Table 1 shows that the specimens had aspect 
ratios in the range 0.40 ≤ B/H ≤ 2.5. Figure  4 shows the 
variation in the test-to-predicted strength ratio, Pe/Pc, with 
the B/H ratio. Although the conservatism of the proposed 
design equations is generally higher for the four specimens 
with B/H ≈ 2.5 compared to the total data set, a significant 
trend cannot be established using the existing data.



160 / ENGINEERING JOURNAL / THIRD QUARTER / 2021

Table 1. Specimen Details

Specimen
B  
in.

H  
in.

t  
in.

l  
in.

tg  
in.

Fu  
ksi

σσu  
ksi

Pe  
kips l//H B//H Notes

Zhao et al. (2008)

RL5G05P16 5.01 2.03 0.176 7.69 0.619 62 65.0 152 3.79 2.47

RS5G05P16 2.02 5.01 0.176 7.68 0.620 62 65.0 152 1.53 0.404

SM5G05P16 3.53 3.53 0.174 7.67 0.619 62 70.3 153 2.17 1.00

SM5G05P16R 3.52 3.53 0.174 7.75 0.620 62 70.3 151 2.20 1.00

RL4G05P16 5.01 2.03 0.176 6.12 0.620 62 65.0 152 3.01 2.47

RS4G05P16 2.03 5.01 0.177 6.13 0.621 62 65.0 147 1.22 0.405

SM4G05P16 3.52 3.53 0.173 6.15 0.621 62 70.3 152 1.74 1.00

SM4G05P16R 3.53 3.52 0.174 6.19 0.621 62 70.3 152 1.76 1.00

RL3G05P16 5.00 2.02 0.176 4.55 0.618 62 65.0 138 2.25 2.47

RS3G05P16 2.02 5.01 0.178 4.63 0.626 62 65.0 144 0.924 0.404

SM3G05P16 3.53 3.53 0.174 4.54 0.614 62 70.3 146 1.29 1.00

SM3G05P16R 3.52 3.52 0.174 4.56 0.619 62 70.3 147 1.29 1.00

SM3G05P12 3.52 3.52 0.174 4.70 0.498 62 70.3 152 1.33 1.00

SM3G05P12R 3.52 3.52 0.174 4.64 0.500 62 70.3 150 1.32 1.00

SM5G05P12 3.53 3.52 0.174 7.93 0.501 62 70.3 156 2.25 1.00

SM5G05P12R 3.54 3.53 0.174 7.93 0.499 62 70.3 155 2.25 1.00

SM3G05P20 3.50 3.50 0.174 4.50 0.754 62 70.3 140 1.29 1.00

SM3G05P20R 3.52 3.55 0.175 4.48 0.752 62 70.3 143 1.26 0.992

SM5G05P20 3.53 3.53 0.174 7.50 0.755 62 70.3 150 2.13 1.00

SM5G05P20R 3.52 3.53 0.174 7.48 0.754 62 70.3 152 2.12 1.00

SM3G25P16 3.52 3.53 0.174 4.62 0.620 62 70.3 149 1.31 1.00

SM3G25P16R 3.52 3.54 0.174 4.60 0.619 62 70.3 150 1.30 0.994

SM3G50P16 3.51 3.53 0.174 4.59 0.618 62 70.3 150 1.30 0.995

SM3G50P16R 3.51 3.53 0.174 4.56 0.617 62 70.3 146 1.29 0.995

SM5G50P16 3.52 3.53 0.174 7.72 0.619 62 70.3 151 2.19 1.00

SM5G50P16R 3.51 3.53 0.173 7.69 0.618 62 70.3 151 2.18 1.00

Yeomans (1993)

S-SEP-2 1.97 1.97 0.134 3.15 0.602 — 66.7 62 1.60 1.00 1

S-SEP-3 1.97 1.97 0.244 2.95 0.787 — 69.9 114 1.50 1.00 1

S-SEP-4 3.54 3.54 0.146 5.91 0.787 — 63.7 107 1.67 1.00 1

S-SEP-5 3.54 3.54 0.205 5.91 0.965 — 72.8 187 1.67 1.00 1

S-SEP-6 3.54 3.54 0.241 5.71 1.16 — 74.0 213 1.61 1.00 1

R-SEP-3 2.36 1.57 0.262 2.95 0.787 — 67.3 107 1.88 1.50 1

R-SEP-5 1.57 2.36 0.160 3.15 0.602 — 76.9 86 1.33 0.667 1

R-SEP-8 4.72 2.36 0.215 5.71 1.16 — 77.5 160 2.42 2.00 1

R-SEP-9 4.72 2.36 0.253 5.71 1.58 — 70.8 205 2.42 2.00 1

R-SEP-10 2.36 4.72 0.140 5.91 0.602 — 65.8 126 1.25 0.500 1

Table continues on the next page
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Table 1. Specimen Details (continued)

Specimen
B  
in.

H  
in.

t  
in.

l  
in.

tg  
in.

Fu  
ksi

σσu  
ksi

Pe  
kips l//H B//H Notes

Korol et al. (1994)

1A 4.92 1.97 0.252 6.30 0.630 65 — 168 3.20 2.50 2

1B 4.92 1.97 0.244 6.18 0.630 65 — 171 3.14 2.50 2

2A 3.46 3.46 0.242 6.18 0.630 65 — 164 1.78 1.00 2

2B 3.46 3.46 0.252 6.38 0.630 65 — 175 1.84 1.00 2

3A 1.97 4.96 0.242 6.14 0.630 65 — 174 1.24 0.397 2

3B 1.97 4.96 0.246 6.34 0.630 65 — 173 1.28 0.397 2

5A 3.50 3.50 0.236 3.86 0.630 65 — 149 1.10 1.00 2

Han et al. (2007)

S90-8 3.94 3.94 0.354 9.88 0.669 58 66.1 293 2.51 1.00 3

S69-11 4.92 4.92 0.236 9.02 1.22 58 67.0 250 1.83 1.00 3

Yang and Mahin (2005)

2 6.00 6.00 0.375 15.0 0.875 58 65.0 486 2.50 1.00 3

3 6.00 6.00 0.375 15.0 0.875 58 65.0 537 2.50 1.00 3
Note 1: Additional transverse welds connected the HSS walls to the edge of the gusset plates.
Note 2: The measured tensile strength, σu, was not reported.
Note 3: Cyclic loading was used to simulate seismic loading.

Table 2. Calculated Strengths

Specimen An, in.2
U Pc, kips Pe//Pc

Equation 4 Equation 5 Equation 4 Equation 5 Equation 4 Equation 5

Zhao et al. (2008)

RL5G05P16 2.03 0.790 0.821 104 109 1.45 1.40

RS5G05P16 2.01 0.887 0.928 116 121 1.31 1.25

SM5G05P16 2.02 0.827 0.862 118 122 1.30 1.25

SM5G05P16R 2.01 0.830 0.863 118 122 1.29 1.24

RL4G05P16 2.04 0.736 0.775 97.8 103 1.56 1.48

RS4G05P16 2.04 0.858 0.910 114 120 1.29 1.22

SM4G05P16 2.01 0.785 0.828 111 117 1.37 1.30

SM4G05P16R 1.99 0.786 0.829 110 116 1.37 1.30

RL3G05P16 2.03 0.646 0.698 85.1 91.9 1.63 1.51

RS3G05P16 2.04 0.813 0.881 108 117 1.34 1.24

SM3G05P16 2.02 0.708 0.766 100 109 1.46 1.35

SM3G05P16R 2.02 0.710 0.768 101 109 1.46 1.35

SM3G05P12 2.06 0.719 0.766 104 111 1.46 1.37

SM3G05P12R 2.07 0.715 0.763 104 111 1.45 1.36

SM5G05P12 2.06 0.833 0.861 121 125 1.30 1.25

SM5G05P12R 2.06 0.833 0.861 121 125 1.29 1.24

SM3G05P20 1.95 0.709 0.776 97.4 107 1.43 1.31

Table continues on the next page
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Table 2. Calculated Strengths (continued)

Specimen An, in.2
U Pc, kips Pe//Pc

Equation 4 Equation 5 Equation 4 Equation 5 Equation 4 Equation 5

Zhao et al. (2008) (continued)

SM3G05P20R 1.99 0.705 0.773 98.6 108 1.45 1.32

SM5G05P20 1.97 0.824 0.864 114 120 1.31 1.25

SM5G05P20R 1.97 0.824 0.865 114 120 1.33 1.26

SM3G25P16 2.01 0.714 0.771 101 109 1.48 1.37

SM3G25P16R 2.02 0.713 0.770 101 109 1.48 1.37

SM3G50P16 2.03 0.713 0.770 102 110 1.47 1.36

SM3G50P16R 2.03 0.711 0.768 101 110 1.44 1.33

SM5G50P16 2.01 0.829 0.863 117 122 1.29 1.24

SM5G50P16R 2.01 0.828 0.862 117 122 1.28 1.23

Yeomans (1993)

S-SEP-2 0.936 0.766 0.843 48 53 1.29 1.17

S-SEP-3 1.53 0.750 0.867 80 93 1.41 1.22

S-SEP-4 1.93 0.775 0.827 95 101 1.13 1.06

S-SEP-5 2.63 0.775 0.840 148 161 1.26 1.17

S-SEP-6 3.04 0.767 0.849 172 191 1.24 1.12

R-SEP-3 1.61 0.720 0.831 78 90 1.37 1.19

R-SEP-5 1.09 0.800 0.888 67 74 1.29 1.16

R-SEP-8 2.74 0.724 0.795 154 169 1.04 0.947

R-SEP-9 3.16 0.724 0.819 162 183 1.27 1.12

R-SEP-10 1.85 0.833 0.881 102 107 1.24 1.17

Korol et al. (1994)

1A 2.72 0.749 0.791 133 140 1.27 1.20

1B 2.65 0.744 0.787 128 136 1.33 1.26

2A 2.65 0.790 0.837 136 144 1.20 1.14

2B 2.74 0.796 0.842 142 150 1.23 1.16

3A 2.65 0.863 0.919 149 159 1.17 1.10

3B 2.68 0.867 0.922 152 161 1.14 1.07

5A 2.63 0.659 0.734 113 126 1.32 1.19

Han et al. (2007)

S90-8 4.22 0.851 0.885 238 247 1.23 1.19

S69-11 3.67 0.795 0.849 196 209 1.28 1.20

Yang and Mahin (2005)

2 7.33 0.850 0.878 405 418 1.20 1.16

3 7.33 0.850 0.878 405 418 1.33 1.28



ENGINEERING JOURNAL / THIRD QUARTER / 2021 / 163

CONCLUSIONS

Rectangular HSS tension members are often connected by 
slotting two opposite walls and welding the slotted walls to a 
gusset plate. Due to nonuniform stress distributions in these 
connections, the tensile rupture strength of the member is 
dependent on a shear lag factor. The accuracy of the AISC 
Specification provisions for the tensile rupture strength of 
slotted HSS tension members was evaluated using existing 
data from previous research projects. A total of 47 speci-
mens from five projects were analyzed.

The results revealed that the current equations are exces-
sively conservative. The accuracy can be improved by 
replacing the 2016 AISC Specification equation (Equa-
tion 4) for the connection eccentricity, x, with the proposed 
Equation  5, which is less conservative than Equation  4 
because both the HSS wall thickness and the gusset plate 
thickness were considered in the derivation. The rupture 
strengths calculated with Equation 4 averaged 0.935 times 
the values calculated with Equation 5. Although the con-
servatism is reduced with the proposed Equation 5, the reli-
ability analysis showed that the reduction factor, ϕ = 0.75, in 
AISC Specification Section D2 is overly conservative when 
used with the proposed equation.

For practical connection geometries, the block shear limit 
state controls the strength of slotted HSS connections with 
low l/H ratios and the tensile rupture limit state controls the 
strength for high l/H ratios. If both limit states are checked, 
the connection rupture strength can be accurately predicted 
for the full range of available specimen geometries (0.504 < 
l/H < 3.79) without the 2016 AISC Specification require-
ment that l must be greater than H.
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ABSTRACT

The limit state of tearout can complicate the design of steel bolted connections since, in contrast to the limit states of bearing and bolt shear 
rupture, tearout strength can vary from bolt to bolt within a connection. Under the current AISC Specification, tearout strength is propor-
tional to the clear distance, in the direction of force, between the edge of the hole and the edge of the adjacent hole or edge of the material. 
However, recent studies on concentrically loaded bolt groups have suggested that the use of clear distance may not accurately represent 
tearout strength and have proposed alternative lengths for use in strength equations. A reevaluation of the limit state of tearout in concentri-
cally loaded bolt groups is presented in this work, including a thorough evaluation of the proposed alternative tearout lengths using a large 
database of previously published experimental work and new experiments with various edge distances and hole types. Equations with the 
alternative tearout lengths were found to be more accurate than those with clear distance, especially for small edge distances. Design rec-
ommendations including the alternative tearout lengths were developed. The results of this work increase understanding of the limit state of 
tearout and offer improved methods of evaluating this limit state in design.

Keywords: bolted connections, tearout, bearing, experiment, design.

INTRODUCTION

The current AISC Specification for Structural Steel 
Buildings (AISC, 2016), hereafter referred to as the 

AISC Specification, includes a user note, added in the 2010 
edition (AISC, 2010), stating that the strength of a bearing-
type bolt group in shear should be taken as the sum of the 
effective strengths of the individual bolts. The effective 
strength of a bolt is equal to the minimum strength com-
puted for the limit states of bolt shear rupture, bearing, and 
tearout. By this method, it is possible, for example, to have 
the strength of a bolt group controlled by a combination of 
tearout for the bolts near an edge and bolt shear rupture 
for the remaining bolts. The possibility of this interaction 
of limit states is in contrast to a common practice where 
bolt shear rupture is treated as independent from bearing 
and tearout (Salmon et al., 2009). Evaluating the poten-
tial interaction of bolt shear rupture, bearing, and tearout 
complicates the design of bolt groups, primarily because 
the strength of an individual bolt for the limit state of 
tearout can vary from bolt to bolt within a group. Given 
the increased complexity and recently proposed alterna-
tive strength equations (Clements and Teh, 2013; Kamtekar, 

2012), a reevaluation of the limit state of tearout is war-
ranted to determine if changes can be made that lead to 
more accurate and efficient connection designs.

For bolts sufficiently far from edges of material and 
adjacent bolts, the strength of the connected material near 
the bolt is controlled by bearing. The limit state of bear-
ing is characterized by plastic deformations of the con-
nected material near the bolt hole and a long yield plateau 
in the load-deformation relationship. However, the con-
nected material eventually ruptures with continued loading. 
In experimental testing, the peak load has been noted to 
occur upon reaching yield, prior to rupture or somewhere 
in between. However, once the yield plateau is reached, the 
variation in load is small.

Bearing strength has been observed to depend on the 
diameter of the bolt, the thickness of the connected mate-
rial, and the tensile strength of the connected material. The 
edge distance (i.e., the distance from the center of hole to 
edge of connected material), when large, does not impact 
bearing strength. Near edges of material or adjacent bolts, 
the strength of the connected material near the bolt is less 
than the full bearing strength because one of several other 
limit states will control.

The primary limit state for connected material with 
smaller edge distance is tearout. Tearout is characterized 
by the rupture of the connected material on either side of 
the bolt. A similar failure mode is splitting, which involves 
a tensile rupture initiating at the end of the connected mate-
rial. Some experiments have also shown modes of failure 
for bolted connections that include out-of-plane curling of 
unconfined plates. These three limit states are depicted in 
Figure 1.
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AISC Specification Section J3.10 (2016) governs bear-
ing and tearout strength at bolt holes. The nominal bearing 
strength of a bolt in a standard, oversize, or short-slotted 
hole, Rn, is given by Equations 1 and 2 (2016 AISC Specifi-
cation Equations J3-6a and J3-6b).

 Rn = 2.4dtFu (1)

 Rn = 3.0dtFu (2)

where Fu is the specified minimum tensile strength of the 
connected material, d is the nominal bolt diameter, and t is 
the thickness of the connected material.

Equation 1 is used when deformation at the bolt hole at 
service load is a design consideration, whereas Equation 2 
is used when deformation at the bolt hole at service load 
is not a design consideration. Significant bolt hole ovaliza-
tion is expected to occur prior to reaching the full bear-
ing strength of the connected material, which may limit 
the effectiveness of the connection. Frank and Yura (1981) 
identified 4-in. deformation as a practical limit to define a 
bearing strength, which also prevents excessive ovalization.

The tearout strength of a bolt in a standard, oversize, 
or short-slotted hole is given by Equations 3 and 4 (2016 
AISC Specification Equations J3-6c and J3-6d), where the 
distinction between Equations 3 and 4 is the same as that 
between Equations 1 and 2.

 Rn = 1.2lctFu (3)

 Rn = 1.5lctFu (4)

where lc is the clear distance, in the direction of force, 
between the edge of the hole and the edge of the adjacent 
hole or edge of the material.

Provisions in the AISC Specification related to the limit 
state of tearout have changed over the various editions. 
In early editions—for example, the 1936 AISC Specifica-
tion (AISC, 1936)—tearout was prevented by a limitation 
on edge distance. However, the limitation did not apply if 
there were three or more bolts in a line. In more recent edi-
tions—for example, the 1993 AISC Specification (AISC, 
1993)—tearout was considered as a reduction to the bear-
ing strength based on edge distance. An exception was also 
in place for these provisions. The reduction did not apply 
when there were two or more bolts in a line, a minimum 
edge distance of 1.5d was provided, a minimum spacing 
of 3d was provided, and deformation at the bolt hole was 
a design consideration. These exceptions were justified on 
the premise of load redistribution to the interior bolts or that 
sufficient interior bolts in a connection would diminish the 
effects of reduced strength at the edge bolts.

The form of the current provisions was introduced to the 
AISC Specification in the 1999 edition (AISC, 1999). An 
important change in these provisions was the use of the 
clear distance, lc, for determining tearout strength instead 
of the edge distance. Also, no exceptions to the tearout 
check were provided.

This paper presents an investigation of tearout strength 
in concentrically loaded bolted connections. Recently 
proposed alternative strength equations (Clements and 
Teh, 2013; Kamtekar, 2012) are examined through com-
parisons to results from previously published experimen-
tal work and new experiments conducted by the authors. 
The comparisons provide a thorough evaluation of both 
the current and alternative strength equations. Based on 
the results, improvements to current design equations are 
recommended.

Tearout Failure Splitting Failure Curling Failure

Fig. 1. Common failure modes of concentrically loaded bolted connections.
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ALTERNATIVE TEAROUT LENGTHS

Under the current AISC Specification (AISC, 2016), 
strength for the limit state of tearout is based on the clear 
distance, in the direction of force, between the edge of 
the bolt hole and the edge of the adjacent hole or edge of 
the material. This distance is denoted as lc. For the case 
illustrated in Figure 2, the clear distance is computed as a 
function of the edge distance, Le, and the diameter of the 
hole, dh:

 
lc = −Le

dh

2  
(5)

Examination of experimental results has shown that 
the length of failure planes from specimens that exhib-
ited tearout are somewhat longer than the clear distance. 
Researchers have proposed various alternative lengths that, 
when used in lieu of lc, provide a more accurate assess-
ment of strength. The first alternative tearout length that is 
investigated in this work, denoted as lv1, was proposed by 
Kamtekar (2012) and is equal to the clear distance, in the 
direction of force, between the edge of the bolt hole and the 
edge of the adjacent hole or edge of the material along lines 
tangent to the bolt. For the case illustrated in Figure 2, lv1 
is computed as:

 
lv1 = − −

Le
dh

2 d 2

2  
(6)

The second alternative tearout length that is investigated 
in this work, denoted as lv2, was proposed by Clements and 
Teh (2013) and is equal to the average of the clear distance, 
lc, and the edge distance, Le. For the case illustrated in Fig-
ure 2, lv2 is computed as:

 
lv2 = −Le

dh

4  
(7)

Elliot et al. (2019) evaluated the use of lv1 and lv2  in 
strength equations for a small set of experiments that failed 
in tearout. They found them both to provide similarly 
improved predictions of tearout strength in comparison to 
current equations. They also evaluated alternative net areas 
for block shear rupture that are similar in concept to the 
alternative tearout lengths.

Other tearout lengths have been proposed (e.g., Duerr, 
2006). However, differences among the lengths are slight. 
Also, some are more complicated than lv1 and lv2 to compute 
for general bolted connections. Therefore, this work focuses 
on evaluating lc, lv1, and lv2.

EVALUATION OF PUBLISHED EXPERIMENTS

Hundreds of physical experimental tests on concentrically 
loaded bolted connections susceptible to tearout have been 
performed in past research. These data have been collected 
and organized into a database for the purpose of evaluating 
alternative tearout lengths.

Experimental Database

The experimental database developed for this work includes 
899 specimens collected from 20 published works, includ-
ing this paper. Two types of connections are included: lap 
splices, in which the bolts are in single shear, and butt 
splices, in which the bolts are in double shear. A summary 
of the sources for the experimental data is presented in 
Table 1. 

Le lc
lv1

bolt holeCL

lv2

EQ

EQ

Fig. 2. Tearout length comparison.
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material properties (e.g., tensile strength and bolt grade), 
and failure information (e.g., failure mode, Rexp,d, Rexp,u, 
and deformation at Rexp,u), as well as other relevant infor-
mation such as bolt installation method.

Only connections categorized as failing in bearing, 
tearout, or splitting were utilized in this work. The limit 
state of splitting is distinct from the limit state of tearout. 
Equations have been proposed to predict splitting strength 
(Duerr, 2006) and some standards treat tearout and split-
ting separately (e.g., ASME, 2017). However, splitting 
is not recognized within the AISC Specification (AISC, 
2016). Therefore, equations for the limit state of tearout 
are implicitly covering splitting as well. This approach is 
justified because experimental results have shown the two 
limit states to have similar strengths and splitting failures 
are typically included in the evaluation of the tearout equa-
tions, as is done in this work.

Of the 899 specimens in the database, 471 failed in bear-
ing, tearout, or splitting as documented in Table  1. The 
remaining specimens experienced other failure modes 
including bolt shear rupture, tensile yielding, tensile rup-
ture, and curling.

To be included in the database, either the ultimate load, 
Rexp,u, or load at 14-in. deformation, Rexp,d, must have been 
recorded. For specimens where Rexp,d was not specifically 
reported, but a plot of the load-deformation response of the 
connection was provided, the load at 4-in. deformation 
was interpolated from the plot. If the specimen reached its 
peak load prior to attaining 4-in. deformation, Rexp,d was 
set equal to the ultimate load. Accordingly, Rexp,d should 
be interpreted as a failure load at which peak strength is 
attained or the connection experiences 4-in. deformation, 
whichever occurs first.

Additionally, material testing must have been conducted 
to determine the tensile strength, Fu, of the connected mate-
rial in which failure occurred. Only specimens with stan-
dard holes were included in the database. A few specimens 
with slotted holes were identified and were evaluated sepa-
rately. Connections with composite materials, with cold-
formed steel, or subjected to high-temperature testing were 
not included.

Fields in the database consist of geometric properties 
(e.g., bolt diameter, plate thicknesses, and edge distances), 

Table 1. Summary of Experimental Data Sources

Reference Connection Type
Number of Specimens 
Included in Database

Number of Specimens 
with Bearing, Tearout, or 

Splitting Failures

Gillett (1978) Lap splice 54 33

Frank and Yura (1981) Butt splice 16 6

Sarkar (1992) Lap splice 19 2

Karsu (1995) Lap splice 64 38

Kim and Yura (1999) Lap splice 41 41

Lewis and Zwerneman (1996) Butt splice 92 87

Udagawa and Yamada (1998) Butt splice 219 47

Puthli and Fleischer (2001) Butt splice 25 9

Rex and Easterling (2003) Butt splice 31 20

Udagawa and Yamada (2004) Butt splice 42 5

Freitas (2005) Butt splice 29 26

Brown et al. (2007) Butt splice 94 63

Cai and Driver (2008) Butt splice 44 23

Može and Beg (2010) Butt splice 38 16

Može and Beg (2011) Butt splice 24 14

Draganić et al. (2014) Lap splice 9 0

Može and Beg (2014) Butt splice 19 8

Teh and Uz (2016) Lap splice 10 10

Wang et al. (2017) Butt splice 24 18

This paper Butt splice 5 5

Total 899 471
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minimum edge distances. Note that Table J3.4 has a foot-
note that permits lesser edge distances, this footnote was 
not considered in this work.

The data is also presented in Figure 3, where the experi-
mentally obtained strength is normalized against the value 
of dtFu and plotted against normalized edge distance. 
Where the specimen included multiple bolts perpendicular 
to the direction of load, the experimental strengths were 
divided by the number of bolts in the connection, n, for plot-
ting purposes.

Optimized coefficients are among the instances of Equa-
tion 8 that are compared in Table 2, Table 3, and Figure 3. 
Six sets of optimized coefficients were computed, one for 
each of the three tearout lengths (i.e., lc, lv1, and lv2) at the 
ultimate and 4-in. deformation levels. The coefficients 
were obtained using a numerical optimization to minimize 
the sum of the square of the difference between the test-to- 
predicted ratio and unity over all specimens. Single-bolt and 
multiple-bolt specimens were included in the optimization.

The mean test-to-predicted ratio for the current equations 
is 1.223 for single-bolt specimens and 1.180 for single-bolt 
specimens meeting minimum edge distance requirements 
(Table  2), indicating that current provisions for bearing 
and tearout are conservative in predicting the load at 4-in. 
deformation. This is also seen in Figure 3(b), where most 
experimental data are above the line representative of cur-
rent design equations. This is especially true for specimens 
with smaller edge distances. Either of the two alternative 
tearout lengths (i.e., lv1 or lv2) provides a more accurate and 
precise assessment of strength when using the current coef-
ficients as seen in both a mean value of the test-to-predicted 
ratio that is closer to unity and a COV of the test-to-predicted 
ratio that is lower than for the current equations. However, 
the use of lv1 with current coefficients somewhat overesti-
mates the strength. Results with the optimized coefficients 
indicate that current coefficients are generally appropriate 
for use with lv1 or lv2.

Similar trends are seen when comparing to the ulti-
mate load (Table  3). A key difference is that the current 

Strength of Single-Bolt Specimens

Specimens with a single bolt in the direction of force allow 
for a direct evaluation of individual limit states. These spec-
imens are evaluated separately from specimens with mul-
tiple bolts in the direction of force which may experience 
multiple limit states (e.g., bearing and tearout). Of the 471 
specimens in the database with bearing, tearout, or splitting 
failures, 313 contained a single bolt in the direction of force. 
Of these single-bolt specimens, Rexp,d was available for 223, 
Rexp,u was available for 301, and both loads were available 
for 211 of the specimens. The analysis included 265 speci-
mens with one bolt perpendicular to the line of force and 
48 with two bolts perpendicular to the line of force. These 
specimens include many that do not meet the minimum 
edge distances of AISC Specification Table J3.4 (AISC, 
2016). Additionally, not all specimens met the AISC Speci-
fication requirement for bolt installation (i.e., installed to a 
snug-tight condition or pretensioned).

Experimentally obtained strengths are compared to 
strengths computed from various instances of a generic 
bearing and tearout strength equation given by Equation 8.

 Rn = ≤CtlxtFu CbdtFu (8)

where Ct is the coefficient applied to the tearout strength, 
Cb is the coefficient applied to the bearing strength, and lx is 
the length used for determining tearout strength (i.e., either 
lc, lv1, or lv2).

The test-to-predicted ratio (TTP) for each specimen 
is computed as the ratio of the experimentally obtained 
strength to the strength from Equation 8 for various selec-
tions of Ct, lx, and Cb. The mean and coefficient of variation 
(COV) of the test-to-predicted ratio across the specimens is 
presented in Table 2 for comparisons to the load at 4-in. 
deformation and Table  3 for comparisons to the ultimate 
load. Two values of the mean and COV are presented. The 
value outside the parentheses includes data from specimens 
that did not meet the minimum edge distances of AISC 
Specification Table J3.4 (AISC, 2016). The value inside 
the parentheses excludes specimens that did not meet the 

Table 2. Test-to-Predicted Ratio Statistics for Various Evaluations of the Load at 
44-in. Deformation for Single-Bolt Specimens (data from 223 specimens, data from 

192 specimens meeting minimum edge distance requirements in parentheses)

Ct lx Cb Mean TTP COV TTP

Current equations 1.2 lc 2.4 1.223 (1.180) 0.186 (0.172)

Current coefficients 1.2 lv1 2.4 0.952 (0.953) 0.137 (0.144)

Current coefficients 1.2 lv2 2.4 0.992 (0.988) 0.140 (0.147)

Optimized coefficients 1.63 lc 2.29 0.957 (0.934) 0.153 (0.144)

Optimized coefficients 1.17 lv1 2.36 0.975 (0.976) 0.137 (0.144)

Optimized coefficients 1.23 lv2 2.36 0.975 (0.972) 0.137 (0.144)
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coefficients with the alternative tearout lengths result in 
a significant overestimation of strength. Rather, a coeffi-
cient of 1.2, the same as is used in the equations for load at 
the 4-in. deformation limit state, can provide an accurate 
prediction of strength with less variation than the current 
equation.

These results suggest that the difference between the load 
at 4-in. deformation and the ultimate load is far smaller 
than implied by current provisions. Figure 4 shows the ratio 
Rexp,u/Rexp,d for single-bolt specimens plotted against the 
normalized clear distance. The ratio of ultimate load to load 
at 4-in. deformation is 1.25 according to the current AISC 
Specification (AISC, 2016) (i.e., the ratio between Equa-
tion  4 and Equation  3 equals 1.25). However, the experi-
mental ratios are lower, especially for cases with smaller 
edge distances. The average ratio of the 211 specimens plot-
ted is 1.05 and only 6 of the specimens have a ratio greater 
than 1.25.

Strength of Multiple-Bolt Specimens

Of the 471 specimens in the database with bearing, tearout, 
or splitting failures, 158 have more than one bolt in the 
direction of force. Of these multiple-bolt specimens, Rexp,d 
was available for 100, Rexp,u was available for 136, and both 
loads were available for 78 of the specimens.

Tables 4 and 5 provide summary statistics for the test-
to-predicted ratios computed using the various instances of 
Equation 8 for multiple-bolt specimens. The values of the 
COV are approximately the same as those for the single-
bolt cases, indicating a good fit of the data. At the ultimate 
load, when including all specimens, and with rounded coef-
ficients, the mean test-to-predicted ratio is 0.927 for lv1 and 
0.954 for lv2. These values are lower than that for the single-
bolt case and lower than is generally acceptable. A possible 
reason for this is deformation compatibility between bolts. 
Achieving the full bearing strength of 3.0dtFu requires 

significant deformation. It is possible, for example, that 
by the time the full bearing strength of the interior bolts 
is achieved, the end bolts have passed their peak strength 
and contribute only a lower post-peak strength. Nonethe-
less, when specimens not meeting minimum edge distance 
and spacing requirements are excluded, the mean test-to-
predicted ratios are slightly above unity.

Previous editions of the AISC Specification included 
exceptions to tearout provisions when enough bolts were in 
a line and certain geometric conditions were met. It was 
theorized that if the interior bolts fail in bearing, the tearout 
strength of the end bolt would be less critical. To investigate 
the effect of neglecting tearout, a test-to-predicted ratio 
equal to the load at 4-in. deformation divided by the bear-
ing strength (i.e., the result of Equation 1 times the number 
of bolts in the connection) is plotted against the normal-
ized clear distance in Figure  5. Only specimens meeting 
the minimum edge distance and minimum spacing require-
ments of the current AISC Specification (AISC, 2016) are 
plotted. Specimens that meet the criteria for the tearout 
exception in the 1993 edition of the AISC Specification 
(AISC, 1993) (i.e., two or more bolts in a line, edge distance 
greater than 1.5d, and spacing greater than 3d) are differ-
entiated with circular markers. The figure shows significant 
variation; however, many of the specimens have low test-to-
predicted ratios, including several that meet the criteria in 
the 1993 AISC Specification.

To summarize, increased accuracy in predicting tearout 
strength was achieved using either lv1 or lv2 with a coef-
ficient on the tearout strength of 1.2. This was shown to be 
true for both the ultimate load and the load at 4-in. defor-
mation. Based on these initial results, the remaining analy-
ses are conducted with the following equations for tearout 
strength:

 Rn = 1.2lv1tFu (9)

 Rn = 1.2lv2tFu (10)

Table 3. Test-to-Predicted Ratio Statistics for Various Evaluations of Ultimate Load  
for Single-Bolt Specimens (data from 301 specimens, data from 234 specimens  

meeting minimum edge distance requirements in parentheses)

Ct lx Cb Mean TTP COV TTP

Current equation 1.5 lc 3 1.065 (1.003) 0.192 (0.140)

Current coefficients 1.5 lv1 3 0.804 (0.812) 0.139 (0.151)

Current coefficients 1.5 lv2 3 0.841 (0.842) 0.133 (0.144)

Optimized coefficients 1.65 lc 2.95 0.972 (0.921) 0.189 (0.145)

Optimized coefficients 1.16 lv1 3.21 1.009 (1.010) 0.117 (0.128)

Optimized coefficients 1.22 lv2 3.23 1.010 (1.005) 0.120 (0.129)

Rounded coefficients 1.2 lv1 3 0.981 (0.984) 0.119 (0.130)

Rounded coefficients 1.2 lv2 3 1.030 (1.025) 0.120 (0.129)
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Fig. 3. Normalized strength comparisons between tearout lengths.
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Table 4. Test-to-Predicted Ratio Statistics for Various Evaluations of the Load at 
44-in. Deformation for Multiple-Bolt Specimens (data from 100 specimens, data from 

62 specimens meeting minimum edge distance and spacing requirements in parentheses)

Ct lx Cb Mean TTP COV TTP

Current equations 1.2 lc 2.4 1.137 (1.106) 0.155 (0.159)

Current coefficients 1.2 lv1 2.4 0.973 (1.013) 0.127 (0.126)

Current coefficients 1.2 lv2 2.4 0.992 (1.024) 0.122 (0.127)

Optimized coefficients 1.63 lc 2.29 1.032 (1.048) 0.122 (0.129)

Optimized coefficients 1.17 lv1 2.36 0.992 (1.033) 0.126 (0.126)

Optimized coefficients 1.23 lv2 2.37 0.995 (1.032) 0.125 (0.127)

Table 5. Test-to-Predicted Ratio Statistics for Various Evaluations of Ultimate Load  
for Multiple-Bolt Specimens (data from 136 specimens, data from 48 specimens  

meeting minimum edge distance and spacing requirements in parentheses)

Ct lx Cb Mean TTP COV TTP

Current equations 1.5 lc 3 1.011 (1.047) 0.140 (0.172)

Current coefficients 1.5 lv1 3 0.812 (0.951) 0.188 (0.178)

Current coefficients 1.5 lv2 3 0.829 (0.961) 0.182 (0.178)

Optimized coefficients 1.65 lc 2.95 0.958 (1.029) 0.148 (0.179)

Optimized coefficients 1.16 lv1 3.21 0.937 (1.003) 0.138 (0.164)

Optimized coefficients 1.22 lv2 3.23 0.928 (1.000) 0.140 (0.166)

Rounded coefficients 1.2 lv1 3 0.927 (1.015) 0.145 (0.168)

Rounded coefficients 1.2 lv2 3 0.954 (1.038) 0.144 (0.168)
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Fig. 4. Ratio of ultimate load to load at 4-in. deformation versus normalized clear distance.
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Effects of Bolt Tightening

The AISC Specification (AISC, 2016) requires that bolts be 
installed to a snug-tight condition or pretensioned. Many of 
the experiments in the database utilize untightened bolts or 
had a gap between the plates. These loose connections do 
not satisfy the requirements of the AISC Specification, but 
help minimize the contribution of friction to the strength of 
the connection and better evaluate the strength of the con-
nected material alone.

Frank and Yura (1981) tested connections with different 
levels of tightening, although loose connections were not 
considered. They found that specimens with pretensioned 
bolts had 10% higher strength at 4-in. deformation when 
compared to snug-tightened bolts but that the ultimate 
strength was unaffected by the level of tightening.

Table 6 presents a comparison of experimental strength 
to strength equations from the current AISC Specification 
(AISC, 2016) for all 471 specimens in the database that 
failed in bearing, tearout, or splitting. No clearly identifi-
able trend is seen in the mean test-to-predicted ratios at ulti-
mate load. However, as observed by Frank and Yura (1981), 
the mean test-to-predicted ratios for the load at 4-in. defor-
mation tend to increase as the level of tightening increases.

Mixed Failures

Several multiple-bolt specimens tested by Cai and Driver 
(2008) exhibited mixed failures of bearing or tearout of the 
end bolts and shear rupture of the interior bolts. This mode 
of failure is a validation of the premise underlying the use of 
effective strengths of individual bolts when computing the 
strength of a bolt group. These specimens were not included 
in the preceding discussion because they exhibited mixed 
failures. However, they are examined here to validate the 
use of the alternative tearout lengths for connections where 
a mixed failure may occur.

The connected material in which the failures occurred 
was the web of a wide flange with a measured thickness of 
0.36  in. and a measured tensile strength of 74.11 ksi. The 
connections each had six w-in.-diameter bolts (two lines of 
three) in standard holes. The shear strength of the bolts was 
measured to be 50.13 kips. Most of these specimens reached 
their ultimate strength prior to reaching 4-in. deformation, 
so only ultimate load was considered. Table 7 summarizes 
the specimens along with test-to-predicted ratios calculated 
using different computed strengths.

The test-to-predicted ratios presented in Table 7 were cal-
culated with tearout strength given by the current equation 
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Fig. 5. Test-to-predicted ratio excluding tearout versus normalized clear distance.

Table 6. Mean Values of Test-to-Predicted Ratios Based on Level of Tightening

Load Level Pretensioned Snug-Tightened Loose Connection

Ultimate 1.049 1.023 1.067

4-in. deformation 1.246 1.197 1.157
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(i.e., Equation 4) as well as equations with the alternative 
tearout lengths (i.e., Equations 9 and 10). Also included in 
Table 7 are test-to-predicted ratios computed with the pre-
dicted strength taken as the lower of the strengths for the 
bolt group for (1) the limit states of bearing and tearout and 
(2) the limit state of bolt shear rupture.

The results of these specimens show that it is indeed 
unconservative to treat bearing and tearout separate from 
bolt shear rupture, given that doing so results in a 10% 
overprediction of strength on average. Using this method, 
specimens C1E1a, C2E1b, and C3E1c were controlled by 
bearing and tearout strength, and the rest were controlled 
by bolt shear rupture strength. More accurate but still some-
what unconservative results are obtained when considering 
the potential of mixed failures and summing the effective 
strengths of each individual bolt to obtain the strength 
of the bolt group. Little difference is seen between the 
use of the clear distance and either of the two alternative 
tearout lengths, all three result in a 4 to 5% overpredic-
tion of strength on average. The remaining error may be 
due to different bolts achieving their peak strength at dif-
ferent levels of deformation, which is not accounted for in 
the design equations. Further investigation on deformation 

compatibility in bolted connections which experience 
mixed failure is warranted, however, the observed error is 
small and can be accommodated in the margin of safety.

EXPERIMENTAL STUDY

The evaluation of published experiments showed that 
tearout equations using lv1 and lv2 had similarly improved 
results in comparison to the current equations. The data-
base contains results from hundreds of experiments across 
a broad range of parameters. However, it only contains 
specimens with standard holes because the vast majority of 
concentrically loaded steel bolted connection tests failing 
in bearing, tearout, or splitting were performed with stan-
dard holes.

For connections with standard holes, lv1 is greater than 
lv2. The difference between the two varies only slightly 
based on the diameter of the bolt, differing by a maximum 
of 7% for connections that satisfy minimum edge distance 
requirements and bolts as large as 1.5-in. diameter. The 
variation is greater, although still relatively small, over a 
range of hole types. To address this gap in data, a series 
of experimental tests was conducted to evaluate tearout 
strength for connections with different hole types.

Table 7. Analysis of Specimens Tested by Cai and Driver (2008) That Exhibited Mixed Failures

Test-to-Predicted Ratio

Specimen
Le  

(kips)
Rexp,u  
(kips)

Using lc  
(Eq. 4)a

Using lc  
(Eq. 4)

Using lv1  
(Eq. 9)

Using lv2  
(Eq. 10)

C1E1a 1.00 243.27 0.850 0.981 0.955 0.968

C2E1b 1.00 249.94 0.866 1.005 0.978 0.992

C3E1c 1.00 250.17 0.868 1.007 0.981 0.993

C4E2a 1.25 279.80 0.930 1.044 1.035 1.047

C5E2b 1.26 267.61 0.890 0.993 0.984 0.996

C6E2c 1.26 259.05 0.861 0.965 0.955 0.968

C7E3a 1.50 272.40 0.906 0.946 0.950 0.962

C8E3b 1.50 259.74 0.864 0.903 0.908 0.917

C9E3c 1.51 273.21 0.908 0.947 0.952 0.962

C10E4a 1.76 273.14 0.908 0.908 0.908 0.912

C11E4b 1.75 280.81 0.934 0.934 0.934 0.937

C12E4c 1.75 265.90 0.884 0.884 0.884 0.887

C13E5a 2.00 290.70 0.966 0.966 0.966 0.966

C14E5b 2.00 267.03 0.888 0.888 0.888 0.888

C15E5c 2.01 287.71 0.957 0.957 0.957 0.957

C16E6 2.76 297.49 0.989 0.989 0.989 0.989

Mean: 0.904 0.957 0.952 0.959
a  The predicted strengths for these test-to-predicted ratios were computed without considering potential interaction between the limit states of bearing and 

tearout and the limit state of shear rupture of the bolt.
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distance. Four edge distances were investigated for each of 
the five bolt hole types. Nominal values of the edge dis-
tances were 1  in., 1.25  in., 1.5  in., and 2  in. The smallest 
edge distance (1 in.) is equal to the minimum edge distance 
permitted by the AISC Specification (AISC, 2016) for a 
w-in. bolt in a standard hole. Note that the 1-in. edge dis-
tance is not permitted for oversize holes but was used in 
these tests for consistency. For a w-in. bolt in a standard 
hole, the transition between tearout and bearing occurs at an 
edge distance of 1.91 in. per current equations. The largest 
edge distance (2.0 in.) was selected to be somewhat greater 
than this length and thus provide a comparison to a bearing-
controlled failure. Two additional tests beyond the main set 
of 20 were also completed. Specimen NC2b was a dupli-
cate of NC2a to investigate repeatability. Specimen STD1g 

Test Matrix

Tension tests of 22 single-bolt butt splice connections with 
different hole types and edge distances were completed. 
The specimens consisted of two outer pull plates and a 
single interior test plate as shown in Figure 6. Specimens 
were designed to fail in bearing, tearout, or splitting of the 
test plate. Specimens included those with standard holes 
and holes with minimal clearance, where the value of lv1 is 
greater than lv2. Also included were specimens with over-
size holes, holes with 8  in. more clearance than oversize 
holes, and short-slotted holes oriented perpendicular to the 
load, where the value of lv2 is greater than lv1.

The test matrix is presented in Table 8. Two main vari-
ables are considered: the type of bolt hole and the edge 

LVDT

4"

OPTICAL
MARKER(TYP.)

TEST BOLT
3/4" DIA.
A490-X

1/4"
TEST PLATE
A572 Gr. 50

5"

6"

LVDT MOUNT

LVDT

(2) 1/4"
PULL PLATES
A572 Gr. 50

Fig. 6. Experimental test setup.
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was a duplicate of STD1, but with the test bolt untightened 
(instead of in a snug-tight condition) and greased plates to 
investigate the effect of reduced friction.

Materials and Test Setup

The test plates were 4-in.-thick ASTM A572 Gr. 50 steel 
and had a yield strength of 54.5 ksi and a tensile strength 
of 73.7 ksi, based on the mean of three tensile coupon tests 
conducted in accordance with ASTM E8 (2016). No special 
preparation was made to the plate surfaces before testing 
with the exception of specimen STD1g, where grease was 
applied to the faying surfaces. The test plates were installed 
in a universal testing machine and subjected to concentric 
tension load.

Two linear variable differential transformers (LVDTs) 
were installed on the test specimen to record movement of 
the pull plate relative to the test plate over a 4-in. gauge 
length. The LVDTs recorded the bolt hole deformation as 
well as elastic deformations of the plates over the gauge 
length; however, elastic deformations were minimal. An 
Optotrak optical tracking system was used for supplemen-
tary deformation measurements. The optical markers were 
installed on the test plate, pull plates, and the bolt. Measure-
ments from the optical tracking system were used to verify 
the LVDT measurements as well as measure elastic elonga-
tion of the specimen and pull plate.

After applying a preload of 500 lb to bring the connec-
tion into bearing, the test bolt was finger tightened and then 
brought to a snug-tight condition with a few impacts of an 
impact wrench. The plies were ensured to be in firm con-
tact. All other bolts were finger tightened. The preload was 
released prior to applying the main load.

Loading was applied in displacement control at a rate of 
0.05 in/min. Most tests were stopped after a near complete 
loss of load-carrying capacity, typically after one or two 
loud sounds that likely indicated rupture. To investigate the 
progression of the failure mechanism, specimens labeled 
STD1, STD2, STD3, STD4, NC1, NC2b, and SSLT1 were 
stopped when a steep load drop was seen. Specimen NC2a 
was stopped even earlier at the first sign of any load drop. 
All specimens were allowed to achieve their maximum 
strength.

Results

Load-deformation curves for all specimens are presented 
in Figure 7. The load at 4-in. deformation, Rexp,d, and the 
ultimate load, Rexp,u, are presented in Table  8 along with 
test-to-predicted ratios computed using the current and pro-
posed equations. Measured values were used in calculating 
the predicted strengths. For specimens with short-slotted 
holes, lv1 was computed graphically with computer-aided 
drafting software by drawing the specimen using measured 

dimensions and measuring the length from the edge of the 
hole to the edge of the material along lines tangent to the 
bolt. The difficulty in determining lv1  in some cases is a 
drawback for its use in design equations; however, design 
tables could be developed to alleviate the problem.

Failure Mechanisms

Specimens were disassembled after testing to determine the 
failure mechanism. Upon disassembly, it was observed that 
most specimens had a splitting tear as well as shear rupture 
in the connected material along one or both sides of the bolt 
hole. For specimens with smaller edge distances (i.e., nomi-
nal edge distances of 1  in. and 1.25  in.), the splitting tear 
extended to the bolt hole, as shown in Figure 8(a). For speci-
mens with larger edge distances, the split did not extend all 
the way to the bolt hole, as shown in Figure 8(b). Specimens 
STD4, NC4, STD1g, and NC2b did not exhibit any splitting.

For all specimens that exhibited splitting, it is likely that 
the initiation of splitting occurred prior to shear rupture in 
the connected material and coincided with the peak load. 
Testing of specimen NC2a was stopped shortly after the 
peak load was attained. Upon disassembly, the initiation of 
a splitting tear was observed, but no initiation of shear rup-
ture in the connected material was observed. Interestingly, 
the duplicate specimen, NC2b, did not exhibit splitting 
failure and achieved a 6% lower strength. The initiation of 
splitting is seen in the load-deformation curves as a dip that 
occurs after peak load and flattens out prior to the steeper 
tearout shear rupture, as depicted in Figure 7.

Strength Evaluation

The means of the test-to-predicted ratios were calculated 
for each hole type to compare the accuracy of each tearout 
length, shown in Tables 9 and 10 for the 4-in. deformation 
limit state and ultimate limit state, respectively.

The results of Tables 9 and 10 verify the trends identified 
in the analysis of the previously published experiments. The 
current tearout equation underestimates the load at 4-in. 
deformation, which is much closer to the ultimate load than 
the equations imply. For load at 4-in. deformation, differ-
ences between the equations using lv1 and lv2 are shown to 
be minimal for standard and oversize holes, and both were 
more accurate than the current equation. Across all hole 
types, the proposed equation with lv1 showed less variation 
but was unconservative for holes with minimal clearance. 
The strength of short-slotted holes was underpredicted by 
the equation using lv2.

Frank and Yura (1981) tested four specimens with long-
slotted holes oriented perpendicular to the load. They 
observed that the initial stiffness and load at 4-in. defor-
mation was reduced when compared to standard holes but 
that the ultimate strength, which was controlled by bearing 
for these specimens, was not reduced. As seen in Figure 7, 
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Fig. 7. Load-deformation curves for experimental tests.
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 (a) Specimen OVS2 after testing (b) Specimen OVS3 after testing

Fig. 8. Photographs of specimens after testing.

Table 9. Mean Test-to-Predicted Ratio at the 44-in. Deformation Limit State

Hole Type 
Using lc  
(Eq. 3)

Using lv1  
(Eq. 9)

Using lv2  
(Eq. 10)

All 1.264 1.008 0.998

STD 1.293 0.998 1.035

NC 1.307 0.965 1.073

OVS 1.286 1.044 1.002

XOVS 1.272 1.050 0.938

SSLT 1.149 0.994 0.922

Table 10. Mean Test-to-Predicted Ratio at the Ultimate Limit State

Hole Type
Using lc  
(Eq. 3)

Using lv1  
(Eq. 9)

Using lv2  
(Eq. 10)

All 1.045 1.044 1.032

STD 1.070 1.034 1.071

NC 1.065 0.984 1.093

OVS 1.078 1.095 1.051

XOVS 1.049 1.085 0.970

SSLT 0.958 1.035 0.961
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the initial stiffness of the specimens with short-slotted 
holes was among the lowest of those tested in this work. 
However, both Rexp,d and Rexp,u were lower for the speci-
mens with short-slotted holes than for the specimens with 
standard holes.

Although the mean test-to-predicted ratios for the ulti-
mate limit state appear to be accurate for the current equa-
tion (Table  10), the results are not consistent across edge 
distances. This is seen by plotting the test-to-predicted 
ratios of all tested specimens using the current equation 
along with the proposed equation using lv1 (Figure 9). The 
linear best-fit lines depict the inconsistency at the ultimate 
limit state of the current equation across edge distances in 
comparison to the proposed equation, evident throughout 
different hole types.

Effect of Bolt Tightening

All but one specimen was tested with the bolt installed to a 
snug-tight condition. The exception was specimen STD1g, 
which was nominally identical to STD1 but with the bolt 
installed loose and grease applied to the faying surfaces so 
as to investigate the effect of friction. The load-deformation 
response of specimens STD1g and STD1 is presented in 
Figure 10.

Several observations can be made from this pair of spec-
imens: (1)  The greased specimen was less stiff than the 
snug-tightened specimens; (2) the load at 4-in. deformation 
was 13% greater for the snug-tightened specimen than for 
the greased specimen; (3) the ultimate load was 12% greater 
for the snug-tightened specimen than for the greased speci-
men; and (4) splitting was observed for the snug-tightened 
specimen, but not the greased specimen.

While these observations were made for a single pair 
of specimens, the increase in Rexp,d corresponds to the 
increase seen in previous testing data (Table 6). However, 
the increase in Rexp,u was not seen in previous testing data. 
Also, it is not clear why different failure modes occurred for 
the two specimens.

RECOMMENDED STRENGTH EQUATIONS

Through the evaluation of existing and new experimental 
data presented in this work, it was determined that (1) the 
difference between ultimate load and load at 4-in. deforma-
tion for specimens failing in tearout is less than implied by 
current equations, (2) current equations for tearout strength 
underpredict the load at 4-in. deformation, and (3) current 
equations are not consistent across edge distances and tend 
to underpredict the strengths at smaller edge distances. 
Accordingly, increased accuracy in design can be achieved 
by replacing AISC Specification Equations J3-6c and J3-6d 
(AISC, 2016) with Equation 9, which utilizes lv1. The equa-
tion with lv1 was selected since it provides somewhat better 
results over a wider range of types of bolt holes, particularly 
short-slotted holes. The same equation but with lv2  in lieu 
of lv1 (i.e., Equation 10) would provide similar benefits, and 
the relative simplicity of calculating lv2 may be preferable. 
A reliability analysis performed in other work confirmed 
both Equations  9 and 10 to provide a consistent and suf-
ficient level of reliability (Franceschetti, 2020).

An example of the difference between the current and 
proposed equations is seen in Figure 11. The plotted case is 
for a single w-in.-diameter bolt in a standard hole. The min-
imum edge distance permitted by the AISC Specification 
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Fig. 9. Test-to-predicted ratios at ultimate limit state with best fit lines.
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(1  in.) is shown with a dashed vertical line. Figure  11(a) 
demonstrates that the equations with the alternative tearout 
lengths (i.e., Equations 9 and 10) offer additional strength 
compared to the current equation when deformation at the 
bolt hole at service load is a design consideration. The dif-
ference in strength when deformation at the bolt hole at ser-
vice load is not a design consideration is less.

While Equation 9 provides increased accuracy over cur-
rent equations, the computation of the alternative tearout 

lengths is somewhat more complicated than the computa-
tion of the clear distance. This is especially true for eccen-
trically loaded bolt groups, which are not covered in this 
work but pose a challenge since the direction of force varies 
from bolt to bolt. Neither of the alternative tearout lengths 
have been validated for loads at an angle. The simplicity 
of the clear distance may continue to be desirable for these 
situations.
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Fig. 10. Snug-tightened specimen versus untightened and greased specimen.

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

2

2.5

3

3.5

 (a) When deformation at the bolt hole (b) When deformation at the bolt hole 
 at service load is a design consideration at service load is not a design consideration

Fig. 11. Comparison of bearing and tearout strength equations for a w-in.-diameter bolt in a standard hole.
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CONCLUSIONS

A multifaceted investigation of the limit state of tearout and 
its impact on design of steel bolted connections has been 
conducted. Previously published experimental data was 
evaluated and supplemented with new experimental data to 
assess the accuracy of current provisions as well as poten-
tial alternative provisions. The following conclusions can 
be made from this work:

• Tearout affects the strength of bolt groups, even for 
cases of multiple bolts in a row.

• The current equation for tearout strength when 
deformation at the bolt hole at service load is a design 
consideration (i.e., load at 4-in. deformation) is 
conservative, especially for shorter edge distances.

• The difference between load at 4-in. deformation and 
ultimate load for the limit state of tearout is smaller 
than implied by current provisions.

• Bolt tightening increases the load at 4-in. deformation. 
No clear effect of bolt tightening was found on the 
ultimate load.

• Two alternative tearout lengths, lv1 and lv2, were 
investigated for their potential to improve the accuracy 
of design equations. Strength equations using these 
alternative tearout lengths were found to be more 
accurate than the current equations, which use the 
clear distance, lc.

• Design equations with lv1 and lv2 are similarly accurate 
for connections with standard and oversize holes. The 
design equation using lv2 was found to be somewhat 
unconservative for short-slotted holes and holes with 
clearance greater than oversize. The design equation 
using lv1 was found to be accurate over the entire range 
of hole types investigated.

• Calculation of lv1 is more complicated than lv2, 
especially for noncircular holes.

• Based on these observations, Equation  9 is re com-
mended for the assessment of tearout strength in 
concentrically loaded connections. Additional de vel-
op ment and validation is necessary for eccentrically 
loaded connections.

SYMBOLS

Cb Coefficient applied to the bearing strength

Ct Coefficient applied to the tearout strength

Fu Tensile strength of the connected material, ksi

Le Edge distance measured from center of bolt hole, in.

Rexp,d Experimentally determined load at ¼-in. 
deformation, kips

Rexp,u Experimentally determined ultimate load, kips

Rn Nominal strength of connection, kips

d Bolt diameter, in.

dh Bolt hole diameter, in.

lc Clear distance from bolt hole edge, in.

lv1 Alternative tearout length proposed by Kamtekar 
(2012), in.

lv2 Alternative tearout length proposed by Clements and 
Teh (2013), in.

lx General tearout length variable, in.

n Number of bolts

t Thickness of the connected material, in.
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meet these requirements. Second-order effects tend to be 
significant for such flexible, drift-governed buildings, and 
many engineers use a limit such as 1.5 on second-order 
effects to ensure designs are not overly sensitive to loading 
and modeling assumptions. Because the second-order drift 
is the expected drift under a given set of load conditions, 
it is the appropriate quantity to limit in order to achieve 
acceptable performance.

Second-order effects reduce the stiffness of structures 
and thus increase the drift for a given applied lateral load. 
This reduction in system stiffness depends on the verti-
cal load present, and at service levels, the effect is much 
smaller than under strength-level vertical loads. Neverthe-
less, there are many cases in which second-order effects 
are significant at service-load levels (LeMessurier, 1977; 
Griffis and White, 2013). Additionally, for seismic design 
(and for drift-sensitive safety conditions in wind design), 
drift under full design loads must be determined.

The ASCE/SEI-7 standard explicitly requires consider-
ation of the second-order effect for seismic design (ASCE, 
2016), and the ASCE Prestandard for Performance-Based 
Wind Design (ASCE, 2019) requires it for wind. The prin-
ciples of mechanics require consideration of second-order 
effects, regardless of explicit treatment in building codes. 
It is recommended that second-order effects always be 
included in the calculation of drifts unless they can reliably 
be discounted.

Judgment-based drift limits for wind have historically 
been used in conjunction with first-order drift to achieve 
acceptable performance. This practice precedes the advent 
of reliable second-order analysis with finite-element analy-
sis programs. Such an evaluation using first-order deforma-
tions may result in acceptable performance for buildings 
with a low to moderate second-order magnification, but for 
buildings with significantly higher second-order effects, it 
is effectively a much more permissive criterion and may 

INTRODUCTION

This paper presents methods for utilizing information 
known in advance of member selection (loading, frame 

geometry, and drift limits) to determine upper-bound val-
ues of the B2 amplifier used in approximate second-order 
analysis [defined in of the AISC Specification Appendix 8 
(2016)]. The paper defines a second-order stability index 
that can be determined based on the drift limit and that can 
be used to calculate the B2 amplifier. Two examples apply-
ing the second-order stability index are presented. The first 
is design example, consisting of member selection to meet 
both drift and strength criteria. The second is a hand cal-
culation to confirm the validity of the results of a computer 
second-order analysis of a multi-story building.

SECOND-ORDER DRIFT

Many structures (especially moment frame structures) are 
drift controlled, meaning that the governing consideration 
in member selection is achieving sufficient system stiffness 
to meet a drift limit or limit deformations to prevent damage 
to key building components such as cladding or partitions. 
Such buildings are generally only as stiff as necessary to 
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lead to unacceptable performance. Additionally, the first-
order drift may not be sufficiently accurate for compari-
son to the quantified strain capacity of cladding systems, 
interior partitions, or other drift-sensitive building compo-
nents. AISC Design Guide  3, Serviceability Design Con-
siderations for Steel Buildings, (West et al., 2003) provides 
guidance on such drift-sensitive components.

In this study, second-order drifts are compared to drift 
limits, and therefore the phrase “drift limit” should be 
understood as such; the concept of a first-order drift limit 
is not adopted. Using second-order drifts and deformations 
for comparison to drift limits and deformation capacities of 
cladding and partitions will provide a more consistent cri-
terion across the full range of second-order effects (Griffis, 
1993; Aswegan et al., 2015).

Many engineers find the use of amplifiers for approxi-
mate second-order analysis expedient and appropriate for 
their structures. Methods of determining force and dis-
placement amplifiers based on first-order drift may give 
very approximate results or require iteration. Determina-
tion of amplifiers in advance of design using the drift limit 
can eliminate the need for iteration, simplifying the design 
process. Such a process is illustrated in the design example 
in Appendix C of the paper by Sabelli (2020); the equations 
used in that example have been further refined in Sabelli 
and Griffis (2021).

While the equations and methods developed are appli-
cable to structures with braced frames and mixed (dual) 
systems, the considerations addressed are most significant 
for moment-frame structures. Importantly, the amplifiers 
determined using the drift limit are reasonable, upper-
bound estimates for drift-governed buildings (as is common 
for moment frames) but become unreasonably conservative 
for buildings much stiffer than required.

For buildings in which the deformation imposed on 
deformation-sensitive elements does not correlate to story 
drift, application of drift-based methods such as proposed 
here may be impractical.

AMPLIFIERS FOR APPROXIMATE SECOND-
ORDER ANALYSIS AND DESIGN FOR STABILITY

Second-Order Effects and First-Order Displacements

Second-order effects can be expressed using a system “sta-
bility index,” which relates the geometric and mechanical 
stiffness. AISC Design Guide 28, Stability Design of Steel 
Buildings, (Griffis and White, 2013) defines the stability 
index, Q (shown here as Q1, indicating that it uses first-
order displacement):

 
Q1 =

Pstory 1

RM HL

Δ

 
(1)

where
H  = first-order shear, kips

L  = story height, in.

Pstory  = total gravity load, Pmf + Plean, at LRFD level, kips

Q1  = first-order stability index

RM  =  stiffness-reduction coefficient to account for 
member P-δ influence on structure P-Δ

Δ1  =  first-order story drift corresponding to load H 
(ΔH in the Specification), in.

and where
Plean = gravity load on non-moment-frame columns, kips

Pmf = gravity load on moment-frame columns, kips

The AISC Specification ASD/LRFD adjustment factor α is 
omitted from the gravity-load definitions for brevity.

It should be noted that the stability index Q1 defined here 
follows Griffis and White (2013) and includes the RM coeffi-
cient; other literature has not consistently included this coef-
ficient. AISC Specification Appendix 8, Equation A-8-8,  
for RM is:

 
RM = 1 0.15

Pmf

Pstory
−

 
(2)

See Sabelli and Griffis (2021) for a more accurate equation 
for RM.

The force amplifier as presented in AISC Specification 
Appendix 8 utilizes the same quantities as does the stability 
index Q1:

 

B2 = 1

1
Pstory 1

RM HL
− Δ

 

(3)

where
B2 = amplifier for second-order effect

This amplifier can be expressed as a function of the sta-
bility index defined previously by combining Equations 1 
and 3:

 
B2 = 1

1 Q1−  
(4)

Determination of amplification using Equation 4 requires a 
first-order drift, which typically is determined from a pre-
liminary design and an analysis. AISC Steel Construction 
Manual Part 2 (2017) provides the “simplified method,” 
whereby the first-order drift is assumed to be equal to the 
drift limit, and thus an amplifier can be obtained prior to 
design (Carter and Geschwindner, 2008), although iteration 
may be required.
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Equation 9 can thus be used to determine the force ampli-
fier based on the second-order drift, which can be assumed 
to equal the drift limit for approximate analysis of drift-
governed buildings.

Combining Equations 4 and 9, the two indices are related 
by the force amplifier:

 2 B2= Q1Q2  (10)

Design for Stability Using Drift Limit

Incorporating the preceding methods, the “indirect analy-
sis method” (IAM) (Sabelli, 2020) may be used to permit 
design for stability based on the drift limit. In this method, 
second-order analysis lateral-load effects are further ampli-
fied by a factor B3 that addresses stiffness-reduction effects 
(including member imperfections and inelasticity as well as 
uncertainty in member stiffness, similar to the 0.8 stiffness-
reduction factor in the direct analysis method). The IAM 
amplifier for stiffness reduction can be computed using the 
B2 amplifier and the flexural stiffness reduction parameter 
τb (taking the smallest value for τb at each story):

 
B3 = 0.8 b

1 1 0.8 b B2τ
τ

−− ( )  
(11)

where
τb =  flexural stiffness reduction parameter based on col-

umn axial force from AISC Specification Section 
C2.3

The parameter τb is equal to 1.0 for braced-frame columns 
and for moment-frame columns with axial force not exceed-
ing 50% of the yield force, and thus the parameter τb can be 
taken as 1.0 for the majority of real buildings. In such cases, 
Equation 11 simplifies to:

 
B3 = 4

5 B2−  
(12)

Thus, if B2 can be determined based on the drift limit, so 
too can B3. With these two amplifiers the upper-bound of 
the lateral-load effect can be determined in advance of 
design and analysis.

These amplifiers so determined can be utilized directly 
in the design process or may be used in a simple hand cal-
culation to confirm the results of a computer second-order 
analysis (incorporating Equation 12 for a second-order 
analysis with direct-analysis stiffness).

RECOMMENDED DESIGN APPROACH FOR 
DRIFT-GOVERNED BUILDINGS

The design of most moment-frame buildings is governed by 
the need for sufficient stiffness to control drift and deforma-
tion demands, rather than the need for strength, regardless 

Second-Order Effects and Second-Order Displacements

While the simplified method of utilizing the drift limit as 
the first-order drift results in a reasonable, liberal estimate 
of the amplifier, a more accurate estimate can be obtained 
using methods based on second-order drift. Prior to design, 
the structure can be assumed to be exactly stiff enough to 
meet the drift limit, and the amplification can be deter-
mined by setting the target second-order drift equal to that 
drift limit. This method is elaborated below, following work 
done by Statler et al. (2011).

Sabelli and Griffis (2021) present the force amplifier B2 
as a function of the second-order drift based on the equilib-
rium in the deformed condition:

 
B2 = 1+

Pstory 2

HL

Δ

 
(5)

where
Δ2 = second-order story drift

Additionally, Sabelli and Griffis show that Equations 3 and 
5 and have as a corollary the following expression for drift 
amplification:

 

2

1
= B2

RMΔ
Δ

 
(6)

Sabelli and Griffis note, however, that Equation 6 requires 
use of a more accurate equation for RM than Equation 2. For 
structures with low to moderate second-order effects, the 
value of RM (determined per Sabelli and Griffis) is close to 
1.0, and drift amplification can be approximated by:

 

2

1
B≈ 2Δ

Δ

 
(7)

For convenience, a stability index Q2 based on the  
second-order drift is defined here:

 
Q2 =

Pstory 2

HL

Δ

 
(8)

where
Q2 = second-order stability index

This index differs from Q1 because Q2 uses the second-
order drift, Δ2, in lieu of the first-order drift, Δ1. Addition-
ally, the coefficient RM (which accounts for member P-δ 
influence on structure P-Δ) does not directly figure into 
Q2, but contributes to the reduced stiffness that results in 
the displacement Δ2 by means of inclusion of member P-δ 
effects in the analysis.

The force amplifier can be expressed thus by combining 
Equations 5 and 8:

 B2 = 1+ Q2 (9)
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of whether wind or seismic loads govern the member selec-
tion. (This is also true of some braced-frame and dual- 
system buildings.) In such cases, the designer can stream-
line the design process by selecting member sizes to main-
tain a target story drift considering second-order effects 
directly and, subsequently verifying adequate strength, 
using the appropriate combination of vertical and lateral 
loads for each evaluation. The methods presented here uti-
lize a drift limit to estimate these second-order effects and 

are thus applicable to conditions in which such a drift limit 
applies (whether by code or as a means to limit damage 
to deformation-sensitive elements) and for which the drift 
limit is a governing criterion.

Application of this approach to seismic design is com-
plicated by the dependency of the loading on the building 
period (ASCE, 2016), which is a function of the system 
lateral stiffness. Incorporation of that dependency into the 
required stiffness is beyond the scope of this paper.

Example 1: Design Example

To illustrate application methods based on second-order drift, a design example is presented, based on Carter and Geschwind-
ner (2008), as shown in Figure 1. The example shows member selection for column A to meet a drift limit and confirmation of 
adequate strength, including design for stability. The example has drift limits corresponding to both serviceability and strength 
evaluations.

Given:

Similar to many (if not most) building structures, the example structure has no sway under gravity loads, and thus the lateral 
restraint force, Rnt, is zero. This permits the application of amplifiers B2 and B3 to the lateral loads or to the lateral-load effects, 
rather than to the effect of lateral loads plus Rnt. (See AISC Specification Appendix 8 Commentary for additional information 
regarding the determination and use of Rnt.)

Different loads and drift limits are used in the example for LRFD and serviceability evaluations. Loads for the LRFD evalu-
ation are taken from Carter and Geschwindner (2008). The drift limits and serviceability loads are assumed here. The drift 
limits have been selected such that design for drift requires the member sizes from Carter and Geschwindner. Members are 
selected based on the minimum moment of inertia that limits second-order drift to the drift limit. The drift is based on the 
second-order displacement, which is approximated here by applying the amplifier B2 to the first-order cantilever displacement:

 
2

B2HL3

3EI
≤Δ

 
(13)

where
E = modulus of elasticity, ksi

I = moment of inertia of cantilever column, in.4

For simplicity, shear deformations are not included in the analysis.

Fig. 1. Example frame.
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The required moment of inertia is:

 
I

B2HL3

3E 2
≥

Δ  
(14)

Loads for the frame are shown in Table 1, along with the drift limits. The height L is 15 ft (180 in.).

Solution:

Determine Coefficient RM

From AISC Specification Appendix 8, Equation A-8-8, the RM coefficient is determined using Equation 2:

 

RM = 1 0.15
Pmf

Pstory

= 1 0.15
200 kips( )
400 kips( )

= 0.925

−

−

 

(2)

Because the ratio of Pmf to Pstory in this example does not change with the level of loading, this value of RM applies to both 
serviceability and strength evaluations.

Service-Level Member Selection (Drift Only)

Using the service-level drift limit as the second-order drift, the upper bound of the amplifier B2 is determined using Equation 5. 
This is used to determine the required moment of inertia of the cantilever column. Once member selection is made based on 
this service-level second-order drift limit, the first-order drift can be computed for recalculation of the force amplifier B2 based 
on the actual system stiffness.

Equation 5 is used to determine the amplifier B2 for the serviceability evaluation based on:

Pstory

H
=

125 kips +125 kips( )
12.0 kips( )

= 20.8

2

L
= 1.00 in.( )

180 in.( )
= 0.00556

Δ

The second-order stability index Q2 is:

Q2 =
Pstory

H
2

L

= 20.8( ) 0.00556( )
= 0.116

Δ⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

 

(8)

Table 1. Loading and Design Information

Service Strength (LRFD)

H (kips) 12 20

PA (kips) 125 200

PB (kips) 125 200

Drift limit 1.00 in. = L/180 1.80 in. = L/100
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The amplifier B2 is:

B2 = 1+ Q2

= 1+ 0.116

= 1.12  

(9)

The error in neglecting the second-order effect is 12% unconservative in this serviceability evaluation. If the drift limit is used 
as a first-order drift (including the factor RM of 0.925), the value of B2 obtained using Equation 4 is 1.14. (The error associated 
with use of the drift limit as a first-order drift is tabulated at the end of this example.)

The required moment of inertia is:

I
B2HL3

3E 2

1.12( ) 12.0 kips( ) 180 in.( )3

3 29,000 ksi( ) 1.00 in.( )
= 901 in.4

≥

≥
Δ

A W14×90 (I = 999 in.4) will be used. Note that neglecting the second-order effect would result in the selection of a smaller 
member (W14×82, I = 881 in.4), which would in turn result in not meeting the drift limit. With the selected member the first-
order drift is:

1 = HL3

3EI

=
12.0 kips( ) 180 in.( )3

3 29,000 ksi( () )999 in.4

= 0.805 in.

Δ

1

L
= 0.805 in.( )

180 in.( )
= 0.00447

Δ

The first-order stability index from Equation 1 is:

Q1 =
Δ1

RM

Pstory

H
1

L

= 1

0.925
20.8( ) 0.00447( )

= 0.101

⎛
⎝

⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

⎞
⎠

⎛
⎝

⎞
⎠

 

(1)

Using this value of Q1 with Equation 4 gives:

B2 = 1

1 Q1

=
−

−
1

1 0.101
= 1.11  

(4)

Thus, the value of B2 determined from Equation 5 using the target second-order drift limit is effective in determining the 
required member size directly without the iteration that would be required using Equation 3.
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LRFD-Level Evaluation (Drift and Strength)

Amplifiers Determined Prior to Analysis and Design

Next, the stability index for the strength evaluation is determined using the appropriate vertical load. Using the LRFD load 
level drift limit as the second-order drift, the stability index Q2 is used to determine the amplifiers B2 and B2B3 for stability 
design according to the IAM. The stability index Q2 is based on:

Pstory

H
=

200 kips + 200 kips( )
20.0 kips( )

= 20.0

2

L
= 1.80 in.( )

180 in.( )
= 0.0100

Δ

The second-order stability index is:

Q2 =
Pstory

H
2

L

= 20.0( ) 0.0100( )
= 0.200

Δ

 

(8)

The amplifier B2 is:

B2 = 1+ Q2

= 1+ 0.200

= 1.20  

(9)

If the drift limit is used as a first-order drift (Q1 = 0.216 using Equation 1, including the factor RM), the value of B2 obtained 
from Equation 4 is 1.28.

The amplifier B3 depends on the axial force in moment-frame columns. The axial force to yield force ratio for the cantilever 
column is below 0.5 (justifying use of Equation 12):

Pr

Ps
= P

Fy A

=
1.0( () )200 kips

50 ksi( () )26.5 in.2

= 0.151 0.50

α α

≤

The amplifier B3 is:

B3 = 4

5 B2

= 4

5 1.20
= 1.05

−

−

 

(12)

The product B2B3 is:

B2B3 = 1.20( ) 1.05( )
= 1.26
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The required moment of inertia is:

I
B2HL3

3E 2

1.20( () )20.0 kips 180 in.( )3

3 29,000 ksi( ) 1.80 in.( )
= 894 in.4

Δ
≥

≥

A W14×90 (I = 999 in.4) satisfies the strength-level drift limit. At this point the member has been selected to meet the LRFD 
load level drift limit, and the strength evaluation can proceed using either the approximate values of B2 and B3 determined 
earlier, or more precise values determined based on the calculated drift from the selected member. While the former approach 
is more expedient, for purposes of comparison the latter approach will be used.

Amplifiers Determined Based on Analysis of Selected Member

The first-order drift for the selected member under LRFD loading is:

1 = HL3

3EI

=
20.0 kips 180 in.(( )) 3

3 29,000 ksi( () )999 in.4

= 1.34 in.

Δ

1

L
= 1.34 in.( )

180 in.( )
= 0.00744

Δ

The first-order stability index, Q1, for the LRFD strength evaluation is:

Q1 = 1

RM

Pstory

H
1

L

= 1

0.925
20.0( ) 0.00744( )

= 0.161

Δ⎛
⎝

⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

⎞
⎠

⎛
⎝

⎞
⎠

 

(1)

B2 = 1

1 Q1

= 1

1 0.161
= 1.19

−

−

 

(4)

B3 =
−

−

4

5 B2

= 4

5 1.19
= 1.05  

(12)

B2B3 = 1.19( ) 1.05( )
= 1.25

Note that this value of the product B2B3 is 99% of the value obtained using the drift limit.
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From Carter and Geschwindner (2008), the design strengths are:

Pc = 1,000 kipsϕ

Mn =ϕ 573 kip-ft

The required flexural strength is determined using the B2B3 amplifier on the first-order load effect:

Mu = B2B3HL

=
1.25( () )20.0 kips 180 in.( )

12 in./ft
= 375 kip-ft

The interaction check from AISC Specification Equation H1-1a using LRFD is:

Pr

Pc
+ 8

9

Mu

Mn
=

200 kips( )
1,000 kips( ) + 8

9

375 kip-ft( )
573 kip-ft( )

= 0.782

ϕ ϕ
⎛
⎝

⎛
⎝

⎞
⎠

⎞
⎠

Note that this is slightly lower than the value of 0.796 obtained by Carter and Geschwindner (2008) for the DM and by Sabelli 
(2020) for the IAM because the value of RM was calculated in this example, as is permitted by the 2016 AISC Specification 
(AISC, 2016), rather than taken as 0.85 per the 2005 AISC Specification (AISC, 2005). Using RM = 0.85, the first-order stabil-
ity index would be Q1 = 0.175; the corresponding demand-to-capacity ratio is 0.796, matching the previous studies.

Example Summary

Table 2 summarizes the values of B2 obtained for both service-level and strength-level evaluations, including B2: (1) deter-
mined using the calculated drift, (2) approximated using the drift limit as the first-order drift, and (3) approximated using the 
target drift limit as the second-order drift (as recommended in this paper). The latter two also show the percent error compared 
to the first. The last column (4) shows the error if second-order effects are not considered at all, which is not recommended.

Use of the target drift limit as the first-order drift is acceptable for purposes of damage control but is not recommended because 
of the conservative error shown in Table 2 (column 2), and the ease of utilizing the more accurate second-order methods 
presented herein (column 3). Ignoring second-order effects in drift determination (column 4) is not recommended due to the 
unconservative error, and the method’s inaccuracy potentially leading to damage in cladding, partitions, and other building 
components.

Use of the drift limit as the second-order drift from Equations 5, 8, and 9 (as proposed in this paper) results in negligible over-
estimates for drift-governed designs as compared with using Equations 1, 3, and 4, which would normally require iteration. 
For cases utilizing the latter approach in which the selected members result in second-order drifts significantly below the drift 
limit, the use of the refined analysis with the selected member stiffness (using the first-order stability index and further itera-
tions on member size) may permit refinement of the design but with more effort.

Table 2. Summary of B2 Values

Loading Level

(1) 
Correct Value Using 

Calculated  
First-Order Drift  

(Equation 1)

(2) 
Approximation Using 

Drift Limit as  
First-Order Drift  

(Equation 1)

(3) 
Approximation Using 
Target Drift Limit as 
Second-Order Drift 

(Equation 8)

(4) 
Ignoring  

Second-Order  
Effects  

(Not Recommended)

Service 
1.11 
(0%)

1.14 
(+2.8%)

1.12 
(+0.3%)

1.00 
(−11.2%)

Strength 
1.19 
(0%)

1.28 
(+7.0%)

1.20 
(+0.1%)

1.00 
(−19.2%)
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Example 2: Computer-Analysis Review Example

While Example 1 illustrates the application to a simple structure designed by hand, in current practice, computer analysis is 
utilized for the majority of structures of any significant complexity. Nevertheless, engineers should be equipped to critically 
evaluate the results of such analyses using simple methods in order to prevent errors.

In this section, the methods described earlier are utilized to evaluate the results of the Appendix C example from Sabelli (2020). 
That example presents the design and analysis (including second-order analysis) of an eight-story building with two-bay 
moment frames on the perimeter. For simplicity, an evaluation is made based on loads at the bottom story here, and a hand-
calculated amplifier B2 is compared to the drift amplification from a second-order analysis. The hand calculation does not rely 
on any analysis results, although it assumes the building drift is equal to the drift limit.

Given:

Selected design criteria, loading, and analysis results for the eight-story building are presented in Table 3; all information is 
taken from the Appendix C example from Sabelli (2020). Values used in the example are shown in bold. Readers are referred 
to Sabelli (2020) for more information.

Computation of Amplifier B2

The required system effective stiffness based on the drift-design criteria is:

H

2
=

160 kips( )
0.450 in.( )

= 356 kips/in.

Δ

The second-order stability index, Q2, for the strength evaluation (using the strength-level vertical loads) is:

Q2 =
Pstory

L
2

H

= 24,800 kips

180 in.

1

356 kips/in.

= 0.388

Δ⎛
⎝

⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎞
⎠

 

(8)

Table 3. Summary of Eight-Story Frame Loading, Criteria, and Analysis Results

General
Drift Loading  
and Criteria

Drift 
Evaluation

Strength  
Loading

Strength  
Evaluation

Level
L  

(in.)
Pstory 
(kips)

Hservice 
(kips)

ΔΔallowable 
(in.) ΔΔall

ΔΔ2 Pstory 
(kips)

H  
(kips)

ΔΔ1  
(in.)

ΔΔ2  
(in.) ΔΔ1

ΔΔ2

8 180 2,000 20.0 0.450 0.61 2,400 30 0.39 0.49 1.25

7 180 4,400 40.0 0.450 0.96 5,600 60 0.59 0.79 1.35

6 180 6,800 60.0 0.450 0.89 8,800 90 0.54 0.74 1.36

5 180 9,200 80.0 0.450 0.95 12,000 120 0.57 0.79 1.38

4 180 11,600 100.0 0.450 0.93 15,200 150 0.56 0.78 1.39

3 180 14,000 120.0 0.450 1.00 18,400 180 0.60 0.84 1.41

2 180 16,400 140.0 0.450 0.93 21,600 210 0.56 0.78 1.38

1 180 18,800 160.0 0.450 0.72 24,800 240 0.45 0.59 1.32
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CONCLUSIONS

Equations for the force amplifier (B2) are presented that uti-
lize a second-order stability index, which can be based on 
a drift limit. Two examples are presented. A design exam-
ple shows the application of the methods, determining the 
amplifiers prior to design based on the target drift limit. 
That example confirms that the methods result in very close 
approximations of the amplifiers determined after member 
selection for the simple, drift-governed design presented. 
A second example illustrates the use of the second-order 
stability index to estimate the magnitude of the second-
order effect prior to member selection and building analy-
sis. The amplification value so determined is compared to 
the second-order effect from a computer analysis, providing 
confirmation of that analysis.

SYMBOLS

B2 Amplifier for second-order effect (AISC 
Specification Appendix 8)

B3 IAM amplifier to account for stiffness reduction due 
to inelasticity (Sabelli, 2020)

E Modulus of elasticity, ksi (AISC Specification)

H First-order shear at the load level under 
consideration, kips

I Moment of inertia, in.4

L Story height, in.

Plean Load on leaning columns, kips

Pmf Load on moment-frame columns, kips

Pstory Story gravity load, kips

Q1 First-order stability index (Q in Design Guide 28)

Q2 Second-order stability index

RM Coefficient to account for member P-δ influence on 
structure P-Δ

The corresponding amplifier B2 is:

B2 = 1+ Q2

= 1+ 0.388

= 1.39  

(9)

Table 3 shows the ratio of second-order drift to first-order drift ranging from 1.25 to 1.41 for the strength evaluation, with the 
highest value corresponding to the floor with the drift exactly at the drift limit for the drift evaluation. [Note that the ratio of 
second-order drift to first-order drift only approximates the force amplification, per Equation 7, and as discussed in Sabelli and 
Griffis (2021).] The simple hand calculation above confirms the second-order analysis, giving the engineer higher confidence 
in the results. A similar hand calculation could be made incorporating Equation 12 to verify the direct analysis method results.

Rnt Lateral reaction of frame restrained from translation 
used in approximate second-order analysis, kips 
(AISC Specification commentary)

Δ1 First-order story drift, in. (ΔH in the AISC 
Specification)

Δ2 Second-order story drift, in. (Design Guide 28)

τb Flexural stiffness reduction parameter (AISC 
Specification Section C2.3)
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governing limit state for CFST members. For example, in 
the 2016 AISC Specification for Structural Steel Buildings 
(AISC, 2016b), hereafter referred to as the AISC Specifica-
tion, the shear strength of composite concrete-filled tubes is 
specified to be either that of the steel section alone or that of 
the concrete section alone, presumably on the assumption 
that there exist few instances where a shear strength greater 
than this is necessary.

However, in some instances, more accurate prediction of 
this shear strength is desirable or needed. For example, this 
would be the case at the panel-zone locations of CFST col-
umns in a composite moment frame (Fischer and Varma, 
2014), or in CFST drilled shafts spanning across a thin, 
liquefiable soil layer located between two stiff layers dur-
ing lateral spreading. In both of these cases, the CFST is 
subjected to double curvature bending over short lengths 
and subject to high resulting shear forces. In these cases, 
the shear strength of the CFST can become a significant 
consideration in its design.

It is important for design purposes to understand the 
physical behavior of composite CFST subjected to shear 
and to develop design equations that capture the respec-
tive contribution of the steel tube and concrete infill of the 
CFST to its total shear strength (contribution of internal 
reinforcement is not considered here for reasons described 
later). Design equations that are anchored in the mechan-
ics of structural behavior provide more confidence in the 
design. For example, overestimating the strength of one 
component could result in an unexpected failure should that 
component become dominant in providing the total shear 
strength of that member.

INTRODUCTION AND BACKGROUND

Concrete-filled steel tubes (CFST) have a demonstrated 
ability to provide strength and ductility, which has 

made them desirable for both seismic and non-seismic 
applications (Bruneau and Marson, 2004; Hajjar, 2000; 
Hajjar et al., 2013; Han and Yang, 2005; Lai et al., 2017). 
Much research has demonstrated that these members can 
develop their plastic flexural strength (e.g., Bruneau and 
Marson, 2004; Lai et al., 2014; Leon et al., 2007; Roeder 
et al., 2010; Varma et al., 2002) and equations in design 
specifications typically account for full development of the 
plastic flexural strength of such members under combined 
bending and axial load.

Considerably less knowledge exists on the shear strength 
of such members. This may be attributable to challenges in 
experimentally developing the full shear strength of large 
concrete-filled tubes, and to the fact that shear is rarely a 
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CIRCULAR CONCRETE-FILLED STEEL TUBES

The work presented in this section (1) summarizes recent 
research on the shear strength of circular concrete-filled 
members that illustrate the relative contributions of steel 
and concrete to the total shear strength and the contribution 
of a diagonal compression concrete strut to that strength 
(Kenarangi and Bruneau, 2020a, 2020b), (2) presents pro-
posed (and calibrated) simplified design equations to sim-
plify the more complex mechanics-based shear strength 
equation previously developed for composite CFST mem-
bers (Kenarangi and Bruneau, 2020b), and (3)  compares 
experimental results against the strength predicted by the 
proposed simplified equations.

2016 AISC Specification Shear Strength of 
Circular CFST

The shear strength of circular filled composite members 
given by the 2016 AISC Specification Section I4, is based 
on (1)  the shear strength of the steel tube alone, (2)  the 
available shear strength of the reinforced concrete portion 
alone, or (3)  the shear strength of the steel tube plus the 
shear strength of the reinforcing steel.

Using this approach, for case 1, the shear strength of the 
circular steel tube alone using AISC Specification Equa-
tion G5-1 is:

 Vn(AISC) = 0.5Fcr Ag (1)

where Vn(AISC) is the nominal shear strength of a circular 
steel tube and Fcr is the critical shear buckling stress taken 
as the larger of AISC Specification Equations G5-2a or 
G5-2b:

 

Fcr = 1.6Es
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D
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t

5
4
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where
Ag = gross area of the steel tube cross section, in.2

D = outside diameter of the steel tube, in.

Es = modulus of elasticity of the steel, ksi

Fy = specified minimum yield stress of the steel tube, ksi

Lv =  distance between points of maximum and zero 
shear, in.

t = design wall thickness, in.

Although not explicitly specified in AISC Specifica-
tion Section I4, in concrete-filled steel tubes, the concrete 

fill provides support against buckling of the steel tube, and 
therefore, Fcr is taken as 0.6Fy for these sections. This would 
result in:

Vn( AISC) = 0.5 0.6Fy( )Fcr Ag

= 0.3Fy Dt

= 0.94DtFy

π

Incidentally, this result corresponds to the first occurrence 
of yield at one point on the entire cross section (at its center 
in this case), as derived using classical equations to calcu-

late elastic shear stresses (i.e., 
VyQ

Ib
, from any mechanics 

of materials textbook, with Vy calculated when the shear 
stress is τy).

For case 2, the shear strength of the concrete alone would 
be:

 Vc (ACI ) = 0.0632Ac fc′ (4)

where
Ac = area of the concrete section, in.²

fc′ = uniaxial compressive strength of the concrete, ksi

Case 3 provides a marginal increase in shear strength over 
case 1, proportionally to how much the area of shear rein-
forcement adds to the area of the steel tube.

All the current AISC Specification Section I4 options 
are conservative and result in inefficient material use and 
increase in costs when shear governs the design.

Complex Shear Strength Equation

In order to investigate the behavior of circular CFST mem-
bers under shear deformation, a series of finite element 
analyses were performed using element types and material 
models validated against experimental results, as described 
in more detail in Kenarangi and Bruneau (2020b). Analyses 
showed that a significant diagonal compression strut with 
a 45° angle developed in the concrete for some shear span-
to-diameter (a/D) ratios. This is illustrated in Figure  1, 
which shows iso-surfaces for two different a/D ratios. To 
more clearly illustrate the development of the compression 
strut, principal stresses lower than 2.5 ksi are not shown 
in these figures. As a/D increases or decreases beyond the 
optimum case of a/D = 0.5 [which is the geometry shown 
in Figure 1(a)], the strength of the compression strut rapidly 
becomes less significant, as shown in Figure 1(b).

Based on observations from finite element analysis 
results, equations for the contribution of the infill concrete 
to the total shear strength of the CFST were developed. In 
these equations, the critical concrete strut cross section, 
Astrut, was located at the mid-length of the strut and was 
calculated from geometry to be:
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Dc = concrete core diameter, in.

H =  height of the specimen in double curvature shear 
setup, which is equal to 2a, in.

The resulting strut force, Fstrut, calculated by multiply-
ing Astrut by a uniformly distributed stress conservatively 
assumed to be equal to fc′, was then converted into horizontal 
(shear) and vertical (axial) force components, respectively, 
corresponding to the contribution to shear strength provided 
by the strut, Vstrut, and a vertical force component of the 
strut, Pstrut, transferred to the steel tube. Therefore,

 
Astrut = 2

2
4Rc

2 arcsin
b

2Rc
+ b 4Rc
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⎤
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⎝
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where

Rc = Dc 2

b = Dc H

2
0 b

H

2
≤≤−

 
(6)

and

(a) 0.25 ≤ a/D ≤ 0.5

(b) a/D < 0.25

Fig. 1. Definition of diagonal compression strut in CFST.
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Vstrut = 2

2
Astrut fc′

 
(7a)

 
Pstrut = 2

2
Astrut fc′

 
(7b)

At large shear span ratios, no strut develops, and the 
shear strength of the concrete defaults to the existing shear 
strength equations for concrete. Therefore, a lower limit 
of concrete shear strength, Vc, was defined here for Vconc, 
as shown in Equations  8 and 9. In Equation  9, the term 
outside the parenthesis is the nominal shear resistance of 
the concrete in accordance with ACI. The term inside the 
parenthesis was added to include the axial load effect on 
the shear resistance of the concrete. This term was adapted 
from ACI 318 (2011, 2014) Section 22.5.6 (which was the 
edition of ACI 318 in effect at the time this research was 
conducted).

 Vconc = max Vstrut ,Vc( ) (8)

where

Vc = 0.0632Ac fc 1+ Pstrut

2Ac
′
⎛
⎝⎜

⎞
⎠⎟  

(9)

To calculate the nominal shear resistance of the steel 
tube, it was assumed that the tube cross section was fully 
yielded under combined tension and shear, and the effect 
of bending moment was neglected. In this case, the total 
shear resistance of the steel tube, Vs, can be calculated by 
integrating the maximum shear stress (which is tangent to 
the surface) over the steel tube cross section as shown in 
Figure 2 and calculated in Equation 10.

 
Vs = ∫2 s,maxRt cos( )d/2

/2 τ ϕ ϕ−π
π

 
(10)

where R is the average radius of the steel tube and τs,max is 
the maximum shear stress on the steel tube cross section, 
calculated as:

 
s,max = 1

3
Fy

2 T 2−τ
 

(11)

where Fy is the yield stress of the steel tube and T = Pstrut As 
is the resultant tensile stress on the steel tube cross section 
due to the interaction of the concrete strut with the steel 
tube.

The resulting Vs obtained from Equation 10 is shown in 
Equation 12. The term under the square root shows that the 
shear strength of the steel tube reduces as the strut force 
increases, and Pstrut should be less than AsFy. (Note: For a 
diagonal strut at 45°, Pstrut = Vstrut.)

 
Vs = 2Dt

3
Fy

2 Pstrut

As

2⎛
⎝⎜

⎞
⎠⎟

−
 

(12)

Note that for all sections considered, the presence of 
Pstrut was found to only have a marginal effect on the value 
of tube Vs. Also, in calculation of the shear contribution of 
the steel tube, the effect of the moment was neglected. This 
effect can be considered in the steel tube shear strength by 
including the stresses from bending moment using a simi-
lar but more complex equation (Kenarangi and Bruneau, 
2020b).

Finally, the nominal shear strength of the composite 
CFST shaft was taken as equal to the summation of the 
shear strength of the concrete core and the steel tube, as 
shown in Equation 13.

 VCFST = Vs + Vconc (13)

As mentioned before, the potential contribution of the rein-
forcing cage to the total shear strength is not included in 
this equation as it has a minimal contribution.

The proposed shear strength in Equation  13 was com-
pared to finite element results with different shear span 
to diameter ratios. Figures 3(a) and 3(b) show the cases in 
which the bending moment is neglected or is included in 
calculation of the shear strength, respectively. In these fig-
ures the strengths were normalized to the summation of the 
strengths calculated by Equations 1 and 4. In these figures, 
Mp is the theoretical plastic flexural capacity of the sec-
tion. The difference in the steel tube shear strength between 
these two cases is less than 8% for a/D < 0.5. This differ-
ence increases with the a/D ratio. Equations modified to 
account for the effect of axial load simultaneously acting 
on the cross section were also developed by Kenarangi and 
Bruneau (2020b), but these more complex equations are not 
presented here because the strength predicted by the equa-
tion used here was found to be adequately conservative in 
that case.

The proposed nominal shear strength obtained per these 
equations was compared with available test results by 
Kenarangi and Bruneau (2020a), Qian et al. (2007), Xu et 
al. (2009), Xiao et al. (2012), Nakahara and Tsumura (2014), 
Ye et al. (2016), and Roeder et al. (2016). Experimental 

ϕ

dϕ

R

t

τs,max

Steel tube
cross-section

Fig. 2. Shear distribution on the steel tube cross section.
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values were found to be, on average, 55% higher than the 
shear strength calculated by the proposed formula. To 
explain this result, Figure 4 shows cyclic hysteretic behav-
ior obtained by finite element analysis for one of the speci-
mens tested by Kenarangi and Bruneau (2020a) that failed 
under a shear dominant mode (note that none of the existing 
test data were tested under a pure shear condition because 
there is always a combination of flexure and shear at fail-
ure). In this figure, the shear forces carried by the steel tube 
and the infill concrete, as obtained from the finite element 
analysis, are compared with values at the maximum experi-
mental strength point. This shows that at the displacement 
when the maximum experimentally obtained strength was 
reached, Equation  13 gives a good estimate of the shear 
strength resisted by the steel tube but underestimates the 
shear strength resisted by the concrete. This was done 

deliberately at the time as it was believed that this level of 
conservatism would be acceptable.

Simplified Shear Strength Equation for  
Circular CFST

Equations 5 through 13, while formulated to capture fun-
damental mechanisms that develop in CFST in shear, were 
deemed to be informative but too complex for practical use. 
Furthermore, while capturing well the contribution of steel 
to the total strength (and in a manner consistent with theo-
retical results from plastic analysis), they remained con-
servative when accounting for the contribution of the infill 
concrete to the total shear strength. The following alterna-
tive equation is therefore proposed, in a format that keeps 
the rational value derived for the contribution of steel to the 
total strength, and empirically increases the contribution of 
the concrete infill to match experimental results.

 

fc′ = 5.2 ksi
Fy = 62 ksi

Mp/a

t = 0.233 in.
OD = 12.75 in.

Vs + VConc

Vs

VConc

a/D
(a) Bending moment effects are neglected

 

 

fc′ = 5.2 ksi
Fy = 62 ksi

t = 0.233 in.
OD = 12.75 in.

Mp/a

VsM + VConc

VsM

VConc

a/D
(b) Bending moment effects are included

Fig. 3. Normalized proposed shear strength vs. shear span to diameter ratios.
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In this equation

 Vn = Vs + Vc (14)

where

 
Vs = 2Dt

3
Fy = 1.15DtFy

 
(15)

and

 Vc = 0.0316 Ac fcβ ′ (16)

in which the value of β is calibrated to be 18 and 20 for 
circular and rectangular CFST, respectively, for reasons 
explained in a subsequent section. Incidentally, this equa-
tion for Vs is the same one used in the Eurocode (CEN, 
2005) as the upper strength limit for compact hollow cir-
cular tubes.

Note that while the proposed alternative shear strength 
equation does not explicitly consider the contribution of 
the developed compressive diagonal strut in the concrete, it 
empirically does so through the large β values used. Also 
note that the potential contribution of the reinforcing cage 
to the total shear strength is not included in the equations 
because the effect of the reinforcing cage was shown to 
have no significant impact on shear strength in experiments 
(Kenarangi and Bruneau, 2020a).

Experimental Database

For reasons mentioned earlier, there are a limited number of 
experimental tests developing the shear strength of circular 
CFST. The majority of these tests have been conducted using 

three- or four-point bending setups with simple end supports 
and under monotonic loadings (Roeder et al., 2016; Xiao et 
al., 2012; Xu et al., 2009). These test setups generate single 
curvature deflection along the member and, depending on 
the distance of the supports from each other, can produce 
flexure, flexure-shear, and shear dominant failures for long 
to short support distances, respectively. More representative 
of the loading likely to be experienced in panel zones, only 
some tests have considered specimens subjected to double-
curvature deflection rather than single curvature, and even 
fewer have considered cyclic loading conditions. Mono-
tonic double-curvature shear tests on small diameter CFST  
(4.7-in. diameter) have been performed by Ye et al. (2016) 
using a three-point bending setup and fixed support condi-
tions at both ends. Cyclic double-curvature tests have been 
performed by Nakahara and Tsumura (2014) on 6.5-in.-
diameter CFST and by Bruneau et al. (2018) on 12.75-in.-  
and 16-in.-diameter CFSTs with and without internal 
reinforcing cages, using a pantograph device to apply 
cyclic loading to specimens subjected to double-curvature 
deformations.

Summary of Experimental Results

The experimental tests considered here are listed in Table 1. 
In this table, D is the diameter of the steel tube; a is the 
clear span between the supports for single-curvature test 
setups and half of this value for the double-curvature test 
setups; P is the applied axial compressive load; and P0 is 
the summation of yield strength of the steel tube and crush-
ing capacity of the concrete, ignoring buckling (i.e., P0 =  
Ac fc′ + AsFy). Note that only two sets of results were obtained 

 

Displacement corresponding 
to maximum exp. strength 

Vs Proposed
Vconc Proposed

Fig. 4. Comparison of component shear forces of a 12.75-in.-diameter  
CFST tested by Kenarangi and Bruneau (2020a) with the proposed formula.
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from cyclic loading, which was not deemed sufficient here 
to differentiate between results obtained from cyclic and 
monotonic loading.

Database for Shear Strength

For the Roeder et al. (2016) tests, the specimens that report-
edly had a dominant flexural failure were excluded in the 
evaluation of the proposed shear formula. For the Ye et al. 
(2016) tests, the specimens with shear span-to-diameter 
ratio of less than 0.1 were also excluded. The Qian et al. 
(2007) tests on specimens with a low-shear span-to-diameter  
ratio (typically 0.1) were not considered here due to sus-
piciously high strength compared to all other researchers’ 
results (with Vexp/Vsimplified values as high as 3.48). For all 
the existing test results, any test with Mexp/Mp > 1.15 was 
considered as a flexural dominant failure and was excluded 
from evaluations. The plastic moment, Mp, is the composite 
section plastic moment calculated using the plastic stress 
distribution method (PSDM). A few cases for which 1.0 < 
Mexp/Mp < 1.15 were included when they were reported by 
the original researchers as failing in shear.

Also, it should be noted that not all the tested specimens 
may have exhibited a shear failure mode. The test result 
observations provided by Xiao et al. (2012) and Ye et al. 
(2016) for specimens having a/D values as low as 0.1 and 
0.15 suggest that some of those specimens may have had 
a mixed failure mode of shear combined with other local-
crushing phenomena.

Comparison of Experimental Results with 
Shear Strength Equations

To compare with experimental results, the ratios of the 
shear strength obtained experimentally and obtained using 
the proposed equation have been calculated for the available 

test data (Bruneau et al., 2018; Nakahara and Tsumura, 
2014; Roeder et al., 2016; Xiao et al., 2012; Xu et al., 2009; 
Ye et al., 2016). Results are presented in Tables 2 and 3 for 
tests with and without axial load, respectively.

Values of the ratio of the strengths of the existing shear 
tests, Vexp, to their corresponding shear strengths calculated 
by the proposed simplified equation, VCFST, are plotted in 
Figure 5 for specimens for which no axial load was applied. 
Note that values of the experimentally applied moments to 
the plastic moment, Mexp/Mp, included in Tables  2 and 3 
show that the values plotted here correspond to specimens 
that exhibited shear-dominant failures (i.e., not flexure-
dominant failures). Maximum calculated ratio of Mexp/Mp 
for the tests plotted in Figure 5 is 1.05. The horizontal axis 
in this figure represents the shear span-to-diameter ratio, 
a/D. The mean and standard deviation values of the results 
are included in the figure. As shown, on average, the experi-
mental values are about 11% more than the values predicted 
by the proposed simplified formula.

The experimental-to-proposed simplified shear strength 
ratios for all the available test data, also including speci-
mens for which axial load was applied, are shown in 
Figure  6. Figure  6(a) shows the ratio of experimental to 
calculated shear strengths versus the applied external axial 
load, and Figure 6(b) shows this ratio versus the shear span-
to-diameter ratio. As shown, on average, the experimental 
values are about 35% more than the values predicted by the 
proposed formula. According to Figure 6(a), the proposed 
formula gives particularly more conservative values for the 
cases with more than 0.5P/P0 applied axial load. Also, Fig-
ure 6(b) shows that the predicted values using the proposed 
formula is more conservative for a/D ratios of less than 0.2. 
Maximum calculated ratio of Mexp/Mp for all the considered 
specimens, including the axial load, is 1.12.

While the results obtained with the proposed simplified 

Table 1. Summary of the Existing Test Data on Shear Strength of Circular CFST Members

Research
Test  

Setup
Loading  

Type
Diameter Range, 

in.
a
D 

Range
0

P
P  

Range

Bruneau et al. 
(2018)

Double curvature
Cyclic  

pantograph
12, 16 0.4 0

Roeder et al. 
(2016)

Single curvature
Monotonic  

four-point bending
20 0.25–1.0 0 and 0.085

Ye et al. (2016) Double curvature
Monotonic  

three-point bending
4.7 0.15–0.75 0–0.73

Nakahara and 
Tsumura (2014)

Double curvature
Cyclic  

pantograph
6.5 0.5 0–0.4

Xiao et al. (2012) Single curvature
Monotonic  

three-point bending
6.5 0.14–1.0 0–0.62

Xu et al. (2009) Single curvature
Monotonic  

three-point bending
5.5 0.1–0.5 0
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Table continues on the next page

Table 2. Existing Experiments—Properties, Results, and Comparison with the Proposed Equation for Tests without Axial Load

Specimen
D  

(in.)
a  

(in.)
a
D

t  
(in.)

D
t

fc′′  
(ksi)

Ec  
(ksi)

Fy  
(ksi) 0

P
P

P  
(kips)

Vexp  
(kips)

VCFST  
(kips) CFSTV

expV
Mexp  
(kip-
in.)

Mp  
(kip-
in.) pM

expM

Bruneau et al. (2018)

KB1 16.0 6.5 0.41 0.232 68.8 2.9 2757 51 0 0 437 401 1.09 2841 3428 0.83

KB3 12.8 5.0 0.39 0.232 54.8 4.5 3434 58 0 0 396 342 1.16 1980 2489 0.80

KB4 12.8 5.0 0.39 0.232 54.8 4.5 3434 58 0 0 397 342 1.16 1985 2489 0.80

KB5 12.8 5.0 0.39 0.232 54.8 4.5 3434 58 0 0 414 342 1.21 2070 2489 0.83

KB6 12.8 5.0 0.39 0.232 54.8 4.5 3434 58 0 0 407 342 1.19 2035 2489 0.82

KB7 12.8 5.0 0.39 0.232 54.8 4.5 3434 58 0 0 404 342 1.18 2020 2489 0.81

Roeder et al. (2016)

R12 20 10 0.5 0.233 86 6.2 4031 54 0 0 651 714 0.91 6510 6211 1.05

R19 20 10 0.5 0.349 57 9.1 4891 57 0 0 952 964 0.99 9520 9684 0.98

R7 20 7.5 0.38 0.233 86 6.5 4111 50 0 0 705 702 1.00 5288 5826 0.91

R8 20 7.5 0.38 0.233 86 6.5 4121 54 0 0 802 723 1.11 6015 6233 0.96

R10 20 7.5 0.38 0.233 86 6.2 4014 54 0 0 665 712 0.93 4988 6207 0.80

R11 20 7.5 0.38 0.233 86 6.6 4162 57 0 0 600 743 0.81 4500 6551 0.69

R16 20 7.5 0.38 0.233 86 8.6 4750 57 0 0 765 805 0.95 5738 6691 0.86

R21 20 7.5 0.38 0.233 86 0.0 0 57 0 0 449 305 1.47 3368 5160 0.65

R14 20 5.0 0.25 0.233 86 8.6 4747 55 0 0 826 797 1.04 4130 6538 0.63

R15 20 5.0 0.25 0.233 86 8.8 4802 55 0 0 796 803 0.99 3980 6550 0.61

R20 20 5.0 0.25 0.233 86 2.8 2704 57 0 0 712 590 1.21 3560 6089 0.58

Ye et al. (2016)

Ye1 4.7 0.7 0.15 0.079 60 4.6 3481 49 0 0 54 41 1.31 38 101 0.38

Ye2 4.7 0.7 0.15 0.079 60 4.6 3481 49 0 0 54 41 1.32 39 101 0.38

Nakahara and Tsumura (2014)

N1 6.5 3.3 0.5 0.193 33.9 9.3 5336 79 0 0 150 166 0.90 491 713 0.69

Xiao et al. (2012)

X1 6.3 2.5 0.40 0.217 29 3.8 3137 55 0 0 141 116 1.21 354 485 0.73

X2 6.3 2.5 0.40 0.217 29 4.7 3509 55 0 0 152 119 1.27 382 492 0.78

X3 6.3 2.5 0.40 0.217 29 4.3 3348 55 0 0 146 118 1.24 368 489 0.75

X4 6.5 2.6 0.40 0.173 38 3.8 3137 50 0 0 116 99 1.17 301 399 0.75

X5 6.5 2.6 0.40 0.173 38 4.7 3509 50 0 0 128 102 1.24 332 406 0.82

X6 6.5 2.6 0.40 0.173 38 4.3 3348 50 0 0 118 101 1.17 307 403 0.76

X7 6.5 2.6 0.40 0.118 55 3.8 3137 59 0 0 84 86 0.98 219 329 0.66

X8 6.5 2.6 0.40 0.118 55 4.7 3509 59 0 0 93 90 1.03 242 336 0.72

X9 6.5 2.6 0.40 0.118 55 4.3 3348 59 0 0 87 89 0.98 225 333 0.68

X25 6.3 0.9 0.14 0.217 29 3.8 3137 55 0 0 112 116 0.97 97 485 0.20

X26 6.3 0.9 0.14 0.217 29 4.7 3509 55 0 0 118 119 0.99 102 492 0.21

X27 6.3 0.9 0.14 0.217 29 4.3 3348 55 0 0 124 118 1.05 107 489 0.22

X28 6.3 0.9 0.14 0.217 29 4.3 3348 55 0 0 157 118 1.33 136 489 0.28

X29 6.5 0.9 0.14 0.173 38 4.3 3348 50 0 0 146 101 1.45 132 403 0.33

X30 6.5 0.9 0.14 0.118 55 4.3 3348 59 0 0 101 89 1.14 92 333 0.28

X31 6.5 0.9 0.14 0.173 38 3.8 3137 50 0 0 118 99 1.20 107 399 0.27

X32 6.5 0.9 0.14 0.173 38 4.7 3509 50 0 0 129 102 1.26 117 406 0.29

X33 6.5 0.9 0.14 0.173 38 4.3 3348 50 0 0 126 101 1.25 115 403 0.28

X34 6.5 0.9 0.14 0.118 55 3.8 3137 59 0 0 90 86 1.04 81 329 0.25
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Table 2. Existing Experiments—Properties, Results, and Comparison with the Proposed Equation for Tests without Axial Load (continued)

Specimen
D  

(in.)
a  

(in.)
a
D

t  
(in.)

D
t

fc′′  
(ksi)

Ec  
(ksi)

Fy  
(ksi) 0

P
P

P  
(kips)

Vexp  
(kips)

VCFST  
(kips) CFSTV

expV
Mexp  
(kip-
in.)

Mp  
(kip-
in.) pM

expM

Xiao et al. (2012) (continued)

X35 6.5 0.9 0.14 0.118 55 4.7 3509 59 0 0 96 90 1.06 87 336 0.26

X36 6.5 0.9 0.14 0.118 55 4.3 3348 59 0 0 92 89 1.04 83 333 0.25

X55 6.3 3.2 0.50 0.256 25 2.9 2764 65 0 0 169 147 1.15 538 652 0.82

X57 6.5 3.3 0.50 0.161 40 2.9 2764 59 0 0 99 101 0.99 324 425 0.76

Xu et al. (2009)

Xu16 5.5 0.6 0.1 0.145 38 4.9 3576 53 0 0 93 76 1.23 51 255 0.20

Xu17 5.5 1.1 0.2 0.145 38 4.9 3576 53 0 0 83 76 1.10 91 255 0.36

Xu18 5.5 1.7 0.3 0.145 38 4.9 3576 53 0 0 80 76 1.06 132 255 0.52

Xu19 5.5 2.8 0.5 0.145 38 4.9 3576 53 0 0 68 76 0.90 188 255 0.74

Xu26 5.5 0.6 0.1 0.145 38 4.9 3576 53 0 0 88 76 1.16 188 255 0.74

Xu27 5.5 1.1 0.2 0.145 38 4.9 3576 53 0 0 79 76 1.04 48 255 0.19

Xu28 5.5 1.7 0.3 0.145 38 4.9 3576 53 0 0 75 76 0.99 87 255 0.34

Table 3. Existing Experiments—Properties, Results, and Comparison with the Proposed Equation for Tests with Axial Load

Specimen
D  

(in.)
a  

(in.)
a
D

t  
(in.)

D
t

fc′′  
(ksi)

Ec  
(ksi)

Fy  
(ksi) 0

P
P

P  
(kips)

Vexp  
(kips)

VCFST  
(kips) CFSTV

expV
Mexp  
(kip-
in.)

Mp  
(kip-
in.) pM

expM

Roeder et al. (2016)

R13 20 7.5 0.38 0.233 86 5.3 3737 54 0.09 202 710 683 1.04 5325 6134 0.87

Ye et al. (2016)

Ye3 4.7 0.7 0.15 0.079 60 4.6 3481 49 0.24 32 60 41 1.47 43 101 0.42

Ye4 4.7 0.7 0.15 0.079 60 4.6 3481 49 0.24 32 57 41 1.38 40 101 0.40

Ye5 4.7 0.7 0.15 0.079 60 4.6 3481 49 0.59 78 71 41 1.73 51 101 0.50

Ye6 4.7 0.7 0.15 0.079 60 4.6 3481 49 0.59 78 72 41 1.74 51 101 0.50

Ye7 4.7 0.7 0.15 0.079 60 4.6 3481 49 0.73 97 75 41 1.82 53 101 0.53

Ye8 4.7 0.7 0.15 0.079 60 4.6 3481 49 0.73 97 71 41 1.73 51 101 0.50

Ye11 4.7 0.7 0.15 0.079 60 4.6 3481 49 0.49 65 65 41 1.58 46 101 0.46

Ye12 4.7 0.7 0.15 0.079 60 4.6 3481 49 0.49 65 64 41 1.56 45 101 0.45

Ye13 4.7 2.4 0.5 0.079 60 4.6 3481 49 0.49 65 39 41 0.96 93 101 0.92

Ye14 4.7 2.4 0.5 0.079 60 4.6 3481 49 0.49 65 44 41 1.06 103 101 1.02

Ye17 4.7 0.7 0.15 0.079 60 8.3 4670 49 0.34 65 79 48 1.65 56 106 0.53

Ye18 4.7 0.7 0.15 0.079 60 8.3 4670 49 0.34 65 76 48 1.58 54 106 0.51

Ye19 4.7 0.7 0.15 0.118 40 4.6 3481 60 0.37 65 88 58 1.51 62 173 0.36

Ye20 4.7 0.7 0.15 0.118 40 4.6 3481 60 0.37 65 88 58 1.51 62 173 0.36

Nakahara and Tsumura (2014)

N2 6.3 3.1 0.5 0.089 70 9.6 5655 73 0.1 41 109 99 1.10 343 316 1.08

N3 6.5 3.3 0.5 0.193 33 9.3 5336 79 0.3 174 162 166 0.98 530 713 0.74

N4 6.3 3.1 0.5 0.089 70 9.6 5655 73 0.3 123 96 99 0.97 303 316 0.96

N5 6.5 3.3 0.5 0.197 33 7.0 4887 79 0.1 51 153 160 0.96 501 700 0.72

N6 6.5 3.3 0.5 0.197 33 7.0 4887 79 0.2 102 156 160 0.98 508 700 0.73

N7 6.5 3.3 0.5 0.197 33 7.0 4887 79 0.4 205 148 160 0.93 484 700 0.69

N8 6.3 3.1 0.5 0.089 70 9.6 5655 73 0.15 61 102 99 1.03 321 316 1.02

N9 6.3 3.1 0.5 0.089 70 9.6 5655 73 0.2 82 112 99 1.13 354 316 1.12

Table continues on the next page
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Table 3. Existing Experiments—Properties, Results, and Comparison with the Proposed Equation for Tests with Axial Load (continued)

Specimen
D  

(in.)
a  

(in.)
a
D

t  
(in.)

D
t

fc′′  
(ksi)

Ec  
(ksi)

Fy  
(ksi) 0

P
P

P  
(kips)

Vexp  
(kips)

VCFST  
(kips) CFSTV

expV
Mexp  
(kip-
in.)

Mp  
(kip-
in.) pM

expM

Xiao et al. (2012)

X10 6.3 2.5 0.40 0.217 29 3.8 3137 55 0.32 105 164 116 1.41 412 485 0.85

X11 6.3 2.5 0.40 0.217 29 4.7 3509 55 0.31 109 169 119 1.41 425 492 0.86

X12 6.3 2.5 0.40 0.217 29 4.3 3348 55 0.31 106 175 118 1.49 442 489 0.90

X13 6.5 2.6 0.40 0.173 38 3.8 3137 50 0.31 89 142 99 1.44 368 399 0.92

X14 6.5 2.6 0.40 0.173 38 4.7 3509 50 0.30 94 147 102 1.43 381 406 0.94

X15 6.5 2.6 0.40 0.173 38 4.3 3348 50 0.30 90 152 101 1.51 394 403 0.98

X16 6.5 2.6 0.40 0.118 55 3.8 3137 59 0.30 77 108 86 1.25 280 329 0.85

X17 6.5 2.6 0.40 0.118 55 4.7 3509 59 0.28 80 109 90 1.21 283 336 0.84

X18 6.5 2.6 0.40 0.118 55 4.3 3348 59 0.28 77 111 89 1.26 289 333 0.87

X19 6.3 2.5 0.40 0.217 29 3.8 3137 55 0.64 210 158 116 1.36 398 485 0.82

X20 6.3 2.5 0.40 0.217 29 4.7 3509 55 0.62 219 182 119 1.52 459 492 0.93

X21 6.5 2.6 0.40 0.173 38 3.8 3137 50 0.62 179 146 99 1.48 380 399 0.95

X22 6.5 2.6 0.40 0.173 38 4.7 3509 50 0.60 188 157 102 1.54 409 406 1.01

X23 6.5 2.6 0.40 0.118 55 3.8 3137 59 0.60 154 123 86 1.42 318 329 0.97

X24 6.5 2.6 0.40 0.118 55 4.7 3509 59 0.56 160 130 90 1.44 339 336 1.01

X37 6.3 0.9 0.14 0.217 29 3.8 3137 55 0.32 105 202 116 1.75 175 485 0.36

X38 6.3 0.9 0.14 0.217 29 4.7 3509 55 0.31 109 225 119 1.88 195 492 0.40

X39 6.3 0.9 0.14 0.217 29 4.3 3348 55 0.31 106 214 118 1.81 185 489 0.38

X40 6.5 0.9 0.14 0.173 38 3.8 3137 50 0.31 89 185 99 1.88 168 399 0.42

X41 6.5 0.9 0.14 0.173 38 4.7 3509 50 0.30 94 202 102 1.97 183 406 0.45

X42 6.5 0.9 0.14 0.173 38 4.3 3348 50 0.30 90 191 101 1.90 173 403 0.43

X43 6.5 0.9 0.14 0.118 55 3.8 3137 59 0.30 77 152 86 1.76 137 329 0.42

X44 6.5 0.9 0.14 0.118 55 4.7 3509 59 0.28 80 169 90 1.87 153 336 0.45

X45 6.5 0.9 0.14 0.118 55 4.3 3348 59 0.28 77 157 89 1.78 143 333 0.43

X46 6.3 0.9 0.14 0.217 29 3.8 3137 55 0.64 210 211 116 1.82 183 485 0.38

X47 6.3 0.9 0.14 0.217 29 4.7 3509 55 0.62 219 236 119 1.98 204 492 0.42

X48 6.3 0.9 0.14 0.217 29 4.3 3348 55 0.62 211 270 118 2.29 234 489 0.48

X49 6.5 0.9 0.14 0.173 38 3.8 3137 50 0.62 179 230 99 2.34 209 399 0.52

X50 6.5 0.9 0.14 0.173 38 4.7 3509 50 0.60 188 236 102 2.30 214 406 0.53

X51 6.5 0.9 0.14 0.173 38 4.3 3348 50 0.60 180 202 101 2.01 183 403 0.45

X52 6.5 0.9 0.14 0.118 55 3.8 3137 59 0.60 154 172 86 1.99 156 329 0.47

X53 6.5 0.9 0.14 0.118 55 4.7 3509 59 0.56 160 185 90 2.05 168 336 0.50

X54 6.5 0.9 0.14 0.118 55 4.3 3348 59 0.57 155 193 89 2.18 175 333 0.53

equation are safe even when including the results from Xiao 
et al. (2012) and Ye et al. (2016) with a/D ratios less than 
or equal to 0.15 (as shown in Figure 6), by excluding the 
test results of a/D ≤ 0.15, the mean value of experimental-
to-proposed shear strengths would improve to 1.15 with a 
lower standard deviation of 0.19.

The shear strengths from the steel tube and concrete 

infill of a circular CFST calculated by the proposed simpli-
fied equation for different shear span ratios are shown in 
Figure 7. Results from monotonic finite element analyses 
are also shown in this figure for comparison. This figure 
shows how the simplified equation compares to the finite 
element analyses results for different shear span to depth 
ratios.
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Fig. 5. Ratio of strength from existing test results with no axial load to  
proposed simplified shear strength formula as a function of shear span, a/D.

RECTANGULAR CONCRETE-FILLED 
STEEL TUBES

This section presents for rolled and built-up rectangular 
(and square) CFST: the experimental database, proposed 
simplified shear strength equation, and comparison of cal-
culated to experimental shear strengths.

Experimental Database

Compared to circular CFST, fewer shear tests on rectan-
gular CFST are found in the literature. The shear tests 
available in the literature can be categorized based on the 
type of loading and test setup used. For example, tests have 
been conducted using (1)  a pantograph type test setup, 
(2)  a three- or four-point beam bending type test setup, 
and (3) a beam-to-column subassembly type test setup for 
panel-zone shear. The experimental database, described in 
the following subsections, includes tests with shear span-
to-depth (a/D) ratios ranging from 0.075 to 1.5; axial load 
ratios (P/P0) ratios ranging from 0.0 to 0.65; plate slender-
ness ratios (D/t) ranging from 21 to 67; concrete compres-
sive strength, fc′, ranging from 2.4 to 17 ksi; and steel yield 
stress, Fy, ranging from 42 to 117 ksi. In the following dis-
cussion and database, a is the shear span defined by the 
loading during the test; D is the total depth of the speci-
men in the direction of shear loading; P is the applied com-
pressive axial force; P0 is the section axial capacity of the 
rectangular CFST calculated as the sum of the steel yield 
strength, AsFy, and the concrete compressive strength, Ac fc′; 
b is the width of the CFST member; t is the thickness of 
the steel tube; fc′ is the uniaxial compressive strength of 

concrete; Fy is the yield strength of steel; As is the cross-
sectional area of steel tube; and Ac is the cross-sectional 
area of the concrete infill. Tests with an a/D ratio greater 
than 1.5 exhibit flexure-dominant behavior and, therefore, 
have been excluded in this study.

Tomii and Sakino (1979) were one of the earliest 
researchers to investigate the fundamental flexure and 
shear behavior of rectangular CFST members. Forty small-
scale specimens were tested and categorized into five series 
of tests, depending on the parameter values. Sakino and 
Ishibashi (1985) continued the work and conducted tests on 
21 small-scale specimens that could be categorized into six 
series based on the parameters. Both research studies were 
conducted using the same pantograph type test setup that 
subjected the specimens to double-curvature bending under 
constant axial load and monotonic or cyclic shearing force.

Koester (2000) conducted experimental investigations 
to evaluate the fundamental shear behavior of rectangular 
CFST members and the panel-zone behavior of rectangular 
CFST-to-steel beam connections. The connection panel-
zone region was idealized as shown in Figure 8, and a sche-
matic view of the test setup is shown in Figure 9. This paper 
only includes the specimens exhibiting shear failure and 
having regular steel tube geometry (no cutouts, etc.).

Koester (2000) also conducted six full-scale tests on 
subassemblies consisting of square CFST column-to-steel 
beam moment connections, where the moment connections 
were split-tee. through-bolted moment connections. The 
tests were conducted by subjecting the subassembly speci-
mens to cyclic lateral loading using the schematic shown in 
Figure 10. Ricles et al. (2004) supplemented the research 
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Fig. 6. Ratio of strength from existing test results to proposed simplified shear strength formula.
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Fig. 7. Normalized proposed simplified shear strength vs. shear span-to-diameter ratios.

Fig. 8. Panel-zone region in connections and  
idealization for testing (adapted from Koester, 2000).

Fig. 9. Schematic view of test setup for idealized  
small-scale specimens (adapted from Koester, 2000).

conducted by Koester (2000) and evaluated the seismic 
behavior of two interior joint type subassemblies consist-
ing of square CFST columns—steel beam moment connec-
tions with weak panel zones. The panel zones had interior 
steel plate diaphragms that were complete joint penetration 
welded on only three or four sides.

Nishiyama et al. (2004) studied the effect of high-
strength concrete and steel material on the shear strength of 
the panel zone of CFST column-to-steel beam joint subas-
semblies. Five specimens consisting of subassemblies made 
from square CFST columns and steel beams were tested. 
Both interior and exterior joint types with through and outer 
diaphragms were studied. The specimens were designed to 
fail under panel-zone shear by reducing the thickness of the 

CSFT steel tube in the panel zone. The axial load on col-
umns was held constant as a reversed cyclic lateral load was 
applied at the beam ends, as shown in Figure 11. Fukumoto 
and Morita (2005) continued the work and presented three 
more tests on interior joint type steel beam-square CFST 
column subassemblies with interior diaphragms.

Wu et al. (2005) studied the seismic behavior of square 
CFST column-to-steel beam joints by testing three interior 
joint type subassemblies using a setup similar to Figure 11. 
Shawkat et al. (2008) tested four rectangular CFST under 
three-point bending in a displacement-controlled mode. Ye 
et al. (2016) tested 18 small-scale specimens under various 
combinations of axial compression and shear. The speci-
mens were fixed at the ends, subjected to constant axial 
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Fig. 10. Schematic view of test setup with cyclic lateral loading 
applied at column top (adapted from Koester, 2000).

Fig. 11. Schematic view of test setup with cyclic loading applied 
at beam ends (adapted from Nishiyama et al., 2004).

Fig. 12. Schematic view of the test setup (adapted from Ye et al., 2016).

loading, and tested under monotonic three-point bending 
to produce double curvature using the test setup with sche-
matic shown in Figure 12.

Summary of Results

The compiled experimental database is summarized in 
Table 4 along with the relevant parameters, including test 
setup; loading type; cross-section dimensions; shear span-
to-depth ratio, a/D; and axial load ratio, P/P0. The general 
conclusions and results from the research database are as 
follows:

1. Rectangular CFST are typically flexure critical and 
very difficult to fail in shear due to their high shear 
strength, which includes contributions from the webs 
of the steel tube and the concrete infill (Tomii and 
Sakino, 1979; Koester, 2000).

2. Changing the failure mode from flexure critical 
to shear critical depends primarily on the shear 
span-to-depth ratio, a/D. The a/D ratio has to be 
made extremely small (<1.0) to force shear failure. 
Specimens with 1.0  < a/D  < 3.0 generally fail in 
combined shear and flexure, and specimens with 
a/D  > 3.0 generally fail in flexure (Sakino and 
Ishibashi, 1985).
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3. Applying axial compression (P/P0) further increases 
the shear strength of specimens (Ye et al., 2016). This 
increase is due to the reduction in concrete cracking 
and increase in concrete contribution to the shear 
strength.

4. Increasing the steel yield strength or increasing the 
steel plate thickness of specimens generally increases 
their shear strength due to the increase in the steel 
contribution to the shear strength (Nishiyama et al., 
2004, Fukumoto and Morita, 2005).

5. Specimens failing in shear, particularly panel-zone 
shear specimens, exhibit reasonable ductility and 
deformation capability (Wu et al., 2005, Nishiyama 
et al., 2004).

6. The load bearing width does not affect the shear 
strength or the load-displacement behavior of 
subassembly panel-zone specimens (Koester, 2000).

7. The effects of reducing the D/t ratio were inconclusive. 
For small-scale specimens, with all other parameters 
held constant, lower D/t ratios resulted in increased 
concrete contribution to the shear strength, owing to 
better confinement. However, this beneficial effect 
was not observed in full-scale specimen tests with 
lower D/t ratios (Koester .2000).

Database for Shear Strength

The compiled experimental database was reviewed care-
fully to identify and include specimens that failed in shear 
and were shear critical. The following provides additional 
discussion and rationale for including or excluding specific 
specimens in the final database for shear strength of rect-
angular CFST.

• Tomii and Sakino (1979) and Sakino and Ishibashi 
(1985) reported that their specimens did not have clear 
shear failures. The specimens developed diagonal shear 
cracks in the concrete, but both the flanges yielded 
(due to flexure) at the ultimate state. These specimens 
were eventually considered flexure critical (with high 
shear demands), but not shear critical. They were not 
included in the final database of tests considered for 
evaluating the shear strength of rectangular CFST.

• Koester (2000) included some specimens that were 
tested for examining mechanics-based models for 
shear strength. These specimens had cutouts in the 
steel webs or different filling material than concrete. 
These exploratory specimens were not included in the 
final database.

• For the subassembly specimens tested by Koester 
(2000), Ricles et al. (2004), Nishiyama et al. (2004), 
Fukumoto and Morita (2005), and Wu et al. (2005), 

Table 4. Summary of the Existing Test Data on Shear Strength of RCFST Members

Research
Test  

Setup
Loading  

Type
Section,  
in. ×× in.

a//D  
Range

P//P0  
Range

Tomii and Sakino 
(1979)

Pantograph
Double-curvature 

bending 
3.9 × 3.9 0.83–1 0–0.5

Sakino and 
Ishibashi (1985)

Pantograph
Double-curvature 

bending 
3.9 × 3.9 1–1.5 0–0.5

Koester (2000) Four-point bending Cyclic bending
8 × 8, 12 × 12,  

16 × 16
0.75 0

Ricles et al. (2004)
Beam-to-column 

Subassembly
Cyclic lateral 

loading
16 × 16 0.75 0.12

Nishiyama et al. 
(2004)

Beam-to-column 
Subassembly

Cyclic lateral 
loading

9.8 × 9.8,  
6.4 × 6.4

0.5 0.2–0.65

Fukumoto and 
Morita (2005)

Beam-to-column 
Subassembly

Monotonic lateral 
loading

7.9 × 7.9 0.75 0

Wu et al. (2005)
Beam-to-column 

Subassembly
Cyclic lateral 

loading
15.7 × 15.7 0.6 0.16–0.19

Shawkat et al. 
(2008)

Three-point bending Monotonic bending 4.0 × 5.9 1.0 0

Ye et al. (2016) Three-point bending Monotonic bending 4.7 × 4.7 0.075–0.75 0–0.65
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Comparison of Experimental Results with 
Shear Strength Equations

Because the simplified shear strength equation does not 
account for the effects of axial force, the final experimen-
tal database was parsed into specimens subjected to low 
levels of axial force (P/P0 < 0.25), shown in Table 5, and 
higher levels of axial force (P/P0 > 0.25), shown in Table 6. 
These tables include the reference source of the specimens 
and various material and geometric parameters, including 
the shear span-to-depth ratio, a/D, tube slenderness, D/t, 
and ratio and axial load, P/P0. The tables also include the 
experimental values of shear strength, Vexp, and the corre-
sponding flexural moment strength, Mexp, in the specimens. 
The shear strength, Vn, calculated using Equations 17 to 20, 
and the plastic moment capacity, Mp, calculated accord-
ing to AISC Specification Section I1.2a (2016b), using the 
plastic stress distribution method while accounting for the 
effects of axial force, P, are included in the tables. The com-
parisons of the experimental values of shear strength and 
corresponding flexural moment with the calculated capaci-
ties—that is, Vexp/Vn and Mexp/Mp—are also included in 
the tables, and lead to the following statistics. The com-
parisons of Vexp/Vn in Table  5 have a mean value of μ  = 
1.19, a standard deviation of σ  = 0.15, and a coefficient 
of variation (CoV) of 0.13. The comparisons of Vexp/Vn in 
Table 6 have μ = 1.61, σ = 0.11, and a CoV of 0.07. When 
considered all together, irrespective of the axial load level, 
the comparisons of Vexp/Vn have a μ = 1.3, σ = 0.24, and a 
CoV of 0.18. Thus, the proposed simplified shear strength 
equation is reasonably accurate for specimens with axial 
load level P/P0 less than 25%. As expected, the proposed 
equation is more conservative for specimens with an axial 
load level P/P0 greater than 25%. For specimens with P/P0 

< 0.25, Figure  13(a) shows the variation of Vexp/Vn with 
respect to the a/D ratio, and Figure 13(b) shows the varia-
tion of Vexp/Vn with respect to the D/t ratio. For the range of 
parameters considered, there is no correlation with respect 
to the a/D ratio or the D/t ratio for these specimens. For 
the complete database from Tables 5 and 6, including all 
ratios P/P0, Figure 14(a) shows the variation of Vexp/Vn with 
respect to the a/D ratio, and Figure 14(b) shows the varia-
tion of Vexp/Vn with respect to the axial load level P/P0. As 
seen in these figures, even for the complete database, there 
is no correlation with respect to the a/D ratio of the speci-
mens, but increasing the axial load level P/P0 increases the 
Vexp/Vn ratio and the conservatism of the simplified shear 
strength equation.

RELIABILITY ANALYSIS

Reliability analyses were conducted to establish an appro-
priate β factor that should be used in the empirically mag-
nified concrete strength equation to make it possible to use 

the specimens that failed due to weld fracture in the 
connection, or due to the formation of plastic hinges 
in the steel beams before shear failure in the panel 
zones, were not included in the final database. All the 
specimens that failed in panel-zone shear yielding and 
failure were included in the final database.

• The specimens tested by Shawkat et al. (2008) could 
not be included because they were found to be flexure 
critical. Some of the specimens tested by Ye et al. (2016) 
could not be included because they had premature weld 
fracture failure before reaching shear strength.

Simplified Shear Strength Equation for 
Rectangular CFST

A simplified Equation 17 is proposed to calculate the nomi-
nal shear strength, Vn, of rectangular CFST, while account-
ing for contributions of the steel and concrete. The steel 
contribution, Vs, is calculated using Equation  18 as the 
shear strength of the webs of the rectangular cross sec-
tion, 0.6AwFy. In this equation, Aw is the area of the webs 
calculated as the total depth, D, minus 2 times half the 
flange thickness, tf, multiplied by their thickness, tw. The 
concrete contribution, Vc, is calculated using Equation 19 
as 0.0316 Ac fcβ ′, where fc′ is in ksi and Ac is the area of 
the concrete infill calculated as the product of the inter-
nal dimensions of the cross section, Ac = bd. The factor β 
accounts for the effects of the diagonal compression strut 
that forms between the load points as shown in Figure  8 
when the shear span-to-depth ratio is small. β is calculated 
using Equation 20a and the shear span-to-depth ratio, a/D. 
When a/D ≤ 0.75, β is equal to 20. When a/D > 0.75, β is 
equal to 2, which is the typical value for concrete contribu-
tion in members.

 Vn = Vs + Vc (17)

where
Vc = 0.0316 Ac fcβ ′ (18)

Vs = 0.6AwFy (19)
=β 20 for a D 0.75≤  (20a)
=β 2 for a D 0.75>  (20b)

It is important to note that this simplified shear strength 
equation does not explicitly account for the effect of axial 
force, P/P0. It considers the fact that axial compression 
increases shear strength, and therefore the shear strength 
calculated for P/P0 equal to zero (using Equations 17 to 20) 
will be conservative for situations with higher axial com-
pression. The proposed method accounts for the effects of 
concrete strut formation through an empirical factor β. It 
does not account directly or explicitly for the mechanics of 
compression strut formation in the concrete.
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Table 5. Existing Experiments—Properties, Results, and  
Comparison with the Proposed Equation for Tests with P//P0 << 25%

Specimen
b  

(in.)
D  

(in.)
a  

(in.)
a
D

t  
(in.)

D
t

fc′′  
(ksi)

Fy  
(ksi)

P
P0

P  
(kips)

Vexp  
(kips)

Vn  
(kips) Vn

Vexp
Mexp  
(kip-
ft.)

Mp  
(kip-
ft.) Mp

Mexp

Koester (2000)

8.4A 8 8 6 0.75 0.25 32 6.2 54.1 0 0 233 214 1.09 116 115 1.01

8.6A 8 8 6 0.75 0.25 32 6.2 54.1 0 0 241 214 1.12 120 115 1.05

8.8A 8 8 6 0.75 0.25 32 6.2 54.1 0 0 237 214 1.11 118 115 1.03

8.4B 8 8 6 0.75 0.375 21 6.0 52.6 0 0 313 262 1.20 156 157 1.00

8.6B 8 8 6 0.75 0.375 21 6.1 52.6 0 0 313 263 1.19 156 157 1.00

8.8B 8 8 6 0.75 0.375 21 5.9 52.6 0 0 316 261 1.21 158 157 1.01

8.B-C 8 8 6 0.75 0.25 32 5.9 61.5 0 0 232 229 1.01 116 129 0.90

8.P-C 8 8 6 0.75 0.25 32 3.9 61.5 0 0 203 213 0.95 101 126 0.81

8.P2-C 8 8 6 0.75 0.25 32 5.9 61.5 0 0 227 229 0.99 113 126 0.90

CFT.2 12 12 9 0.75 0.45 27 7.2 53.1 0 0 571 540 1.06 428 450 0.95

CFT.3 12 12 9 0.75 0.45 27 7.3 53.1 0 0 598 542 1.10 448 450 1.00

CFT.4 12 12 9 0.75 0.45 27 7.4 53.1 0 0 610 543 1.12 457 450 1.02

Nishiyama et al. (2004)

R1 9.8 9.8 4.9 0.5 0.18 54 16.0 71.3 0.20 383 566 371.3 1.52 228 255 0.90

R2 9.8 9.8 4.9 0.5 0.18 55 7.9 71.3 0.20 240 438 308.9 1.42 177 208 0.85

R3 9.9 9.9 4.9 0.5 0.19 53 14.9 109.6 0.20 425 632 458.1 1.38 255 350 0.73

R4 9.3 9.3 4.9 0.5 0.18 52 14.9 64.1 0.20 328 476 323.6 1.47 192 209 0.92

Fukumoto and Morita (2005)

SP1 7.9 7.9 5.9 0.75 0.24 33 9.3 74.1 0 0 337 252.7 1.34 179 184 0.97

SP2 7.9 7.9 5.9 0.75 0.35 22 9.3 74.8 0 0 428 316.1 1.35 227 243 0.94

SP3 7.9 7.9 5.9 0.75 0.31 25 17.0 117.2 0 0 554 437.5 1.27 294 373 0.79

Wu et al. (2005)

FSB-6 15.7 15.7 9.8 0.6 0.24 67 3.7 62.5 0.19 336 602 557.3 1.08 549 562 0.98

FSB-8 15.7 15.7 9.8 0.6 0.31 50 4.2 55.4 0.16 336 659 620.9 1.06 602 636 0.95

FSB-10 15.7 15.7 9.8 0.6 0.39 40 3.9 51.7 0.16 336 669 656.1 1.02 610 707 0.86

Ye et al. (2016)

S1-1a 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0 0 55 49.9 1.10 4.6 12 0.38

S1-1b 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0 0 57 49.9 1.14 4.8 12 0.40

S1-2a 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0.22 36 65 49.9 1.31 5.5 14 0.39

S1-2b 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0.22 36 61 49.9 1.23 5.1 14 0.37
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where
VF = the coefficient of variation due to fabrication effects

VM = the coefficient of variation due to material effects

VP =  the coefficient of variation reflecting uncertainties 
in the design

Circular Concrete-Filled Steel Tubes

For circular CFST, P is the mean ratio of the shear strengths 
Vexp/Vn, equal to 1.11 as reported in Figure 5 when using an 
empirical magnification factor of 18, and with correspond-
ing standard deviation of 0.14 and coefficient of variation, 
Vp, of 0.13. M was assumed to be 1.1 and 1.3 in two contem-
plated scenarios to bracket the possible expected strength 
by using Ry values typically reported for steel and concrete 
individually in the AISC Seismic Provisions (2016a). F was 
conservatively taken as 1.0, as recommended by Elling-
wood et al. (1980). VF was taken as 0.05 based on Ravindra 
and Galambos (1978). For the case where values for steel 
were used, VM was taken as 0.07 based on the material 
property study conducted by Liu (2003). For the case where 
values for concrete were used, VM was taken as 0.18 based 
on MacGregor (1976).

The resulting VR values obtained considering steel and 
concrete variability as two independent cases are 0.16 and 
0.23, respectively. These resulted in strength reduction fac-
tors, ϕ, of 0.88 and 0.90, respectively. These are approxi-
mately equal to the strength reduction factor of 0.90 used 
throughout most of the 2016 AISC Specification. Note that 
the same calibration exercise using an empirical magnifi-
cation factor of 20 resulted in a strength reduction factor 
closer to 0.85 and thus, deemed too low to justify using in 
light of the desirable target of 0.90.

the common-strength reduction factor, ϕ, of 0.9 typically 
used in the 2016 AISC Specification. Reliability analysis is 
usually conducted to calculate ϕ for values obtained using 
a proposed strength equation, but calibrating the strength 
instead is acceptable here given the empirical nature of the 
magnification for the concrete strength contribution to the 
total strength. These reliability analyses were conducted 
using ASCE/SEI 7, Equation C2.3 2 (2016), namely:

 
= μR

Rn
e R Vα− R = PMFeϕ ⎛

⎝
⎞
⎠

β R Vα− Rβ

 
(21)

where β is the reliability index in this case (and not the 
empirical magnification factor expressed by the same 
Greek letter). As experiments have shown the shear failure 
mode of CFST to be ductile, a reliability index of 3.0 was 
selected. As recommended by ASCE/SEI 7 (2016), the lin-
earization approximation constant, α, was set equal to 0.70 
to separate the resistance and demand uncertainties.

In Equation 21, 
μR

Rn

⎛
⎝

⎞
⎠
 is the mean ratio of the experimental-

to-nominal strength calculated using the associated design 
equation, equal to the product PMF, where P is the bias 
(mean ratio) of experimental strength to the strength cal-
culated using measured material properties (i.e., steel 
coupon and concrete cylinder strengths), M is the bias in 
the material properties calculated as the mean ratio of the 
measured-to-nominal material strength, and F is the bias 
due to fabrication issues calculated as the mean ratio of the 
measured-to-nominal cross-sectional properties.

In Equation 21, Vr is calculated as:

 VR = VP
2 + VM

2 + VF
2

 (22)

Table 6. Existing Experiments—Properties, Results, and  
Comparison with the Proposed Equation for Tests with P//P0 >> 25%

Specimen
b 

(in.)
D 

(in.)
a 

(in.)
a
D

t 
(in.)

D
t

fc′′ 
(ksi)

Fy 
(ksi)

P
P0

P 
(kips)

Vexp 
(kips)

Vn 
(kips) Vn

Vexp
Mexp 
(kip-
ft.)

Mp 
(kip-
ft.) Mp

Mexp

Ye et al. (2016)

S1-3a 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0.52 87 82 50 1.64 6.8 10.8 0.63

S1-3b 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0.52 87 77 50 1.54 6.4 10.8 0.59

S1-4a 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0.65 109 85 50 1.71 7.1 7.1 1.01

S1-4b 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0.65 109 85 50 1.71 7.1 7.1 1.00

S2-2a 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0.43 73 71 50 1.42 5.9 12.4 0.48

S2-2b 4.7 4.7 0.7 0.15 0.08 60 4.6 49.1 0.43 73 73 50 1.45 6.1 12.4 0.49

S3-1a 4.7 4.7 0.7 0.15 0.08 60 8.3 49.1 0.3 73 100 60 1.68 8.4 17.3 0.48

S3-1b 4.7 4.7 0.7 0.15 0.08 60 8.3 49.1 0.3 73 103 60 1.72 8.6 17.3 0.50

S4-1a 4.7 4.7 0.7 0.15 0.12 40 4.6 60.3 0.32 73 111 67 1.66 9.3 21 0.44
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 (a) Shear span-to-depth a/D ratio (b) Tube slenderness D/ t ratio

Fig. 13. Variation of Vexp/Vn for specimens with P/P0 < 25% from Table 5.

  
 (a) Shear span-to-depth a/D ratio (b) Axial P/P0 levels

Fig. 14. Variation of Vexp/Vn for all specimens included in Tables 5 and 6.
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Fig. 15. Recommended transition for β in proposed equations for shear strength of circular CFST.

Rectangular Concrete-Filled Steel Tubes

For rectangular CFST, the reliability analysis was limited 
to the specimens listed in Table  5 with a low axial load 
level (P/P0 < 0.25). As mentioned earlier, the mean value, 
μ, of Vexp/Vn is 1.19; the standard deviation, σ, is 0.15; and 
the coefficient of variation, VP, is 0.13. Similar to circular 
CFST, M  = 1.3, VM  = 0.18, F  = 1.0, and VF  = 0.05 were 
considered. The resulting value of ϕ calculated using Equa-
tion 21 was equal to 0.96. If the values of M and VM are 
changed to 1.1 and 0.07 to be conservative, then the result-
ing value of ϕ calculated using Equation 21 is equal to 0.94.

PROPOSED INTEGRATED DESIGN EQUATION

On the basis of the results obtained, it is possible to for-
mulate the following integrated requirements for the shear 
strength of both circular and rectangular CFST, in a format 
that can directly be introduced into design specifications:

The design shear strength, ϕvVn, is determined using 
ϕv = 0.90 and Equation 24 to calculate the nominal shear 
strength, Vn, as follows:

 Vn = 0.6AvFy + 0.03 Ac fcβ ′ (23)

where
Ac =  area of concrete in the filled composite member, in.2

As =  cross-sectional area of steel section, in.2

Av =  shear area of steel, in.2; the shear area for a circular 

   section is equal to 
2As

π
 and, for a rectangular section,

   is equal to the sum of the area of webs in the direc-
tion of in-plane shear

fc′ =  concrete strength, ksi

β =  2 for members with Mu/Vud ≥ 0.7, where Mu and 
Vu are equal to the maximum moment and shear 
demands, respectively, along the member length, 
and d is equal to the member depth in the direction 
of bending

β =  20 for members with rectangular cross sections and 
Mu/Vud ≤ 0.5

β =  18 for members with circular cross sections and 
Mu/Vud ≤ 0.5

Linear interpolation between the limiting β values should 
be used for members with Mu/Vud between 0.5 and 0.7.

The proposed variation in the value of β reflects the fact 
that there is a lack of data on the shear strength of circular 
members for span ratios greater than 0.5. A transition from 
the β values of 18 and 20 down to the value of 2 is expected, 
but the exact point at which this happens is unknown, other 
than the fact that it should occur at a shear span greater 
than 0.5. Although the experimental data for rectangular 
members presented in this paper suggests a β value of 20 
is acceptable for shear span-to-depth ratios up to 0.75, at 
this time, a relatively rapid transition to a value of 2 at a 
shear span of 0.7 is proposed, as illustrated in Figure 15, 
in superposition to “back-calculated” values corresponding 
to each of the experimental data considered. More abrupt 
transitions can be problematic when implemented in design 
software. A smoother transition is possible and will be con-
sidered when more data become available.
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than 0.5, to possibly extend the range of high shear strength 
to a broader range of applications. Furthermore, given that 
only a limited number of specimens in past experiments 
were subjected to a cyclic loading regime, it would be desir-
able in future research to conduct more inelastic cyclic tests 
over a more extensive range of parameters to further assess 
the limits of applicability of the proposed model.

ACKNOWLEDGMENTS

The contributions of the members of the AISC Committee 
on Specifications Task Committee 5: Composite Members, 
through discussion and guidance of various ballot propos-
als, is acknowledged.

REFERENCES

ACI (2011), Building Code Requirements for Structural 
Concrete, ACI 318-11 and commentary, American Con-
crete Institute, Farmington Hills, Mich.

ACI (2014), Building Code Requirements for Structural 
Concrete, ACI 318-14 and commentary, American Con-
crete Institute, Farmington Hills, Mich.

AISC (2016a), Seismic Provisions for Structural Steel Build-
ings, ANSI/AISC 341-16, American Institute of Steel 
Construction, Chicago, Ill.

AISC (2016b), Specification for Structural Steel Buildings, 
ANSI/AISC 360-16, American Institute of Steel Con-
struction, Chicago, Ill.

AIJ (1987), “AIJ Standard for Structural Calculation of Steel 
Reinforced Concrete Structures,” AIJ 5-26-20, Shiba, 
Minato, Tokyo, Japan.

ASCE (2016), Minimum Design Loads and Associated Cri-
teria for Buildings and Other Structures, ASCE/SEI 7-16, 
American Society of Civil Engineers, Reston, Va.

Bruneau, M., Kenarangi, H., and Murphy, T.P. (2018), 
NCHRP Research Report 872 Contribution of Steel Cas-
ing to Single Shaft Foundation Structural Resistance, 
Transportation Research Board, Washington, D.C.

Bruneau, M. and Marson, J. (2004), “Seismic Design of 
Concrete-Filled Circular Steel Bridge Piers,” Journal of 
Bridge Engineering, Vol. 9, No. 1, pp. 24–34.

Ellingwood, B. (1980), Development of a Probability Based 
Load Criterion for American National Standard A58: 
Building Code Requirements for Minimum Design Loads 
in Buildings and Other Structures, U.S. Department of 
Commerce, National Bureau of Standards.

CEN (2005), Eurocode 3: Design of Steel Structures, Euro-
pean Committee for Standardization, Brussels, Belgium.

CONCLUSION

Simplified equations for the shear strength of composite 
concrete-filled tubes were proposed and calibrated. The 
format of the proposed equation is consistent for rectan-
gular and circular cross sections, only differing in values 
used for the shear area and for the β factor resulting from 
calibration of the ϕ factors. Finite element analysis was per-
formed to compare the expected strength of such composite 
members with that calculated by the simplified equation. 
The proposed equation is shown to accurately represent 
the contribution of the steel tube to the total strength and 
empirically approximates the contribution of the concrete 
in composite CFST. Consistent with the philosophy adopted 
throughout the AISC Specification (2016b) and the AISC 
Seismic Provisions (2016a) for various structural members, 
the contribution of the steel tube is established based on the 
derived equation for plastic cross-section strength, and this 
contribution to the total strength of the composite section 
was confirmed to be accurate by finite element analysis. 
The contribution of the concrete fill was derived to achieve 
simple modifications to existing equations, recognizing 
that a diagonal concrete compression strut provides a sig-
nificant contribution to that shear strength, but without 
encumbering the design equations with the complex math-
ematical expressions that would be required to represent 
that phenomenon with physical models. The proposed shear 
strength formula is valid up to a specified shear span-to-
diameter ratio.

The effectiveness of the proposed equation was com-
pared with shear test data from the existing literature and 
was found to be safe. When used with a resistance factor 
of 0.90, the average ratio of experimental values to calcu-
lated values was 1.23 for circular concrete-filled members 
(1.5 including the experiments with axial loads), with a stan-
dard deviation of 0.16 (0.4 including cases with axial load). 
For rectangular members, the average ratio of experimen-
tal values to calculated values was 1.19 for the specimens 
with axial load level less than 25% (1.61 for the experiments 
with axial load level greater than 25%) with standard devia-
tions of 0.15 (0.11 for the experiments with axial load level 
greater than 25%).

Compared to current provisions, the proposed equations 
utilize the plastic strength of the steel tube and do not cap 
the strength to the steel tube buckling limit. Also, the pro-
posed equations also reflect that the total strength of the 
composite section is obtained by summation of steel and 
concrete strengths and recognize that the concrete strength 
can be significantly increased by the development of a 
diagonal compression strut in the concrete, which has been 
neglected in the current equations.

Future experimental and analytical research is desirable 
to better understand and quantify the shear strength contri-
bution of the concrete infill for shear spans ratios greater 



218 / ENGINEERING JOURNAL / THIRD QUARTER / 2021

Fischer, E. and Varma, A.H. (2014), “Design of Split-Tee 
Connections for Special Composite Moment Resisting 
Frames,” Engineering Journal, AISC, Vol.  52, No.  3, 
pp. 185–201.

Fukumoto, T. and Morita, K. (2005), “Elastoplastic Behav-
ior of Panel Zone in Steel Beam-to-Concrete Filled Steel 
Tube Column Moment Connections,” Journal of Struc-
tural Engineering, Vol. 131, No. 12, pp. 1,841–1,853.

Hajjar, J.F. (2000), “Concrete-Filled Steel Tube Columns 
under Earthquake Loads,” Progress in Structural Engi-
neering and Materials, Vol. 2, No. 1, pp. 72–81.

Hajjar, J.F., Gourley, B.C., Tort, C., Denavit, M.D., and 
Schiller, P.H. (2013), “Steel-Concrete Composite Struc-
tural Systems,” Department of Civil and Environmental 
Engineering, Northeastern University, Boston, Mass. 
http://www.northeastern.edu/compositesystems.

Han, L.H. and Yang, Y.F. (2005), “Cyclic Performance of 
Concrete-Filled Steel CHS Columns under Flexural 
Loading,” Journal of Constructional Steel Research, 
Vol. 61, No. 4, pp. 423–452.

Kenarangi, H. and Bruneau, M. (2020a), “Investigation of 
Cyclic Shear Behavior of Circular Reinforced Concrete 
Filled Steel Tubes,” Journal of Structural Engineering, 
146, No. 5.

Kenarangi, H. and Bruneau, M. (2020b), “Shear Strength 
of Composite Circular Reinforced Concrete-Filled Steel 
Tubes,” Journal of Structural Engineering, Vol.  146, 
No. 1.

Koester, B. (2000), “Panel Zone Behavior of Moment Con-
nections between Rectangular Concrete-Filled Steel 
Tubes and Wide Flange Beams,” PhD dissertation, 
Department of Civil and Environmental Engeering, Uni-
versity of Texas-Austin, Austin, Texas.

Lai, Z., Huang, Z., and Varma, A.H. (2017), “Seismic 
Analysis and Performance of High Strength Composite 
Special Moment Frames (C-SMFs),” Structures, Vol.  9, 
pp. 165–178.

Lai, Z., Varma, A.H., and Zhang, K. (2014), “Noncompact 
and Slender Rectangular CFT Members: Experimental 
Database, Analysis, and Design,” Journal of Construc-
tional Steel Research, Vol. 101, pp. 455–468.

Leon, R.T., Kim, D.K., and Hajjar, J.F. (2007), “Limit 
State Response of Composite Columns and Beam- 
Columns Part I: Formulation of Design Provisions for the 
2005 AISC Specification,” Engineering Journal, AISC, 
Vol. 44, No. 1, pp. 341–358.

Liu, J. (2003), “Examination of Expected Yield and Tensile 
Strength Ratios, Report + Addendum Report to AISC,” 
Purdue University, West Lafayette, Ind.

MacGregor, J.G. (1976), “Safety and Limit States Design for 
Reinforced Concrete,” Canadian Journal of Civil Engi-
neering, Vol. 3, No. 4, pp. 484–513.

Nakahara, H. and Tsumura, R. (2014), “Experimental Study 
on Shearing Behavior of Circular CFT Short Column,” 
Journal of Structural and Construction Engineering 
(Transactions of AIJ), Vol. 79, No. 703, pp. 1,385–1,393.

Nishiyama, I., Fujimoto, T., Fukumoto, T., and Yoshioka, K. 
(2004), “Inelastic Force-Deformation Response of Joint 
Shear Panels in Beam-Column Moment Connections to 
Concrete-Filled Tubes,” Journal of Structural Engineer-
ing, Vol. 130, No. 2, pp. 244–252.

Qian, J., Cui, Y., and Fang, X. (2007), “Shear Strength 
Tests of Concrete Filled Steel Tube Columns,” Tumu 
Gongcheng Xuebao (China Civil Engineering Journal), 
Vol. 40, No. 5, pp. 1–9.

Ravindra, M.K. and Galambos, T.V. (1978), “Load and 
Resistance Factor Design for Steel,” Journal of the Struc-
tural Division, Vol. 104, No. 9, pp. 1,337–1,353.

Ricles, J.M., Peng, S.W., and Lu, L.W. (2004), “Seismic  
Behavior of Composite Concrete Filled Steel Tube  
Column-Wide Flange Beam Moment Connections,” 
Journal of Structural Engineering, Vol.  130, No.  2, 
pp. 223–232.

Roeder, C., Lehman, D., and Bishop, E. (2010), “Strength and 
Stiffness of Circular Concrete-Filled Tubes,” Journal of 
Structural Engineering, Vol. 136, No. 12, pp. 1,545–1,553.

Roeder, C., Lehman, D., and Maki, A. (2016), “Shear Design 
Expessions for Concrete Filled Steel Tube and Reinforced 
Concrete Filled Tube Components,” Washington State 
Department of Transportation (WSDOT).

Sakino, K. and Ishibashi, H. (1985), “Experimental Studies 
on Concrete Filled Square Steel Tubular Short Columns 
Subjected to Cyclic Shearing Force and Constant Axial 
Force,” Journal of Structural and Construction Engi-
neering (Transactions of AIJ), Vol. 353, pp. 81–91.

Shawkat, W., Fahmy, W., and Fam, A. (2008), “Crack-
ing Patterns and Strength of CFT Beams under Differ-
ent Moment Gradients,” Composite Structures, Vol.  84, 
No. 2, pp. 159–166.

Tomii, M. and Sakino, K. (1979), “Experimental Studies 
on Concrete Filled Square Steel Tubular Beam-Columns 
Subjected to Monotonic Shearing Force and Constant 
Axial Force,” Transactions of the Architectural Institute 
of Japan, Vol. 281, pp. 81–92.

Varma, A.H., Ricles, J.M., Sause, R., and Lu, L.W. (2002), 
“Experimental Behavior of High Strength Square Con-
crete Filled Steel Tube (CFT) Columns,” Journal of 
Structural Engineering, Vol. 128, No. 3, pp. 309–318.



ENGINEERING JOURNAL / THIRD QUARTER / 2021 / 219

materials. In Equation 27, VnF is the nominal shear strength, 
which is the sum of the shear yield strength of the steel 
tube, VsF, and the shear strength contribution of the con-
crete infill, VcF. As shown in Equation 28, VsF accounts for 
the effects of axial compression on the shear yield strength 
of the steel, where fP is the axial stress in the steel tube due 
to the applied compression. As shown in Equation 29, VcF 
includes the contribution of the main concrete compressive 
strut and the confining struts resulting from the formation of 
plastic hinges in the flange plates of the steel tube. In Equa-
tion 29, Dc is the depth of the concrete panel, θ is the angle 
of the concrete strut with respect to the vertical and depends 
on the a/D ratio, and Mpf is the plastic moment capacity of 
the steel tube flange plate. It is important to note that VcF 
does not account for the effects of axial compression.

AIJ (1987) provides Equation 31 to calculate the panel-
zone shear strength, VnJ, of rectangular CFST:

 
VnJ =

1.2 2 fsc c + f νss s( )
d

γν

 
(31)

where
fsc = short-term shear strength of concrete, MPa

 = min (0.05 fc′, 0.74 + 0.015 fc′)
γ = 2.5 × D/d ≤ 4.0 for a square section

d =  center-to-center distance between beam flanges, 
mm

vc = volume of concrete in the panel, mm3

fss = short-term shear strength of steel, MPa

	 = Fy 3

vs =  volume of steel web of the shear panel, mm3

It is important to note that VnJ does not account for the 
effects of axial compression.

These equations were used to calculate the shear 
strengths of the specimens included in the final database. 
Table 7 shows the ratios of the experimental-to-calculated 
shear strength for all the specimens included in Table  5, 
which had a low axial load level (P/P0 < 0.25). As shown 
by the ratios and the statistical evaluation (μ, σ, and CoV) 
at the bottom of the table, the Fukumoto and Morita (2005) 
approach seems to be the most accurate (on average) and 
with the least CoV. However, it calculates shear strength 
ratios in the range of 0.80–0.89 for a few specimens tested 
by Ye et al. (2016). The AIJ (1987) method is the most con-
servative and has just a couple of ratios less than 1.0. The 
Koester (2000) approach is also quite accurate (on average), 
but it does have a few values in the 0.90–0.95 range for 
specimens tested by Wu et al. (2005) and Ye et al. (2016). 
The proposed simplified approach is reasonably accurate 
and has just a couple of ratios less than 1.0.

Table  8 shows the ratios of the experimental-to- 
calculated shear strength for all the specimens included in 
Table 6, which had a higher axial load level (P/P0 > 0.25). 
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APPENDIX

Other Shear Strength Equations for Rectangular CFST

Other researchers have also developed and proposed 
equations for calculating the shear strength of rectangu-
lar CFST. These include Koester (2000), AIJ (1987), and 
Fukumoto and Morita (2005). The equations proposed by 
Koester were quite similar to the proposed simplified equa-
tions, with a few deviations. According to Koester, and as 
shown in Equation 24, the nominal shear strength, VnK, is 
the sum of the steel and concrete contributions. The steel 
contribution is calculated as the shear yield strength of the 
flat portions of the hollows structural section (HSS) steel 
tubes used for the specimen. In Equation 25, dfl is the depth 
of the flat portion of steel tube. The concrete contribution is 
calculated as K0.0316 Ac fcβ ′, where βK is equal to 28 and 
is slightly larger than the value in Equation 19.

VnK = VsK + VcK (24)

VsK = 0.6Fy(2dfltw) (25)

VcK = 0.0316 KAc fc′β  (26)

VnF = VsF + VcF (27)

VsF = Aw
Fy

2 fP
2

3  (28)

VcF = Dc

2
tan + 4

Mpf

Dc fc
sin Dc fcθ θ ′

⎛
⎝⎜

⎞
⎠⎟  

(29)

Fukumoto and Morita (2005) proposed Equations 27 to 
29 to calculate the panel-zone shear strength of rectangu-
lar CFST, particularly those made from higher-strength 
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Table 7. Vexp//Vn Ratios for Specimens with P//P0 << 0.25 from Table 5

Specimen
Vexp  

(kips)
Vn  

(kips) Vn

Vexp
VnK

Vexp
VnJ

Vexp
VnF

Vexp

Koester (2000)

8.4A 233 214 1.09 1.02 1.22 1.12

8.6A 241 214 1.12 1.05 1.27 1.15

8.8A 237 214 1.11 1.03 1.25 1.13

8.4B 313 262 1.20 1.25 1.25 1.16

8.6B 313 263 1.19 1.25 1.25 1.16

8.8B 316 261 1.21 1.27 1.27 1.18

8.B-C 232 229 1.01 0.96 1.11 1.03

8.P-C 203 213 0.95 0.93 1.00 1.01

8.P2-C 227 229 0.99 0.94 1.09 1.01

CFT.2 571 540 1.06 1.02 1.16 1.01

CFT.3 598 542 1.10 1.07 1.22 1.06

CFT.4 610 543 1.12 1.08 1.24 1.07

Nishiyama et al. (2004) 

R1 566 371 1.52 1.27 1.56 1.08

R2 438 309 1.42 1.22 1.46 1.23

R3 632 458 1.38 1.21 1.36 1.01

R4 476 324 1.47 1.22 1.56 1.08

Fukumoto and Morita (2005)

SP1 337 253 1.34 1.19 1.41 1.15

SP2 428 316 1.35 1.33 1.31 1.14

SP3 554 438 1.27 1.21 1.20 0.96

Wu et al. (2005)

FSB-6 602 557 1.08 0.93 1.19 1.24

FSB-8 659 621 1.06 0.93 1.16 1.14

FSB-10 669 656 1.02 0.93 1.08 1.07

Ye et al. (2016) 

S1-1a 55 50 1.10 0.90 0.91 0.80

S1-1b 57 50 1.14 0.94 0.95 0.83

S1-2a 65 50 1.31 1.07 1.09 0.95

S1-2b 61 50 1.23 1.01 1.02 0.89

Average 1.19 1.09 1.21 1.06

Standard deviation 0.15 0.14 0.17 0.11

CoV 0.13 0.13 0.14 0.11
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Table 8. Vexp//Vn Ratios for Specimens with P//P0 >> 0.25 from Table 6

Specimen
Vexp  

(kips)
Vn  

(kips) Vn

Vexp
VnK

Vexp
VnJ

Vexp
VnF

Vexp

Ye et al. (2016) 

S1-3a 82 50 1.64 1.34 1.36 1.22

S1-3b 77 50 1.54 1.26 1.27 1.14

S1-4a 85 50 1.71 1.40 1.42 1.29

S1-4b 85 50 1.71 1.40 1.41 1.29

S2-2a 71 50 1.42 1.17 1.18 1.05

S2-2b 73 50 1.45 1.19 1.21 1.07

S3-1a 100 60 1.68 1.34 1.40 0.99

S3-1b 103 60 1.72 1.38 1.44 1.02

S4-1a 111 67 1.66 1.45 1.39 1.21

Average 1.62 1.33 1.34 1.14

Standard deviation 0.11 0.10 0.10 0.12

CoV 0.07 0.07 0.07 0.10

As shown by the ratios and the statistical evaluation (μ, σ, 
and CoV) at the bottom of the table, the Fukumoto and 
Morita (2005) approach seems to be the most accurate (on 
average), but this is incidental because the approach did 
not actually account for the effects of axial compression on 
concrete shear strength contribution. This can be explained 
further as follows. For the Ye et al. (2016) specimens, the 
shear span-to-depth ratio is extremely small (0.075), which 
leads to very high concrete contributions (VcF). This causes 

overestimation of shear strengths for low axial load cases in 
(shear strength ratios in the 0.80–0.95 range) and seemingly 
appropriate prediction for high axial load cases in Table 8 
(shear strength ratios in the 0.99–1.29 range). Both the AIJ 
(1987) and the Koester (2000) approaches are also conser-
vative with respect to the test results. The proposed simpli-
fied approach is the most conservative for higher axial load 
levels.
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