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Design for Gusset Plate Buckling with 
Variable Stress Trajectories
BO DOWSWELL

ABSTRACT

Gusset plates are used in steel buildings and bridges to connect diagonal members to other framing members in the structural system. Gus-
set plates subjected to compression loads are currently modeled as rectangular columns with an effective cross section defined by a 30° 
stress trajectory known as the Whitmore section. The buckling strength is calculated using the AISC column curve with empirical effective 
length factors. Previous research has shown local yielding allows the stresses to redistribute, increasing the effective width. Because the 
inelastic capacity decreases with gusset slenderness, a variable stress trajectory has been established which is dependent on the flexural 
buckling slenderness parameter. This paper describes a design method for the buckling strength of gusset plates using variable stress trajec-
tory angles. The proposed effective length factors for the equivalent column were evaluated using data from existing research. The design 
model is valid for single- and double-plane corner gusset plates, including extended corner gusset plates commonly used for seismic design. 
Compared to the results of 162 specimens from 12 previously published research projects, the proposed design model is shown to be more 
accurate than the methods that are currently available.

Keywords: Gusset plate buckling, stress trajectory, AISC column curve.

INTRODUCTION

F igure 1(a) shows a typical vertical brace connection at 
a beam-to-column intersection, also known as a corner 

gusset plate connection. The gusset plate transfers axial 
load from the brace and distributes it to the beam and col-
umn. Figure  1(b) shows a double-plane truss connection 
that transfers axial load from the diagonal web member to 
the chord and the vertical web member. Double-plane gus-
set plates are commonly used to connect wide-flange truss 
members in long-span trusses. This configuration uses two 
side-by-side gussets connecting to each flange of the web 
and chord members.

In practice, gusset plates are treated as rectangular, axially  
loaded members with a cross section Lw × t, where Lw is the 
effective width and t is the gusset plate thickness. The effec-
tive width is generally calculated with a constant 30° trajec-
tory angle, as shown in Figure 2(a), which was based on the 
experimental stress trajectories in elastic gusset plates. In 
this case, the equivalent cross section is known as the Whit-
more section (Whitmore, 1952).

Based on a proposal by Thornton (1984), gusset plates 
in compression are currently designed as rectangular col-
umns with a cross section defined by the Whitmore section. 
The buckling strength is calculated with the column curve 

in AISC Specification Section E3 (AISC, 2016). For corner 
gusset plates, the column length, lavg, is the average of l1, l2, 
and l3 as shown in Figure 2(b).

AISC Specification Section E3 for flexural buckling 
was developed for designing main structural members with 
various cross-sectional shapes and residual stress patterns. 
Because connection elements have lower residual stresses 
and higher shape factors than main members, the buckling 
strength in the inelastic range is higher than predicted by the 
AISC Specification equations (Dowswell, 2016). To account 
for this behavior at low slenderness ratios in AISC Specifi-
cation Section J4.4, the critical stress is equal to the speci-
fied minimum yield strength when the slenderness ratio is 
equal to or less than 25.

Effective lengths, Lc = KL, have been developed for sev-
eral common gusset plate geometries. In most cases, the 
effective length recommendations were calibrated for use 
with a 30° trajectory angle; therefore, gusset plates are typi-
cally designed using an equivalent cross section defined by 
the Whitmore criterion. The equivalent column method is 
discussed further in AISC Design Guide 29, Vertical Brac-
ing Connections—Analysis and Design, Appendix C (Muir 
and Thornton, 2014).

Dowswell (2006) summarized the available research on 
gusset plate stability and proposed effective length fac-
tors for various configurations. He also discussed several 
sources of inaccuracy in the design model, two of which are 
listed here:

1. Although the effective width is calculated at the last 
fastener near the end of the brace, the stress continues to 
spread out beyond the effective width.
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2. Due to stress redistribution when the plate yields, the 
effective width in the inelastic range is larger than 
predicted using the 30° angle.

In an effort to develop a more accurate design model for 
gusset plates in compression, these issues are evaluated in 
this paper. A new design procedure, based on Thornton’s 
equivalent column concept, has been developed. To evalu-
ate the proposed design procedure, the available experimen-
tal and finite element results are compared to the predicted 
strength of each specimen.

Gusset plates are fabricated in many different configura-
tions; however, only two are addressed in this paper: corner 

gusset plates and extended corner gusset plates. The cor-
ner and extended corner configurations have a single brace 
framing to the gusset plate at the intersection of two other 
orthogonal framing members. The gusset plate is connected 
to both members. For corner gussets, a line through the 
innermost bolts, perpendicular to the brace line of action, 
intersects one or both of the connected gusset boundaries 
as shown in Figure 3(a). For the extended corner configura-
tion, the gusset plate is shaped so the free edges are cut at an 
angle to the connected edges as shown in Figure 3(b). In this 
case, a line through the innermost bolts, perpendicular to the 
brace line of action, intersects both of the gusset-free edges.

     
 (a) effective width (b) buckling length

Fig. 2. Current design of gusset plates.

   
 (a) vertical brace connection with a single-plane gusset plate (b) truss connection with a double-plane gusset plate

Fig. 1. Gusset plate connections.



ENGINEERING JOURNAL / THIRD QUARTER / 2019 / 135

EXISTING RESEARCH

The existing research on stress trajectories was reviewed by 
Dowswell (2013). The early research by Wyss (1923), San-
del (1950), and Whitmore (1952) focused on the measure-
ment of elastic stresses. The researchers generally agreed 
that the stress trajectories formed approximately 30° lines 
with the connected member. Additional research by Lavis 
(1967), Rabern (1983), Chakrabarti (1983), Bjorhovde and 
Chakrabarti (1985), Gross and Cheok (1988), and Girard et 
al. (1995) verified the 30° stress trajectories. However, the 
experimental observations of Yamamoto et al. (1985) and 
Cheng and Grondin (1999) showed that the stress dispersion 
angle increases with inelastic material behavior. Cheng and 
Grondin (1999) recommended a 45° dispersion angle.

Dowswell (2006) reviewed the literature on gusset stabil-
ity prior to 2006, including research by Chakrabarti (1987), 
Brown (1988), Gross and Cheok (1988), Yam and Cheng 
(1993), Rabinovitch and Cheng (1993), Walbridge et al. 
(1998), Nast et al. (1999), and Sheng et al. (2002). For the 
current paper, the data from Dowswell (2006) was combined 
with newer data from the research of Hamedani et al. (2011), 
Mentes (2011), Higgins et al. (2013), Naghipour et al. (2013), 
and White et al. (2013). The research projects included 
single- and double-plane gusset plates as well as corner- and 
extended-corner gusset plates. This paper used the results 
of experimental testing and inelastic finite element models 
from 12 separate projects with a total of 162 specimens.

VARIABLE STRESS TRAJECTORIES

Using fracture mechanics, Dowswell (2013) showed that the 
dispersion angle, θ, is dependent on geometry, constraint, 
and inelastic deformation capacity. The model in Figure 4(a), 
based on the stress-free zone ahead of a crack, was used to 
develop Equation 1, which accounts for all variables affect-
ing the dispersion angle. Equation 1 is plotted in Figure 4(b).

 

C
tan 

4 2
2θ

β
( )= α −
πλ  

(1)

where
C  = constraint factor

	 = 1.00 for uniaxial stress

	 = 1.32 for constraint in one direction

	 = 2.27 for constraint in two directions

α  = factor accounting for inelastic potential

	 = 1.0 for gusset plates with no inelastic capacity

	 = 1.7 for gusset plates with full inelastic potential

β  = geometry factor

λ  =  inelastic material parameter calculated with 
Equ a tion 2

 1 0.77 1( )λ = + α −  (2)

To determine θ as a function of α, substitute β = 1.0 for 
corner gusset plates, C = 1.0 for plates with uniaxial stress, 
and λ from Equation 2 into Equation 1 to get Equation 3.

 

2
tan 

0.605 0.181
=θ α −

α +  
(3)

Equation 3 results in trajectory angles of 32.5° for plates 
with no inelastic capacity and 44.8° for plates with full inelas-
tic potential. The effective width, shown in Figure 5(a), is

 be = 2a = 2l tan θ (4)

where
a = crack half-length, in.

l =  length, parallel to the load, of the connection between 
outermost fasteners, in.

In some cases, the effective width can extend beyond the 
free boundaries of the plate as shown in Figure 5(b), causing 
a smaller effective width than calculated with Equation 4. 

   
 (a) corner gusset plate (b) extended corner gusset plate

Fig. 3. Gusset plate configurations.
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The shaded portion of the stress trajectory is not effec-
tive, and the effective width is based on the actual plate 
width at the critical section. This effect was accounted for 
in the calculation of predicted strengths for validating the 
design procedure. For conditions where the effective width 
extended beyond the connected boundaries of the plate, the 
full effective width was used in the calculation of the pre-
dicted strength.

The trajectory angle for gusset plates subjected to tension 
is limited only by the rupture ductility, resulting in α = 1.7 
and θ = 45°. For gusset plates in compression, α is depen-
dent on the plate slenderness. Because the lateral buckling 
strength of the equivalent column is based on the AISC col-
umn curve, α can be calculated using AISC Specification 

Section E3. The column curve is in the inelastic range when 
λc ≤ λr, where λr = 1.5, and the slenderness parameter, λc, is 
calculated with Equation 5.

 

KL

r

F

E
c

yλ =
π  

(5)

where
E = modulus of elasticity, ksi

Fy = specified minimum yield strength, ksi

K = effective length factor

L = column length, in.

r = radius of gyration, in.

λc = slenderness parameter

         
 (a) variable effective width (b) maximum effective width

Fig. 5. Effective width.

   
 (a) stress-free zone ahead of a crack (b) dispersion angle vs. normalized strain

Fig. 4. Variable stress trajectories.
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λr =  limiting slenderness parameter between elastic and 
inelastic behavior

For design purposes, linear interpolation can be used 
between α = 1.0 and 1.7, resulting in Equation 6.

 
1.7 0.7 1.0c

r
α = − λ

λ
≥

 
(6)

Equation  6 is substituted into Equation  3 with λr  = 1.5, 
resulting in Equation 7.

 
tan

1 0.236
c

c
θ = 1− 0.389λ

− λ  
(7)

Setting a lower limit of θ = 32.5°, θ can be calculated with 
Equation 8, which results in 32.5° ≤ θ ≤ 43.7°.

 tan θ = 0.956–0.213λc ≥ 0.637 (8)

Equation  5 is substituted into Equation  8, resulting in 
Equation 9.

 

K L

r

F

E
tan 

0.213

π
0.637yθ θ= 0.956 − ≥

 
(9)

To allow the use of different effective length factors in the 
stress dispersion angle and buckling strength calculations, 
Kθ was substituted for K in Equation 9.

EFFECTIVE LENGTH FACTORS

The dispersion angle, θ, defines the stress trajectory within 
the length of the fastener group; however, the stress contin-
ues to disperse through the gusset plate beyond the effec-
tive width as shown in Figure 6(a). This has a load-shedding 

effect on the equivalent column, where the load from the 
area bound by the effective width disperses into adjacent 
parts of the plate. The problem is similar to a column with a 
concentrated load at the top and a distributed load along the 
column length as shown in Figure 6(b). For corner gusset 
plates, the brace load also enters the framing members at the 
connected gusset boundaries, resulting in the shedding of a 
large portion of the load along the equivalent column length.

Another beneficial effect is the restraint from the rela-
tively low-stress areas of the gusset plate adjacent to the 
equivalent column. Due to these and other effects discussed 
by Dowswell (2006), effective length factors for gusset 
plates cannot be estimated based on the buckled shape as 
they are for simple prismatic columns.

Effective length factors, both the effective width, Kθ, and 
buckling strength, K, calculations, were selected empirically, 
using the experiments and finite element models discussed 
in the Existing Research section of this paper. Although 
many of the specimens buckled in a sidesway mode, the 
empirical evidence shows that effective length factors much 
lower than the theoretical value of 1.0 can be safely used.

The effective length factors must be selected for use with 
a specific buckling length. Thornton (1984) originally pro-
posed an effective length factor of 0.65 for use with a 30° 
stress dispersion angle and a buckling length, lavg, which is 
the average of l1, l2, and l3 as shown in Figure 2(b). When 
variable stress trajectories are used, the empirical data shows 
that a more accurate solution is obtained using a buckling 
length, L  = l1, which is the unsupported length along the 
center of the brace. Therefore, all effective length factors 
proposed in this paper have been calibrated for use with the 
unsupported length along the center of the brace.

        
 (a) gusset plate (b) column model

Fig. 6. Stress dispersion beyond the effective width.
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the coefficient of variation, VP, is 0.192. Dowswell (2018), 
who analyzed the reliability of several existing design meth-
ods, showed that the minimum Vp for all of the existing 
methods is 0.270. Therefore, the proposed design method is 
substantially more accurate than the existing methods.

Because only 13 specimens are available for extended 
corner gusset plates, a reliability analysis was not conducted. 
With Kθ = 0.85 and K = 0.50, ρP = 1.15, VP = 0.129, and the 
minimum professional factor is 0.840. Although a lower 
value could potentially be justified, it is believed that, until 
further research is available, K = 0.50 provides a reasonable 
fit for extended corner gusset plates.

DESIGN MODEL

For the proposed design model, Kθ = 0.85 and 12r = t/  were 
substituted into Equation 9 and the equation was adjusted so 
the trajectory angles are within 30° ≤ θ ≤ 45°, resulting in 
Equation 14.

 

L

t

F

E
tan

5
tan30°yθ = 1− ≥

 
(14)

The effective width, be, is calculated with Equation  4; 
however, be is limited to the actual plate width at the critical 
section as shown in Figure 5(b). The equivalent rectangular 
column, be × t, is designed according to AISC Specification 
Section J4.4 using ϕ  = 0.75  in lieu of 0.90. The length of 
the equivalent column, L, is defined along the center of the 
brace as shown in Figure 7, with K = 0.40 for corner gusset 
plates and K = 0.50 for extended corner gusset plates.

Results of experimental testing and finite element models 
discussed in the Existing Research section of this paper are 
compared to the predicted strengths from the design model 
in Tables A1 and A2 of Appendix A. The normalized exper-
imental load, Pe/Py, is plotted against λc in Figure 8. Pe is 
the experimental strength and Py = σybet is the axial yield 
load of the equivalent column, based on the measured yield 
stress, σy.

RELIABILITY ANALYSIS

A reliability analysis was used to determine the most effi-
cient combination of Kθ, K, and ϕ that provides a minimum 
βR of 4.0, which is the applicable target reliability index for 
connections according to AISC Specification Section B3.1. 
Commentary. The buckling strength for the analysis was 
calculated using the provisions in AISC Specification Sec-
tion J4.4 with the measured material and geometric prop-
erties of the experimental specimens. The reduction factor 
required to obtain a specific reliability level is (Galambos 
and Ravinda, 1978):

 C eR R
VR R Rϕ = ρ −β α

 (10)

where
CR = correction factor

VR  = coefficient of variation

αR  = separation factor

βR = reliability index

ρR  = bias coefficient

Galambos and Ravinda (1973) proposed a separation fac-
tor, αR, of 0.55. For L/D = 3.0, Grondin et al. (2007) devel-
oped Equation  11 for calculating a correction factor, C, 
which is 0.900 at β = 4.0.

 CR = 1.4056 − 0.1584 βR + 0.008 βR
2 (11)

The bias coefficient is

	 ρR = ρM ρG ρP (12)

where
ρG = bias coefficient for the geometric properties

ρM = bias coefficient for the material properties

ρP =  bias coefficient for the test-to-predicted strength 
ratios. Mean value of the professional factor is cal-
culated with the measured geometric and material 
properties.

The coefficient of variation is

 
Vr VM

2 VG
2 VP

2= + +
 (13)

where
VG =  coefficient of variation for the geometric properties

VM = coefficient of variation for the material properties

VP =  coefficient of variation for the test-to-predicted 
strength ratios

Hess et al. (2002) recommended ρG = 1.05 and VG = 0.044 
for plate thickness variations. For the plate yield strength, 
ρM = 1.11 and VM = 0.054 (Schmidt and Bartlett, 2002).

For corner gusset plates, the reliability analysis resulted in 
Kθ = 0.85, K = 0.40, and ϕ = 0.75 at βR = 4.0. With these val-
ues, the mean ratio of the professional factor, ρP, is 1.12 and Fig. 7. Gusset geometry for proposed design procedure.
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The design model, based on the equivalent column con-
cept, allows variable trajectories which are dependent on the 
level of inelasticity that can be reached prior to buckling. A 
reliability analysis using the results of 162 specimens from 
14 previously-published research projects showed that the 
buckling strength can be calculated using the provisions in 
AISC Specification Section J4.4 with ϕ = 0.75 in lieu of 0.90. 
The length of the equivalent column, L, is defined along the 
center of the brace with K = 0.40 for corner gusset plates and 
K = 0.50 for extended corner gusset plates. The proposed 
design model was shown to produce more accurate results 
than the existing design methods.

CONCLUSIONS

Gusset plates subjected to compression loads are currently 
designed with an equivalent column model, where the 
width of the equivalent column is defined by a 30° stress 
dispersion angle. However, both experimental and theoreti-
cal research has shown that the dispersion angle is partially 
dependent on the inelastic deformation capacity of the plate. 
To account for this behavior, a new design model for buck-
ling of corner gusset plates has been developed. The model 
is valid for single- and double-plane corner gusset plates, 
including extended corner gusset plates commonly used for 
seismic design.

Fig. 8. Normalized load vs. slenderness for proposed design procedure.

DESIGN EXAMPLE

Given:

Determine the buckling strength of the gusset plate in Figure 9. The gusset plate is 2-in. thick ASTM A572 Grade 50 material, 
and the factored brace axial compression load is 800 kips.

Solution:

From AISC Manual Table 2-4
ASTM A572, Grade 50
Fy = 50 ksi

From AISC Manual Table 1-1
W14×109
d = 14.3 in.

W21×132
d = 21.8 in.
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L 34 in.
21.8 in.

2 cos 50°
17.0 in.

= −

=

L

t

F

E
tan 

5
tan30

17.0 in.

5 0.500 in.

50 ksi

29,000 ksi
tan30

35.7°

yθ

θ
( )( )

= 1− ≥ °

= 1− ≥ °

=  

(14)

The gage in the 4-in. leg of the L6×4×¾, g, is 2.50 in.

The distance between bolts perpendicular to the load, w, is:

w d g2

14.3 in. 2 2.5 in.

19.3 in.

( )
= +
= +
=

Fig. 9. Vertical bracing connection for Design Example.
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The distance between bolts, parallel to the load, l, is:

l 8 3 in.

24.0 in.

( )=
=

b l w2 tan

2 24 in. tan 35.7° 19.3 in.

53.8 in.

e

[ ]( ) ( )
= θ +

= +
=

A 0.500 in. 53.8 in.

26.9 in.

g

2

( ) )(=

=

r
t

12
0.500 in.

12
0.144 in.

=

=

=

Because the line through the innermost bolts, perpendicular to the brace line of action, intersects both the beam and column 
interfaces, the plate is classified as a corner gusset; therefore, K = 0.40.

L KL

0.4 17.0 in.

6.80 in.

c

( )( )
=
=
=

L

r

6.80 in.

0.144 in.

47.2

c =

=

Because
 

L

r
47.2 25c = > , AISC Specification Section J4.4 specifies that the compression strength is calculated according to 

AISC Specification Section E3.

The elastic buckling stress, Fe, is calculated using AISC Specification Equation E3-4:

F
E

L

r

29,000 ksi

47.2

128 ksi

e
c

2

2

2

2

=

( )
( )

π

⎛
⎝

⎞
⎠

=
π

=  

(Spec. Eq. E3-4)

E

F
4.71 4.71

29,000 ksi

50 ksi

113

y
=

=

Because
 

L

r
47.2 113c = < , the critical stress, Fcr, is calculated using AISC Specification Equation E3-2.
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F F0.658

0.658 50 ksi

42.5 ksi

cr

F

F
y

50 ksi

128 ksi

y

e

( )

=
⎛

⎝
⎜

⎞

⎠
⎟

=
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=  

(Spec. Eq. E3-2)

And the nominal compressive strength, Pn, is calculated using AISC Specification Equation E3-1.

P F A

42.5 ksi 26.9 in.

1,140 kips

n cr g

2( )( )
=

=

=  

(Spec. Eq. E3-1)

The available compression strength is then:

P 0.75 1,140 kips

855 kips 800 kips

n ( )( )ϕ =
= > o.k.

For the Dowswell (2006) method, the gusset is compact; therefore, the compression strength is based on Whitmore yielding. Pn = 
1,180 kips, which is 3.51% higher than the strength calculated with the proposed method.

For the Thornton (1984) method, L = lavg = 4.71 in. and K = 0.65. Because KL/r < 25, the compression strength is based on Whit-
more yielding. Pn = 1,180 kips, which is 3.51% higher than the strength calculated with the proposed method.

For this example, the nominal strength calculated with the proposed method is similar to the nominal strengths calculated with 
both the Thornton (1984) and Dowswell (2006) methods. However, the reliability analysis showed that the proposed method is 
significantly more accurate than the existing methods for a wide range of slenderness values, potentially resulting in increased 
available strengths, ϕPn, if all methods use a target reliability index of 4.0. Also, the proposed method more accurately models 
the stress trajectories in the gusset plate.
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APPENDIX A  TABLES

Table A1. Details of Corner Gusset Plates

Specimen

t Fy E L θ be Pc Pe

Pe/Pcin. ksi ksi in. deg in. kips kips

Chakrabarti (1987)
1 0.250 36.0 29000 8.00 37.8 9.20 74.6 68.7 0.920
2 0.250 36.0 29000 8.50 37.3 9.08 72.7 70.3 0.966
3 0.250 36.0 29000 8.00 37.8 9.20 74.6 71.4 0.957

Brown (1988)
1-4-45-8 0.251 48.0 29500 7.75 36.9 10.8 114 180 1.58
2-3-45-4 0.196 45.2 29500 5.18 38.4 11.9 96.6 120 1.24
3-3-45-8 0.198 45.2 29500 7.75 34.7 10.2 75.7 82.0 1.08
9-3-55-4 0.192 45.2 29500 4.68 39.0 12.1 97.8 79.6 0.814

10-3-45-4 0.197 45.2 29500 5.26 38.3 11.9 96.6 110 1.13
11-4-40-8 0.250 48.0 29500 7.26 37.4 10.9 117 166 1.42
13-4-30-8 0.248 48.0 29500 6.16 38.6 11.2 123 139 1.13
14-4-30-4 0.248 48.0 29500 3.16 41.9 13.5 157 135 0.859
15-4-35-8 0.250 48.0 29500 6.80 38.0 11.0 120 154 1.29
16-4-35-4 0.250 48.0 29500 4.65 40.4 12.7 146 147 1.01
17-3-45-8 0.194 45.2 29500 7.79 34.4 10.2 73.0 120 1.64
18-4-45-4 0.251 48.0 29500 5.71 39.2 12.2 138 155 1.12
20-6-30-4 0.376 45.0 28300 4.81 41.9 13.5 223 176 0.789

Gross and Cheok (1988)
1A 0.250 46.7 29000 8.01 36.6 8.94 91.3 116 1.27
1B 0.250 46.7 29000 8.01 36.6 8.94 91.3 96.0 1.05
2A 0.250 46.7 29000 8.63 35.9 8.78 87.7 138 1.57
2B 0.250 46.7 29000 8.63 35.9 8.78 87.7 148 1.69
3B 0.250 46.7 29000 8.51 36.0 8.82 88.4 88.0 1.00

Rabinovitch and Cheng (1993)
A1 0.367 65.1 29878 8.72 37.9 19.9 430 378 0.879
A2 0.243 64.3 29878 8.72 33.7 17.5 218 254 1.16
A3 0.367 65.1 29878 8.72 37.9 19.9 430 451 1.05
A4 0.243 64.3 29878 8.72 33.7 17.5 218 258 1.18

Yam and Cheng (1993)
GP1 0.524 42.8 30110 8.56 41.2 17.2 373 440 1.18
GP2 0.386 44.2 30487 8.56 39.7 16.4 264 305 1.15
GP3 0.256 39.9 28428 8.56 36.9 15.1 135 167 1.23

GP1R 0.524 42.8 30110 8.56 41.2 17.2 373 462 1.24
GP2R 0.386 44.2 30487 8.56 39.7 16.4 264 334 1.26
GP3R 0.256 39.9 28428 8.56 36.9 15.1 135 178 1.31
AP1 0.524 42.8 30110 9.58 40.8 16.9 365 387 1.06
AP2 0.386 44.2 30487 9.58 39.0 16.1 255 272 1.07
AP3 0.256 39.9 28428 9.58 35.7 14.6 127 164 1.29
MP1 0.524 42.8 30110 8.56 41.2 17.2 373 435 1.17
MP2 0.386 44.2 30487 8.56 39.7 16.4 264 296 1.12
MP3 0.256 39.9 28428 8.56 36.9 15.1 135 162 1.20

MP3A 0.256 39.9 28428 8.56 36.9 15.1 135 184 1.36
MP3B 0.256 39.9 28428 8.56 36.9 15.1 135 185 1.36

SP1-Free 0.524 42.8 30110 19.7 35.6 22.4 426 361 0.848
SP2-Free 0.386 44.2 30487 19.7 31.4 19.5 244 227 0.930
SP1-Fixed 0.524 42.8 30110 19.7 35.6 22.4 426 396 0.929
SP2-Fixed 0.386 44.2 30487 19.7 31.4 19.5 244 332 1.36
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Table A1. Details of Corner Gusset Plates (continued)

Specimen

t Fy E L θ be Pc Pe

Pe/Pcin. ksi ksi in. deg in. kips kips

Walbridge et al. (1998)
GP1B1 0.236 43.5 29878 8.72 35.7 18.6 163 155 0.952
GP1B3 0.236 43.5 29878 8.72 35.7 18.6 163 156 0.957
GP2B7 0.354 43.5 29878 8.72 39.1 20.7 296 290 0.980

GP3B11 0.472 43.5 29878 8.72 40.7 21.7 428 403 0.941
GP1MC20 0.524 42.8 30110 8.56 41.2 17.1 372 466 1.25
GP2MC22 0.386 44.2 30487 8.56 39.7 16.4 264 302 1.14
GP3MC24 0.256 39.9 28428 8.56 36.9 15.0 135 160 1.18

A2CL2 0.243 64.3 29878 8.72 33.7 17.5 218 246 1.13
A4CL4 0.243 64.3 29878 8.72 33.7 17.5 218 252 1.15

Nast et al. (1999)
T2-FE 0.378 61.5 31256 8.72 38.5 20.3 434 444 1.02

T2 0.378 61.5 31256 8.72 38.5 20.3 434 380 0.876

Sheng et al. (2002)

500×400×13.3×240 0.524 42.8 29008 11.3 39.8 11.9 251 366 1.45
500×400×13.3×310 0.524 42.8 29008 8.56 41.2 17.1 372 447 1.20
500×400×13.3×380 0.524 42.8 29008 5.80 42.5 22.8 504 528 1.05
750×400×13.3×240 0.524 42.8 29008 11.3 39.8 11.9 251 359 1.43
750×400×13.3×310 0.524 42.8 29008 8.56 41.2 17.1 372 438 1.18
750×400×13.3×380 0.524 42.8 29008 5.80 42.5 22.8 504 525 1.04
500×400×9.87×240 0.389 44.2 29008 11.3 37.7 11.2 173 257 1.48
500×400×9.87×310 0.389 44.2 29008 8.56 39.6 16.4 265 322 1.22
500×400×9.87×380 0.389 44.2 29008 5.80 41.5 22.2 370 420 1.13
750×400×9.87×240 0.389 44.2 29008 11.3 37.7 11.2 173 252 1.46
750×400×9.87×310 0.389 44.2 29008 8.56 39.6 16.4 265 315 1.19
750×400×9.87×380 0.389 44.2 29008 5.80 41.5 22.2 371 408 1.10
500×400×6.5×240 0.256 39.9 29008 11.3 33.9 10.1 82.7 114 1.38
500×400×6.5×310 0.256 39.9 29008 8.56 37.0 15.1 136 156 1.15
500×400×6.5×380 0.256 39.9 29008 5.80 39.8 21.0 203 222 1.10
750×400×6.5×240 0.256 39.9 29008 11.3 33.9 10.1 82.7 112 1.35
750×400×6.53×10 0.256 39.9 29008 8.56 37.0 15.1 136 150 1.10
750×400×6.5×380 0.256 39.9 29008 5.80 39.8 21.0 203 207 1.02

Hamedani et al. (2011)
GP1 0.524 42.8 30110 8.56 41.2 17.2 373 462 1.24
GP2 0.386 44.2 30487 8.56 39.7 16.4 264 312 1.18
GP3 0.256 39.9 28428 8.56 36.9 15.1 135 172 1.27

Hafner (2012)
1 0.250 47.0 29000 28.4 30.0 34.8 88.1 146 1.66
2 0.250 45.1 29000 28.4 30.0 34.8 88.1 163 1.85
3 0.375 45.9 29000 28.4 30.0 34.8 286 273 0.955
4 0.250 45.1 29000 28.4 30.0 34.8 88.1 128 1.45
5 0.375 46.1 29000 28.4 30.0 34.8 286 290 1.01
6 0.375 46.3 29000 28.4 30.0 34.8 286 249 0.869
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Table A1. Details of Corner Gusset Plates (continued)

Specimen

t Fy E L θ be Pc Pe

Pe/Pcin. ksi ksi in. deg in. kips kips

Mentes (2011)

GP307-SS3 0.375 36.4 29000 13.1 37.0 28.8 347 358 1.03

GP307-LS3 0.375 48.2 29000 18.1 31.2 28.2 372 398 1.07

GP490-SS3 0.375 46.4 29000 13.1 35.8 24.4 362 364 1.00

GP490-LS3-1 0.375 45.9 29000 18.1 31.6 22.3 285 264 0.928

Naghipour et al. (2013)

1 0.157 53.7 30458 16.6 30.0 9.91 19.2 25.3 1.32
2 0.157 53.7 30458 13.9 30.0 13.1 36.4 45.2 1.24
3 0.157 53.7 30458 11.1 30.0 16.3 62.5 82.9 1.33
4 0.157 53.7 30458 8.3 30.9 20.1 99.2 169 1.70
5 0.315 53.7 30458 22.2 30.0 9.91 76.2 55.6 0.729
6 0.315 53.7 30458 19.4 30.0 13.1 115 88.0 0.764
7 0.315 53.7 30458 16.7 30.9 16.8 166 141 0.849
8 0.315 53.7 30458 13.9 33.7 21.9 239 232 0.971
9 0.315 53.7 30458 11.2 36.2 27.7 328 377 1.15
10 0.472 53.7 30458 21.4 33.3 10.8 175 201 1.15
11 0.472 53.7 30458 18.7 35.1 15.1 260 321 1.24
12 0.472 53.7 30458 15.9 36.7 20.0 360 420 1.17
13 0.472 53.7 30458 13.1 38.3 25.3 475 485 1.02
14 0.472 53.7 30458 10.4 39.8 31.1 605 547 0.905
15 0.630 53.7 30458 28.3 33.5 10.8 235 274 1.17
16 0.630 53.7 30458 25.5 34.8 15.0 340 409 1.20
17 0.630 53.7 30458 22.8 36.0 19.6 461 501 1.09
18 0.630 53.7 30458 20.0 37.2 24.5 597 597 1.00
19 0.630 53.7 30458 17.2 38.4 29.8 748 690 0.922

Test 0.315 53.7 30458 16.6 31.0 10.2 101 90.7 0.899
20 0.315 53.7 30458 16.6 31.0 10.2 101 93.4 0.926

White et al. (2013)
P5U-WV-NP-01 0.250 53.0 29000 23.8 30.0 43.2 155 263 1.69

0.313 53.0 29000 23.8 30.0 43.2 301 390 1.30
0.375 53.0 29000 23.8 30.0 43.2 471 525 1.12
0.400 53.0 29000 23.8 30.0 43.2 540 585 1.08
0.438 53.0 29000 23.8 30.0 43.2 644 675 1.05
0.500 53.0 29000 23.8 30.7 43.8 828 818 0.987
0.625 53.0 29000 23.8 34.0 46.0 1227 1073 0.874

P6U-WV-NP-02 0.250 53.0 29000 18.5 30.0 46.2 270 260 0.963
0.313 53.0 29000 18.5 30.0 46.2 453 396 0.873
0.375 53.0 29000 18.5 30.0 46.2 638 554 0.868
0.438 53.0 29000 18.5 32.5 49.4 878 723 0.824
0.500 53.0 29000 18.5 34.3 51.9 1121 904 0.807
0.600 53.0 29000 18.5 36.4 54.7 1510 1198 0.793
0.625 53.0 29000 18.5 36.7 55.3 1607 1266 0.787

P8U-WV-INF-02 0.500 53.0 29000 25.3 30.0 49.6 900 987 1.10
P13U-W-NP-01 0.250 53.0 29000 19.6 30.0 46.6 249 322 1.30

0.313 53.0 29000 19.6 30.0 46.6 431 479 1.11
0.375 53.0 29000 19.6 30.0 46.6 618 636 1.03
0.400 53.0 29000 19.6 30.2 46.9 697 702 1.01
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Table A2. Details of Extended Corner Gusset Plates

Specimen

t Fy E L θ be Pc Pe

Pe/Pcin. ksi ksi in. deg in. kips kips

Sheng et al. (2002)

440×310×13.3×240 0.524 42.8 29008 11.3 39.8 11.9 244 333 1.36

440×310×13.3×310 0.524 42.8 29008 8.56 41.2 17.1 365 403 1.10

440×310×13.3×380 0.524 42.8 29008 5.80 42.5 22.8 499 496 0.994

390×200×13.3×240 0.524 42.8 29008 11.3 39.8 10.6 217 277 1.27

390×200×13.3×310 0.524 42.8 29008 8.56 41.2 14.4 308 335 1.09

390×200×13.3×380 0.524 42.8 29008 5.80 42.5 17.0 373 463 1.24

390×200×9.87×240 0.389 44.2 29008 11.3 37.7 10.2 149 197 1.32

390×200×9.87×310 0.389 44.2 29008 8.56 39.6 14.4 226 243 1.08

390×200×9.87×380 0.389 44.2 29008 5.80 41.5 17.0 281 327 1.16

390×200×6.5×240 0.256 39.9 29008 11.3 33.9 9.69 70.3 90.8 1.29

390×200×6.5×310 0.256 39.9 29008 8.56 37.0 14.1 118 126 1.06

390×200×6.5×380 0.256 39.9 29008 5.80 39.8 17.0 159 172 1.08

Rabinovitch and Cheng (1993)

A5 0.367 65.1 29878 15.2 31.6 16.3 242 204 0.843

Table A1. Details of Corner Gusset Plates (continued)

Specimen

t Fy E L θ be Pc Pe

Pe/Pcin. ksi ksi in. deg in. kips kips

White et al. (2013) continued
0.438 53.0 29000 19.6 31.7 49.1 845 792 0.937
0.500 53.0 29000 19.6 33.7 51.9 1096 957 0.873
0.625 53.0 29000 19.6 36.2 54.4 1557 1263 0.811

E1W-307SS 0.250 36.4 29000 13.1 32.2 25.7 177 190 1.07
0.313 36.4 29000 13.1 35.1 27.6 262 265 1.01
0.438 36.4 29000 13.1 38.2 29.7 432 409 0.947
0.500 36.4 29000 13.1 39.2 30.4 515 487 0.945

E2W-307LS 0.250 48.2 29000 18.1 30.0 27.3 162 199 1.23
0.313 48.2 29000 18.1 30.0 27.3 261 327 1.25
0.438 48.2 29000 18.1 33.5 29.9 500 546 1.09
0.500 48.2 29000 18.1 35.2 31.1 521 653 1.25
0.625 48.2 29000 18.1 37.4 32.9 664 852 1.28

E3W-307SL 0.250 46.6 29000 13.1 30.1 33.2 270 284 1.05
0.313 46.6 29000 13.1 33.6 36.6 423 369 0.872
0.375 46.6 29000 13.1 35.8 38.8 578 473 0.818
0.438 46.6 29000 13.1 37.2 40.4 733 573 0.782

E4W-490SS 0.250 46.4 29000 13.1 30.2 21.6 175 222 1.27
0.313 46.4 29000 13.1 33.6 23.3 269 299 1.11
0.438 46.4 29000 13.1 37.3 25.2 455 437 0.960

E5W-490LS 0.250 45.6 29000 18.1 30.0 21.5 126 148 1.18
0.313 45.6 29000 18.1 30.0 21.5 200 230 1.15
0.438 45.6 29000 18.1 33.9 23.4 376 402 1.07
0.500 45.6 29000 18.1 35.5 24.3 468 488 1.04
0.625 45.6 29000 18.1 37.6 25.4 650 638 0.981
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MATHEW REYNOLDS and CHIA-MING UANG

ABSTRACT

The equivalent axial load method is a design aid that aims to select candidate wide-flange beam-columns with minimal iteration. The method 
itself was described in previous editions of the AISC Steel Construction Manual but has been removed in recent editions. An expanded version 
of the tables for sizing of both shallow and deep beam-columns based on the latest edition of the AISC Manual is presented. Several examples 
of uniaxial and biaxially loaded beam-columns are provided to demonstrate the effectiveness of the method. The method is validated using a 
programmed heuristic that designed beam-columns from randomly generated scenarios.

Keywords: beam-column, equivalent axial load, design.

INTRODUCTION

The equivalent axial load method was first developed by 
Burgett (1973) to efficiently select a candidate shape for 

the design of steel W-shape beam-columns. In this method, 
the required moment is first converted into an equivalent 
axial load component by using the “m” factor before it is 
added to the required axial load. Together with the column 
design strength table in the AISC Steel Construction Man-
ual, a designer can use this equivalent axial load to select 
a candidate shape. The goal is that the candidate shape is 
either the most economical shape or very close to it. A table 
of m values was adopted into Part 3 (Column Design) of 
the 9th edition of the AISC Allowable Stress Design (ASD) 
Steel Construction Manual (1989) and the 1st edition of the 
AISC Load and Resistance Factor Design (LRFD) Steel 
Construction Manual (1986). The LRFD version of the table 
was found to produce erroneously large equivalent axial 
loads and was subsequently updated by Uang et al. (1990); 
these corrected values were incorporated into the 2nd edi-
tion of the AISC LRFD Manual (1994). Because column 
tables in these editions list shallow wide-flange shapes up to 
W14 shapes, m values were only derived for W-shapes up to 
a nominal depth of 14 in.

The 3rd edition of the AISC LRFD Manual (2001) saw 
the development of Part 6 for members subject to combined 

loading. This edition of the AISC Manual elected to adopt a 
method of using reciprocal coefficients of b, m, and n devel-
oped by Aminmansour (2000):

 
b

P

1

n
=
ϕ  

(1)

 
m

M
8

9 b nx
=

ϕ  
(2)

 
n

M

8

9 b ny
=

ϕ  
(3)

These factors represent the reciprocal of the axial, major-
axis bending, and minor-axis bending design strengths, 
respectively. Note that the m in this method does not relate to 
the m from the equivalent axial load method. It was proposed 
that an initial trial shape be evaluated by using Table 6-1 of 
the 3rd edition of the AISC LRFD Manual, which included 
median values of the reciprocals for each depth group (from 
W4 to W40 shapes). Applicable to shallow shapes and shapes 
deeper than W14, the proposed method to select a trial shape 
would be to use either the median m or b and solve for the 
required b or m. There was no formal guidance provided to 
determine the required depth of shape other than to focus on 
deep shapes when the moment demands dominate.

In the 13th (2005) and 14th (2011) editions of the uni-
fied AISC ASD and LRFD Steel Construction Manual, the 
method for selecting a trial shape by Aminmansour was 
removed and the tables of reciprocals became Table  6-1, 
where the reciprocals were renamed p, bx, and by. The lat-
est edition, the 15th, of the AISC Manual (AISC, 2017) 
presents a new way of organizing the beam-column design 
table. In this table, the information from the column design 
tables (Table 4-1) and beam design tables (Table 3-10) are 
presented side-by-side in Table 6-2. However, no guidance 
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is provided in the Manual on the selection of an initial trial 
beam-column W-shape for design purposes. Designers may 
resort to other resources—for example, a simplified table 
of m values for use in the equivalent axial load method in 
Geschwindner et al. (2017).

SCOPE

Using Table 6-2 in the 15th edition of the AISC Manual, it is 
believed that an updated m table for the equivalent axial load 
method will provide a straightforward and robust method-
ology for selecting a candidate wide-flange beam-column. 
This updated table will also encourage the use of shapes 
deeper than W14 (i.e., beam-type shapes) for beam-columns 
through the inclusion of m values up to W36 shapes. This 
is made possible through inclusion of shapes beyond W14 
being tabulated in AISC Manual Table  6-2. In addition, 
for the first time an equation has been developed to guide 
users on selecting an appropriate depth of W-shaped beam- 
columns subjected to major-axis bending.

DERIVATION

The design of W-shape beam-columns is covered in AISC 
Specification Section H (2016). The design of beam- 
columns is governed by one of two interaction equations:
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The equivalent axial load method rewrites these interac-
tion equations into Equations 4a and 4b.
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The left-hand side of these equations represents the equiv-
alent axial load, Peq. The coefficients m and u are defined in 
Equations 5 and 6.
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Because the shapes are assumed to be compact, the 
design flexural strength in the major and minor directions 
are governed by AISC Specification Sections F2 and F6, 
respectively. Similarly, the design axial strength is governed 
by AISC Specification Section E3 using the least radius of 
gyration, ry. Note that ϕc for computing Pc was 0.85 in the 1st 
edition of the AISC LRFD Specification, but was changed 
to and has remained 0.9 since the 13th edition.

The first step in deriving m values is to compute their 
value for every W-shape over a range of lengths. The range 
of W-shapes used for the derivation is limited to those which 
are classified as compact for Fy equal to 50 ksi. The values 
of m are then averaged across each nominal depth increment 
to provide an average m for each depth. For example, the 
m value for the W14 group is averaged across all weights 
between W14×61 to W14×311 (see Figure 1). Table 1 shows 
the computed values of m when the moment gradient adjust-
ment factor for lateral-torsional buckling (LTB), Cb, is equal 
to 1.0. Table 2 shows another set of m values based on the 
major-axis flexural strength reaching the nominal plastic 
moment, a condition that is a function of Lb and Cb values. 
This condition is automatically satisfied in the plastic LTB 
region—that is, Lb ≤ Lp. In the inelastic LTB region—that 
is, Lb < Lp < Lr, Cb needs to be sufficiently large (Cb = 1 at 
Lb = Lp and Cb = 1.43 at Lb = Lr). An even larger value of 
Cb (>1.43) is required to satisfy this condition in the elastic 
LTB region (Lb > Lr). Table 2 shows in light gray the values 
that are different from those in Table 1. Values in either table 
assume a yield stress equal to 50 ksi. In lieu of providing 
additional tables, it is found that the increase to 65 ksi yield 
stress results in an approximate reduction factor of 0.95 to 
these values.

Unless limited by factors like architectural limita-
tions, choosing the nominal shape depth of an economical Fig. 1. Values of m for W14 members.
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beam-column is not straightforward. Previous editions of 
the m table have included first approximation values that 
would assist in choosing a nominal depth range. Based on 
the nominal shape depth of the first trial shape, the user then 
can update the equivalent axial load based on the subse-
quent approximation m values for an improved shape. This 
approach may result in conservative designs as the efficiency 
of moving to a deeper shape when under the influence of rel-
atively high moment may not be realized unless the designer 
checks many different shapes. This effect can readily be 

observed by comparing the gradient of the equivalent axial 
load for a given set of required axial load and moment as 
one selects incrementally deeper shapes. For example, con-
sider a 16-ft-long beam-column subjected to an axial load 
of 500 kips and a major-axis bending moment of 700 kip-
ft. Using Table 1, Peq equals 1,480 kips when considering a 
W14 shape compared to 1,060 kips when considering a W27 
shape. A decrease of 30% of equivalent axial load is realized 
by moving to a deeper W-shape.

Instead of suggesting a first approximation for the value 

Table 1. Values of m and u (Fy = 50 ksia for Cb = 1.0)

Values of m Values  
of uLc (ft) 8 10 12 14 16 18 20 22 24+

W8 2.7 2.5 2.3 2 1.8 1.6 1.3 1.2 1 2.3

W10 2.2 2.1 2 1.9 1.8 1.6 1.4 1.3 1.2 2.3

W12 1.9 1.8 1.7 1.7 1.6 1.5 1.4 1.3 1.2 2.3

W14 1.6 1.6 1.5 1.5 1.4 1.4 1.3 1.2 1.2 2.3

W16 1.4 1.4 1.3 1.2 1.1 1 0.9 0.9 0.8 4.1

W18 1.3 1.2 1.2 1.1 1 1 0.9 0.8 0.7 4.1

W21 1.1 1.1 1 1 1 0.9 0.8 0.8 0.7 4.3

W24 1 1 0.9 0.9 0.9 0.8 0.8 0.7 0.7 4.4

W27 0.9 0.9 0.8 0.8 0.8 0.8 0.7 0.7 0.7 4.6

W30 0.8 0.8 0.8 0.8 0.7 0.7 0.7 0.7 0.6 4.8

W33 0.8 0.7 0.7 0.7 0.7 0.7 0.6 0.6 0.6 5.1

W36 0.7 0.7 0.7 0.6 0.6 0.6 0.6 0.5 0.5 6.1
a For Fy = 65 ksi, multiply m value by 0.95.

Table 2. Values of m and u for High Moment Gradient (Fy = 50 ksi, Mcx = Mp)a

Values of m Values  
of uLc (ft) 8 10 12 14 16 18 20 22 24+

W8 2.6 2.3 2.1 1.8 1.5 1.3 1 0.9 0.7 2.3

W10 2.2 2.1 1.9 1.7 1.6 1.4 1.2 1 0.9 2.3

W12 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1 2.3

W14 1.6 1.6 1.5 1.5 1.4 1.3 1.2 1.1 1 2.3

W16 1.4 1.3 1.2 1 0.9 0.8 0.7 0.6 0.5 4.1

W18 1.3 1.2 1.1 1 0.9 0.8 0.7 0.6 0.6 4.1

W21 1.1 1.1 1 0.9 0.9 0.8 0.7 0.6 0.6 4.3

W24 1 1 0.9 0.9 0.8 0.7 0.7 0.6 0.6 4.4

W27 0.9 0.9 0.8 0.8 0.8 0.7 0.7 0.6 0.6 4.6

W30 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.5 4.8

W33 0.8 0.7 0.7 0.7 0.6 0.6 0.6 0.5 0.5 5.1

W36 0.7 0.7 0.7 0.6 0.6 0.5 0.5 0.5 0.4 6.1
a For convenience, values different from Table 1 are shown in gray.
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of m, an approximate depth of shape can be computed from 
Equation 7, which has been derived based on curve-fitting 
randomly generated design scenarios compared with the 
most efficient W-shape as determined from an exhaustive 
analysis. The exhaustive analysis determines the most effi-
cient wide-flange shape after performing the appropriate 
axial and bending interaction check using AISC Specifica-
tion Equation H1-1a or H1-1b on every shape in the AISC 
W-shape database.
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where the units of Mu and Pu are in kip-ft and kips, Lc in ft, 
and D in inches.

The first term, P L1.2 u c
4 , represents the most efficient 

depth of column for a given axial load and length. The 
second term, M L1.1 u c

4 , represents the additional depth 
required for a given major-axis flexural demand. The last 
term is a correction factor that dominates for shorter col-
umns with lengths less than 14 ft. Considering the preceding 
example, the estimated depth as computed using Equation 7 
is 23.4 in. Therefore, the closest depth available of 24 in. can 
be chosen for a trial W-shape. The most efficient W-shape, 
determined by exhaustive analysis, is a W24×131. This step 
(using Equation 7) is only required if the designer has no 
other considerations on the depth of the shape.

Limitations

The key limitation to the values of m presented in Tables 1 
and 2 is the assumption that the unbraced length for bend-
ing, Lb, is equal to the effective length of the column for 
minor-axis buckling. Two common situations where this 
limitation is violated are:

1. The beam-column has some end fixity or minor-axis 
bracing.

2. The major-axis flexural buckling governs such that Lcy 

eq  > Lcy, where Lcy eq represents the equivalent length 
in the minor-axis as determined using AISC Manual 
Equation 4–1 (2017), L //L r rcy eq cx x y( )= .

In both situations, it is recommended to conservatively 
use the unbraced length for bending as the length to use 
with the m table to start the design process. More iterations 
using AISC Specification Equation H1-1a or H1-1b may be 
required to accurately account for these effects.

Second-Order and Biaxial Bending Considerations

Beam-columns may be subject to second-order amplifi-
cation of the applied moments. Using B1 and B2 from the 
approximate second-order analysis in AISC Specification 
Appendix 8 results in an iterative procedure because the 

amplification of flexural demands depends on the flexural 
stiffness. Some designers suggest that a value of B1 equal to 
1.1 be chosen for trial selection for sidesway inhibited beam-
columns. This value is found to be adequate for conserva-
tive estimation for beam-columns of moderate length. As a 
design aid, a similar procedure that was used to develop m 
values was implemented to develop approximate B1 values 
for the amplification of major-axis flexural demands. To 
derive the B1 value, Equation 8 was used by assuming a fac-
tored axial load of 0.25AgFy:
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where Cm is the equivalent uniform moment factor, and Pel 
is the elastic critical buckling strength in the plane of bend-
ing. The values of B1 are then averaged across each nomi-
nal W-shape depth group (see Figure 2). Figure 3 shows the 
variation of B1 for major-axis bending for each nominal 
depth group. For second-order amplification of sway effects 
or minor-axis bending, arbitrary values of B1 and B2 should 
be chosen based on experience.

For a beam-column with biaxial bending, a conversion 
factor, u, between minor- and major-axis design flexural 
strengths is required (see Equations 4 and 6). Previous edi-
tions of the AISC Manual included a single value of u in the 
column design table based on the ratio of plastic moment 
capacities. A similar procedure was used for the develop-
ment of the B1 design aid was implemented to produce val-
ues of u for each depth group for a range of lengths (see 
Figure 4). Note that the influence of length arises from the 
length dependence of major-axis LTB strength. The last col-
umn in Tables 1 and 2 shows the recommended u value for 
each nominal depth group; other than providing a complex 

Fig. 2. B1 for W14 members (major axis).
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equation to reflect the dependence of member length, the 
recommended u value is based on the major-axis plastic 
moment for Mcx.

RECOMMENDED DESIGN PROCEDURE

1. For a given Lc, select an appropriate value of m from 
Table 1 (for Cb close to 1.0) or Table 2 (for Cb between 
1.5 and 2.0). If the nominal depth of the shape is not 
predetermined, use Equation 7 to estimate a shape depth. 
Select or determine B1 (Figure 2) and u (Tables 1 and 2 or 
Figure 4) if there is biaxial bending.

2. Calculate the equivalent axial load, Peq  = Pr  + mMrx  + 
muMry. Use the first-order flexural demands and estimated 
values of B1 and B2 to calculate Mrx and Mry.

3. If Pr/Peq < 0.2, modify the equivalent axial load as 

P
P

mM muM
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9
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r
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4. Select a candidate shape from AISC Manual Table 6-2. 
Alternatively, AISC Manual Table  4-1  may be used for 
W-shapes with a nominal depth no greater than 14 in. If 
an efficient candidate shape cannot be found within the 
selected nominal depth group, move to step 5. Otherwise, 
proceed to step 6.

5. Consider shapes of the lesser or greater nominal depth 
group, and select new m, B1, and u values. Repeat steps 2 
through 4.

6. Verify the adequacy of the W-shape using the AISC 
Specification interaction Equations H1-1a or H1-b. This 
is easily performed using AISC Manual Table 6-2, which 

lists the design axial and flexural strength of each shape. 
If the shape does not satisfy the interaction formula or 
more efficiency is sought, additional iterations may be 
performed.

Several representative examples are included in the 
Appendix to illustrate the efficiency of the design procedure.

VALIDATION

To test the values contained in Tables 1 and 2, a design heu-
ristic was programmed to compare the W-shape determined 
from the equivalent axial load method to the most efficient 
W-shape as determined from exhaustive analysis. The heu-
ristic uses the depth estimate from Equation 7 to select the 
closest applicable nominal depth for initial shape selection. 
If the heuristic fails to determine a W-shape with a demand-
capacity ratio (DCR) between 0.85 and 1.0 (see Equation 9) 
within the first nominal depth group selected, then the heu-
ristic is permitted one additional adjacent nominal depth 
group for candidate selection. This DCR range was chosen 
to represent an adequate level of efficiency a designer might 
use in selecting a beam-column shape. The heuristic uses 
AISC Manual Table 6-2 to determine Pc. A tabulated ver-
sion of Figure  3 is provided to the heuristic for an initial 
estimate of B1. The error in the equivalent axial load method 
is then determined by comparing the weight of the shape as 
determined from the design heuristic and the most efficient 
shape determined by exhaustive analysis (see Equation 10).
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Fig. 3. Value of B1 (major-axis bending). Fig. 4. Value of u.
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designer can use to compare against tabulated design axial 
strengths. This methodology simplifies the candidate selec-
tion of beam-columns by reducing the number of iterations 
a designer needs to perform while using the tabulated design 
values found in the AISC Steel Construction Manual. To use 
the method, a designer uses values of m found in Tables 1 or 
2, which have been tabulated beyond shapes of 14-in. nomi-
nal depths. This updated and expanded m table in combi-
nation with AISC Manual Table  6-2 provides a powerful 
methodology in selecting candidate W-shapes. Once a can-
didate shape is selected, the governing interaction equation 
can be verified using AISC Manual Table  6-2. Potential 
inefficiencies are avoided by using Equation 7 to select the 
appropriate trial depth, which encourages the use of deeper 
and more efficient W-shapes for bending dominated beam-
columns. Simplified u factors are provided in Tables 1 and 2 
that can be used for biaxial bending design problems.

APPENDIX

Example 1. Select an economical W12 shape for a member with minor-axis effective length and unbraced beam length equal 
to 12 ft. The factored axial load and moments calculated from a first-order structural analysis are given as Pu = 200 kips, Mu1 
= 100 kip-ft, and Mu2 = −200 kip-ft, where Mu1 and Mu2 are the major-axis moments at member ends. The negative sign of Mu2 
represents reverse-curvature bending. Assume minor-axis bending is negligible.

Solution:

1. Select m = 17 from Table 2. Because Cm = 0.6 − 0.4(M1/M2) = 0.4, we assume B1 = 1.0 (Equation 8).

2. Calculate the equivalent axial load:

200 kips 1.7 200 kip-ft

500 kips

( )= +
=

P P mM muM Peq r rx ry c= + + ≤

 

(4a)

where Weq is the unit weight of the shape determined using 
the equivalent axial load method, and Wact is the unit weight 
of the most efficient shape for the given force demands.

Figure 5 shows the probability density function (PDF) of 
the error obtained after performing 10,000 randomly gener-
ated uniaxial design scenarios. The mean error was equal to 
+0.5%. Integrating the PDF results in a 90% probability of 
selecting a shape within 5% of the most efficient shape in 
terms of unit weight. Additionally, it was found that 77% of 
the time the shape was selected from the first nominal depth 
based on Equation 7. Otherwise, it was found to be within 
one adjacent group.

CONCLUSION

The equivalent axial load method consists of converting the 
minor- and major-axis bending moments into an equiva-
lent axial load for adding to the applied axial load that a 

Fig. 5. Probability distribution of percentage error of the equivalent axial load method.
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3. Because Pr/Peq = 200 kips/500 kips = 0.4000 ≥ 0.2, the assumption of using Equation 4a was correct and no changes are 
required.

4. Using AISC Manual Table 6-2, select a W12×53 as the most economical shape with ϕcPn = 549 kips.

5. No revision is required because an appropriate shape was found.

6. Check the appropriate interaction using AISC Specification Equation H1-1a and AISC Manual Table 6-2. Note that the moment 
gradient gives Cb = 217, which results in ϕbMnx = 292 kip-ft (for Lb = 0 ft)  rather than the value listed for Lb = 12 ft.
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Example 2. Select an economical W-shape for an 18-ft-long member in a braced frame assuming pinned end connections. The 
factored axial loads and moment calculated from a first-order structural analysis are given as Pu = 600 kips and Mu = 350 kip-ft 
due to a transverse loading. Assume minor-axis bending is negligible and Cb = 10.

Solution:

1. Use the first two terms of Equation 7 to estimate the depth (the third term is small for Lc > 12 ft).

P L M L1.2 1.1 22.0 in.u c u c
4 4+ =  (from Eq. 7)

 Select the W21 group as the first estimate, and select m = 0.9 from Table 1. Because Cm = 10, the value of B1 may be determined 
from Figure 3 as 1.03.

2. Calculate the equivalent axial load:

P P mM muM Peq r rx ry c= + + ≤
600 kips 0.9 350 kip-ft 1.03

924 kips

[ ]( )= +
=  

(4a)

3. Because Pr/Peq = 600 kips/924 kips = 0.650 ≥ 0.2, the assumption of using Equation 4a was correct and no changes are 
required.

4. Using AISC Manual Table 6-2, select a W21×111 as the most economical shape with ϕcPn = 978 kips.

6. Check the appropriate interaction using AISC Specification Equation H1-1a and AISC Manual Table 6-2. The actual B1 value 
is determined to be 1.04.
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(Spec. Eq. H1-1a)
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Note: If the designer had chosen a W24 section in Step 1, the resulting Peq would have been 888 kips, which would have permitted 
the selection of the slender W24×104 shape because AISC Manual Table 6-2 already includes the reduction for effective widths 
of slender elements. Checking the interaction formula of this shape results in a DCR of 1.00; either shape is a valid selection.

Example 3. Select an economical shape for a member with the major- and minor-axis effective lengths and unbraced length 
equal to 18 ft. The factored axial load and moments calculated from a first-order structural analysis are given as Pu = 1,150 kips, 
Mu1 = 760 kip-ft, and Mu2 = −760 kip-ft, where Mu1 and Mu2 are the major-axis moments at member ends. Assume minor-axis 
bending is negligible.
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Solution:

1. Use the first two terms of Equation 7 to estimate the depth (third term is small for Lc > 12 ft).

P L M L1.2 1.1 26.3 in.u cu c
4 4+ =  (from Eq. 7)

 The value of Cb is expected to be large because the member is bent in double curvature. Therefore, select m as 0.7 from Table 2, 
assuming a nominal depth of 27 in. Because Cm = 0.6 − 0.4(M1/M2) = 0.2, determine B1 = 1.0 using Equation 8.

2. Calculate the equivalent axial load:

P P mM muM Peq r rx ry c= + + ≤
1,150 kips 0.7(760 kip-ft)

1,680 kips

= +
=  

(4a)

3. Because Pr/Peq ≥ 0.2, the assumption of using Equation 4a was correct and no changes are required.

4. Using AISC Manual Table 6-2, select a W27×178 as the most economical shape with ϕcPn = 1,710 kips.

5. No revision is required because an appropriate shape was found.

6. Check the appropriate interaction using AISC Specification Equation H1–1a and AISC Manual Table  6-2. Note that the 
moment gradient gives Cb = 2.3, which results in ϕbMnx = 2,140 kip-ft (for Lb = 0 ft) rather than the value listed for Lb = 18 ft.
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Example 4. Select an economical W12 shape for a 20-ft-long member in a braced frame. The effective length factor, K, is 
assumed to be 1.0 in both directions. The factored axial load and moments calculated from a first-order structural analysis are 
given as Pu = 400 kips, Mu1 = 200 kip-ft, and Mu2 = 200 kip-ft, where Mu1 and Mu2 are the major-axis moments at member ends. 
Assume a minor-axis bending moment of Muy = 50 kip-ft due to the application of a transverse load.

Solution:

1. Select m = 1.4 from Table 1. Because Cm = 10, the value of B1 for major-axis bending may be determined from Figure 3 as 
1.09. The value of u is determined to be 2.0 from Figure 4. The value of B1 for minor-axis bending is assumed to be 1.3.

2. Calculate the equivalent axial load: 

(4a)P P mM muM Peq r rx r y c= + + ≤
400 kips 1.4 200 kip-ft 1.09 50 kip-ft 2.0 1.3

887 kips

[ ]( ) ( )( )= + +
=

3. Because Pr/Peq ≥ 0.2, the assumption of using Equation 4a was correct and no changes are required.

4. Using AISC Manual Table 6-2, select a W12×106 as the most economical shape with ϕcPn = 908 kips.

6. Check the appropriate interaction using AISC Manual Table 6-2. The actual major- and minor-axis values of B1 are 1.09 and 
1.37, respectively. Cb is equal to 1.0.
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Note: If the designer had instead used u = 23 from Table 1, the equivalent axial load, Peq, would be equal to 915 kips. Because 
this is marginally greater than ϕcPn of W12×106 at 20 ft, the designer may elect to initially choose a W12×120 instead, but expect 
a DCR of approximately 0.89 (determined as 915 kips/1,030 kips). The actual DCR for the W12×120 is found to be 0.87 after 
checking the interaction formula using AISC Specification Eq. H1–1a.
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ABSTRACT

This paper explains the vibration evaluation methods for floors supporting sensitive equipment in the second edition of AISC Design Guide 11, 
Vibrations of Steel-Framed Structural Systems Due to Human Activity. It presents new experimentally verified equations that are simplified 
for practical implementation. Sensitive equipment tolerance limits are stated in numerous forms, including peak acceleration and various 
spectral acceleration and velocity. For this reason, response predictions are given in terms of all tolerance limit forms that are commonly 
used. The most severe responses of lower frequency floors to walking are due to resonant buildups, whereas the most severe responses of 
higher frequency floors are due to a series of individual footstep impulses; equations are given for both. Because the sensitive equipment 
tolerance limit is objective, each equation includes a calibration factor that results in a high probability that the predicted response will exceed 
the actual response.

Keywords: vibration, serviceability, floors, sensitive equipment.

INTRODUCTION

S teel-framed floors commonly support vibration- 
sensitive equipment in hospitals, laboratories, and other 

modern facilities. Sensitive equipment vibration tolerance 
limits are usually stringent, so walking vibration service-
ability often requires much larger member sizes than those 
required for strength, deflection, or human comfort, even in 
quiet areas such as offices or residences. The consequence of 
objectionable vibration usually involves expensive and dif-
ficult retrofit solutions. The consequence of an overdesign is 
excessive steel tonnage. Thus, it is important that engineers 
have access to prediction methods that are accurate and have 
known levels of conservatism.

Until 2016, vibrations of floors supporting sensitive 
equipment had been evaluated using the American Institute 
of Steel Construction (AISC) Design Guide 11, Floor Vibra-
tion Due to Human Activity (Murray et al., 1997) Chapter 6, 
which is based on an approach suggested by Ungar and 
White (1979).

In recent years, updated response prediction methods 
have been developed (Young and Willford, 2001; Willford 
et al., 2007a, 2007b) and specialized by the writers for floors 

supporting sensitive equipment (Liu and Davis, 2015; Liu, 
2015). These updated methods are the basis of Chapter 6 of 
the second edition of Design Guide 11 Vibrations of Steel-
Framed Structural Systems Due to Human Activity (Mur-
ray et al., 2016). The purpose of this paper is to explain the 
methods and their design implementation.

The paper is organized into the following sections:

• Tolerance limits for vibration-sensitive equipment

• Prediction of modal properties

• Forces due to walking

• Prediction of resonant responses

• Prediction of impulse responses

• Response prediction

• Commentary on first and second editions of AISC Design 
Guide 11, Chapter 6

• Conclusions

TOLERANCE LIMITS FOR  
VIBRATION-SENSITIVE EQUIPMENT

Equipment manufacturers provide specific tolerance limits 
in terms of various vibration measures, for example, wave-
form peak acceleration, narrowband spectral acceleration, 
and one-third octave spectral velocity. An example of mea-
sured response to walking, showing the acceleration wave-
form, narrowband acceleration spectrum, and one-third 
octave velocity spectrum, is in Figure 1. Such specific limits 
should be used when possible.
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Spectral limits can be converted from displacement to 
velocity or from velocity to acceleration by multiplying by 
2πƒ, where ƒ is the frequency. For example, if the velocity 
limit at 8 Hz is 3000 μin./sec (mips), then the corresponding 
acceleration limit at 8 Hz is 0.151 in./sec2 = 0.0391%g.

Most spectral limits are in terms of root-mean-square 
(RMS) accelerations or velocities, but occasionally they are 
in terms of peak quantities. A peak spectral limit is con-
verted to RMS by multiplying by 0.7071. Often, the type of 
spectrum, peak versus RMS, is not clear; in such cases, the 
equipment manufacturer should be contacted.

If the type, but not model, of equipment has been iden-
tified, or if the manufacturer does not provide a specific 
limit, then generic tolerance limits should be used. The 
most common generic limits are the vibration criterion (VC) 
curves (Ungar et al., 2006) that are the basis of AISC Design 
Guide 11, Table 6-2, and are stated in terms of RMS velocity 
in one-third octave bands of frequency.

Tolerance limits for sensitive equipment are usually con-
sidered definitive. “Failure” of the floor vibration limit state 

for sensitive equipment is considered to correspond to equip-
ment malfunction. Equipment manufacturers often require 
site surveys in which actual velocity levels are compared to 
the tolerance limit. When the measured values exceed the 
limit, difficult and expensive retrofit solutions are usually 
required. Thus, in the following sections, the objective is 
to predict the vibration magnitudes that will be measured 
by the site surveyor, and a calibration factor is included 
to ensure a low probability that the measured values will 
exceed the ones predicted during design.

PREDICTION OF MODAL PROPERTIES

Fundamental modal properties can be determined using the 
following equations that are suitable for manual calcula-
tions, finite element analysis, or other rational methods.

For typical rectangular floor bays with approximately 
uniformly distributed mass, the fundamental natural fre-
quency, fn, can be computed using the following equation. 
Its predictions are accurate according to Pabian et al. (2013), 
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Fig. 1. Example measured vibration due to walking.
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and it is similar to the equation in the British Steel Construc-
tion Institute’s P354 publication (Smith et al., 2009).

 f f fmin , )(n b g=  (1)

where fb and fg are the beam and girder natural frequencies 
from AISC Design Guide 11, Chapter 3.

The effective weight, W, of the fundamental mode can be 
computed using the following equation from AISC Design 
Guide 11 Chapter 4. W is double the weight of the effective 
mass, Meff for load and acceleration at mid-bay (Allen and 
Murray, 1993).

 
W W Wb

b g
b

g

b g
g=

+Δ Δ Δ
ΔΔ

Δ
+

+  
(2)

where
Δb, Δg =  beam and girder mode deflections (AISC 

Design Guide 11, Chapter 3)

Wb, Wg =  beam and girder mode effective weights (AISC 
Design Guide 11, Chapter 4)

Often, the equipment or walker (or both) is away from 
mid-bay. This is considered in the Response Prediction sec-
tion by scaling the mid-bay response by the ratio of the mode 
shape values.

For typical rectangular bays, the mode shape can be esti-
mated as follows. If the beam natural frequency is lower 
than the girder natural frequency, then the mode shape is 
assumed to be the beam bending mode shown in Figure 2. 
In this assumed shape, the beam deflection is in a half sine 
wave pattern, with a maximum value of 1.0 at mid-bay. Per-
pendicular to the beams, the mode shape is assumed to be 
a half sine wave that extends to the edges of the adjacent 
bays. If the girder natural frequency is lower than the beam 
natural frequency, the mode shape is assumed to be a girder 
bending mode, which is similar to Figure 2 except that the 
half-sine wave parallel to the girders has a length of Lg. 
Equation 3 can be used to compute the mode shape value, 
ϕ, at the equipment or walker location. The equations can be 
adjusted for other boundary conditions or framing arrange-
ments (e.g., significantly different girder lengths), based on 
engineering judgment.

Alternatively, the natural frequencies and mode shapes 
can be predicted using finite element analysis per AISC 
Design Guide 11, Chapter 7.

The viscous damping ratio, β, is estimated using AISC 
Design Guide 11, Chapter 4. The damping ratio varies from 
approximately 0.02 for laboratory floors with ceiling below 
but no partitions to 0.05 for floor bays with significant 
full-height partitions. It should be noted that the suggested 
damping ratios may differ considerably from the actual 
ones. Because the predicted response depends on β, there is 
considerable uncertainty in the prediction.
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FORCES DUE TO WALKING

For sensitive equipment evaluations, AISC Design Guide 11 
defines four walking speeds: very slow, slow, moderate, and 
fast. Very slow walking applies in areas with short walking 
paths, such as a medical imaging control room or a small 
laboratory. For this category, the walking path is too short 
for a series of nearly identical footsteps that might cause a 
resonant buildup. Fast walking applies in areas, such as cor-
ridors, that do not limit the speed of walking. Slow and mod-
erate walking are intermediate categories that can be used 
based on judgment. Table 1  indicates the step frequencies 
for these categories. The minimum frequency of slow walk-
ing, 1.5 Hz, is near the lower end of regular step frequencies 
listed in AISC Design Guide 11, Chapter 1. Similarly, the 
maximum frequency of fast walking is at the higher end of 
regular step frequencies, 2.2 Hz. The boundaries between 
slow and moderate walking, and moderate and fast walking, 
are approximately at the one-third points between 1.5 Hz 
and 2.2 Hz.

Fig. 2. Beam bending mode shape.
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Forces due to walking have been measured by various 
researchers. The measurements by Rainer et al. (1988) and 
Kerr (1998) have been influential in North American (Mur-
ray et al., 1997; Murray et al., 2016; NRCC, 2010) and Euro-
pean (Willford and Young, 2006; Smith et al., 2009) design 
guides. The footstep forces used for sensitive equipment in 
AISC Design Guide 11 are based on the database of more 
than 800  measurements by Kerr and others, reported in 
Willford et al. (2007a; 2007b).

Fourier Series

For the purpose of computing resonant responses due to 
walking, the walking force, F(t), is represented by the fol-
lowing Fourier series limited to four harmonics.

 
F t Q if t( ) sin 2i step i

i 1

4
( )= α π − ϕ∑

=  
(4)

where
Q = reference bodyweight, lb

fstep = step frequency, Hz

t = time, sec

αi = dynamic coefficient of the ith harmonic

ϕi = phase lag of the ith harmonic

The reference bodyweight is 168 lb to be consistent with 
Willford and Young (2006) and Smith et al. (2009), which 
use dynamic coefficients similar to those used herein.

The phase lag has extremely high variability. Zivanovic 
et al. (2007) indicated that measured phase lags varied uni-
formly from −π to π. In the formulations described herein, 
the phase lag is not required.

Willford et al. (2007a) provided a good summary of 
dynamic coefficients (called “dynamic load factors” in their 
paper) measured by several researchers, including Kerr 
(1998). They plotted the dynamic coefficients for the first 
four harmonics versus frequency. The plots indicate: (1) the 
dynamic coefficients vary widely; (2) dynamic coefficients 
decrease slightly with increasing harmonic number; and 
(3) for a given harmonic, the dynamic coefficient increases 
slightly with increasing step frequency. The approximate 
average dynamic coefficients for the first four harmonics 
are 0.4, 0.07, 0.06, and 0.05.

The second through fourth harmonic dynamic coef-
ficients at mid-range harmonic frequencies—product of 
mid-range step frequency from Table 1 and harmonic num-
ber—were curve-fit for slow, moderate, and fast walking to 
facilitate the development of resonant response prediction 
equations. The curve-fit for slow walking, for example, is in 
Figure 3. The resulting equation is:

 e0.0985 fα = −γ
 (5)

where
f = frequency, Hz

γ =  0.1, 0.09, and 0.08 for slow, moderate, and fast walk-
ing, respectively

Effective Impulse

From basic mechanics, the peak velocity of a mass, M, 
immediately after an impulse, I, is:

 
v

I

M
p =

 
(6)

This relationship can be used to compute the peak velocity 
immediately after a footstep. The walking force is expressed 
as an effective impulse, Ieff in lb-sec, and the mass is the 
effective mass of the floor bay, Meff, in lb-sec2/in.

Table 1. Step Frequencies

Category Range (Hz) Mid-Range (Hz)

Very slow 1.0–1.5 1.25

Slow 1.5–1.7 1.60

Moderate 1.7–2.0 1.85

Fast 2.0–2.2 2.10

Fig. 3. Example curve-fit of dynamic coefficients.
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The following effective impulse was adapted from Young 
and Willford (2001). They computed peak velocities of ana-
lytical representations of floors subjected to 880 measured 
footstep forces from Kerr (1998). [More information is 
found in Liu and Davis (2015).] For each case, the effective 
impulse was the product of the peak velocity and mass. The 
results indicated that the effective impulse increases as the 
step frequency increases and decreases as the natural fre-
quency increases. The average effective impulse from their 
study is:

 
I

f

f

Q

17.8
eff

step

n

1.43

1.30=
 

(7)

where fstep is the step frequency. For the research described 
herein, fstep is the mid-range frequency from Table 1.

PREDICTION OF RESONANT RESPONSES

According to Rainer et al. (1988), only the “first three or 
four harmonics comprise the main dynamic components of 

walking forces.” Thus, resonant responses are possible if the 
natural frequency does not exceed the maximum frequency 
of the fourth harmonic, which is called f4max in AISC Design 
Guide 11. For slow walking, the maximum step frequency 
from Table 1 is 1.7 Hz, so f4max = (1.7 Hz)(4) = 6.8 Hz. Simi-
larly, for moderate and fast walking, respectively, f4max is 
8.0 Hz and 8.8 Hz.

Figure 4 is an example resonant response of a floor with a 
natural frequency of 5.18 Hz, due to walking at 5.18 Hz/3 = 
1.73  Hz. The waveform indicates a resonant buildup fol-
lowed by a short duration of sinusoidal vibration with nearly 
constant amplitude. According to research by the writers 
and their colleagues, the average number of footsteps in a 
resonant buildup is approximately six.

Figure 4(b) indicates very low responses to the first and 
second harmonics (1.73 Hz and 3.46 Hz) and that the vast 
majority of the response is due to the third harmonic, which 
is at the natural frequency—5.18 Hz in this example. Thus, 
the bay can be idealized as a single degree-of-freedom 
(SDOF) system with the natural frequency, effective mass, 
and damping of the bay, subjected to the harmonic force 
causing resonance. Figure 5 is the computed response to the 
harmonic, with frequency equaling the natural frequency 
and a 3-sec resonant buildup, followed by viscous decay.

Peak Acceleration and Velocity Due to 
Resonant Response

Using an SDOF idealization, the predicted peak accelera-
tion, ap, is the product of a calibration factor, R, steady-state 
acceleration, aSteadyState, due to the harmonic force at the nat-
ural frequency, and resonant buildup factor, ρ (Liu, 2015), 
as shown in Equation 8. The steady-state acceleration and 
resonant buildup factor are computed using classical equa-
tions for an SDOF system subjected to a sinusoidal load at 
resonance (Chopra, 2011; Clough and Penzien, 1993).
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Fig. 4. Example measured resonant response.
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transformation of the waveform in Figure 5. The peak accel-
eration in the waveform is from Equation 8 with the calibra-
tion factor removed.

The resonant buildup is assumed to be 3 sec long, which is 
approximately the average duration considering six footsteps 
at the average step frequency of 2 Hz. The remainder of the 
waveform is viscous decay. The duration of the waveform 
has a significant influence on the computed spectral accel-
eration. Shorter durations result in higher spectral accelera-
tions because a larger portion of the waveform consists of 
the buildup, which has higher responses than the decay por-
tion. The shortest reasonable duration that is expected to be 
used by site surveyors is 8.0 sec because this results in a 
0.125-Hz frequency resolution. Shorter durations result in 
spectra that are overly coarse. Thus, 8 sec is used herein.

The Fourier transformation results in the following 
equation for the maximum magnitude. See Liu (2015) 
for a detailed derivation. Note that the result is an RMS 
acceleration.
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where
T = total duration of waveform, sec

rt =  duration of decay divided by duration of buildup

The variable, C, is:

 C H12= πβ  (12)

where H is the number of the harmonic that causes reso-
nance, estimated by:

 
= /H f fn step 
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where
R = calibration factor

TBU = duration of resonant buildup, sec

αh =  average dynamic coefficient of the harmonic caus-
ing resonance

The effective mass of the fundamental mode, Meff, is half 
the mass of the effective weight, W, from AISC Design 
Guide 11, Chapter 4 (Murray et al., 1997). Note that this 
effective mass applies when the load and acceleration are at 
mid-bay.

Liu (2015) compared predictions from Equation 8, with 
R = 1.0, with 65 measurements to determine the accuracy 
and establish the calibration factor. The predictions were 
slightly conservative with an average measured-to-predicted 
ratio of 0.870 and a coefficient of variation (COV) of 33%. 
An R value of 1.3 results in 10% of measured accelerations 
exceeding predicted accelerations.

Equation 8 was simplified for design guide implementa-
tion as follows. The damping ratio is usually between 0.03 
and 0.05. The average resonant buildup is due to approxi-
mately six footsteps, so the resonant buildup duration, 
TBU, ranges from 6/2.2 Hz = 2.7 sec to 6/1.6 Hz = 3.8 sec. 
For these values of β and TBU, and fn ≥ 6 Hz, the resonant 
buildup factor, ρ, is between 0.95 and 1.0, so it is conserva-
tively taken as 1.0.

After setting R equal to 1.3, substituting Equation 5 for 
αh, setting ρ equal to 1.0 and simplifying, the peak accelera-
tion due to a resonant buildup is:
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(9)

where g is the gravitational acceleration and the other vari-
ables are defined previously.

Figure  6 summarizes the measured-to-predicted ratio 
for the measurements by Liu (2015) and predictions from 
Equation 9.

The peak velocity is approximately equal to the peak 
acceleration divided by 2πfn. In units of mips, the peak 
velocity due to a resonant buildup is:
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(10)

Maximum Narrowband Acceleration and Velocity Due 
to a Resonant Response

The maximum narrowband spectral acceleration, shown 
as the highest peak in Figure 1(b), is computed by Fourier 
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simplifying, the narrowband spectral velocity maximum 
magnitude—in mips, RMS—due to a resonant buildup is:
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(15)

Maximum One-Third Octave Acceleration and Velocity 
Due to a Resonant Response

The one-third octave velocity is determined by bandwidth 
conversion from narrow bands to the bands summarized in 
Table 2. A one-third octave band encompasses many narrow 
bands, exemplified by the band with 5 Hz center frequency 
in Figure 8, so it contains the summation of the energies of 
the spectral accelerations in the contained narrow bands.

The energy of the signal at a narrowband frequency, f, is:

 E f A f( ) ( )NB NB R, 1
2= =  (16)

where ANB,R=1 is the peak acceleration from Equation  11 
with R = 1.0.

The step frequency, fstep is the mid-range frequency from 
Table 1.

For the database of floors mentioned previously, the aver-
age measured-to-predicted ratio, with R = 1.0, was 0.780 and 
the COV was 46.2%. The calibration factor, R, for a 10% 
probability of exceedance, is 1.3 (Liu, 2015).

Equation 11 was simplified for design guide implementa-
tion as follows. The second term was omitted because it is 
much smaller than C. After substituting Equation 5 for αh, 
including R = 1.3, and simplifying, the narrowband spectral 
acceleration maximum RMS magnitude is:
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Figure  7 summarizes the measured-to-predicted ratio 
for the aforementioned measurements and predictions from 
Equation 14.

The narrowband spectral velocity equals the spectral 
acceleration divided by 2πf for all frequencies, f. After 
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Table 2. One-Third Octave Bands

Lower Limit (Hz) Center Frequency (Hz) Upper Limit (Hz)

3.55 4.0 4.47

4.47 5.0 5.62

5.62 6.3 7.08

7.08 8.0 8.91

8.91 10.0 11.2

11.2 12.5 14.1

14.1 16.0 17.8

17.8 20.0 22.4
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The energy spectral density (ESD) at frequency, f, is:

 
ESD f A f f( ) ( ) /NB R, 1

2= Δ=  
(17)

where the narrowband spectral resolution, Δf, is the recipro-
cal of the duration, T, of the walking event used to compute 
the narrowband spectrum.

The energy of the signal within a one-third octave band is 
the area under the ESD curve in the one-third octave band 
(Liu, 2015). Typically, one peak in the narrowband spec-
trum [Figure 1(b)] fits within a one-third octave band. This 
peak can be idealized as a triangle with maximum mag-
nitude equal to the value from Equation  11 with R  = 1.0. 
The width of the triangle is approximately 10% of the har-
monic frequency (Brownjohn et al., 2004), which equals the 
natural frequency. The energy spectral density of this peak 
is slightly curved as shown in the example in Figure 9. In 
this example, the natural frequency is 6.2 Hz, so the peak 
is 0.62 Hz wide. This peak fits inside the 6.3-Hz one-third 
octave band, which has lower and upper bounds shown 
dashed on the plot.

The energy of the signal within the one-third octave band 
is:
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where
ANB,R=1 =  spectral acceleration magnitude from Equa-

tion 11 with R = 1.0

T =  duration of waveform used in the Fourier trans-
formation, 8.0 sec

Using Equations  16 and 18, the uncalibrated one-third 
octave acceleration is derived as follows. (The uncalibrated 

version is carried through this calculation because the cali-
bration factor is potentially different for narrowband accel-
eration and one-third octave acceleration.)
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The one-third octave velocity is the acceleration divided 
by 2πfn:
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For the database of floors mentioned above, the aver-
age measured-to-predicted velocity ratio was 0.640 and the 
COV was 38.7%. The calibration factor, R, for a 10% prob-
ability of exceedance, is 1.0 (Liu, 2015).

Equations  19 and 20 are simplified for design guide 
implementation by substituting Equation 14 with R = 1.0 for 
ANB,R=1 and using T = 8 sec. After simplification, the one-
third octave acceleration, RMS, due to a resonant buildup, 
is:
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Also, the one-third octave velocity, RMS in mips, is:
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Figure 10 summarizes the measured-to-predicted ratio for 
the measurements mentioned above and predictions from 
Equation 22.
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PREDICTION OF IMPULSE RESPONSES

If the fundamental frequency exceeds the maximum fre-
quency of the fourth harmonic, f4max, resonance will not 
occur, and the maximum response resembles a series of 
individual impulse responses with little or no buildup. An 
example measured waveform is shown in Figure  11. The 
higher responses near the middle of the waveform are due to 
footsteps near mid-bay. The development in the following is 
described in detail in Liu (2015) and Liu and Davis (2015).

Peak Acceleration and Velocity Due to Impulse 
Response

The peak velocity immediately after a footstep is the prod-
uct of a calibration factor, R, and the effective impulse from 
Equation 7, divided by the effective mass of the bay. Mul-
tiple modes contribute significantly to impulse responses, so 
a factor, RM = 2.0, from Liu and Davis (2015), is included.
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The peak acceleration is approximately equal to the peak 
velocity multiplied by 2πfn:
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A total of 89 measured peak accelerations were compared 
to predictions from Equation  24, with R  = 1.0, to assess 
the accuracy of the equation and establish the calibration 
factor. The average measured-to-predicted ratio was 0.966 
and the COV was 26%. R = 1.3 results in 10% of measured 

accelerations exceeding predicted accelerations (Liu, 2015; 
Liu and Davis, 2015).

After simplification, the following two equations are rec-
ommended. Note that vp is in units of mips.
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where fstep is the mid-range frequency from Table 1.
Figure  12 summarizes the measured-to-predicted ratio 

for the measurements mentioned above and predictions from 
Equation 26.

Maximum Narrowband Acceleration and Velocity Due 
to a Series of Impulse Responses

The maximum narrowband acceleration due to a series of 
impulses responses is computed by Fourier transforming the 
idealized waveform in Figure 13 and then adjusting for sev-
eral differences between the idealized waveform and mea-
sured waveforms.

The peak acceleration in the idealized waveform is from 
Equation 26 with the calibration factor, 1.3, removed. This 
peak acceleration is for acceleration at mid-bay due to a foot-
step at mid-bay. The remainder of the response to each foot-
step is viscous decay. Identical footsteps are appended at the 
step frequency, so the waveform is perfectly periodic. The 
Fourier transformation results in a very complicated equa-
tion for the spectral peak at each harmonic of the walking 
force (Liu and Davis, 2015). The maximum spectral magni-
tude (peak, not RMS) for this idealized walking event, ANB,I, 
at the natural frequency, is:
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compared to predictions from Equation 28 with R = 1.0 to 
assess the accuracy of the equation and establish the cali-
bration factor. The average measured-to-predicted ratio was 
0.790 and the COV was 32%. An R value of 1.1 results in 
10% of measured accelerations exceeding predicted accel-
erations (Liu, 2015; Liu and Davis, 2015).

After the inclusion of the calibration factor and simplifi-
cation, the RMS magnitude is:
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Figure 14 summarizes the measured-to-predicted ratio for 
the aforementioned measurements and predictions from 
Equation 29.

The narrowband velocity magnitude is computed by 
dividing Equation 29 by 2πfn. The RMS magnitude in mips 
is:
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Maximum One-Third Octave Acceleration and Velocity 
Due to a Series of Impulse Responses

The one-third octave acceleration and velocity due to a series 
of impulse responses were determined using the bandwidth 
conversion method described above for resonant responses.

The one-third octave velocity is computed using Equa-
tion 20 with ANB,R=1 from Equation 28. Measurements from 
the database mentioned above were compared to predictions 
to assess the accuracy of the predictions and establish the 
calibration factor. The average measured-to-predicted ratio 
was 0.736 and the COV was 34%. An R value of 1.1 results in 
10% of measured accelerations exceeding predictions (Liu, 
2015; Liu and Davis, 2015).
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where ap,R=1 is from Equation 24 with R = 1.0, and H is the 
number of the harmonic at the natural frequency.

Actual footsteps are not identical, nor are they repeated 
precisely at the step frequency. This results in energy being 
leaked into frequencies adjacent to each harmonic fre-
quency, and lower spectral peaks. This is considered with 
the imperfect footsteps reduction factor, RI = 0.6, which is 
based on research by Brownjohn et al. (2004).

Actual walking events do not have infinite durations as 
used in the Fourier transformation leading to Equation 27. 
Recall that the objective is to predict what the site surveyor 
will measure, and it is assumed that the Fourier transforma-
tions will be of waveforms lasting 8 sec. The duration of the 
series of impulse responses varies, but is taken as 4 sec, see 
Figure 11 for an example. This results in a duration adjust-
ment factor, RD = 0.5.

Actual walking events do not have each footstep at mid-
bay. Instead, some footsteps will be applied near mid-bay 
where the mode shape values are maximal and others will 
be applied away from mid-bay. For walking that traverses an 
entire bay with a half sine wave mode shape, the adjustment 
factor is 0.7. Slightly conservatively, the adjustment factor, 
RL, is taken as 0.9.

After these adjustments are made and a calibration factor, 
R, is added, the maximum RMS magnitude is:
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where ap,R=1 is from Equation 24 with R = 1.0, and H is the 
number of the harmonic at the natural frequency.

Measurements from the database mentioned above were 
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f4max. Impulse responses are possible for any natural fre-
quency. The controlling response is the maximum of the 
two, and when a resonant response is possible, it usually 
greatly exceeds the impulse response. This is illustrated 
in Figure  16. This example is for slow walking ( f4max  = 
6.8 Hz) on a floor with W = 250 kips and β = 0.05. As fn 
crosses f4max on the plot, the controlling velocity decreases 
abruptly by a large amount, which would not occur in real-
ity. It is much more likely that the behavior would gradually 
change from resonant to impulse response as the natural fre-
quency crosses f4max, thus defining a region of intermediate 
responses. For design guide implementation, linear interpo-
lation is used in this region, which is 2 Hz wide and approxi-
mately centered on f4max as shown in Figure 16. The lower 
and upper bounds of the intermediate zones are in Table 3.

For very slow walking, the impulse response is computed 
regardless of the natural frequency. For slow, moderate, 
and fast walking, if the natural frequency does not exceed 
fL, then the resonant response is computed using equations 
from the Resonant Responses section. If the natural fre-
quency exceeds fU, then the impulse response is computed 
using equations from the Impulse Responses section. If the 
natural frequency is between fL and fU, then the intermedi-
ate response is computed by linear interpolation between the 
resonant response at fL and the impulse response at fU. In 
equation form, using one-third octave velocity for example:

After including the calibration factor and simplifying, the 
one-third octave RMS velocity due to a series of impulse 
responses in mips is:
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Figure 15 summarizes the measured-to-predicted ratio for 
the aforementioned measurements and predictions from 
Equation 31.

The one-third octave acceleration is computed using 
Equation 19 with ANB,R=1 from Equation 28. After including 
the calibration factor of R = 1.1 and simplifying, the RMS 
acceleration is:
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RESPONSE PREDICTION

The first step in predicting the response is the selection of the 
tolerance limit. The form (peak acceleration) of the response 
prediction must obviously match the tolerance limit.

As explained in the Resonant Response section, resonant 
responses are possible when the natural frequency does not 
exceed the maximum frequency of the fourth harmonic, 

Table 3. Boundaries of Intermediate Zones

Walking Speed fL (Hz) fU (Hz)

Slow 6.0 8.0

Moderate 7.0 9.0

Fast 8.0 10.0
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Fig. 15. Comparisons of measurements and predictions,  
impulse responses, one-third octave velocity.
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The mode shape values can be determined by any ratio-
nal method such as finite element analysis per AISC Design 
Guide  11, Chapter  7. For simple cases with typical fram-
ing, Equation 3 can be used or adjusted for other boundary 
conditions.

COMMENTARY ON FIRST  
AND SECOND EDITIONS OF AISC  

DESIGN GUIDE 11, CHAPTER 6

The methods in the first and second editions of AISC Design 
Guide 11, Chapter 6, were derived using significantly differ-
ent models, so the velocity predictions differ significantly in 
some cases. The following are the main differences between 
the two editions.

For frequencies above 8–9 Hz, the responses are impul-
sive, and the second edition takes this into account. Impulse 
responses are not strongly linked to natural frequency, but 
are strongly linked to mass. Thus, natural frequency often 
plays a less prominent role and mass plays a more prominent 
role in the second edition than in the first edition.

Response is not a function of damping in the first edi-
tion. However, in the second edition, most of the responses 
are functions of damping because the spectral responses 
depend on the entire waveform, including the decay portion. 
It is noted that this makes velocity comparisons difficult 
between the two editions.

In the first edition, moderate walking causes much higher 
velocities than those from slow walking. Similarly, fast walk-
ing causes much higher velocities than those from moderate 
walking. Our measurements indicate the differences are not 
as large as those in the first edition. Thus, the second edition 
responses for various speeds are much closer together. Also, 
the speed categories are different. Slow walking in the first 
edition is fairly close to very slow walking in the second 
edition.

CONCLUSIONS

Floor vibration tolerance limits for sensitive equipment, in 
terms of various acceleration and velocity measures, are 
much more stringent than those for human comfort.

The floor response to walking is affected by the speed 
of walking, natural frequency, effective mass, and damp-
ing. Walking in higher speed categories causes higher 
responses. Higher natural frequency, effective mass, and 
damping cause lower responses. For lower frequency floors, 
the highest response is due to a resonant buildup. For higher 
frequency floors, the highest response is due to a series of 
impulse responses to individual footsteps.

Fairly simple equations for resonant and impulse 
responses are recommended herein for design. These equa-
tions use natural frequency, effective weight, and damping 
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For one-third octave velocity, the resonant response con-
trols if fn ≤ fL, so Equation 33a and 33b reduce to:
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All response equations presented above are for the worst-
case scenario of mid-bay vibration response to walking 
through mid-bay. Very often, the equipment is located away 
from mid-bay. Also, walls and other obstacles often pre-
vent walking through mid-bay. Tolerance limits are often 
very stringent, so the response should typically be com-
puted based on the actual equipment location and walking 
path location. This is accomplished by scaling the mid-bay 
response by the ratio of mode shape values.

When the equipment is away from mid-bay and the 
walker can pass through mid-bay, the predicted response, 
using velocity for example, is:
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where
V = response at the equipment

Vmidbay =  response at mid-bay due to walking through 
mid-bay

ϕe = mode shape value at the equipment location

ϕmidbay = mode shape value at mid-bay

When the walking path does not pass through mid-bay, 
and the equipment is at mid-bay, the predicted response is:
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where ϕw is the maximum mode shape value along the walk-
ing path.

When neither the equipment nor the walking path is at 
mid-bay, the predicted response is:
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(2016), Vibration of Steel-Framed Structural Systems 
Due to Human Activity, Design Guide 11, 2nd Ed., AISC, 
Chicago, Ill.

NRCC (2010), National Building Code of Canada, National 
Research Council of Canada, Ottawa, Canada.

Pabian, S., Thomas, A., Davis, B., and Murray, T.M. (2013), 
“Investigation of Floor Vibration Evaluation Criteria 
Using an Extensive Database of Floors,” Proceedings 
of the ASCE/SEI Structures Congress, ASCE, May 2–3, 
Pittsburgh, Pa., pp. 2,478–2,486.
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Footfall-Induced Floor Vibrations Relative to Criteria 
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Structures Congress, ASCE, May 18–21, St. Louis, Mo., 
pp. 1–13.

Willford, M. and Young, P. (2006), A Design Guide for 
Footfall Induced Vibration of Structures, CCIP-016, The 
Concrete Centre, Surrey, UK.

Willford, M., Young, P., and Field, C. (2007a), “Predict-
ing Footfall-Induced Vibration: Part 1,” Structures and 
Buildings, Vol. 160, No. SB2, pp. 65–72.

Willford, M., Young, P., and Field, C. (2007b), “Predict-
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estimates from AISC Design Guide  11; they are suitable 
for manual calculations. Note that natural frequency and 
effective mass or weight can be determined through other 
means such as finite element analyses. The response pre-
diction equations have been experimentally verified with 
fairly large databases of walking measurements on lower 
and higher frequency floors.

Vibration of floors supporting sensitive equipment is usu-
ally very objective. Also, reduction of vibration levels of 
a constructed floor is difficult and expensive. Thus, each 
response prediction equation includes a calibration factor 
that results in predictions that exceed measured vibration 
levels 90% of the time.
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Weld Effective Lengths for Round HSS  
Cross-Connections under Branch Axial Loading
KYLE TOUSIGNANT and JEFFREY A. PACKER

ABSTRACT

Recent experimental and numerical research performed on fillet-welded, round-to-round, HSS cross-connections is reviewed, along with 
prior research on round HSS-to-rigid plate connections. The data from these weld-critical tests are then interpreted to determine practical 
weld effective lengths for such connections, in conjunction with permitting the directional strength-increase factor for fillet welds to round 
HSS. Recommendations are made for AISC Specification Section K5, and a design example is given to illustrate the approach.

Keywords: hollow structural sections, welded joints, cross-connections, weld effective lengths, fillet welds, design procedures.

The AISC Specification for Structural Steel Buildings 
(AISC, 2016), hereafter referred to as the AISC Specifi-

cation, gives weld effective lengths for plate-to-rectangular 
HSS welded joints and rectangular-to-rectangular HSS 
welded joints in Section K5. These are used to design welds 
between plate and HSS branches to rectangular HSS main 
members whenever the welds are to be “fit for purpose” 
and not necessarily able to develop the yield capacity of the 
branch. However, for round-to-round HSS connections, the 
AISC Specification is silent, and there are no weld effective 
length rules given for such connections. As a consequence 
of this uncertainty, there is a tendency for many designers to 
just specify complete-joint-penetration (CJP) groove welds 
for round-to-round HSS connections, which is an expensive 
and undesirable default practice.

It is known that the load distribution around the perim-
eter of a round HSS welded joint can be highly nonuniform 
(Marshall, 1992). To deal with potential weld “unzipping” 
caused by one part of a welded joint being much more 
highly loaded than another, AWS D1.1, clause 9.6.1.3(4), 
(AWS, 2015) implies that the weld effective length in axially 
loaded round-to-round HSS connections is equal to 1 1.5 of 
the total weld length under factored loads. This simple rule 
is believed to be conservative, but the weld effective length 
is likely to vary with specific connection parameters, par-
ticularly the cross-sectional slenderness of the chord wall, 

D/t. This paper reviews research data with the objective of 
assessing—and improving on—this recommendation, while 
still satisfying the AISC target reliability index.

Because the design of welds in codes/specifications 
is based on simplification of a complex loading, any pro-
posed effective length approach to the design of welds must 
be checked for its safety level in conjunction with the weld 
design rules of a particular specification. While AISC Spec-
ification Section K5 (AISC, 2016) explicitly prohibits the 
use of the “fillet weld directional strength-enhancement  
factor,” (1.0 + 0.50 sin1.5 θ), when designing “fit for purpose” 
welds for rectangular HSS, the AISC Specification is again 
silent about whether it is allowed when designing such welds 
for round HSS.

Laboratory testing and finite element analysis studies have 
been performed on fillet-welded joints to the ends of HSS 
members, where the HSS end is connected to a rigid plate 
and the HSS is subjected to axial tension (Packer et al., 2016; 
Tousignant and Packer, 2016; 2017a). In such situations, the 
entire weld length is effective due to the rigid base material. 
This research has shown that single-sided welds to a tension-
loaded HSS wall element are partially unrestrained and are 
prone to local bending about the axis of the weld, as shown 
in Figure 1, leading to opening of the weld root. The restraint 
provided to the fillet weld depends on the connected element 
thickness and shape (linear versus curved), as well as the 
weld size and amount of penetration. It was found that the 
HSS welded joints in the aforementioned research did not 
achieve the expected target safety (reliability) index of β+ ≥ 
4.0 at failure, as discussed in AISC Specification Commen-
tary B3.1, if the fillet weld directional strength-enhancement 
factor was applied. In general, however, setting this factor of 
(1.0 + 0.50 sin1.5 θ) to unity (i.e., taking θ as zero) when cal-
culating the strength of fillet welds to tension-loaded HSS 
wall elements achieves β+ ≥ 4.0.

In the aforementioned studies, the single-sided weld effect 
was much more severe for square and rectangular HSS than 
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for round HSS, when viewed separately. Recent reliability 
analysis of round HSS-to-rigid plate experiments, combined 
with parametric finite element analyses thereof (Tousignant 
and Packer, 2019), has found that these connections gener-
ated a safety index of β+ = 3.7. This is only marginally lower 
than the target value. AISC Committee on Specifications 
(COS) Task Committee 6 (TC6) on Connection Design has 
hence recommended that the fillet weld directional strength-
enhancement factor for fillet welds to the ends of round HSS 
be permitted in the 2022 AISC Specification.

On the other hand, use of the directional strength-
enhancement factor is not acceptable for fillet welds to the 
ends of square and rectangular HSS in which any face is in 
tension, when the design approach is to develop the yield 
strength of the connected HSS wall, nor when the design is 
a “fit-for-purpose” approach. The latter is covered in AISC 
Specification Section K5, and entails the use of weld effec-
tive lengths. The Section K5 provisions have been shown to 

generate suitable target safety (reliability) indices for welded 
joints to square and rectangular HSS with faces in tension, 
in conjunction with the weld effective lengths advocated and 
non-use of the “sinθ factor” (McFadden and Packer, 2014; 
Tousignant and Packer, 2015).

AISC TC6 has also recommended the use of the direc-
tional strength-enhancement factor for double-sided fillet 
welds to longitudinal or transverse plate branches, attached 
to all HSS, regardless of branch loading, and for single-sided 
welds between HSS branches and HSS chords where all of 
the branch remains in compression. Although not yet final 
for the 2022 AISC Specification, Table 1 provides a sum-
mary of the proposed changes to the applicability of the sinθ 
factor for fillet welds to HSS. For the purpose of this paper, 
it will be assumed that the fillet weld directional strength-
enhancement factor is permitted for calculating the strength 
of welds to round HSS.

EXPERIMENTS ON WELD-CRITICAL ROUND- 
TO-ROUND HSS CROSS-CONNECTIONS

A total of 12 laboratory tests have been performed on round-
to-round HSS cross-connections, fabricated from large-size 
ASTM A500 (ASTM, 2018), dual-certified, Grade B/C 
HSS (Tousignant and Packer, 2017b). A professional fab-
ricator was employed to deposit fillet welds all-around the 
branches using a semiautomatic, flux-cored arc welding 
process with a CO2 shielding gas. The chord members were 
HSS10.75×0.500 and HSS16.00×0.500, with branches (at 
either 90° or 60°) selected to obtain branch-to-chord width 
ratios, β, ranging from 0.25 to 0.47. All test specimens had 
geometric configurations that permitted the use of fillet 
welding in accordance with AWS D1.1 (AWS, 2015). Weld-
ing procedure specifications were developed in conjunction 
with trial sectioning to achieve minimal, but adequate, root 

P

tb

e

Pe

tw

Fig. 1. Eccentric loading on a single-sided  
fillet weld, resulting in local bending.

Table 1. Proposed Changes to the Applicability of the sinθ Factor for Fillet Welds to HSS

Case Loading Sense
2016 AISC 

Specification
2022 AISC 

Specification

Fillet welds connecting round HSS 
branches to base plates, cap plates, or 
HSS chords

Tension Permitted Permitted

Compression Permitted Permitted

Pure bending Permitted Permitted

Fillet welds connecting square or 
rectangular HSS branches to base plates, 
cap plates, or HSS chords

Tension Not permitted in truss-
type connections, 

otherwise permitted 
(K5 Commentary)

Not permitted

Compression Permitted

Pure bending Not permitted*

Double-sided fillet welds connecting 
longitudinal or transverse branch plates to 
HSS chords

Tension Permitted Permitted

Compression Permitted Permitted

Pure bending Permitted Permitted

* AISC TC6 has recommended that the sinθ factor not be permitted when any face of the square or rectangular HSS branch is in tension (e.g., under pure 
bending). Provided that the entire branch remains under compression, the sinθ factor may be used for axial compression plus bending loading.
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penetration; the welds were ground to an ideal triangular 
shape; and careful measurements were made of the geomet-
ric and mechanical properties of the welds. Specimens were 
well-instrumented and loaded to failure by applying a quasi-
static axial tension force to the end of the branches, as shown 
in Figure 2. Failure in all cases occurred in a brittle manner 
by fracture along a plane through the weld. A typical rupture 
failure is shown in Figure 3 for a 90° connection.

Strain gauges around the branch members close to the 
welds (such as indicated by SG in Figure 3) confirmed the 
nonuniform strain, and thus the tensile load distribution, 
around the branch and hence in the neighboring weld. For 
the 90° connections, the tensile strain decreased as a func-
tion of distance away from the highly loaded saddle position 
(indicated in Figure 3). An example of this strain variation 
around the branch and weld is shown in Figure 4 for various 
load levels corresponding to 25%, 50%, 75%, and 100% of 
the weld fracture load, Pa. In Figure 4, the subtended angle, 
x, is the angle measured clockwise (CW) around the branch, 
with 0° and 180° corresponding to the two crown points and 
90° corresponding to the saddle point (see Figure  3). The 
tensile (positive) strain is therefore smallest at the crown, 
with much of the weld remaining in compression (negative 
strain) for the entire tensile load range, and largest at the 
saddle points. This nonuniform loading is more pronounced 
for connections with higher β values.

The nonuniformity of stress observed in the experiments 
(Tousignant and Packer, 2017b) will be prevalent in all 

round-to-round HSS connections of similar geometries (T-, 
Y-, and X-type) with branch axial loading. This would also 
apply regardless of the weld type [fillet, partial joint pen-
etration (PJP) groove weld, or CJP groove weld] used to join 
the branch(es) to the chord, assuming that the welds do not 
significantly change the footprint of the branch(es).

NUMERICAL MODELING OF WELD-CRITICAL 
ROUND-TO-ROUND HSS CROSS-CONNECTIONS

Nonlinear finite element (FE) models, incorporating a 
weld fracture criterion, have been validated against the 
results of the 12 laboratory tests (Tousignant and Packer, 
2018). A parametric study was then performed, consisting 
of 256 FE weld-critical, round HSS cross-connections with 
varied width ratio β, chord slenderness D/t, branch angle 
θ, and branch-to-chord thickness ratio τ. All numerical 
models failed by weld fracture. It was found that the weld 

Fig. 2. Testing arrangement for  
round-to-round HSS cross-connections.

Fig. 3. Weld fracture in a 90° cross-connection.
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Fig. 4. Strain distribution around the weld, for a  
HSS5.00×0.500 branch to HSS10.75×0.500 chord.



176 / ENGINEERING JOURNAL / THIRD QUARTER / 2019

effective length decreases as D/t increases, β increases, and 
τ increases. The weld effective length ranged from 0.58 to 
1.0 times the total weld length within the parameter range 
studied (60° ≤ θ ≤ 90°; 10 ≤ D/t ≤ 50; 0.10 ≤ β ≤ 0.50; 0.20 ≤ 
τ  ≤ 1.00), with the weld length becoming 100% effective 
for β(D/t) ≤ 8. Within the range studied, the branch inclina-
tion angle had only a very minor effect on the weld effective 
length.

DESIGN

In Section K5 of the AISC Specification (AISC, 2016), a 
detailed design method considering weld effective lengths 
for plate-to-rectangular and rectangular-to-rectangular HSS 
welded joints is given. According to this section, the nomi-
nal strength of welds, Rn or Pn, in connections subject to 
branch axial load is based on the limit state of shear rupture 
along the plane of the weld effective throat and calculated 
as follows:

 R P F t lorn n nw w e=  Spec. Eq. K5-1 (1)

where Fnw is the nominal stress of the weld metal calculated 
according to AISC Specification Chapter J, currently utiliz-
ing no increase in strength due to the directionality of load 
for fillet welds-to-rectangular HSS branches in tension or 
compression (i.e., omitting the sinθ factor) (AISC, 2016).

According to the load and resistance factor design (LRFD) 
method of the AISC Specification (AISC, 2016), resistance 
factors of ϕ = 0.75 and 0.80 for fillet and PJP groove welds, 
respectively, are applied to Equation 1 to determine avail-
able strength.

For round-to-round HSS welded joints, including cross-
connections, Equation 1 would also apply. For such joints, 
based on the recent recommendation by AISC TC6, the sinθ 
factor is permitted; that is,

 F F0.60 1.0 0.50 sinnw EXX
1.5( )= + θ  

 Spec. Eq. J2-5 (2)

where θ is the angle between the line of action of the applied 
force and the weld longitudinal axis (in degrees) and FEXX is 
the filler metal classification strength.

Application of the sinθ factor to fillet welds in round-to-
round HSS welded joints is nontrivial. The angle of loading, 
θ, varies continuously around the joint (see Figure 5), and 
calculation of θ at any point along the weld axis, let alone 
the value of the sin θ factor for the entire joint, involves a 
complex procedure.

Calculation of the sinθ Factor for a Round-to-Round 
HSS Joint

To calculate the loading angle of a fillet weld, θ, at a point 
along the weld axis, and to determine the value of the sinθ 

factor for a round-to-round HSS joint, the following proce-
dure can be used:

Step 1. Determine the coordinates of the branch/chord inter-
section at two points corresponding to x and x + Δx at the 
root of the fillet weld. Calculate the vector V  [see Figure 6(a)] 
to approximate the weld longitudinal axis between x and  
x + Δx. For the coordinate system shown in Figure 6(b):
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where rb is the radius of the branch (= Db/2), and:
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where r is the radius of the chord (= D/2). The dimension lt,x 
is shown in Figure 6(b). For lt,x+Δx, substitute x + Δx for x in 
Equation 4.

Step 2. Calculate the magnitude of V  to determine the 
length, li, of the pseudo-linear weld element i [see Fig-
ure 6(a)] between x and x + Δx; that is,

 l Vi =  (5)

The smaller the value of Δx, the closer li will be to the 
actual weld length between the two points [1 and 2, in Fig-
ure 6(a)] at the root of the fillet weld.

Step 3. Increment x by Δx and calculate li again. Do this 
for all values of x between 0° and 360° − Δx, then sum the 
results to determine the total weld length lw; that is,

 l lw i= ∑  (6)
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Step 4. Next, compute the vector that defines the direction 
of the applied force P . For the coordinate system shown in 
Figure 6(b), one option is:

 P 1 , 0 , 0[ ]( ) ( ) ( )=  (7)

Step 5. Calculate the angle of loading θi of each weld ele-
ment i using the dot product; that is,

 

V P

V P
cosi

1=θ •⎛

⎝
⎜

⎞

⎠
⎟

−

 
(8)

In some cases, θi will be greater than 90°. It is recom-
mended to calculate the acute angle of loading by subtract-
ing the calculated angle from 180°. This has been done in 
Figure 5.

Step 6. Calculate the directional strength-enhancement fac-
tor for each weld element i by substituting θi for θ in the 
(1.0 + 0.50 sin1.5 θ) term.

Step 7. Calculate the value of the (1.0 + 0.50 sin1.5 θ) factor 
for the entire joint, KCHS, by taking a weighted average of the 
(1.0 + 0.50 sin1.5 θi) values for each weld element to account 
for variations in li; that is,
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l
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1.5( )= + θ∑
 

(9)

Equation  9 assumes that the weld effective throat, tw, 
shown in Figure 1 is constant around the entire joint.

Sinθ Factor Design Aid

Using the procedure just outlined, with Δx = 1°, a design aid 
(given by Table 2) was developed to allow engineers to find 
the (1.0 + 0.50 sin1.5 θ) factor for all-around fillet welds with 
a constant throat dimension in round-to-round HSS joints 
where fillet welds are potentially feasible. The value of Δx = 
1° used to develop the design values in Table 2 provides con-
vergent values of the (1.0 + 0.50 sin1.5 θ) factor within the 
range 0.1 ≤ β ≤ 0.5 and 60° ≤ θ ≤ 90°. Table 2 is used by 
reading across and down for values of β and θ, respectively, 
for a given connection. For values of β and θ not shown, 
but within the range 0.1 ≤ β ≤ 0.5 and 60° ≤ θ ≤ 90°, linear 
interpolation may be used.

Total Weld Length

The total weld length, lw, measured at the root of the fillet 
weld, can be determined from 3D solid models of intersect-
ing cylinders. Alternatively, it was shown that the Ka approx-
imation given by AWS D1.1, clause 9.5.4 (AWS, 2015), is 
remarkably good, and slightly conservative, within the range 
0.1 ≤ β ≤ 0.5 and 60° ≤ θ ≤ 90° (Tousignant and Packer, 
2017b); i.e.,

 l D Kw b a= π  (10)

where Db is the branch diameter, θ is the branch inclination 
angle, and Ka is the weld length factor, given by:
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Fig. 6. Calculation of the sinθ factor for a round-to-round HSS connection.
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actual-to-nominal values for the weld throat area, and ρP is 
the mean ratio of FE-to-predicted joint strength. VM, VG, and 
VP are the associated COVs of ρM, ρG, and ρP, respectively.

In the current study, ρM and VM account for actual filler 
metal strength being greater than the filler metal classifica-
tion strength in most applications. The values of ρM and VM 
shown in Table 3 were determined from 708 coupon tests 
on filler metal(s) by Lesik and Kennedy (1990), Callele et 
al. (2009), and others (as summarized in Tousignant and 
Packer, 2017b). The factors ρG and VG account for the typi-
cal increase in weld throat area due to weld face convexity 
(i.e., via an increase in tw). The values of ρG and VG shown 
in Table 3 were justified by Callele et al. (2009) for similar 
fillet-welded connections. The factors ρP and VP relate the 
FE rupture strength of the joint to the nominal weld strength 
predicted using one of the design model options discussed 
in detail in the following. The factor ρP was taken as the 
average over all of the 256 FE weld-critical, round HSS 
cross-connection tests of the FE fillet weld fracture load, 
Pa, divided by Rn, with Rn calculated using Equations 1 and 
2 (i.e., including the sinθ factor) with actual values of tw, lw, 
and FEXX (i.e., the values used in the FE models) as opposed 
to nominal values (Tousignant and Packer, 2018).

If the total weld length is assumed to be effective (i.e., le = 
lw in Equation 1), the mean FE-to-predicted strength ratio 
for the 256 fillet-welded joints, ρP, is 0.93 with a COV, Vp, of 
0.19 (see Table 3). The correlation of the predicted capacity, 
Rn, to the FE fracture load, Pa, is shown in Figure 7. With 
le = lw and ϕ = 0.75 (AISC, 2016), β+ = 2.8, which is much 
less than the target reliability index of β+ ≥ 4.0. Thus, a weld 
effective length rule is necessary for round-to-round HSS 
cross-connections in the AISC Specification (AISC, 2016).

Option 1

In clause 9.6.1.3(4), AWS D1.1 (AWS, 2015) implies a weld 
effective length, le, in axially loaded round-to-round HSS 
connections equal to 1 1.5 of the total weld length under fac-
tored loads; that is,

WELD EFFECTIVE LENGTHS FOR ROUND-TO-
ROUND HSS CROSS-, T-, AND Y-JOINTS

Weld effective lengths are not necessary for round-to-round 
HSS joints (i.e., the total weld length can be used for le in 
Equation 2) when the sinθ factor is set to unity (i.e., θ taken 
as zero) in Equation 2 (Tousignant and Packer, 2019); how-
ever, a proposed approach for calculating weld effective 
lengths when the sinθ factor is used has not hitherto been 
addressed. Several options for the weld effective length, le, 
in round-to-round HSS cross-, T-, and Y-joints in the AISC 
Specification (AISC, 2016) are hence examined.

To evaluate the inherent safety level of each option, a reli-
ability analysis, shown in Equation 12, is used to check that 
the target reliability index of β+ ≥ 4.0, as discussed in AISC 
Specification Commentary B3.1, is achieved (Ravindra and 
Galambos, 1978; Fisher et al., 1978); that is,

 VexpR R( )ϕ = ϕ ρ −αββ
+

+  (12)

where αR is the coefficient of separation, taken as 0.55 
(Ravindra and Galambos, 1978); ρR is the bias coefficient 
for resistance; VR is the associated coefficient of variation 
(COV) of ρR; and ϕβ+ is an adjustment factor that modifies ϕ 
when β+ is not equal to the safety index used for the evalua-
tion of the load factors, which is normally 3.0 (Fisher et al., 
1978). An equation developed by Franchuk et al. (2002) was 
used to calculate this factor:

 0.0062 0.131 1.338
2( )ϕ = β − β +β

+ +
+  (13)

The bias coefficient for resistance, ρR, and its associated 
COV, VR, are:

 R M G Pρ = ρ ρ ρ  (14)

 V V V VR M G P
2 2 2= + +  (15)

where ρM is the mean ratio of actual-to-nominal ultimate 
tensile strength for the weld metal, ρG is the mean ratio of 

Table 2. Values of the (1.0 + 0.50 sin1.5 θ) Factor (KCHS) for  
an All-Around Fillet Weld in a Round-to-Round HSS Joint

Width Ratio, β
Branch Inclination Angle, θ (°)

90° 80° 70° 60°

0.1 1.500 1.494 1.476 1.446

0.2 1.498 1.492 1.475 1.445

0.3 1.496 1.490 1.473 1.443

0.4 1.492 1.487 1.470 1.440

0.5 1.487 1.482 1.465 1.436

Note:  The values of (1.0 + 0.50 sin1.5 θ) assume a constant weld throat dimension, tw.
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This indicates that the AWS D1.1, clause 9.6.1.3(4) (AWS, 
2015), expression for le shown in Equation 16 provides an 
acceptable level of safety; however, based on having ρP = 
1.40, there is room to improve the le expression to increase 
the design efficiency (reduce the average ratio of Pa/Rn) of 
such joints. This is because Equation 16 was derived from 
the ratio of nominal-to-peak elastic strain in numerical tests 
(Calkins, 1968), and this has been shown to be conservative 
(Tousignant and Packer 2017b).

Option 2

Weld effective lengths in round-to-round HSS connections 
have also been shown to vary with D/t, β, and τ, though pre-
dominantly with D/t and β (Tousignant and Packer, 2018). 

 
l l

1

1.5
e w=

 
(16)

This rule has been derived from numerical work on 
round-to-round HSS T-connections (Caulkins, 1968) and 
is based on potential weld unzipping caused by one part of 
the weld being much more highly loaded than another (Mar-
shall, 1992).

If the AWS D1.1, clause 9.6.1.3(4) (AWS, 2015), expres-
sion is used for le (i.e., le = 1 1.5 lw) in Equation 1, the mean 
FE-to-predicted strength ratio for the 256 fillet-welded 
joints, ρP, is 1.40 with a COV of Vp  = 0.19 (see Table  3). 
The correlation of predicted capacity, Rn, to the FE fracture 
load, Pa, is then as shown in Figure 8, providing a reliability 
index of β+ = 4.6 ≥ 4.0 when ϕ = 0.75 is used (AISC, 2016). 

Table 3. Reliability Analysis Parameters and Results for the AISC Specification

Option 1 Option 2 Option 3

le lw Equation 16 Equation 17 Equation 17

KCHS Table 2 Table 2 Table 2 Equation 18

ϕ 0.75 0.75 0.75 0.75

ρM

VM

1.12
0.12

1.12
0.12

1.12
0.12

1.12
0.12

ρG

VG

1.03
0.10

1.03
0.10

1.03
0.10

1.03
0.10

ρP

VP

0.93
0.19

1.40
0.19

1.07
0.06

1.08
0.06

ρR

VR

1.08
0.25

1.62
0.25

1.24
0.17

1.24
0.17

ϕβ+ 1.02 0.87 0.90 0.89

β+ 2.8 4.6 4.2 4.2
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Fig. 7. Correlation of AISC Specification  
provisions with FE results, assuming a weld  

effective length equal to the total weld length.
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An accurate, yet simple, expression taking this into account 
is (Tousignant and Packer, 2018):
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(17)

If Equation 17 is used for le in Equation 1, the mean FE-
to-predicted strength ratio for the 256 fillet-welded joints, 
ρP, is 1.07 with a COV of Vp = 0.06. The correlation of pre-
dicted capacity, Rn, to the FE fracture load, Pa, is then as 
shown in Figure 9.

Equation 17 provides β+ = 4.2 ≥ 4.0 when ϕ = 0.75 is used 
(AISC, 2016), indicating that it also provides an acceptable 
level of safety. Notably, Equation 17 results in lower values 
of both ρP and Vp than the AWS D1.1, clause 9.6.1.3(4) (AWS, 
2015), expression for le (Equation 16). It can therefore be con-
cluded that Equation 17 results in greater efficiency of fillet 
welds in round-to-round HSS cross-, T-, and Y-connections  
than Equation  16 (i.e., it reduces the average ratio of  
Pa/Rn while still meeting the target reliability index). A side-
by-side comparison of the reliability analysis parameters 
and results for these two options is given in Table 3.

Option 3

It may be argued that because the (1.0 + 0.50 sin1.5 θ) factor 
already incorporates a simplification of a complex loading 
arrangement, a further simplification to option 2 is justified. 
Option 3 hence proposes that a designer take the loading 
angle [θ in the (1.0 + 0.50 sin1.5 θ) factor] as equal to the 
branch inclination angle, to approximate the value of KCHS;  
that is,

 K 1.0 0.5 sinCHS
1.5= + θ (18)

where θ is the acute angle between the branch and chord (in 
degrees), as opposed to the angle between the line of action 
of the applied force and the weld longitudinal axis.

KCHS will hence become a simple function of the branch 
inclination angle, θ, and can therefore be calculated with-
out relying upon a design aid. This recommended approach 
ranges from being marginally unconservative (by less than 
1%, for connections with high values of θ and high values of 
β) to marginally conservative (by about 3%, for connections 
with low values of θ and high values of β) within the range 
0.1 ≤ β ≤ 0.5 and 60° ≤ θ ≤ 90°.

If Equation 17 is used to calculate le in Equation 1, with 
KCHS now approximated using Equation  18 (as opposed 
to using the values in Table  2), the mean FE-to-predicted 
strength ratio for the 256 fillet-welded joints, ρP, is 1.08 with 
a COV of Vp = 0.06, and the correlation of predicted capac-
ity, Rn, to the FE fracture load, Pa, is as shown in Figure 10. 
Based on these results, which are summarized in Table 3, 
using Equation 18 to approximate KCHS provides a similar 
(acceptable) level of safety to Option 2 [i.e., β+ = 4.2 ≥ 4.0 
when ϕ = 0.75 is used (AISC, 2016)].

CONCLUSIONS

Based on a review of recent experimental and numerical 
research performed on fillet-welded, round-to-round HSS 
cross-connections, in which FE results have been analyzed 
in conjunction with allowing the sinθ factor for fillet welds 
to the ends of round HSS in the AISC Specification (AISC, 
2016), it has been found that:

• Application of the sinθ factor to fillet-welded round-to-
round HSS joints is nontrivial, if the true angle of loading 
to the weld axis is considered as it varies around the joint. 
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A design aid as shown in Table 2 has been developed to 
simplify this procedure.

• Taking the total weld length as effective to design fillet 
welds in round-to-round HSS joints does not meet the 
target reliability index of β+ ≥ 4.0 (AISC Specification 
Commentary B3.1), when the sinθ factor is used to 
determine the available strength.

• The AWS D1.1, clause 9.6.1.3(4) (AWS, 2015), expression 
for the weld effective length in round-to-round HSS 
connections (i.e., le = 1 1.5 lw) provides an acceptable level 
of safety (β+ = 4.6 ≥ 4.0) when the sinθ factor is used.

• Equation  17 for the weld effective length provides an 
acceptable level of safety (β+ = 4.2 ≥ 4.0) when the sinθ 
factor is used. This expression also provides lower values 
of actual-to-predicted nominal weld strength compared to 
the AWS D1.1, clause 9.6.1.3(4) (AWS, 2015) expression, 
allowing greater design efficiency to be achieved.

• Taking θ in the (1.0 + 0.50 sin1.5 θ) factor as equal to the 
branch inclination angle (Equation 18), provides a similar 
(acceptable) level of safety (β+ = 4.2 ≥ 4.0) to the design 
aid (Table 2), when used in conjunction with Equation 17 
to calculate the weld effective length.

RECOMMENDATION

It is recommended that the following design provisions be 
adopted for fillet welds in round-to-round HSS cross-, T-, 
and Y-connections:

 R P F t lorn n nw w e=  (19)

where:

 F F K0.60nw EXX CHS=  (20)

where KCHS is as shown in Table 2 for values of β and θ for 
a given joint, and

 

l
D t

l l
4

2
e w w

( )
=

β
≤

 

(21)

where lw is determined from 3D solid models of intersecting 
cylinders or from the following simplified equation:

 
l D

1 1/ sin

2
w b= π + θ

 
(22)

The weld effective length given by Equation  21 is rep-
resented by two arcs of le/2 around the saddle regions, as 
illustrated in Figure 11.

Alternative Approach for Calculating KCHS

As an alternative to using Table 2 to calculate KCHS in Equa-
tion 20, it can instead be approximated with the following 
“modified sinθ factor”:

 K 1.0 0.5 sinCHS
1.5= + θ (23)

where θ is the acute angle between the branch and chord (in 
degrees), rather than the angle between the line of action of 
the applied force and the weld longitudinal axis.

This recommendation is subject to the following limits of 
applicability:

Width ratio: 0.1 ≤ β ≤ 0.5

Branch angle: 60° ≤ θ ≤ 90°

Chord wall slenderness: 10 ≤ D/t ≤ 50

Thickness ratio: 0.20 ≤ τ ≤ 1.00

Weld throat: tw is constant around the joint
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DESIGN EXAMPLE

Given:

A 60° cross-connection is formed between an HSS12.750×0.500 chord member and two HSS4.500×0.237 branch members in 
ASTM A500 Grade C material, as shown in Figure 12. The loads shown consist of 25% dead load and 75% live load. Determine 
a suitable fillet weld effective throat size around the branch members in this tubular connection, using matched electrodes with 
a specified ultimate strength of 70 ksi.

From the AISC Manual (AISC, 2017) Table 2-4, the material properties are as follows:
For all members
ASTM A500 Grade C
Fy, Fyb = 46 ksi
Fu, Fub = 62 ksi

From the AISC Manual Table 1-13, the HSS geometric properties are as follows:
HSS12.750×0.500
D = 12.75 in.
t = 0.465 in.
A = 17.9 in.2

HSS4.500×0.237
Db = 4.50 in.
tb = 0.220 in.
Ab = 2.96 in.2

Solution:

Required strength (expressed as a force in the branch)

From ASCE/SEI 7 (ASCE, 2016) Chapter 2, the required strength is:

60º

PL = 36.0 kips
PD = 12.0 kips

PL = 150.0 kips
PD = 50.0 kips

PL = 150.0 kips
PD = 50.0 kips

PL = 36.0 kips
PD= 12.0 kips

HSS 4.500×0.237
ASTM A500 Gr. C

HSS 12.750×0.500
ASTM A500 Gr. C

60º

Fig. 12. Round-to-round HSS cross-connection subject to branch axial tension.
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LRFD ASD

( ) ( )= +
= 72.0 kips

P 1.2 12.0 kips 1.6 36.0 kipsu =
= 48.0 kips

P 12.0 kips + 36.0 kipsa

Note that this HSS connection satisfies the limits of applicability given by AISC Specification Table K3.1A (AISC, 2016); hence 
the connection strength can be determined from AISC Specification Table K3.1A for round HSS truss connections. Using AISC 
Specification Equations K3-1 and K3-3, the connection available axial strength (governed by the limit state of chord plastifica-
tion) is Pn = 82.5 kips (LRFD) or Pn/Ω = 54.9 kips (ASD), which exceeds the required strengths and is therefore acceptable. It 
is worthwhile noting that the required strength of 72.0 kips (LRFD) is only 59% of the available branch axial yield strength = 
ϕAbFyb = 122.5 kips.

Limits of applicability

A suitable fillet weld effective throat size around the branch members can be determined using Equations 19–21 only if the fol-
lowing limits of applicability are satisfied:

0.1 ≤ β = 0.353 ≤ 0.5 o.k.
60° ≤ θ = 60° ≤ 90° o.k.
10 ≤ D/t = 27.4 ≤ 50 o.k.
0.20 ≤ τ = 0.473 ≤ 1.00 o.k.
tw is constant around the joint o.k.

Because the limits of applicability are satisfied, Equations 19–21 can be used.

Required throat size

Determine the total weld length, lw, using the approximation given by AWS D1.1, clause 9.5.4 (AWS, 2015):

=l πD 1 + 1/ sinθ
2

w b

= ( )π

= 15.2 in.

4.500 in.
1 + 1/ sin60°

2
 

(22)

Calculate the weld effective length, le, using the previous results:

le = ≤4

2β D/ t( )
lw lw

= 4
2 0.353( ) 27.4( )

15.2 in.( ) 15≤ .2 in.

= 13.8 in.
= 13.8 in.

15.2 in.≤
 

(21)

Account for the directional strength increase for fillet welds in round-to-round HSS connections using the factor KCHS. For 
the connection considered, with β = 0.353 and θ = 60°, KCHS can be found by linearly interpolating between β = 0.300 and β = 
0.400 in Table 2 for θ = 60°.

For β = 0.300 and θ = 60°, KCHS = 1.443, and for β = 0.400 and θ = 60°, KCHS = 1.440. Hence, for β = 0.353 and θ = 60°:

KCHS = 1.440

= 1.441

+ 0.400 0.353−
0 −.400 0.300

1.443−1.440( )
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Alternatively, KCHS can be approximated using Equation 23, as follows:

KCHS = 1.0 + 0.5 sin1.5

= 1.0 + 0.50 sin1.5 (60°)
= 1.403  

(23)

The remainder of the design example is completed using KCHS = 1.441.

The nominal stress of the weld metal, Fnw, can now be determined using Equation 20:

Fnw = 0.60FEXX KCHS

= 0.60 70 ksi( ) 1.441( )
= 60.5 ksi  

(20)

Applying the resistance factor of ϕ = 0.75 to fillet welds designed using the LRFD method, or the safety factor of Ω = 2.00 to 
fillet welds designed using the ASD method, an expression for the available weld strength, ϕPn or Pn/Ω, can be written (AISC, 
2016).

LRFD ASD

Pn =ϕ 0.75Fnwtwle Pn Fnwtwle
2.00Ω

≥

Set the expression for the available weld strength equal to (or greater than) the required strength to determine the required weld 
throat size, tw, to transmit the calculated forces.

LRFD ASD

0.75Fnwtwle P≥ u

t ≥w
Pu

0.75Fnwle

t ≥w
72.0 kips

0.75 60.5 ksi( ) 13.8 in.( )
≥w 0t .115 in.

Fnwtwle
2.00

P≥ a

t ≥w
2.00Pa
Fnwle

t ≥w
2.00 48.0 kips( )

60.5 ksi( ) 13.8 in.( )
t ≥w 0.115 in.

Rounding up to the nearest sixteenth of an inch, tw = 0.125 in. would satisfy the strength requirements of this connection.

It should be noted that the limitations of AISC Specification Section J2.2b also apply, and the weld leg size, L, must not be less 
than the size given in AISC Specification Table J2.4. Therefore, for tb = 0.220 in., corresponding to the material thickness of the 
thinner part joined, L must be greater than or equal to 0.125 in. Because L will never be less than tw (= 0.125 in.) for a fillet weld, 
this requirement is satisfied.

Hence, tw = 0.125 in., or 8 in., is a suitable fillet weld throat size.
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VM Coefficient of variation of ρM

VP Coefficient of variation of ρP

VR Coefficient of variation of ρR

V  Vector approximation to the weld longitudinal axis 
between points at x and x+Δx

le Weld effective length, in.

lt,x “Template length” at x, parallel to branch, in.

lt,x + Δx “Template length” at x + Δx, parallel to branch, in.

li Length of weld element i, in.

lw Total length of weld, in.

r Outside radius of round HSS chord member, in.

rb Outside radius of round HSS branch member, in.

t Wall thickness of round HSS chord member, in.

tb Wall thickness of round HSS branch member, in.

tw Weld effective throat, in.

x Subtended angle around the branch, measured 
clockwise from the heel, degrees

α Coefficient of separation, taken as 0.55

β Width ratio; the ratio of branch diameter to chord 
diameter for round HSS

β+ Reliability index

Ω Safety factor

ϕ Resistance factor

ϕβ+ Adjustment factor for ϕ

τ Branch-to-chord thickness ratio

θ Acute angle between the branch and chord, 
degrees; angle between the line of action of the 
applied force and the weld longitudinal axis, 
degrees

θi Angle between the line of action of the applied 
force and the weld longitudinal axis for weld 
element i, degrees

ρG Mean ratio of actual-to-nominal values for the weld 
throat area

ρM Mean ratio of actual-to-nominal ultimate tensile 
strength for the weld metal

ρP Mean ratio of FE-to-predicted joint strength

ρR Bias coefficient for resistance

SYMBOLS AND ACRONYMS

A Cross-sectional area of round HSS chord member, 
in.2

Ab Cross-sectional area of round HSS branch member, 
in.2

AISC American Institute of Steel Construction

AWS American Welding Society

COV Coefficient of variation

D Outside diameter of round HSS chord member, in.

Db Outside diameter of round HSS branch member, in.

FEXX Filler metal classification strength, ksi

Fnw Nominal stress of weld metal, ksi

Fu Specified minimum tensile strength of round HSS 
chord member, ksi

Fub Specified minimum tensile strength of round HSS 
branch member, ksi

Fy Specified minimum yield stress of round HSS 
chord member, ksi

Fyb Specified minimum yield stress of round HSS 
branch member, ksi

Ka Weld length factor according to AWS D1.1 (AWS, 
2015)

KCHS Value of (1.0 + 0.50 sin1.5 θ) for a round-to-round 
HSS joint

L Weld leg size, in.

LRFD Load and resistance factor design

P Axial force, kips

PD Axial force due to dead load, kips

PL Axial force due to live load, kips

Pa Actual weld fracture load, kips; required axial 
strength in tension or compression, using ASD load 
combinations, kips

Pn Nominal axial strength, kips

Pu Required axial strength in tension or compression, 
using LRFD load combinations, kips

P  Vector defining the direction of the applied force

Rn Nominal strength, kips

VG Coefficient of variation of ρG
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