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TORSION OF RECTANGULAR CONNECTION 
ELEMENTS
BO DOWSWELL

ABSTRACT

Traditionally, the torsional design of rectangular members has been based on elastic calculations. For member design, this approach is justi-
fied because beams subjected to torsion are usually controlled by torsional rotation serviceability limits. However, designs that are based on 
a first yield criterion underestimate the strength of connection elements. To evaluate the true torsional behavior of connection elements, vari-
ous factors affecting the torsional strength of short rectangular members are investigated, showing that the torsional strength of connection 
elements can be predicted with rational analysis models using an ultimate strength approach.

The torsional strength of connection elements can be attributed to the resistance due to uniform torsion, warping torsion, and the Wagner 
effect. A method is proposed for calculating the strength of rectangular connection elements subjected to any possible combination of loads, 
including torsion. The design method results in a significant increase in torsional strength compared to traditional analysis methods. The 
method can be used to analyze extended single-plate connections subjected loads in any direction, including axial forces and combined 
vertical and horizontal shear forces. Three design examples show the proper application of the design method.

Keywords:  torsion, torsional strength, torsional rotation, warping, rectangular connection elements, ultimate strength.

INTRODUCTION

T raditionally, the torsional design of rectangular mem-
bers has been based on elastic calculations. For member 

design, this approach is justified because beams subjected to 
torsion are usually controlled by torsional rotation service-
ability limits. However, designs that are based on a first-yield 
criterion underestimate the strength of connection elements.

For extended single-plate connections, the elastic uniform 
(Saint Venant) torsion strength was used by Sherman and 
Gorbanpoor (2002) to develop a proposed design equation 
for the limit state of torsion. More recently, Thornton and 
Fortney (2011) derived an equation to calculate the torsional 
strength of extended single-plate connections using the plas-
tic uniform torsion strength. Dowswell (2015) proposed an 
interaction equation for the plastic strength of rectangular 
connection elements subjected to various loads, including 
torsion.

Although the theoretical plastic uniform torsion strength 
is 50% greater than the elastic strength (Dowswell, 2015), 
an evaluation of the existing research on extended single-
plate shear connections revealed strengths much higher than 
the plastic uniform torsion strength. Additionally, experi-
ments on single-plate connections subjected only to torsion 
(no shear or moment), showed that the connection torsional 

strength greatly exceeds the uniform torsion strength (Ben-
nets et al., 1981).

To evaluate the true torsional behavior of connection ele-
ments, various factors affecting the torsional strength of 
short rectangular members are investigated in this paper. 
The purpose of this paper is to show that the torsional 
strength of connection elements can be predicted with ratio-
nal analysis models using an ultimate strength approach. A 
design method based on these models, including the inter-
action of torsion with other loads, is proposed. The results 
from practical connections are evaluated and compared to 
existing analysis methods, and three design examples show 
the practical implementation of the proposed design method.

UNIFORM TORSION

For uniform torsion, also known as Saint Venant torsion, the 
applied torque is resisted by shear stresses distributed over 
the cross section. The uniform torsional moment is

	 Tu = GJθ′� (1)

For uniform members with constant torque along the length, 
θ′  = θ/L. The torsional constant for a rectangular member is

	 J = kudt3� (2)

where ku = 3 − 0.2t/d for d/t < 10 and ku = 3 for d/t ≥ 10 
(Seaburg and Carter, 1997). The first-yield torsional moment 
is

	
T

J

t
uy

y=
τ

�
(3)
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For d/t ≥ 10, which satisfies the geometry for most connec-
tion elements,

	
T

dt

3
uy

y
2

=
τ

�
(4)

For uniform members with constant torque along the length, 
the elastic rotation is

	

T L

GJ
u

uθ =
�

(5)

The yield rotation is

	

L

Gt
uy

yθ =
τ

�
(6)

The plastic uniform torsion strength is

	
T

dt

2
up

y
2

=
τ

�
(7)

where
Fy	= specified minimum yield strength, ksi

G	 = shear modulus of elasticity = 11,200 ksi

J	 = torsional constant, in.4

L	 = member length, in.

Tu	= uniform torsional moment, kip-in.

d	 = member depth, in.

t	 = member thickness, in.

z	 = �distance along the member length, in.

τy	 = �shear yield stress = 0.6Fy, ksi

θ	 = �angle of rotation, rad

θ′	= �angle of rotation per unit length, first derivative of θ 
with respect to z, rad

By comparing Equation 4 to Equation 7, it can be seen 
that Tup = 1.5Tuy. The torsional stiffness is linear up to the 
yield moment, Ty, and then the curve becomes nonlinear up 
to a maximum value of T = Tup = 1.5Tuy, as shown in Figure 1 
(Dowswell, 2015).

WARPING

Except for circular cross sections, warping is present in 
all members subjected to torsion. Warping is classified as 
either primary or secondary. For primary warping, torsion is 
resisted by stresses across the element depth, and secondary 
warping is where torsion is resisted by stresses across the 
element thickness. For most members, any resistance devel-
oped through secondary warping is insignificant compared 
to uniform torsion and primary warping resistances.

For typical rectangular members, warping is negligible 
compared to uniform torsion. Therefore, the common prac-
tice of neglecting any warping contribution for rectangular 

members is justified. However, warping can provide signifi-
cant torsional resistance to connection elements where the 
length is relatively short compared to the cross-sectional 
dimensions. This behavior was shown by Reissner and Stein 
(1951), who solved the differential equation of a rectangular 
cantilever plate subjected to a concentrated torsional moment 
at the free end, and by Baba and Kajita (1982), who devel-
oped inelastic finite element models of rectangular cantile-
ver members subjected to a free-end concentrated torsion.

Elastic Strength

The elastic warping behavior can be analyzed using AISC 
Design Guide 9, Torsional Analysis of Structural Steel 
Members (Seaburg and Carter, 1997). The warping torsional 
moment is

	 Tw = −ECwθ′′′� (8)

The warping constant for a rectangular member is

	 Cw = kwd3t3� (9)

For narrow rectangles with d/t ≥ 10 (Gjelsvik, 1981) 

	
k

1

144
w =

�
(10)

For rectangular members with d/t < 10 (Balaz and Kolekova, 
2002)

	
k

t

d

t

d

t

d

1

144
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(11)

Figure  2 shows warping stress distributions for elastic 
warping, inelastic warping and plastic warping. The maxi-
mum value for the elastic warping normal stress distribution 

Fig. 1.  Normalized torsion versus  
normalized angle of twist (Dowswell, 2015).
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as shown in Figure 2(a), which occurs at the corners, is

	 σwc = EWncθ′′� (12)

The normalized warping function at the corner of the cross 
section is

	
W

dt

4
nc =

�
(13)

where
Cw	 = warping constant, in.6

E	 = modulus of elasticity, ksi

Wnc	= �normalized warping function at the corner of the 
cross section, in.2

θ′′	 = second derivative of θ with respect to z, rad

θ′′′	 = third derivative of θ with respect to z, rad

Figure 3 shows the deformed shape of a single-plate con-
nection subjected to twisting (Sherman and Ghorbanpoor, 
2002; Moore and Owens, 1992; Abou-Zidan, 2014; Sulei-
man, 2013). The double-curvature along the length indicates 
that warping is fixed at both ends of the plate.

Case 2  in AISC Design Guide 9, Appendix B, provides 
charts for determining θ, θ′, θ′′ and θ′′′ for members sub-
jected to concentrated end torques with warping fixed at 
each end. The values can also be calculated with the equa-
tions in Moore and Mueller (2002). The maximum warping 
stresses are at the member ends (z = 0 and z = L), where the 
equation for θ′′ reduces to

	

T

GJa

L

a
tanh

2
′′θ = ⎛

⎝
⎞
⎠ �

(14)

where

	
a

EC

GJ
w=

�
(15)

T = torsional moment, kip-in.

Isolated Flange Method

Gjelsvik (1981) showed that the elastic torsional moment is 
statically equivalent to a couple formed of two equal and 
opposite out-of-plane forces, F, acting on each half of the 
cross section at h  = 2d/3, as shown in Figure  4(a). Gjels-
vik’s equivalent couple can be expanded to simplify warping 
calculations for connection elements, where only the shaded 
portion of the cross section on each half of the member depth 
is effective in resisting force, F. The equivalent cross-section 
t × αd is modeled as a flexural member of length L with the 
fixed-slider boundary conditions shown in Figure 4(b). The 
required moment at each end of the member is

	
M

FL

2
re =

�
(16)

This isolated-flange analysis method is common in the tor-
sional analysis of I-shaped members, where the flanges are 
isolated and treated as flexural members to calculate the 
warping strength.

For elastic stresses, α = 4 and the out-of-plane force, F, is

	
F

T

d

3

2
w=

�
(17)

The weak-axis yield moment of the equivalent beam, Mye, is

	
M

F dt

6
ye

y
2

=
α

�
(18)

Setting Equation 16 equal to Equation 18 and solving for 
F results in the out-of-plane force required to initiate first 
yield, Fwy.

	

F
F dt

L

F dt

L

3

12

wy
y

y

2

2

=
α

=
�

(19)

                
	 (a)  elastic	 (b)  inelastic	 (c)  plastic	 Fig. 3.  Torsional
				    deformation of a
		  Fig. 2.  Warping stresses.		  connection element.
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Setting Equation 17 equal to Equation 19 and solving for Tw 
results in the warping torsion required to initiate first yield.

	
T

F d t

L18
wy

y
2 2

=
�

(20)

The rotation can be estimated from the free-end deflec-
tion of the equivalent beam, δ, shown in Figure 4(b). The 
end deflection is

	

FL

EI12 e

3

δ =
�

(21)

The weak-axis moment of inertia of the equivalent beam is

	

I
dt

dt

12
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e

3

3

= α

=
�

(22)

Substituting Equations 17 and 22 into Equation 21 results 
in

	

T L

Ed t

6 w
3

2 3δ =
�

(23)

Using the geometry in Figure 5, the rotation is
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(24)

Substituting Equations 19 and 22 into Equation 21 results 
in the yield deflection

	

F L

Et3
y

y
2

δ =
�

(25)

The yield rotation is

	

d

F L

Edt

2

2

3

wy
y

y
2

θ =
δ

=
�

(26)

Finite element models of rectangular members subjected 
to torsion (May and Al-Shaarbaf, 1989; Baba and Kajita, 
1982; Bathe and Chaudhary, 1982) exhibited an inelastic 

Fig. 5.  Isolated flange method for warping rotation.

(a)  cross section

(b)  top view

Fig. 4.  Isolated flange method for warping analysis.
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warping response similar to the uniform torsion curve in 
Figure 1, with the inelastic warping torsion contributing sig-
nificantly to the total torsional resistance. For calculating 
the inelastic strength, F is assumed to act at the center of the 
effective depth, αd. The out-of-plane forces are

	

F
T

h
T

d 1

w

w

( )

=

=
−α �

(27)

The weak-axis plastic flexural strength of the equivalent 
beam is

	
M

F dt

4
pe

y
2

=
α

�
(28)

Setting Equation 16 equal to Equation 28 and solving for 
F results in the out-of-plane force required for the plastic 
strength.

	
F

F dt

L2
wy

y
2

=
α

�
(29)

Setting Equation 27 equal to Equation 29 and solving for Tw 
results in the inelastic warping resistance.

	
T

F d t

L2
1wp

y
2 2

( )= α −α
�

(30)

At α = 2, the plastic warping strength, shown in Figure 2(c), 
is

	
T

F d t

L8
wp

y
2 2

=
�

(31)

Comparing Equation  31 to Equation  20 shows that the 
plastic warping strength is 2.25 times the first-yield moment. 
However, the condition used to derive Equation  31 can-
not be reached due to out-of-plane translation compatibil-
ity requirements at the member mid-depth. At α = 0.2113, 

the plastic strength is reached only at the top and bottom 
fibers of the cross section, resulting in an inelastic warping 
strength of

	
T

F d t

L12
wi

y
2 2

=
�

(32)

where
F	 = horizontal couple force, kips

I	 = moment of inertia, in.4

Tw	 = warping torsional moment, kip-in.

αd	= effective depth of the equivalent cross section, in.

δ	 = deflection of equivalent beam, in.

δy	 = yield deflection of equivalent beam, in.

THE WAGNER EFFECT

Also neglected in the design of torsion members is the Wag-
ner effect (Wagner, 1936), which is a nonlinear, second- 
order torque that increases the torsional strength and stiff-
ness (Kjar, 1967; Gregory, 1960). The Wagner torque is 
negligible for many connection geometries at practical 
serviceability rotations. However, a discussion is merited 
because the Wagner torsion contributes to the stable inelas-
tic torsion-rotation curves exhibited by extended single-plate 
connection tests and finite element models. Also, the Wag-
ner effect may explain why short connection elements, such 
as conventional single-plate connections, are only rarely 
limited by torsional rotations.

Elastic Strength

The Wagner solution for rectangular members was docu-
mented by Timoshenko (1956) and later by Cook and Young 
(1985) and Trahair (2003). Rotation of the member causes a 
longitudinal elongation of the fibers that are farthest from 
the center of rotation. Figure 6 shows that the tensile stresses 
caused by the elongation exerts a resisting torque about the 

	 	 	
	 (a)  torsionally loaded member	 (b)  cross section	 (c)  longitudinal stresses

Fig. 6.  Mechanics of the Wagner effect.
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Due to the short length of conventional single-plate shear 
connections, the Wagner effect can be significant. Fig-
ure 7(a) plots the torsion-rotation curve for a a-in. × 18-in. 
plate, showing the uniform torsion, Wagner torsion, and the 
total torsional resistance. The plate is 3 in. long, which is the 
typical distance between the bolt line and the weld line for 
a conventional single-plate shear connection. The Wagner 
torsion is negligible for θ < 0.5° but is significant at 1° and 
provides a 220% increase in torsional resistance at θ = 2°. 
However, at θ = 2°, the maximum tensile stress is 106 ksi. 
For Fy = 50 ksi, first yield due to normal stress occurs at θ = 
1.37°, where the increase in torsional resistance is 100%. For 
four different plate geometries, β is plotted in Figure 7(b) as 
a function of θ, where the substantial effect of decreasing the 
plate depth is clear.

Because extended single-plate shear connections are 
longer, and usually thicker, than conventional single-plate 
shear connections, the Wagner effect is often negligible 
for extended configurations. Figure  8(a) is a plot of the  
torsion-rotation curve for a w-in. × 18-in. plate, showing the 
uniform torsion, Wagner torsion and the total torsional resis-
tance. The plate is 10 in. long, representing a common dis-
tance between the bolt line and the weld line for an extended  
single-plate shear connection. The Wagner torsion is neg-
ligible for the practical range of serviceability rotations, 
providing only 11% of the total torsion at θ = 3°. For four 
different plate geometries, β is plotted in Figure 8(b) as a 
function of θ, where the Wagner effect is shown to be sig-
nificant only for plates with high depth-to-thickness ratios.

COMBINING TORSIONAL EFFECTS

The elastic torsional resistance is the sum of the uniform 
torsion, the warping torsion, and the Wagner torsion. How-
ever, because each torsional component contributes to the 
total resistance based on its relative stiffness, only one of the 
three components is likely to contribute its full first-yield 
torsional moment. In the elastic range, uniform and warping 
torsion can be combined using a stiffness analysis accord-
ing to AISC Design Guide 9. This approach is preferred 
for member design, where beams are usually controlled by 
torsional rotation serviceability limits. However, designs 
that are based on a first-yield criterion underestimate the 
strength of connection elements.

Rotation

According to Trahair et al. (2008), the angle of rotation cal-
culated for both uniform torsion and warping torsion can be 
calculated independently and combined using Equation 40 
to estimate the actual angle of rotation.

	

u w

u w
θ = θ θ

θ + θ �
(40)

axis of twist that increases with θ. The Wagner torsion is 
(Trahair, 2003)

	
T

EI

2
n

n 3( )= ′θ
�

(33)

The Wagner constant is

	
I
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n

5

=
�

(34)

Geometrically nonlinear elastic finite element models 
showed the accuracy of Equations 33 and 34 (Trahair, 2003). 
The axial stress developed by the Wagner effect, as shown in 
Figure 6(c), is (Cook and Young, 1985)

	

E
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d
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2
2
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The maximum stress is located at the top and bottom edges 
of the member, where c = d/2 
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2 2( )
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�
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If warping is neglected, the torsional resistance is the sum 
of the Wagner torsion and the uniform torsion (Cook and 
Young, 1985), resulting in

	

T T T

Gdt Ed t

T
3 360
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u

3 5 3( )
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(37)

and β is the normalized increase in torsional resistance due 
to the Wagner effect

	

Ed

Gt
1

120

4 2

2

( )β = + ′θ

�
(38)

For uniform members with constant torque along the 
length, θ′  = θ/L and the normalized increase in torsional 
resistance due to the Wagner effect is

	

Ed

G tL
1

120

4 2

β = + θ⎛
⎝

⎞
⎠ �

(39)

where
In	= Wagner constant, in.6

Tn	= Wagner torsional moment, kip-in.

c	 = distance to outermost fiber, in.

Evaluation of Equation  39  indicates that the torsional 
resistance is dependent on the rotation angle and can 
increase significantly with member depth. The Wagner tor-
sion decreases with length and thickness.
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(a)  Te versus θ for a a×18×3-in.-long plate

(b)  β versus θ

Fig. 7.  The Wagner effect for conventional single-plate shear connections.
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(a)  Te versus θ for a w×18×10-in.-long plate

(b)  β versus θ

Fig. 8.  The Wagner effect for extended single-plate shear connections.
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For members in the inelastic range, the angle of rotation can 
be estimated with Equation 41 (Pi and Trahair, 1994).

	

T

T
1

2

i
r

p

θ = θ

−
�

(41)

where
Tp	= plastic torsional moment, kip-in.

Tr	 = required torsional moment, kip-in.

θu	= angle of rotation for uniform torsion, rad

θw	= angle of rotation for warping, rad

Plastic Strength

Because the Wagner effect requires large rotations for sig-
nificant torsional resistance and the behavior under inelastic 
conditions is unclear, the Wagner torsion will be neglected. 
Dinno and Merchant (1965) and Pi and Trahair (1995) pro-
posed a plastic torsion analysis where the plastic uniform 
torsion and the plastic warping torsion are evaluated inde-
pendently and then added together to determine the total 
torsional resistance. This method assumes no interaction 
between uniform and warping torsion, which agrees well 
with experimental results on small-scale I-shaped members 
documented by Dinno and Merchant. Using the interac-
tion suggested by Dinno and Merchant, the plastic torsional 
strength is

	

T T T

T
d

L
1

2.4

p up wp

up

= +

= +⎛
⎝

⎞
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(42)

where
Tup	 = plastic uniform torsional moment, kip-in.

Twp	= plastic warping torsional moment, kip-in.

Figure 9 shows the predicted inelastic torsion versus rota-
tion curves for a w×18×10-in.-long ASTM A572 Grade 50 
plate. To show the effect of warping, both the uniform tor-
sion curve and the uniform plus warping curves are plotted. 
The dashed lines show the elastic response and the solid lines 
show the inelastic curves. For the uniform torsion curve, the 
first-yield torsion is 101 kip-in. at θ = 2.05°, and 96% of the 
plastic strength is developed at θ = 6.14°. When warping is 
included, yielding is caused by warping normal stresses at a 
torsion of 72.7 kip-in. at θ = 0.447°. However, the inelastic 
warping response shows a dramatic increase in stiffness and 
inelastic strength compared to the uniform torsion curve.

COMBINING TORSION WITH OTHER LOADS

Members subjected to both flexure and torsion must consider 
second-order effects and the strength reduction due to load 
interaction. After the required flexural and second-order 
torsional moments are determined, the available strength 
is calculated by combining the load ratios in an interaction 
equation.

Plastic Strength

Dowswell (2015) proposed Equation 43 for the interaction of 
flexure, shear, axial and torsion; however, the torsional inter-
action term was developed for uniform torsion and does not 
include the effects of warping and Wagner torsion. Because 

Fig. 9.  Torsion-rotation curves for a w×18×10-in.-long ASTM A572 Grade 50 plate.
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both warping and Wagner torsion develop longitudinal nor-
mal stresses, the resulting stress distributions are similar 
to the axial and flexural stresses. However, separating the 
torsional components and combining them with the flexural 
and axial load ratios would lead to unnecessary complexity 
in the interaction equation. Furthermore, due to the lack of 
research in this area, the accuracy of such an equation could 
not be verified. For design purposes, it is believed that Tp, as 
calculated with Equation 42, can be used in the torsion ratio 
of Equation 43.
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where
Mpx	= plastic bending moment about the x-axis, kip-in.

Mpy	= plastic bending moment about the y-axis, kip-in.

Mrx	= required x-axis flexural strength, kip-in.

Mry	= required y-axis flexural strength, kip-in.

Pr	 = required axial strength, kips

Py	 = axial yield load, kips

Vp	 = plastic shear strength, kips

Vr 	 = required shear strength, kips

Second-Order Effects

For open sections subjected to both torsion and strong-axis 
flexure, the second-order torsional effects are dependent 
on the critical lateral-torsional buckling moment. Second-
order torsional moments and rotations can be calculated by 
amplifying the results of a first-order analysis (Ashkinadze, 
2008; Lindner and Glitsch, 2005; Boissonnade et al., 2002; 
Trahair and Teh, 2000; Pi and Trahair, 1994; Pastor, 1977). 

The amplification factor for rectangular members is (Zahn, 
1984)
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The second-order torsional rotation is

	 θ2 = Bθ1� (45)

The second-order torsional moment is

	 T2 = BT1� (46)

The critical moment used in Equation 44 is

	 Mcr = FcrSx� (47)

The critical stress is calculated with AISC Specification 
(AISC, 2016) Equation F11–4
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where
Cb	 = lateral-torsional buckling modification factor

Fcr	 = critical stress, ksi

Mcr	= �elastic critical buckling moment for strong-axis 
flexure, kip-in.

Sx	 = elastic section modulus about the x-axis, in.3

T1	 = first-order torsional moment, kip-in.

θ1	 = first-order torsional rotation, rad

SINGLE-PLATE SHEAR CONNECTIONS

Single-plate shear connections, where the beam is field-
bolted to a connecting plate as shown in Figure 10, have an 

	 	 	
	 (a)  conventional	 (b)  extended with no stiffener	 (c)  extended with stiffener

Fig. 10.  Single-plate connections.
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out-of-plane eccentricity between the beam and the plate. 
Under shear loading, this eccentricity causes a torsional 
moment, which has been previously discussed by Muir and 
Hewitt (2009) and Thornton and Fortney (2011).

Conventional Configuration

Of the many experimental research projects studying the 
behavior of conventional single-plate connections [Fig-
ure  10(a)], only the results of Moore and Owens (1992) 
showed significant torsional rotations. In these, and the 
remaining tests, the out-of-plane eccentricity had a negli-
gible effect on the serviceability and strength and was not 
considered by the researchers as a significant design param-
eter. As discussed in previous sections of this paper, the 
conventional single-plate geometry maximizes the torsional 
resistance provided by warping and the Wagner effect.

Extended Configuration

Nonstiffened and stiffened extended single-plate shear con-
nections are shown in Figures 10(b) and 10(c), respectively. 
Twisting of extended single-plate connections subjected to 
shear loading has been reported in experimental specimens 
(Sherman and Ghorbanpoor, 2002) and finite element mod-
els (Hijaj and Mahamid, 2017; Abou-Zidan, 2014; Suleiman, 
2013). The experimental measurements of Goodrich (2005) 
and Sherman and Ghorbanpoor (2002) showed an increase 
in torsional strength and rotational stiffness when the plate 
is welded to a stiffener. The finite element models of Rah-
man et al. (2007) and Mahamid et al. (2007) showed similar 
results.

For nonstiffened connections, the design procedure in the 
AISC Steel Construction Manual (AISC, 2017) was devel-
oped by Muir and Hewitt (2009). The equations implicitly 
limit excessive torsional rotations by combining the shear 
and flexural strengths using an elliptical interaction to 
approximate von Mises theory. If the torsional loads are 
explicitly included in the calculations, the load ratios can 
be combined using plastic interaction according to Equa-
tion 49, which is simplified from Equation 43.

	

M

M

T

T

R

V
1.0rx

nx p

r

p

2
2 4

+
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

=
�

(49)

The total plastic torsional strength, Tp, is calculated with 
Equations 7, 31 and 42. The second-order torsional moment 
is calculated with Equations 44 and 46, and the first-order 
torsional moment is

	 T1 = Rre� (50)

The eccentricity is

	
e

t t

2
w= +

�
(51)

The strong-axis flexural moment, Mrx, is dependent on the 
location of the inflection point. At flexible supports, it is 
conservative to assume the connection behaves as a friction-
less pin, resulting in

	 Mrx = RrL� (52)

The plastic shear strength is

	 Vp = 0.6Fytd� (53)

where
Mnx	= strong-axis flexural strength, kip-in.

Rr	 = required beam end shear reaction, kips

T2	 = second-order torsional moment, kip-in.

e	 = �horizontal eccentricity for a single-plate connec-
tion, in.

t	 = plate thickness, in.

tw	 = beam web thickness, in.

The strong-axis flexural strength, Mnx, can be calculated 
according to AISC Specification Section F11, with Cb = 1.84 
when the beam is braced near the end and Cb = 1.26 when 
the beam is unbraced near the end (Dowswell, 2004). These 
Cb factors are also used in Equation 48 to calculate the criti-
cal stress for the second-order torsion amplifier.

The plastic strength according to the equations in this sec-
tion are compared to the available experimental and finite 
element results in Table  1. Only nonstiffened specimens 
with no beam bracing near the connection were considered. 
The four specimens listed failed by excessive twisting of 
the plate. Rc is the shear strength calculated with the actual 
dimensions and yield strengths, Re is the approximate exper-
imental shear load where the load-deflection curve became 
nonlinear, and Ru is the maximum experimental shear load.

The last column of the table lists the test-to-calculated 
ultimate strength ratio, Ru/Rc, which has an average of 1.28 
for the four specimens. Therefore, the plastic interaction 
equation is conservative, possibly because the Wagner effect 
and the effects of strain hardening were neglected. Because 
the calculations were based on the plastic strength, nonlin-
ear behavior was expected at loads significantly below Rc; 
however, for two of the specimens, Re/Rc is greater than 1.00.

Lateral Bracing

Thornton and Fortney (2011) derived a method to predict the 
torsional resistance of extended single-plate shear connec-
tions with a slab or deck attached to the beam top flange. For 
torsional resistance, the method utilizes both the uniform 
torsion strength of the plate and the torsional resistance pro-
vided by the slab/deck flexural strength. A design method 
has not been established for the case where the beam top 
flange is restrained against lateral translation, but not rota-
tion. The equations presented in this section rely only on the 
lateral resistance of the beam bracing.
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Setting Mry  = Mpy, solving for F, and substituting into 
Equation 54 results in a torsional resistance of
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(57)

Tb can be combined with the uniform torsion strength to get 
the total torsional resistance.
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where
Tb	= �torsional resistance provided by a top flange lateral 

brace, kip-in.

h	 = distance between couple forces, F, in.

Although no interaction is assumed between the two tor-
sional components, Equation 58 is believed to be adequate 
for design purposes. The available information on flexure-
torsion interaction of rectangular members was summarized 
by Dowswell (2015); however, the interaction of torsion with 
other loads is not well understood. For example, the theory 

When lateral bracing is present at both the top and bottom 
flanges [Figure 11(a)], the eccentric torsion can be resisted 
completely by the braces. Finite element models by Abou-
Zidan (2014) and Suleiman (2013) showed that top-flange 
lateral bracing near the beam end significantly increases 
the torsional resistance of extended single-plate shear con-
nections. For cases where only top-flange bracing is pres-
ent, a portion of the eccentric torsion can be resisted with 
a couple between the brace and the centroid of the plate 
[Figure 11(b)].

	 Tb = Fh� (54)

Assuming the plate deforms in double-curvature, as 
shown in Figure  4(b), the required weak-axis moment at 
each end of the plate is
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The resisting moment of the plate is
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Table 1.  Nonstiffened Single-Plate Connections

Reference
Spec. 
No.

t
(in.)

d
(in.)

tw
(in.)

L
(in.)

Fy
(ksi)

Rc

(kips)
Re

(kips)
Ru

(kips) Re/Rc Ru/Rc

Sherman and 
Ghorbanpoor 
(2002)

2U 0.371 15.00 0.495 6.30 42.6 71.4 65 82.9 0.910 1.16

4U 0.495 15.00 0.495 10.0 43.5 77.7 82 98.7 1.06 1.27

6UB 0.495 18.00 0.650 10.0 43.5 96.0 119 136 1.24 1.42

Abou-Zidan 
(2014)

15 0.394 9.05 0.382 6.38 50.8 43.7 36 55.1 0.82 1.26

Rc = calculated shear strength, kips
Re = the approximate experimental shear load where the load-deflection curve became nonlinear, kips
Ru = the maximum experimental shear load, kips

	 	
	 (a)  lateral bracing at top and bottom flanges	 (b)  lateral bracing at top flange

Fig. 11.  Torsional rotation at braced beam ends.
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and experiments of Neal (1950) and Witrick (1952) showed 
that the torsional stiffness remains at its elastic value after the 
member has yielded in flexure. For single-plate connections, 
contrasting results were obtained by Suleiman (2013), where 
nonlinear torsional behavior initiated at loads well below 
the corresponding yield loads based on the vertical shear-
deformation curves (Figure  12). Additionally, the research 
summarized by Dowswell (2015) showed that Equation 49 
is conservative for flexure-torsion interaction. Furthermore, 
any reduction in load due to interaction is likely to be offset 
by neglecting the Wagner torsion and warping torsion.

Only one of the finite element models by Abou-Zidan 
(2014) failed due to excessive twisting. For another model, 
failure was caused by yielding of the plate between the weld 
line and the bolt line. For both of these specimens, Tp was 
calculated with Equation 58 and the torsion ratio was com-
bined with the shear and flexure ratios according to Equa-
tion 49. The results are listed in Table 2, where it is shown 
that the equations are conservative. The last column of 
the table lists the test-to-calculated ultimate strength ratio, 
Ru/Rc, which is close to two for both specimens. With an 
average Re/Rc ratio of 1.20, the proposed equations provide 
reasonable estimates of the load causing the onset of nonlin-
ear behavior for both models.

Practical Results

This section shows the results of including torsion in the 
analysis of single plate connections. The discussions include 

connections with various configurations supporting a 
W18×35 beam, which has a web thickness, tw, of 0.300 in. 
In all cases, the plate material is ASTM A572 Gr. 50 and the 
depth, d, is 15 in.

The first results are for a conventional single-plate shear 
connection, as shown in Figure 10(a), with a plate thickness 
of t = a in. and L = 3 in. The Wagner strength, calculated 
with Equation 33 at a rotation of 0.03 rad., is 22.9 kip-in. 
Adding this to the plastic torsional strength calculated with 
Equation 42 results in a plastic torsional resistance of 120 
kip-in. The elastic uniform torsional resistance, Tuy, is 21.1 
kip-in., which is only 18% of the plastic torsional resistance 
at 0.03 rad. Using Equation 49 to combine the flexural, tor-
sional and shear loads results in a nominal shear strength of 
149 kips. For a plate with ,-in.-diameter holes, the AISC 
Manual design procedure results in a nominal shear strength 
of 146 kips, which is controlled by the shear rupture limit 
state. Because plate yielding is a key component in the rota-
tional ductility of these connections, the torsional stresses 
may actually enhance the performance. These results show 
why the common practice of neglecting torsion in the design 
of conventional single-plate shear connections is warranted.

The next results are for extended single-plate shear 
connections, as shown in Figure 10(b), with t = s  in. and 
L = 9 in. Several bracing conditions were considered: Case 1, 
unbraced beam; Case 2, beam with top-flange lateral brac-
ing near the connection; and Case 3, beam with torsional 
bracing near the connection. The AISC Manual design 
procedure results in a nominal shear strength of 161 kips; 

Table 2.  Nonstiffened Single-Plate Connections with Top-Flange Lateral Bracing

Spec. 
No.

Failure
Mode

t
(in.)

d
(in.)

tw
(in.)

L
(in.)

Fy
(ksi)

Rc

(kips)
Re

(kips)
Ru

(kips) Re/Rc Ru/Rc

11 Yielding 0.236 9.05 0.382 6.38 50.8 28.5 39 61.8 1.37 2.17

13 Twisting 0.394 9.05 0.382 6.38 50.8 54.6 56 94.4 1.03 1.73

Rc = calculated shear strength, kips
Re = the approximate experimental shear load where the load-deflection curve became nonlinear, kips
Ru = the maximum experimental shear load, kips

 

Fig. 12.  Shear-displacement and torsion-rotation curves (Suleiman, 2013).
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however, the results are valid only for beams with bracing 
located near the connection. In all cases, the Wagner torsion 
is neglected and load interaction is calculated according to 
Equation 49. The elastic uniform torsional resistance is 93.8 
kip-in.

Case 1: � Because beam bracing is not provided near the 
connection, the AISC Manual design procedure 
is not applicable. Also, this configuration can 
significantly reduce the lateral-torsional buckling 
strength of the beam. The plastic torsional strength 
calculated with Equation 42 is 202 kip-in., which 
is more than double the elastic uniform torsional 
resistance. The second-order amplification 
factor and the buckling strength of the plate were 
calculated with Cb = 1.26. The calculations resulted 
in a shear strength of 151 kips, which is 6% less 
than the strength calculated with the AISC Manual 
design procedure.

Case 2: � For this case, the plastic torsional strength can be 
calculated using either Equation 42 or Equation 58. 
The plastic torsional strength calculated with 
Equation 42 is the same as for Case 1. The plastic 
torsional strength calculated with Equation  58 is 
285 kip-in., which is three times the elastic uniform 
torsional resistance. The second-order amplification 
factor and the buckling strength of the plate were 
calculated with Cb = 1.84. The calculations resulted 
in shear strengths of 153 kips and 161 kips when 
using Equation 42 and Equation 58, respectively. In 
both cases, the result is within 5% of the strength 
calculated with the AISC Manual design procedure.

Case 3: � For this case, the torsion is resisted by the beam 
bracing system and T2  = 0, resulting in a shear 
strength of 170 kips. This is 6% greater than the 
strength calculated with the AISC Manual design 
procedure.

PROPOSED DESIGN METHOD

The design process can be simplified by limiting the sec-
ond-order amplification factor to 1.10 and solving for the 
minimum thickness required to reach the plastic flexural 
strength. Substituting B = 1.10 and Mrx = ϕMpx into Equa-
tion 44, combining with Equations 47 and 48, and solving 
for t results in Equation 59.

	
t

LdF

C E
1.54 y

b
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�
(59)

where
Cb	= �1.84 when the connection element is braced at both 

ends

	 = �1.26 when the connection element is braced only at 
one end

This minimum plate thickness also ensures that AISC Spec-
ification Section F11 will always result in Mnx  = Mpx for 
Cb ≥ 1.07. For t ≥ tmin, the required second-order torsional 
moment is

	 Tr = 1.1T1� (60)

Based on the design recommendations of Dowswell 
(2016), Equation 43 can be used for design by modifying the 
exponent applied to the axial load ratio and substituting the 
available strengths for plastic strengths.
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where
Mcx	= available flexural strength about the x-axis, kip-in.

	 = ϕMpx (LRFD) or Mpx/Ω (ASD)

Mcy	= available flexural strength about the y-axis, kip-in.

	 = ϕMpy (LRFD) or Mpy/Ω (ASD)

Pc	 = �available axial strength calculated according to 
AISC Specification Section J4.1(a) or Section J4.4 
for tension and compression elements, respectively, 
kips

	 = ϕPn (LRFD) or Pn/Ω (ASD)

Tc	 = available torsional strength, kips

	 = ϕTp (LRFD) or Tp/Ω (ASD)

Vc	 = �available shear strength calculated according to 
AISC Specification Section J4.2(a), kips

	 = ϕVn (LRFD) or Vn/Ω (ASD)

k	 = 1 for compression loads

	 = 2 for tensile loads

For connection elements that are braced only at one 
end and free at the other end, the nominal plastic torsional 
strength, Tp, is calculated with Equation  42. For extended 
single-plate shear connections with beam top flange lateral 
bracing near the connection, Tp can be calculated with Equa-
tion  58. For extended single-plate shear connections with 
beam lateral and torsional bracing near the connection, the 
torsional load at the plate can be neglected (Tr = 0).
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DESIGN EXAMPLES

Example 1

Given

In this example, a W21×111 beam is connected to a column web with an extended single-plate connection, as shown in Figure 13. 
The beam is not braced, but the effect of the connection on the lateral-torsional buckling strength has been considered in the 
beam design. The connection is subjected to an axial tension force, P, a vertical shear force, R, and a horizontal out-of-plane 
force, F. The plate is w-in. × 15-in. ASTM A572 Grade 50.

The vertical and horizontal forces are:

LRFD ASD

Pu = 30 kips
Ru = 60 kips
Fu = 6 kips

Pa = 20 kips
Ra = 40 kips
Fa = 4 kips

Solution

A572 Gr. 50: Fy = 50 ksi
W18×50: tw = 0.550 in.
Plate: t = w in.    d = 15 in.    L = 10 in.
Cb = 1.26
k = 2

Fig. 13.  Beam connection for Example 1.
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The required minimum plate thickness calculated with Equation 59 is:
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Combining Equations 50, 51 and 60, the required torsional moment, Tr , is:
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The required shear force, Vr, is:
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The required strong-axis flexural strength, Mrx, is:

LRFD ASD

M 60 kips 10 in.

600 kip-in.

ux ( )( )=
=

M 40 kips 10 in.

400 kip-in.

ax ( )( )=
=

The required weak-axis flexural strength, Mry, is:

LRFD ASD

M 6 kips 10 in.

60.0 kip-in.

uy ( )( )=
=

M 4 kips 10 in.

40.0 kip-in.

ay ( )( )=
=

The nominal axial tensile strength is:

Pn	= (50 ksi)(0.750 in.)(15 in.)
	 = 563 kips

The available axial tensile strength is:

LRFD ASD

P 0.90 563 kips

507

n ( )( )ϕ =
= kips

P 563 1.67

337
n Ω =

=
kips

kips
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Combining Equations 7 and 42, the nominal torsional strength is:
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The available torsional strength is:
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167 kip-in.
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111
p Ω =
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The nominal shear strength is:

Vn	= (0.6)(50 ksi)(0.750 in.)(15 in.)
	 = 338 kips

The available shear strength is:
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The available strong-axis flexural strength is:
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The nominal weak-axis flexural strength is:
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The available weak-axis flexural strength is:

LRFD ASD

M 0.90 105 kip-in.

94.5 kip-in.

ny ( )( )ϕ =
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M 105 kip-in. 1.67

62.9 kip-in.
ny Ω =
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For LRFD, interaction according to Equation 61 is:

30

507

42.9 kip-in.

167 kip-in.

60.3

338

600 kip-in.

1,900 kip-in.

60.0 kip-in.

94.5 kip-in.

0.812 1.0

2 2 4 1.7 1.7 0.59
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

+
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

= < o.k.

kips

kips

kips

kips

�

(61)

For ASD, interaction according to Equation 61 is:
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Example 2

Given

During erection of the W21 beam in Example 1, a field correction requires the beam to be moved 2 in. horizontally, perpendicu-
lar to the beam axis. If a 2-in. filler plate is installed between the w-in. plate and the beam web, is the plate strength adequate?

Solution

The eccentricity increases to:
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The required torsional moment, Tr, increases to:
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For LRFD, interaction according to Equation 61 is:
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For ASD, interaction according to Equation 61 is:
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Fig. 14.  Horizontal brace connection for Example 3.

Example 3

Given

In this example, a gusset plate connects a WT horizontal brace to a roof beam and a truss top chord. Figure 14 shows the connec-
tion rotated into the roof plane. Both the brace and the roof beam are in the roof plane, which is sloped at 20° from horizontal, 
and the chord web is in the horizontal plane. Because the chord is rotated 20° relative to the gusset plate, the gusset-to-chord 
interface has been detailed with a skewed end plate welded to the gusset plate. The end plate is 1-in. × 18-in. ASTM A572 Grade 
50. The brace component parallel to the truss chord, PL, is transferred into the chord, and the component perpendicular to the 
chord, PT, is transferred into the roof beam. Because the bracing work point is located at the chord centroid, the chord was 
designed assuming concentric axial loading; therefore, PL must be transferred to the work point at the chord centroid. For static 
equilibrium of the connection, the 1-in. end plate is subjected to both flexure and torsion. Only the end plate at the gusset-to-
chord interface will be designed in this example.
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Solution

The brace component parallel to the truss chord axis is:

LRFD ASD

PuL = 50.0 kips PaL = 33.3 kips

A572 Gr. 50: Fy = 50 ksi
Plate: t = 1 in.    d = 15 in.    L = 5.73 in.
Cb = 1.84

The required minimum plate thickness calculated with Equation 59 is:

	

t
LdF

C E
1.54

1.54
5.73 in. 15 in. 50 ksi

1.84 29,000 ksi

0.284 . 1 .

y

b

( )( )( )
( )( )

=

=

= < o.k.in in

min

�

(59)

The moment in the roof plane is PL multiplied by the eccentricity in the roof plane, which is the distance from the work point to 
the faying surface between the chord flange and the 1-in. end plate.

LRFD ASD

M 50 kips 8.73in.

437 kip-in.

ui ( )( )=
=

M 33.3 kips 8.73 in.

291 kip-in.

ai ( )( )=
=

The required strong-axis flexural strength of the end plate, Mrx, is:

LRFD ASD

M 437 kip-in. sin 20°

149 kip-in.

ux ( ) ( )=
=

M 291 kip-in. sin 20°

99.5 kip-in.

ax ( ) ( )=
=

The first-order torsional moment in the end plate is:

LRFD ASD

T 437 kip-in. cos 20°

411 kip-in.

u1 ( ) ( )=
=

T 291 kip-in. cos 20°

273 kip-in.

a1 ( ) ( )=
=

The required second-order torsional strength of the end plate, Tr, is:

LRFD ASD

T 1.1 411 kip-in.

452 kip-in.

u ( )( )=
=

T 1.1 273 kip-in.

300 kip-in.

a ( )( )=
=

The required shear strength of the end plate, Vr, is:

LRFD ASD

Vu = PuL = 50.0 kips Va = PaL = 33.3 kips
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Fig. 15.  Free-body diagram of 1-in. end plate.

These loads are shown on the free-body diagram in Figure 15.

Combining Equations 7 and 42, the nominal torsional strength is:

T
0.6 50 ksi 1 in. 18 in.

2
1

18 in.

2.4 5.73 in.

623 kip-in.

p

2( )( ) ( )
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= +
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⎦
⎥
⎥

=

The available torsional strength is:

LRFD ASD

T 0.90 623 kip-in.

561 kip-in.

p ( )( )ϕ =
=

T 623 kip-in. 1.67

373 kips
p Ω =

=

The nominal shear strength is:

Vn	= (0.6)(50 ksi)(1 in.)(18 in.)
	 = 540 kips

The available shear strength is:

LRFD ASD

V 1.00 540 kips

540 kips

n ( )( )ϕ =
=

V 540 kips 1.50

360 kips
n Ω =

=

The nominal strong-axis flexural strength is:

M 50 ksi
1 in. 18 in.

4

4,050 kip-in.

nx

2
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=
⎡

⎣
⎢
⎢

⎤
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⎥
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=

The available strong-axis flexural strength is:

LRFD ASD

M 0.90 4,050 kip-in.

3,650 kip-in.

nx ( )( )ϕ =
=

M 4,050 kip-in. 1.67

2,430 kip-in.
nx Ω =

=
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SYMBOLS

B	 Amplification factor for second-order torsional 
effects

Cb	 Lateral-torsional buckling modification factor

Cw	 Warping constant, in.6

E	 Modulus of elasticity, ksi

F	 Horizontal couple force, kips

Fcr 	 Critical stress, ksi

Fy	 Specified minimum yield strength, ksi

Fwy	 Horizontal couple force required to initiate first 
yield, kips

G	 Shear modulus of elasticity = 11,200 ksi

Ie	 Moment of inertia for the equivalent beam, in.4

In	 Wagner constant, in.6

J	 Torsional constant, in.4

L	 Member length, in.

Mcr	 Elastic critical buckling moment for strong-axis 
flexure, kip-in.

Mcx	  Available flexural strength about the x-axis, kip-in.

Mcy	 Available flexural strength about the y-axis, kip-in.

Mnx	 Strong-axis flexural strength, kip-in.

Mp	 Plastic flexural strength, kip-in.

Mpe	 Plastic flexural strength of the equivalent beam, 
kip-in.

Mpx	 Plastic flexural strength about the x-axis, kip-in.

CONCLUSIONS

The torsional strength of connection elements can be attrib-
uted to the resistance due to uniform torsion, warping tor-
sion, and the Wagner effect. For long members subjected to 
reasonable torsional rotations, the contribution of both the 
warping and Wagner torsions are negligible. However, for 
short members and connection elements, their effect can 
be significant. If only the elastic uniform (Saint Venant) 
torsion is considered, the resistance can be significantly 
underestimated.

For many connection elements, this investigation showed 
that the torsional strength can be defined as the sum of the 
plastic uniform torsion strength and the plastic warping 
strength. For long connection elements, such as extended 
single-plate connections, the Wagner torsional resistance 
is negligible at reasonable service rotation limits. However, 
the Wagner resistance is significant for short connection ele-
ments such as conventional single-plate connections, allow-
ing torsional effects to be neglected for these connections.

A method has been proposed for the ultimate strength 
design of rectangular connection elements subjected to any 
possible combination of loads, including torsion. The design 
method results in a significant increase in torsional strength 
compared to traditional analysis methods. Several design 
examples showed the proper application of the proposed 
design method.

For nonstiffened extended single-plate connections, the 
design procedure in the AISC Manual (AISC, 2017) implic-
itly limits excessive torsional rotations. For connections 
subjected only to shear loads, the proposed design method 
results in strengths similar to the AISC Manual procedure 
by explicitly considering torsional effects. The proposed 
method can also be used to analyze extended single-plate 
connections subjected to axial forces and out-of-plane forces.

For LRFD, interaction according to Equation 61 is:
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For ASD, interaction according to Equation 61 is:
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Mpy	 Plastic flexural strength about the y-axis, kip-in.

Mre	 Required moment for the equivalent beam, kip-in.

Mrx	 Required x-axis flexural strength, kip-in.

Mry	 Required y-axis flexural strength, kip-in.

Mye	 Yield moment of the equivalent beam, kip-in.

Pc	 Available axial strength, kips

Pr	 Required axial strength, kips

Py	 Axial yield load, kips

Rr	 Required beam end shear reaction, kips

Rc	 Calculated shear strength, kips

Re	 Approximate experimental shear load where the 
load-deflection curve became nonlinear, kips

Ru	 Maximum experimental shear load, kips

Sx	 Elastic section modulus about the x-axis, in.3

T1	 First-order torsional moment, kip-in.

T2	 Second-order torsional moment, kip-in.

Tb	 Torsional resistance provided by a top flange lateral 
brace, kip-in.

Tc	 Available torsional strength, kips

Te	 Sum of the Wagner torsional moment and the 
uniform torsional moment, kip-in.

Tn	 Wagner torsional moment, kip-in.

Tp	 Plastic torsional moment, kip-in.

Tr	 Required torsional moment, kip-in.

Tu	 Uniform torsional moment, kip-in.

Tup	 Plastic uniform torsional moment, kip-in.

Tuy	 First-yield uniform torsional moment, kip-in.

Tw	 Warping torsional moment, kip-in.

Twi	 Inelastic warping torsional moment, kip-in.

Twp	 Plastic warping torsional moment, kip-in.

Twy	 First-yield warping torsional moment, kip-in.

Vc	 Available shear strength, kips

Vp	 Plastic shear strength, kips

Vr	 Required shear strength, kips

Wnc	 Normalized warping function at the corner of the 
cross section, in.2

a	 Constant as defined by Equation 15, in.

c	 Distance to outermost fiber, in.

d	 Member depth, in.

e	 Horizontal eccentricity for a single-plate connection, 
in.

h	 Distance between couple forces, F, in.

k	 Exponent applied to the axial load ratio

t	 Member thickness, plate thickness, in.

tw	 Beam web thickness, in.

z	 Distance along the member length, in.

αd	 Effective depth of the equivalent cross section, in.

β	 Normalized increase in torsional resistance due to 
the Wagner effect

δ	 Deflection of equivalent beam

δy	 Yield deflection of equivalent beam

τy	 Shear yield stress = 0.6Fy, ksi

θ	 Angle of rotation, rad

θi	 Inelastic angle of rotation, rad

θu	 Angle of rotation for uniform torsion, rad

θuy	 First-yield angle of rotation for uniform torsion, rad

θw	 Angle of rotation for warping, rad

θwy	 First-yield angle of rotation for warping, rad

θ1	 First-order torsional rotation, rad

θ2	 Second-order torsional rotation, rad

θ′	 Angle of rotation per unit length, first derivative of θ 
with respect to z, rad/in.

θ′′	 Second derivative of θ with respect to z, rad/in.2

θ′′′	 Third derivative of θ with respect to z, rad/in.3

σn	 Axial stress developed by the Wagner effect, ksi

σnt	 Maximum axial stress developed by the Wagner 
effect, ksi

σwc	 Maximum warping normal stress, ksi
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Guidance on Shear Rupture, Ductility and 
Element Capacity in Welded Connections
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ABSTRACT

Several considerations need to be made while in the process of designing welds and welded connections. For the most part, the AISC 
Specification for Structural Steel Buildings, in combination with corresponding parts of the AISC Steel Construction Manual, provides fairly 
good guidance on what is required to design Specification-compliant welds. However, there seems to be some confusion and controversy in 
regard to a few of these considerations. Specifically: (1) When is the load path from the weld to the connecting element(s) unclear? (2) When 
should the ductility factor be applied to a weld? (3) When should a weld be sized to develop the strength of a connecting plate? This paper is 
written in an effort to provide guidance in regard to these three considerations. Background into the development of the equations used to 
make these checks along with some discussion on the intent of application is provided and supported with some anecdotal examples. It is 
the objective of the authors to shed some light on these issues and hopefully clear any confusion and/or controversy, as well as to encourage 
more consistency throughout the steel construction industry with regard to these three considerations.

Keywords:  welded connections, shear rupture, ductility, element capacity.

INTRODUCTION

In the authors’ opinion, three of the most misunderstood 
and misapplied limit state checks in welded connection 

design are (1) application of matching fillet weld strength 
to base material strength when the load path within the base 
metal under the load is not readily known (AISC, 2017a, 
p. 9-5), (2) when to apply the ductility factor (1.25) when siz-
ing a weld, and (3) when a weld should develop the strength 
of the connecting material. The objective of this paper is to 
shed some light on the development of the equations used 
to make these three types of checks, provide discussion in 
regard to the various applications of these checks, and pres-
ent example problems demonstrating those applications.

Data related to every possible condition that might be 
encountered in practice simply are not available. In some 
instances, the authors are recommending practices based on 
their own knowledge, experience and judgment. Many of the 
recommendations are conservative, though considered rea-
sonable by the authors. Sources of conservatism are noted. 
Though the authors often approached the topics discussed 

with divergent views, this paper represents a consensus of 
the authors.

PART 1: MATCHING WELD AND  
BASE MATERIAL STRENGTHS

Derivation

Part 9 of the AISC Steel Construction Manual, hereafter 
referred to as the AISC Manual, provides a brief discussion 
of how to address base material rupture strength at welds 
entitled, “Connecting Element Rupture Strength at Welds.” 
The equations given in the AISC Manual for one- and two-
sided fillet welds (Equations 9-2 and 9-3) are repeated here 
for convenience (see Equations 1 and 2, respectively).

	
t

D

F

3.09

u
min =

�
(1)

	
t

D

F

6.19

u
min =

�
(2)

In Equations 1 and 2, D is the weld size in sixteenths of an 
inch and Fu is the specified minimum tensile strength of the 
base material adjacent to the weld.

The derivations of Equations 1 and 2 are fairly straight-
forward. As already stated, the intent is to match the weld 
strength to the base material strength. In other words, ensure 
that the shear rupture strength of the base material is at least 
equal to the rupture strength of the weld.

Figure 1 shows a one-sided weld condition. As shown in 
Figure 1, the shear rupture plane in the weld is assumed to 
be along the throat of the weld as shown with solid shading. 
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To ensure that the base material is at least thick enough to 
develop the rupture strength of the weld, a minimum thick-
ness will be required for the rupture area of the base mate-
rial shown in Figure 1 with cross hatching. We simply write 
equations to describe the shear rupture strengths of the 
two areas and set the two to equal each other. For the weld 
strength, the area is written in terms of the weld leg size 
in sixteenths of an inch (commonly known as D). Also, as 
can be seen in the derivation, the specified minimum tensile 
strength of the weld material, FEXX, is assumed to be 70 ksi.

Note that the length of the weld, l, as shown in Figure 1 
is not important because the derivation will show that the 
limit state checks given in Equations 1 and 2 are unit length 
checks.

The nominal shear rupture strength of the weld, based on 
the nominal stress, Fnw = 0.60Fexx, from AISC Specification 
Table J2.5 (AISC, 2016c), is given by Equation 3.

R F
D

l
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R
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0.60 cos 45°
16
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Rnw = 1.856Dl� (3)

The shear rupture strength of the base material, from AISC 
Specification Section J4, is given in Equation 4 in terms of a 
minimum plate thickness.

	 Rnp = 0.60Fultmin� (4)

Setting Equation 3 and 4 equal to each other then rear-
ranging to solve for the minimum plate thickness, tmin, gives 
Equation 1.
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Suppose the base material shown in Figure 1 has connect-
ing elements on both faces, as shown in Figure  2. In this 
case, the shear rupture area of the base material does not 
change. However, the weld rupture area doubles. In this case, 
the weld shear rupture strength is as given in Equation 5.
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Rnw = 3.712Dl� (5)

Setting Equations 4 and 5 equal to each other and then 
rearranging to solve for the minimum plate thickness, tmin, 
gives Equation 2.
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Fig. 1.  Weld and base material shear rupture area in a one-sided weld condition.
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Discussion

In effect, Equations 1 and 2 ensure that the base material 
will not rupture in shear adjacent to the weld when the weld 
size used to calculate tmin is provided in the connection. But 
it is critical to understand how the weld size, D, is calcu-
lated in the derivation of Equations 1 and 2. If we examine 
Equation 3, we find that its derivation is the same as that for 
the fillet weld equations, Equations 8-2a and 8-2b, provided 
in AISC Manual Part 8. If we multiply Equation 3 by the 
LRFD ϕ factor (0.75) or divide by the ASD Ω factor (2.00), 
we get those two well-known equations. Equations 8-2a and 
8-2b of the AISC Manual are repeated here for convenience. 
See Equations 6 and 7. Equation 5 is simply Equation 3 mul-
tiplied by 2, which is analogous to having two weld lines.

Rnw	 = 1.856Dl

ϕRnw	 = (0.75)(1.856)Dl

ϕRnw = 1.392Dl� (6)

R Dl

R Dl

1.856

1.856

2.00

nw

nw

=

Ω
=

R
Dl0.928nw

Ω
=

�
(7)

Equations 1 and 2 can be thought of as a shear rupture 
check for the base material. However, this is only accurate 
when the provided fillet weld size is exactly the size calcu-
lated from Equations 6 or 7—in other words, when the fillet 

weld is sized based on strength. If the provided fillet weld 
size is larger than that calculated using Equations  6 or 7, 
then Equations 1 and 2 will predict a required plate thick-
ness larger than what is required by a factor of Dprov/Dreq.

In simple terms, Equations 1 and 2 will result in a base 
material thickness that is able to develop the strength of the 
weld and is independent of the load required to be trans-
ferred by the weld.

Not Readily Known…

When is the shear rupture area not “readily known?” One 
way to look at this is that the demand on the base material 
is not readily known. When this is the case, Equations 1 and 
2 provide a conservative approach to ensure that the base 
material adjacent to the weld, at every point along the length 
of the weld, is thick enough to develop the strength of the 
weld actually provided independent of the actual required 
load for which the weld was sized.

Another condition is when a weld group is loaded eccen-
trically and the weld size is determined using, for instance, 
the instantaneous center of rotation method. Figure 3 shows 
a W16×57 beam connected to a W14×90 column with a 
shop-welded/field-bolted, double-angle connection. The 
fibers of the web of the beam, adjacent to the weld, are sub-
jected to a combination of shear and tensile stresses induced 
by the rotational demands inherent with the eccentric nature 
of the loading on the weld group. Therefore, the stresses in 
the beam web, adjacent to the weld, are not readily known, 
and the shear rupture check of the base metal provided by 
AISC Specification Section J4.2 cannot be applied directly. 
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Fig. 2.  Weld and base material rupture area in a two-sided weld condition.



92 / ENGINEERING JOURNAL / SECOND QUARTER / 2019

Again, in this case, Equations 1 and 2 can be used as a con-
servative approach to ensure that the base material adjacent 
to the weld, at every point along the length of the weld, is 
sufficient to develop the strength of the provided weld.

Byproduct Use of Equations 1 and 2

It is not unprecedented that Equations  1 and 2 have been 
used to check base material thickness in connections where 
shear rupture in the base material adjacent to the weld is not 
an applicable limit state. Figure  5 (discussed later) shows 
such a condition. Figure  4(a) shows an extended single-
plate simple shear connection transferring load to the web 
of a wide flange column. There are various design exam-
ple problems in AISC documents where Equations  1 or 2 
are used to check the thickness of the column web; even 

though shear rupture in the column web is not an applicable 
limit state, the column is continuous past the extent of the 
plate connection. In the absence of an industry consensus 
approach to this problem, even though Equations  1 and 2 
do not represent a viable limit state, they nevertheless give a 
conservative result.

There is a phenomenon that will occur as a result of this 
load transfer. Certainly, the column web will experience 
some shear stress but, more than likely, in combination with 
compression and tension stresses as the load, R, accumu-
lates over the length (depth), l, of the plate. Figure 4(b) is a 
sketch of this possible phenomenon. In Figure 4(b), the load 
transferred from the plate to the column web may be some 
combination of the load hanging from the column web above 
the plate and pushing on the column web below the plate. 
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Fig. 3.  Shop-welded/field-bolted, double-angle simple shear connection.
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Fig. 4.  Extended single-plate simple shear connection to column web.
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How these stresses are actually distributed in the column 
web would be a function of the slenderness of the column 
web and the amount of stress present in the web as a result 
of loads applied from other sources.

Currently, the AISC Specification (AISC, 2016c) and the 
AISC Manual (AISC, 2017a) do not address this possible 
limit state. It is also important to recognize that, as far as 
the authors are aware, there are no case studies that have 
identified this as a problem. Regardless, there must be some 
phenomenon [similar to that shown in Figure 5(b)], occur-
ring in the column web under this type of loading. Some 
designers, in an effort to address this in some manner, have 
used Equations 1 and 2 as a check on the web. Although, 
knowing the formulation of Equations  1 and 2, it is clear 
that Equations 1 and 2 do not address the phenomenon illus-
trated in Figure 4(b).

When a plate connection, like that shown in Figure  4, 
frames to only one side of the column web, Equation 1 has 
been used to check the column web thickness. When a plate 
connection frames to both sides of the column web, Equa-
tion 2 has been used. If a connection designer chooses to 
check the thickness of the base material for conditions like 
or similar to that shown in Figure 4, that is their preference; 
it certainly is conservative. However, they should consider 
that it is probably an opiate for the problem.

It should also be recognized that single-plate shear con-
nections often employ a weld size equal to or greater than s 
of the plate thickness. Much of the weld size is intended to 
allow the plate to yield prior to weld fracture. Because steel 
does not generally fail in the through-thickness direction, 
the rupture strength of the web, if checked at all, should only 
be checked relative to the shear reaction. A check based on 
the weld size is too conservative.

Recommendations

Concentrically Loaded Longitudinal Welds  
or Weld Groups

1.	When shear rupture of the base material adjacent to the 
weld is an applicable limit state, AISC Specification 
Section J4.2 should always be used.

2.	If a longitudinal weld can be sized using Equations  6 
and 7 (AISC Manual Equations 8-2a and 8-2b) and shear 
rupture of the base material adjacent to the weld is an 
applicable limit state, AISC Specification Section J4.2 
should always be used.

3.	Equations  1 and 2 (AISC Manual Equations  9-2 and 
9-3) can always be used when shear rupture of the base 
material adjacent to the weld is an applicable limit state. 
Remember that it is directly a shear rupture check of the 
base material adjacent to the weld. However, it must be 
recognized that it is a conservative approach that may 

result in thicker base material than what is actually 
required for the load being considered when the provided 
weld size is larger than that of the weld size required to 
transfer the load (e.g., Dprov/Dreq).

Eccentrically Loaded Welds or Weld Groups

1.	Welds of this nature are not wholly loaded along the 
longitudinal axis of the welds. For these welds or weld 
groups, the welds cannot be sized using Equations 6 or 7 
(AISC Manual Equations  8-2a and 8-2b). Furthermore, 
the actual stresses in the base material adjacent to the weld 
are not readily known. As such, when rupture of the base 
material is an applicable limit state, Equations  1 and 2 
(AISC Manual Equations 9-2 and 9-3) should be used. It 
should be recognized that this is a conservative approach, 
but the authors are not aware of a better alternative.

2.	AISC Specification Section J4.2 applies but is not readily 
usable for eccentrically loaded welds.

Byproduct Use of Equations 1 and 2

1.	It is somewhat common to use Equations 1 and 2 (AISC 
Manual Equations  9-2 and 9-3) to check base material 
thickness when shear rupture of the base material adjacent 
to the weld is not applicable but no other known limit 
state check is available (like or similar to that shown in 
Figure 4).

2.	Equations 1 and 2 can be used, as noted earlier, but these 
equations simply were not derived for such a purpose. The 
designer should recognize that such checks do not really 
address the issue.

PART 2: THE DUCTILITY FACTOR;  
INTERFACE WELDS

Background

The ductility factor for welds (some refer to this as the 
Richard factor), first showed up in AISC documents in the 
1992 Manual of Steel Construction, Volume II: Connec-
tions (AISC, 1992). The ductility consideration arose dur-
ing the development of the uniform force method (UFM), 
now commonly used for distributing forces in vertical brace 
connections framing to beam-column joints. One of the 
assumptions in the development of the UFM is that interface 
forces are distributed uniformly along the interfaces regard-
less of interface length, proximity of connected members, or 
other variables such as frame action (distortion).

Figure 5 shows a vertical brace connection used in a wind 
(or low seismic) application. Note the close proximity of 
the end of the brace relative to the beam-gusset interface. 
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ratio measured by the Williams’ finite element analysis. As 
can be seen in Table  1, run (specimen) 26 has the largest 
reported value and is equal to 1.39. AISC simply rounded 
the number to 1.40.

Hewitt and Thornton (2004) subsequently performed 
statistical analysis on the data provided by Williams (see 
Tables 1 and 2) and recommended a reduced ratio equal to 
1.25 based on a 90% confidence level (see Table 2). Note 
that, typically, this type of data and sample is evaluated on a 
95% confidence level. As can be seen in Table 2, even at this 
confidence level, the upper bound is 1.26. Thus, even at a 
95% confidence level, a ductility factor equal to 1.25 seems 
reasonable and is the value currently used for sizing welds.

How is the 1.25 factor used to accommodate ductility? 
Figure 7(a) shows the concentrated loads one might find to 
act on a welded interface. These interface loads are typically 
assumed to be uniformly distributed along the interface; the 
interface moment, M, is assumed to have a plastic stress dis-
tribution. The current method for determining whether or 
not the ductility factor should be used is to evaluate whether 
or not the peak stress/force, fpeak, is larger than 1.25 times 
the average stress/force, 1.25favg, along the interface (the 
1.25 coefficient is the value from the upper bound of the 

Although the interface forces are assumed to be distributed 
uniformly, as shown in Figure 5(b), a stress (or force) concen-
tration in the vicinity of the end of the brace may be present 
(as such, causing a nonuniform distribution of stress along 
the welded interface). It is for considerations such as this 
that the ductility factor was developed and implemented. It 
is worth noting that the work performed by Williams (1986) 
and Richard (1986) used in developing the ductility factor 
considered only braces that frame to beam-column joints.

The ductility factor was born from the work presented in 
Williams’ (1986) dissertation [a summary of that work can 
be found in Richard (1986)]. Of the work presented in the 
Williams dissertation, 45 finite element (FE) specimens, 
similar to the configuration shown in Figure 6, were con-
sidered to be loaded to their “ultimate” load, and maximum 
stresses along the gusset-member interfaces were recorded. 
Figure 6 shows a copy of the plot provided in the Williams 
dissertation that plots the ratio of the maximum interface 
stress to the average interface stress for the 45 concentric 
connections considered. Table 1 presents the tabulated val-
ues illustrated in Figure 6.

The ductility factor equal to 1.40 used in the 1992 AISC 
Manual was determined by evaluating the maximum stress 

Whitmore
spread

 

Assumed uniform
distribution

(a) corner gusset (b) assumed interface stresses 

Non-uniform
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favg

favgfpeak

 
(c) stress concentration (d) peak and average stress 

Fig. 5.  Corner brace gusset connection.
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Table 1.  Interface Stress Ratios Reported (Williams, 1986; Richard, 1986)

Run
Stress 
Ratio Run

Stress 
Ratio Run

Stress 
Ratio Run

Stress 
Ratio Run

Stress 
Ratio

1 1.22 10 1.22 19 1.16 28 1.20 37 1.16

2 1.20 11 1.31 20 1.22 29 1.32 38 1.26

3 1.19 12 1.19 21 1.19 30 1.18 39 1.20

4 1.30 13 1.22 22 1.29 31 1.17 40 1.26

5 1.29 14 1.24 23 1.32 32 1.18 41 1.30

6 1.28 15 1.26 24 1.18 33 1.19 42 1.19

7 1.19 16 1.32 25 1.33 34 1.27 43 1.22

8 1.20 17 1.14 26 1.39 35 1.18 44 1.22

9 1.29 18 1.26 27 1.37 36 1.12 45 1.30

Table 2.  Statistical Analysis of Interface Stress Ratios Given in Table 1

Mean
Standard 
Deviation

Confidence Level 
(90.0%)

Confidence Level 
(95.0%)

Confidence Interval 
(90.0%)

Confidence Interval 
(95.0%)

Lower Upper Lower Upper Lower Upper Lower Upper

1.24 0.063 −0.0158 0.0158 −0.0189 0.0189 1.22 1.25 1.22 1.26

Fig. 6.  Reproduction of Williams’ Figure 48 (maximum/average stress ratios).
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90% confidence interval shown in Table 2). Refer to AISC 
Manual Part 13 and Hewitt and Thornton (2004). To calcu-
late fpeak and favg, refer to Figure 7(b), where fpeak is the resul-
tant stress/force acting on the left half of the interface (where 
m and a act in the same direction) as shown in Equation 8.

	 f v a m( )peak
2 2= + + � (8)

The minimum stress/force, fmin, along the interface is on 
the right half of the interface where m and a act in opposite 
directions and is given in Equation 9.

	 f v a m( )min
2 2= + − � (9)

The average stress/force is the average of fpeak and fmin as 
shown in Equation 10.

	
f

f f

2
avg

peak min=
+

�
(10)

Figure  8 provides an illustration of the resultant forces 
obtained for the distribution shown in Figure  7(b). In the 

comparison of fpeak and 1.25favg, one can infer that where 
fpeak is smaller than 1.25favg that the assumed uniform distri-
bution is a reasonable assumption.

Discussion

For corner gussets, the ductility factor is always used on the 
welded interface. The reason for this is primarily due to the 
effect of frame distortion on interface demands. So, regard-
less of proximity or connection geometry, a ductility fac-
tor is applied due to the consideration of frame distortion. 
However, application of the ductility factor is not necessarily 
required for welded interfaces used in other types of con-
nections and deserves consideration of the types of loads, 
or combination thereof, acting on the interface, connection 
geometry, and the type of connecting element used. The fol-
lowing is a discussion of welded interfaces in other types of 
connections and the variation of combined loads and con-
nection geometry.
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Fig. 7.  Generalized interface forces distribution.
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Fig. 8.  Resultant interface loads, fpeak, fmin, and favg.
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Shear Only

In this case, there is no moment or axial (normal) forces 
acting on the interface. As such, the ductility factor is not 
applicable.

Axial Loads

For Equations 8 and 9, the terms v and m are zero, and these 
equations reduce to those shown in Equations 11 and 12.

f v a m( )peak
2 2= + +

f m0 ( )0peak
2 2= + +

fpeak	 = m� (11)

f v a m( )min
2 2= + −

f a0 ( )0min
2 2= + −

fmin	 = a� (12)

Taking the average of Equations 11 and 12 gives that shown 
in Equation 13.

f
f f

2
avg

peak min=
+

f
a a

2
avg = +

favg	 = a� (13)

Thus, for an interface subjected to pure axial force, 
1.25favg will always be larger than fpeak, suggesting that the 
ductility factor should always be applied to axial-only cases. 
However, we need to consider how the ductility factor was 
originally developed (as discussed previously) and the type 
of connection that is actually being considered. The discus-
sion given in reference to Figure 5 suggested that proximity 
was an issue, and it probably is for the connection shown 
in Figure 5. Referring to Figure 5(a), it can be seen that the 
Whitmore spread does not engage the entire beam-gusset 
interface, suggesting that a stress concentration is likely to 
exist on the interface in the vicinity of the end of the brace-
to-gusset connection.

Consider the hanger connection shown in Figure 9(a). The 
authors have seen the ductility factor applied to such a con-
nection. One argument is that the end of the hanging mem-
ber is in very close proximity to the welded interface, and as 
such, a ductility factor should be applied. However, if one is 
to look at the load transfer from the hanging member to the 
gusset, it can be reasonably argued that the axial force in the 
hanger is transferred along the hanger-to-plate welds along 
a sufficient length and that the connecting material is of 
nearly the same width as that of the hanging member. There-
fore, a uniform distribution is reasonable to assume, and the 
weld ductility factor need not be applied for this condition. 
Considering a Whitmore spread of even, say, 10°, as shown 
in Figure  10, illustrates this claim. Note that, typically, a 
Whitmore spread is assumed to be effective at as much as 

P
 P

 (a) hanger

(c) shaped plate (d) chevron (a.k.a. mid-span)

(b) �at bar

P

Δ eb

P1 P2
 

Fig. 9.  Various plate interface connections.
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30°. The spread of the load in a uniform manner along the 
line of action of the hanger is analogous to an application of 
Saint Venant’s principle.

Suppose, however, that the interface length shown in Fig-
ure 10 has to be increased, as shown in Figures 11(a) and 
11(b), in order to accommodate a heavier load. For this case, 
the Whitmore spread, even considered to be effective at 45°, 
does not suggest that a uniform distribution will occur. The 
entire welded interface is not engaged in a manner. For this 
condition, it is recommended to assume that only the weld 
within the Whitmore spread projected on the interface is 
effective when designing the weld. For this approach, the 
ductility factor would not be applied.

If the designer chooses to use the entire interface length, 
including the portion outside of the Whitmore length, this is 
a rational approach to analysis which accounts for the non-
uniform stress distribution.

Combined Shear and Axial

Under this loading, the m term in Equations 8 and 9 is zero, 
giving equations for fpeak and fmin as shown in Equations 14 
and 15.

f v a m( )peak
2 2= + +

f v a 0)(peak
2 2= + +

f v apeak
2 2= + � (14)

f v a m( )min
2 2= + −

f v a 0( )min
2 2= + −

f v amin
2 2= + � (15)

Taking the average of Equations 14 and 15 gives that shown 
in Equation 16.

f
f f

2
avg

peak min=
+

f
v a v a

2
avg

2 2 2 2

= + + +

f v aavg
2 2= + � (16)

Because fpeak and favg are the same, 1.25favg will always be 
larger than fpeak, suggesting that a ductility factor should 
always be applied for this type of loading.

Consider the flat bar used for the brace connection shown 

P

Whitmore
spread
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Fig. 10.  Axial hanger connection with flat bar plate.
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Fig. 11.  Fanned hanger connections—axially loaded interface welds.
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in Figure  9(b). The force distribution at the welded inter-
face is as shown in Figure 12(a). Figure 12(b) shows that if 
one were to assume a 30° Whitmore spread, it is clear that 
the load transfer, from the start of the connection, spreads 
through the gusset such that the entire length of the welded 
interface is well engaged. Therefore, application of the weld 
ductility factor is not required here.

Suppose that the plate used for the connection shown in 
Figure 12 is shaped to increase the interface length in order 
to satisfy a larger load. This configuration, as shown in Fig-
ure 13(a), is a commonly used detail. Figure 13(a) shows such 
a connection. Figure 13(b) shows a 30° Whitmore spread. As 
can be seen, the spread does not engage the entire welded 
interface. For this case, as shown in Figure 13, it would be 
appropriate to use a ductility factor. A simpler alternative 
might be to assume only the weld within the Whitmore 
length is effective without applying the ductility factor.

Combined Shear and Bending

Under this loading, the a term in Equations 8 and 9 is zero, 
giving equations for fpeak and fmin as shown in Equations 17 
and 18.

f v a m( )peak
2 2= + +

f v m0 )(peak
2 2= + +

f v mpeak
2 2= + � (17)

f v a m( )min
2 2= + −

f v m0 )(min
2 2= + −

f v mmin
2 2= + � (18)

Taking the average of Equations 17 and 18 gives Equation 19.

f
f f

2
avg

peak min=
+

f
v m v m

2
avg

2 2 2 2

= + + +

f v mavg
2 2= + � (19)

Because fpeak and favg are the same, 1.25 favg will always be 
larger than fpeak, suggesting that a ductility factor should 
always be applied for this type of loading.

However, consider the bracket connection shown in Fig-
ure 14. The bracket plate-to-column flange interface is sub-
jected to shear and bending, very similar to how a chevron 
gusset interface is subjected to load. If we consider only the 
comparison of fpeak and 1.25favg, a ductility factor would 
almost always seem to be necessary. However, one should 
consider how the ductility factor was developed. It was 
developed to address proximity and distortional effects on 
interfaces where a uniform stress distribution is assumed. 
The bracket connection shown in Figure 14 certainly does 
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Fig. 12.  Flat bar brace connection—shear and axial interface loads.



100 / ENGINEERING JOURNAL / SECOND QUARTER / 2019

Δ eb

P

m
a
v

eba
v

m

m
m

P

Δ eb

30° Whitmore spread

 

(a) shaped gusset – force distribution (b) shaped gusset – Whitmore spread 

Fig. 13.  Flat bar brace connection—shear and axial interface loads.
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not present issues related to proximity like that shown in 
Figure  5. In regard to distortional effects, the length (“h” 
as shown in Figure 14) of the interface for this type of con-
nection is typically relatively short; therefore, any curvature 
in the column would be negligible in regard to distortional 
effects, so applying a ductility factor is not required. With 
these considerations, the authors argue that a ductility fac-
tor is not required on the interface weld for such a connec-
tion. However, if the length of the interface was to increase 
substantially, such curvature of the column could rationally 
be assumed to affect the stress distribution along the weld. 
Engineering judgment would be required when evaluating 
the interface stresses, and an alternative rational approach to 
analysis would be required.

Combined Shear, Axial, and Moment

Under this loading, all of the terms in Equations  8 and 9 
are nonzero, giving equations for fpeak and fmin as shown in 
Equations 20 and 21.

	 f v a m( )peak
2 2= + + � (20)

	 f v a m( )min
2 2= + − � (21)

Taking the average of Equations 20 and 21 gives Equation 22.

	
f

v a m v a m( ) ( )
2

avg

2 2 2 2

= + + + + −

	
(22)

Because fpeak and favg are different, one would have to evalu-
ate whether or not a ductility factor would be applicable.

Consider the chevron (i.e., midspan) gusset connection 
shown in Figure 9(c). As discussed in Fortney and Thorn-
ton (2015, 2017), the welded interface will always transfer 
a combination of shear and axial loads along with bending 
[refer to Figure 7(a)]. The shear and axial loads are typically 
assumed to be uniformly distributed along the interface, and 
the moment is assumed to be distributed as a plastic moment 
distribution as shown in Figure 7(b).

When a moment acts on an interface weld in this type 
of connection, the interface moment has traditionally been 
converted to an equivalent normal force and added to the 
calculated normal force. Figure 15(a) shows a representative 
sketch of a combination of shear, V, normal force, A, and 
bending, M, acting on an interface of length, L. The moment, 
M, is converted to a force couple, acting at L/4 from the cen-
troid of the weld, representing a plastic stress distribution as 
shown in Figure 15(b). From here, one could size the welds 
on the left and right halves of the interface based on the 
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Fig. 15.  Converting interface moment into equivalent normal force.
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resultant forces acting on the two halves of the interface.
The resultant force acting on the left half of the interface 

[see Figure 15(b)] is given in Equation 23.

	
R V A

M

L
(0.5 ) 0.5

2
left

2
2

= + +⎛
⎝

⎞
⎠ �

(23)

The resultant force acting on the right half of the interface 
[see Figure 15(b)] is given in Equation 24.

	
R V A

M

L
(0.5 ) 0.5

2
right

2
2

= + −⎛
⎝

⎞
⎠ �

(24)

Each of the resultant forces determined from Equa-
tions  23 and 24 would have different directional strength 
increase “coefficients” due to the different vector directions. 
One would simply provide a weld along the entire interface 
length equal to the larger of the two required welds; the weld 
size required for the left side of the interface, as shown in 
Figure 15(b), will typically govern the weld size. One can 
think of Rleft as Rpeak and Rright as Rmin. This typically is not 
done, however. For further discussion on evaluating Rpeak 
and Rmin, refer to AISC Design Guide 29, Vertical Bracing 
Connections—Analysis and Design, Appendix B (Muir and 
Thornton, 2014), where it is shown that the maximum pos-
sible variance between Rpeak and Rmin (referenced as Rplus 
and Rminus in Design Guide 29) is 3.37%.

Typically, the force couple is converted into a total normal 
force and assumed to act in the same direction as the true 
normal force, A. These two forces would then be combined 
to give a total equivalent normal force, A (i.e., Neq), as shown 
in Figures 15(c) and 15(d). The resultant force for the inter-
face loads shown in Figure 15(d) is given in Equation 25.

	
R V A

M

L

42
2

= + +⎛
⎝

⎞
⎠ �

(25)

In Equation 25, the (A + 4M/L) term is the equivalent normal 
force. This method is used in several examples in the Design 
Examples Companion to the AISC Steel Construction Man-
ual (AISC, 2017b) as well as AISC Design Guide 29.

It may not be immediately recognizable, but Equations 23 
and 25 give the same resultant vector in both magnitude and 
direction. Thus, using the “equivalent normal force” method 
is another way of calculating the peak force (or stress if put 
in those terms). Where confusion seems to come into play 
with the “equivalent normal force” method is that there is no 
“average” stress with this method. So, how would one evalu-
ate the need for using the ductility factor using this method? 
The answer is that this method is just another way of calcu-
lating the peak force (or stress). The average force/stress is 
still calculated using Equation 22.

It is important to mention that in most vertical brace con-
nection example problems (braces framing to beam-column 

joints) presented in AISC documents, the equivalent normal 
force is used to calculate the peak force, and an average force 
is not calculated. However, a ductility factor is used on the 
resultant force calculated from the square root of the sum 
of the squares of interface shear and the equivalent normal 
force ( fpeak). Applying the 1.25 ductility factor to a resultant 
force determined using fpeak is not correct! This approach 
is taken simply as a conservative simplifying approach to 
avoid the trouble of calculating favg.

Should the ductility factor be applied to the welded inter-
face for the connection shown in Figure 9(c)? Some would 
argue that it depends on how the force is spread from the 
start of the brace-to-gusset connection (i.e., the Whitmore 
spread) and through the gusset to the interface. Others argue 
that the ductility factor was developed for corner brace con-
nections, and therefore, the ductility factor does not apply 
for this type of connection. The following discussion will 
demonstrate that the ductility factor is applicable for the 
connection shown in Figure 9(c).

Whitmore Spread

If we assume that the welded interface shown in Figure 9(c) 
has a uniformly distributed load as a combined effect of both 
braces, then Saint Venant’s principle should be evaluated. 
The evaluation can be done in terms of the Whitmore spread. 
Consider the midspan connection shown in Figure  16(a). 
Typically, the load effect of both braces would be assumed 
to be distributed uniformly along the entire welded inter-
face. However, if we assume a Whitmore spread of 30° from 
the start of both connections, we see in Figure 16(a) that nei-
ther of the force spreads engage the entire interface. In this 
case, a ductility factor would be applied due to a proximity 
effect. However, if the force spread of each brace engages 
the entire interface length, as shown in Figure 16(b), then a 
ductility factor need not be applied due to a proximity effect. 

Interface Distortion

As discussed previously, the primary reason a ductility fac-
tor is applied to a weld at the welded interface of a corner 
gusset is because of frame distortion. That is, as the frame 
laterally displaces, the angle between the beam and column 
increases, thus applying a distortional tension on the gusset, 
or decreases, thus applying a distortional compression on 
the gusset. It is usually overlooked, but the gusset-to-beam 
interface in a midspan gusset is subjected to similar distor-
tional forces.

Figure 17 shows a schematic of an exaggerated deflection 
of a braced frame beam with a midspan gusset. The beam 
tends to go through the textbook rotation of a simply sup-
ported beam loaded transversely. However, the load transfer 
among the beam, gusset and welds tends to “disturb” that 
typical beam rotation.
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Fig. 16.  Distribution overlap at interface.
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Fig.17.  Beam rotation relative to gusset along interface (deformation exaggerated for illustration).
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suggest that a ductility factor should be applied, it would 
be rare for proximity or distortional effects to indicate the 
application of the ductility factor. For almost all cases, a 
ductility factor is not necessary. However, in rare cases—for 
example, in cases with relatively long interface lengths—one 
should use engineering judgment to determine if a ductility 
factor should be applied if distortional effects are present.

Combined Shear, Axial and Bending

For most connections, an evaluation of Equations  20 and 
22 should be performed to determine whether or not Equa-
tion  20 ( fpeak) is equal to or larger than 1.25 times Equa-
tion 22 ( favg). There are permutations of combinations of v, a 
and m that will show that the peak force/stress is larger than 
1.25 times favg. However, if the welded interface can be rea-
sonably assumed to be subjected to distortional forces (e.g., 
Figure 17), a ductility factor should be applied regardless of 
the evaluation of fpeak and 1.25favg.

Generally

It’s important to note that one can simply always use a duc-
tility factor. It will always be conservative; it just may not 
be necessary. However, with regard to welds designed to 
develop the strength of the connecting element, a weld duc-
tility factor should not be used.

PART 3: ELEMENT CAPACITY AND (s) tP WELDS

Generally, welds need only be designed to resist the loads 
transferred between the parts based on the structural analy-
sis. Generally, welds need not be sized based on the avail-
able or expected strength of the joined parts. When welds are 
sized based on the strength of the joined parts, this is often 
referred to as “developing,” as in “developing the plate” or 
“developing the strength of the beam.”

One option is to provide a complete-joint-penetration 
(CJP) groove weld. As indicated in AISC Specification 
Table J2.5, at CJP groove welds “the strength of the joint is 
controlled by the base metal” not the strength of the weld. 
Partial-joint-penetration (PJP) groove welds with or with-
out reinforcing fillet welds can also be used to develop steel 
elements. This discussion will concentrate primarily on the 
design of fillet welds used to develop steel elements, though 
CJP and PJP groove welds will be briefly addressed as well.

Typical Conditions

For a majority of conditions encountered in practice, a weld 
can be considered to develop the strength of the joined parts 
if the available strength of the weld equals or exceeds the 
least available strength of the parts joined.

Suppose the net transverse loads acting on the beam 
induce downward bending as shown in Figure 17. If a gusset 
is installed on the top flange, the edges of the gusset will 
tend to compress against the beam flange while the inter-
face tends to open up along the interface length. Conversely, 
if a gusset is installed on the bottom flange, the end of the 
gusset will tend to move away from the flange while the 
interface will tend to close along the length of the interface. 
This curvature (greatly exaggerated in the figure for visual 
purposes) will create distortional forces along the welded 
interface. Therefore, regardless of Saint Venant’s principle 
or the Whitmore spread, a ductility factor should always be 
applied for the type of connection shown in Figure 9(c).

Element Capacity Welds

Some welds are designed to develop the tension, shear or 
flexural strength of the connecting element [e.g., single-plate 
shear connections, gusset-to-beam welds in corner gussets 
used in special concentrically braced frames (SCBF)]. When 
welds are sized to develop the strength of the connecting ele-
ment, a ductility factor should not be applied.

Recommendations

Shear Only

A ductility factor is not applied to a weld under this type of 
loading.

Axial Only

For most typical connections, a ductility factor is not 
required. However, the spread of the load from the begin-
ning of the load transfer point to the welded interface should 
be considered. If the Whitmore spread (or Saint Venant’s 
principle) does not show that the entire interface length 
is engaged [e.g., Figure 11(b)], a ductility factor should be 
applied.

Combined Shear and Axial

The use of a ductility factor needs to be evaluated on a case-
by-case basis. For flat bar–type gussets, a ductility factor is 
typically not required. For other types of connections, the 
spread of the load from the beginning of the load transfer 
point to the welded interface should be considered. If the 
Whitmore spread (or Saint Venant’s principle) does not show 
that the entire interface length is engaged [e.g., Figure 13(b)], 
a ductility factor should be applied.

Combined Shear and Bending

Although a comparison of fpeak and 1.25favg without consid-
ering proximity or distortional effects will almost always 
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root of the fillet, which is a stress riser, applied compres-
sion will tend to close the root of the weld, which is not a 
stress riser. There may also be bearing between the parts 
over some portion of the joint, which is generally neglected, 
and it should be neglected unless the parts are fit to bear. 
The authors recommend that the tension and compression 
cases be treated identically during design while recognizing 
that this is conservative.

Bending

The intended meaning of “developing” the element can be 
less clear when related to bending. Various criteria can and 
are commonly used in design: elastic strength (first yield), 
plastic strength, and plastic strength with continued rotation. 
Both the elastic strength and the plastic strength conditions 
will be considered here. The condition of plastic strength 
with continued rotation will be addressed in a subsequent 
section.

From mechanics, the elastic strength of an element is 
determined from its elastic section modulus, S. The required 
weld size to develop the elastic strength of a part can be 
determined by setting the available strength of the weld 
equal to the available flexure strength of the part. This is 
illustrated in the following, assuming a double-sided fillet 
weld; using LRFD and a modified version of Equation  6 
gives Equation 28.

F S D
l

2 1.5 1.392
4

y

2

( )( )ϕ =

F S D
l

0.90 2 1.5 1.392
4

y

2

( )( )=

D
F S

l
0.862 y

2=
�

(28)

In Equation 28, l is the length of the weld.
Equation 29 can be derived for a rectangular plate bent 

about its strong axis.

	 D = 0.144Fytp� (29)

Beyond first yield, the element will begin to lose stiff-
ness, and further increases in applied load will tend to be 
attracted to stiffer, nonyielded portions of the structure. For 
this reason, sizing the weld to develop the elastic strength 
may often be sufficient. In some instances, it may be desir-
able to develop the plastic strength of the element. 

Following a procedure similar to that illustrated for the 
elastic strength, the weld size required to develop the plas-
tic strength of a rectangular plate bent about its strong axis 
gives Equation 30.

	 D = 0.216Fytp� (30)

Shear

The required weld size to develop a part subjected to shear 
can be determined by setting the available strength of the 
weld equal to the available shear yield strength of the part 
from AISC Specification Section J4.2. This is illustrated 
below using LRFD and Equation 6:

ϕ0.60FyAg = 1.392DL�

Assuming a double-sided fillet weld gives Equation 26.

1.00(0.60)FytpLp = 1.392D(2)Lp

D = 0.216Fytp � (26)

A single-sided fillet weld could be used to develop the 
shear strength of an element. However, this is not a common 
practice and is typically uneconomical. Providing a double-
sided fillet weld would be a much better detail.

Tension

The required weld size to develop a part subjected to ten-
sion applied transverse to the longitudinal axis of the weld 
can be determined by setting the available strength of the 
weld equal to the available tensile yield strength of the part, 
in accordance with AISC Specification Section J4.1. This is 
illustrated below using LRFD and Equation 6.

ϕFyAg = (1.5)1.392DL

Note that the 1.5 factor on the right side of the preceding 
equation is the directional strength factor as determined 
using AISC Specification Section J2.4.

Assuming a double-sided fillet weld gives Equation 27.

0.90FytpLp = (1.5)1.392D(2)Lp

D  = 0.216Fytp � (27)

Single-sided fillet and PJP groove welds generally should 
not be subjected to tension applied transverse to the longitu-
dinal axis of the weld because rotation can occur about the 
axis of the weld, placing increased and uncertain demand 
on the weld root. Where restraint prevents such rotation, the 
concern is less critical, and single-sided welds may be an 
option.

Compression

The available strength of welds relative to compression 
load applied transverse to the longitudinal axis of the weld 
is generally assumed to be equal to that relative to tension 
load applied transverse to the longitudinal axis of the weld. 
There has been little testing of such conditions. There are 
reasons to believe that the strength of fillet welds subjected 
to compression will be greater than that for welds subjected 
to tension. Whereas applied tension will tend to open the 
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rotation is self-limiting and similar to a single-plate shear 
connection in configuration and expected behavior.

The design procedures for single-plate shear connections 
provided in the AISC Manual assume that plate yielding in 
some form accommodates simple beam end rotation. The 
conventional configuration relies on bolt plowing, or local 
yielding due to bearing at the plate (or potentially the beam 
web). The extended configuration primarily relies on flex-
ural yielding of the plate, with bolt plowing considered in 
some cases. These are not the only mechanisms that can 
accommodate simple beam end rotation. In reality, a combi-
nation of mechanisms will be mobilized to accommodate the 
rotation. It may not be necessary to adhere to the (s)tp weld 
size recommendation when other mechanisms are available 
or the simple beam end rotation from the analysis is small.

Large Inelastic Rotations—Seismic

In some instances, primarily related to seismic design, the 
weld must not only develop the flexural strength of the 
joined parts, but must also maintain its strength through 
large inelastic rotations of one of the parts joined. 

One such condition involves the welds of gusset plates 
attaching vertical braces used in a SCBF. Per the AISC 
Seismic Provisions (AISC, 2016b), SCBF are “expected to 
provide significant inelastic deformation capacity primarily 
through brace buckling and yielding of the brace in tension.” 
When the buckling occurs out-of-plane, large inelastic rota-
tions occur about approximately the longitudinal axis of the 
weld group, which could lead to premature rupture of the 
weld. AISC Seismic Provisions Section F2.6c.4 is intended 
to address this concern and states, “For out-of-plane brace 
buckling, welds that attach a gusset plate directly to a beam 
flange or column flange shall have available shear strength 
equal to 0.6RyFytp/αs times the joint length.” Even with the 
inclusion of Ry, the required weld size is still (w)tp.

The thickness of the gusset plate is rarely governed by 
the demands at the welded interfaces. Developing the weak-
axis flexural strength based on the full thickness of the gus-
set is not often necessary. A smaller, more economical weld 
can sometimes be obtained by sizing the weld to develop 
the maximum weak-axis moment occurring in combination 
with the shear, compression, and strong-axis moment that 
result on the gusset plate edge from the brace compression 
force. Carter et al. (2016) developed such a method utilizing 
a generalized interaction equation recommended by Dow-
swell (2015).

Other situations where welds are required to develop the 
strength of the joined part while that part undergoes large 
inelastic rotations are the moment connections in interme-
diate moment frames (IMF) and special moment frames 
(SMF). The AISC Seismic Provisions require physical testing 
of the beam-to-column connections to confirm the strength 
and ductility of such connections. Either prequalified 

Combined Shear, Axial and/or Bending

A similar procedure as those shown earlier will also result 
in a weld size of D = 0.216Fytp for combinations of applied 
shear, axial and/or bending.

For convenience, in practice it is useful to recognize that 
the weld size required to develop a plate for many of the 
loads considered thus far is D = 0.216Fytp. For a plate with a 
yield strength of 50 ksi, this can be expressed as w = 0.675tp.

Special Conditions

The procedures illustrated earlier can be used for many of 
the conditions most commonly encountered in practice that 
require development of the joined elements. There are, how-
ever, some instances where those procedures will result in 
weld sizes that are either larger than necessary or potentially 
ill-suited for the demands.

Single-Plate Shear Connections

AISC Manual Part 10 contains recommended design proce-
dures for single-plate shear connections. For both the con-
ventional and extended configurations, the AISC Manual 
recommends that “…the weld between the single plate and 
the support should be sized as (s)tp, which will develop the 
strength of either a 36-ksi or 50-ksi plate…” The weld is 
sized such that the plate will yield prior to the weld frac-
turing, allowing the plate to act as a fuse that accommo-
dates the beam end rotation in a ductile manner (Muir and 
Hewitt, 2009). It should be noted that this is only a recom-
mendation. There is no provision in the AISC Specification 
requiring that the weld be stronger than the plate. Instead 
the (s)tp recommendation is used as a means of satisfying 
AISC Specification Sections B3.4a and J1.2. AISC Speci-
fication Section B3.4a requires that “A simple connection 
shall have sufficient rotation capacity to accommodate the 
required rotation determined by the analysis of the struc-
ture.” AISC Specification Section J1.2 requires that “Flex-
ible beam connections shall accommodate end rotations of 
simple beams. Some inelastic but self-limiting deformation 
in the connection is permitted to accommodate the end rota-
tion of a simple beam.”

Rather than requiring engineers to determine the simple 
beam end rotation for every beam receiving a single-plate 
shear connection, the AISC Manual procedure is intended 
to accommodate rotations of about 0.03 rad, a rotation that 
exceeds the end rotation required of serviceable beams. In 
other words, the recommended (s)tp weld size reflects a 
conservative simplification. It is important to note that this 
recommendation is only for single-plate simple shear con-
nections at beam ends considered to have simple beam end 
boundary conditions. In other words, the recommendation, 
which results in a smaller weld than the more general pro-
cedure described earlier [i.e., (s)tp] applies only where the 
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associated redistribution of the stress. The ductility factor 
should not be applied when the weld develops the joined 
part(s).

CONCLUSIONS

Discussion of three common connection design applications 
has been provided. Little background into the evolution 
of issues related to connecting element rupture strength at 
welds, the weld ductility factor, and element capacity welds 
is readily available in archival journals. The authors have 
attempted to provide insight into the backgrounds of these 
limit state evaluations.

The authors make recommendations on analysis and 
design approaches when dealing with the connection design 
issues discussed. These recommendations are based on the 
collective experience of the authors. Readers should not 
interpret these recommendations as the only approaches 
that can be used. Any rational method of analysis or ratio-
nal approach can be implemented. It is the intention of the 
authors that the discussion and background information pro-
vided offers additional insight that can be used when consid-
ering the three issues presented in this paper.
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ABSTRACT

Special concentrically braced frame (SCBF) columns are designed as force-controlled elements and are intended to respond elastically 
during moderate-to-high return-period events. When placed at the intersection of orthogonal chevron-configured braced frames with fixed 
beam-column connections, SCBF columns are subjected to biaxial loading, including flexural demands developed in the beams due to 
unbalanced tension-compression brace forces. A probabilistic assessment of the force demands in biaxially and uniaxially loaded columns 
in chevron-configured SCBF is presented herein. Nonlinear response history analyses are performed on three-dimensional models of 3-, 
9- and 20-story SCBF, and statistical descriptions of the results are used to investigate (1) the force demands relative to the capacity-design-
based and elastic designs suggested by the American Institute of Steel Construction (AISC) Seismic Provisions, (2) the implications of the 
flexural demands transmitted to columns (via braced frame beams), and (3) the combinatorial effects of demands in biaxially loaded columns 
generated by orthogonal ground-motion components. At the maximum considered earthquake (MCE) hazard level, the median axial force 
demands in the biaxially loaded first-story columns of the three-story building are approximately at the level corresponding to the expected 
brace strength and exceed the design forces amplified by the overstrength factor. Axial flexure interaction is especially significant in the biaxi-
ally loaded columns of all three building cases. The results also show that the combinatorial effect of axial forces transmitted to the biaxially 
loaded columns via the orthogonal braces is generally lower in taller buildings and also depends on the demand level. 

Keywords:  special concentrically braced frames, probabilistic assessment, biaxially loaded columns, orthogonal effects, chevron braces.

INTRODUCTION

Special concentrically brace frames (SCBF) are com-
monly used as the seismic lateral force-resisting sys-

tem (LFRS) in commercial, educational and other types 
of buildings. This is largely due to their cost-effectiveness 
in providing the strength and stiffness needed for building 
structures located in high seismic regions. SCBF braces are 
the deformation-controlled elements and are designed and 
detailed to sustain inelastic deformations while serving as 
the primary source of energy dissipation for the system. 
The remaining frame elements (beams, columns, and brace 
connections) are force-controlled and intended to respond 
elastically during moderate-to-high return-period events. 
SCBF beams, columns, and brace connection elements are 

therefore designed utilizing capacity design principles so 
that, ideally, their required strength exceeds the maximum 
force demands that can be delivered by the deformation-
controlled elements (braces). The chevron configuration 
is frequently used in SCBF designs because it can provide 
open spaces and flexible architectural layouts However, 
due to the unsymmetrical cyclic axial force-deformation 
response of the brace in tension and compression, significant 
moments can be placed in the connecting beam, which are 
also transmitted to the columns when flexurally restrained 
beam-column connections are used. Improper consideration 
of these moments, especially in SCBF columns subjected to 
high axial loads, can lead to inelastic response and undesir-
able performance of the system. 

Because of building architectural or programmatic con-
straints, SCBF are sometimes configured with columns 
located in two intersecting, orthogonal braced frames. 
During earthquake shaking, these columns are subjected 
to biaxial loading due to the simultaneous action of hori-
zontal ground-motion components. For the case of chevron 
SCBF with flexurally restrained beam-column connections, 
the orthogonal braced frames will place axial and flexural 
demands in the intersecting column. As noted earlier, these 
columns are designed as forced-controlled components and 
are intended to respond elastically during moderate-to-
severe earthquake shaking. Estimation of the axial and flex-
ural demands in SCBF columns is therefore an important 
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part of the design process. In a real earthquake, these 
demands are affected by the extent and pattern of yielding 
in the brace elements.

Prior studies have used nonlinear response history analy-
ses of two-dimensional structural models to investigate the 
seismic force demands in braced frame columns. Tremblay 
and Robert (2001) analyzed a set of chevron steel braced 
frames ranging in height from 2 to 12 stories. From the 
results of these analyses, the authors suggested that the brace 
columns be designed using a “full capacity design” approach 
where the axial forces are computed assuming simultaneous 
buckling of braces. Richards (2009) investigated the col-
umn seismic demands in SCBF with X-bracing, buckling 
restrained braced frames (BRBF), and eccentrically braced 
frames (EBF) with different heights and strength levels. 
The structural models were analyzed using ground motions 
that were scaled to be at or above the design spectra. The 
results showed that for low-rise SCBF, the column axial 
force demands exceeded the overstrength factor (Ω0 = 2.0) 
used to determine the upper limit on the demands for design. 
The author suggested using the full tensile capacity of the 
braces as the basis for computing column axial demands. 
For taller braced frames, the column axial demands in the 
upper stories were more than twice the design demands. 
However, it was also noted that this observation has limited 
practical implications because top-story columns are typi-
cally overdesigned. The maximum axial force demands in 
the base columns of taller buildings ranged from 55 to 75% 
of the design demands. Based on this finding, it was noted 
that using more realistic (less conservative) demands for 
braced frame column design in taller buildings could lead to 
significant cost savings.

To demonstrate a newly developed reliability-based meth-
odology for establishing force demands in capacity-designed 
components of LFRS, Victorsson (2011) evaluated the force 
demands in SCBF columns. Structural models of 6- and 
16-story SCBF were analyzed using incremental dynamic 
analyses to investigate the effect of height and number of 
deformation-controlled elements on brace connection and 
column force demands. The base column axial forces at 
the maximum considered earthquake (MCE) hazard level 
were found to be 90% and 50% of the capacity-design-based 
demands suggested by the 2010 AISC Seismic Provisions 
(AISC, 2010) for the 6- and 16-story frames, respectively. 
However, while the axial forces in the strength-controlled 
6-story frame did not exceed the maximum required 
demands (elastic demands times the overstrength factor), 
this limit significantly underestimated the demands in the 
upper stories of the drift-controlled 16-story frame.

The objective of this study is to conduct a probabilis-
tic assessment of biaxially and uniaxially loaded chevron 
SCBF columns to evaluate (1) the force demands relative 
to the capacity-design-based and elastic designs suggested 
by the 2010 AISC Seismic Provisions, (2) the implications 

of the flexural demands transmitted to columns (via braced 
frame beams) as a result of unbalanced tension-compression  
forces in chevron braces, and (3) the combinatorial effects 
of demands in biaxially loaded columns generated by 
orthogonal ground-motion components. These issues have 
direct implications to the design and performance of col-
umns located in intersecting chevron-configured SCBF. 
Nonlinear response history analyses are conducted on three-
dimensional SCBF structural models with varying heights 
using bi-directional loading. Force demands are described 
in a probabilistic manner to facilitate establishing reliability-
based performance objectives for SCBF columns, which can 
then be linked to the prescribed design demands adopted by 
codes and standards.

DESCRIPTION OF BUILDING CASES

The three design cases used for the current study include  
3- (SCBF-3S), 9- (SCBF-9S), and 20-story (SCBF-20S) 
buildings with chevron-configured SCBF. The plan dimen-
sions, story heights, gravity loads, and framing layout of the 
three buildings are the same as the moment frame build-
ings used by Gupta and Krawinkler (1999) as shown in Fig-
ure 1. All bays are 30 ft wide and the typical story height is 
13 ft. All three buildings have symmetric SCBF plan con-
figurations and corner columns that are part of intersecting 
orthogonal braced frames. The braced frames in all three 
cases are all located on the perimeter of the building. All 
biaxially loaded (corner columns) are oriented with the web-
direction in the z-direction (Figure 1).

The braced frames are designed in accordance with 
ASCE/SEI 7–10 (ASCE, 2010) and the 2010 AISC Seis-
mic Provisions. (Note: All references to the AISC Seismic 
Provisions in this paper are references to the 2010 ver-
sion unless noted otherwise.) The seismicity parameters  
(SS = 2.17g and S1 = 0.75g) are based on a location in Los 
Angeles (−118.162, 33.996) with Site Class D. The designs 
are based on Risk Category II and Seismic Design Cat-
egory E with a response modification factor R  = 6, over-
strength factor Ω0  = 2, drift amplification factor CD  = 5, 
and importance factor, I = 1.0. The seismic design loads are 
obtained from response spectrum analyses performed using 
RAM Steel (Bentley). SCBF beam-column connections are 
assumed to be flexurally rigid, and column bases are pinned. 
Key seismic design parameters are summarized in Table 1.

The braces are designed in accordance with AISC Seismic 
Provisions Section F2 to meet the required strength, slen-
derness and compactness requirements. Based on the size 
range of the SCBF beams and columns, the effective brace 
length is taken to be 3'-11" (or approximately 12%) less than 
that of the workpoint-to-workpoint length. The design forces 
in the force-controlled components (beams, columns and 
connections) are determined in accordance with AISC Seis-
mic Provisions Section F.2.3. In all cases, the design-level 
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	 (a)  SCBF-3S	 (b)  SCBF-9S

	 (c)  SCBF-20S

Fig. 1.  Floor plans showing the layout of the braced frames.
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demands from response spectrum analyses amplified by 
the overstrength factor was lower than the expected brace-
capacity-based demands, therefore, the former was used in 
the design. 

In addition to gravity, the beams are designed for the 
unbalanced brace compression and tension forces. The 
strength of the columns is determined based on gravity loads 
plus the seismic demands corresponding to the amplified 
response spectrum analysis forces for the case where the 
compression braces are removed as required by AISC Seis-
mic Provisions Section F2.3, Exception 2. Note that there is 
no explicit requirement for the columns to be designed for 
the moments transmitted from the SCBF beams, which are 
generated by the unbalanced brace force (e.g., if the beam-
to-column connection were fully restrained). Because some 
designers might choose to treat the beam boundary condition 
as pinned, regardless of the actual connection, the columns 
were designed for axial load only in this study to highlight 
the implications of underestimating the design loads. It is 
worth noting that the 2016 AISC Seismic Provisions (AISC, 
2016) have been released, and the provision that limits 
the design forces in force-controlled components to elas-
tic demands amplified by the overstrength factor has been 
removed. Going forward, all force-controlled components 
are required to be designed for the expected brace-capacity-
based demand. In the current study, the demands from non-
linear response history analyses are evaluated against both 
the design-level demands amplified by the overstrength fac-
tor and the expected brace-capacity-based demands.

The SCBF member sizes (braces, chevron beams, and 
columns) and demand-to-capacity ratios are summarized in 
Tables 2 and 3, respectively. The demand-to-capacity ratios 
in the chevron beams are generally high across the three 
building cases, ranging from 0.82 to 0.95. The braces at the 
lower stories have the highest demand-to-capacity ratios for 
all building cases, ranging from 0.78 to 0.95. The upper-
story braces are generally overdesigned and have much 
lower demand-to-capacity ratios (0.23 to 0.70), especially in 
the 9- and 20-story buildings. Like the braces, the upper-
story columns are conservatively designed with the lowest 

demand-to-capacity ratios being less than 0.05. Because 
the beam-column connections are assumed flexurally rigid 
(welded connection), the columns are sized such that the 
flange width matches that of the beam. This explains why 
the demand-to-capacity ratios in the upper-story columns 
are very low (less than 0.1) compared to the other SCBF ele-
ments. The demand-to-capacity ratios in the lower-story col-
umns range from 0.52 in the 3-story building to 0.82 in the 
9- and 20-story buildings, respectively. The varying extent 
to which conservatism is incorporated in the SCBF columns 
is especially relevant to the probabilistic demand assessment 
presented later in the paper.

STRUCTURAL MODELING,  
GROUND MOTIONS, AND NONLINEAR 

RESPONSE HISTORY ANALYSES

Structural Modeling

Three-dimensional nonlinear structural models of the three 
building cases are developed in OpenSees (UC Berkeley) 
using expected gravity loads (1.05D + 0.25L). Only the 
SCBF frames are included in the structural model with a 
P-Δ column placed at the center-of-mass (geometric center) 
to account for the destabilizing effect of the gravity loads 
that are not explicitly considered. A schematic illustra-
tion of a single SCBF frame for the three-story building is 
shown in Figure 2. Beams and columns are modeled with 
fiber elements that incorporate the Steel02 material model 
with expected strengths of RyFy (Ry = 1.1 and Fy = 50 ksi). 
For beams, the fiber element properties are used for axial 
force and strong-axis bending (in the vertical plane). Fiber 
elements in columns account for bending about both axes 
(i.e., P-M-M interaction). Beam-column connections are 
modeled as flexurally rigid. The SCBF braces are modeled 
using force-based nonlinear beam-column elements with the 
Steel02 material (UC Berkeley) also using expected strengths 
(Ry  = 1.4 and Fy  = 46 ksi) and strain hardening of 0.3%. 
Initial imperfections and co-rotational transformations are 
used to simulate out-of-plane buckling. The discretization of 

Table 1.  Summary of Key Building Design Parameters

Building
Number of 

Stories
Seismic 

Weight (kips)
Approximate 
Period1, Ta(s)

Seismic 
Response 

Coefficient, Cs

Design Base 
Shear, V (kips)

Design Drift2 
(%)

SCBF-3S 3 5,247 0.44 0.24 1259 0.68

SCBF-9S-A 9 17,106 0.93 0.14 2395 0.70

SCBF-9S-B 9 17,106 0.93 0.14 2395 0.70

SCBF-20-S 20 47,117 1.81 0.07 3298 0.96
1	ASCE/SEI 7-10 Equation 12.8-7
2	Includes drift amplification factor, CD = 5
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Table 2c.  Summary of SCBF Beam Sizes

Building Level Chevron Beam Size

SCBF-3S

2 W27×281
3 W27×217
4 W24×192

SCBF-9S

2 to 4 W30×261
5 to 6 W27×217
7 to 8 W27×258
9 to 10 W24×192

SCBF-20S

2 to 11 W30×292
12 to 17 W30×261
18 to 19 W27×217
20 to 21 W24×192

Table 2b.  Summary of SCBF Column Sizes

Building Story Braced Frame Column Size

SCBF-3S 1 to 3 W14x132

SCBF-9S

1 W14×257
2 to 3 W14×211
4 to 9 W14×132

SCBF-20S

1 to 2 W14×665
3 to 4 W14×550
5 to 6 W14×455
7 to 8 W14×370
9 to 10 W14×311

11 to 12 W14×257
13 to 14 W14×193
15 to 20 W14×132

Table 2a.  Summary of SCBF Brace Sizes 

Building Story Brace Size

SCBF-3S

1 HSS7.5×0.5
2 HSS7.5×0.375
3 HSS6.625×0.312

SCBF-9S

1 to 3 HSS7.5×0.5
4 to 5 HSS7.625×0.375
6 to 7 HSS6.625×0.5
8 to 9 HSS6.625×0.312

SCBF-20S

1 to 10 HSS8.625×0.5
11 to 16 HSS7.5×0.5
17 to 18 HSS7.5×0.375
19 to 20 HSS6.625×0.312



114 / ENGINEERING JOURNAL / SECOND QUARTER / 2019

set of 26 ground motions, each with two orthogonal hori-
zontal components. The set includes records from events 
with moment magnitudes ranging from 6.4 to 7.6 and rup-
ture distances between 6.84 and 27.3  miles. The ground-
motion spectra are shown in Figure 3 with the ASCE/SEI 
7–10 estimated periods corresponding to the three building 
cases identified. The median spectral acceleration level cor-
responding to the code-based period for the 3-story, (T  = 
0.44s), 9-story (T = 0.93s), and 20-story (T = 1.83s) build-
ings are 0.60g, 0.40g and 0.19g, respectively.

Nonlinear Response History Analyses

The force demands in the biaxially loaded (corner) SCBF 
columns (Figure  4) is the response parameter of primary 

the brace elements along the length, number of integration 
points, and number of fibers are determined based on the 
recommendations provided in Uriz et al. (2008). The ends of 
the braces are modeled as pinned, and rigid elastic elements 
are placed at the ends of beams, columns and braces in the 
region of the gusset plate. Rayleigh damping corresponding 
to 3% of critical damping in the first and third modes is 
applied. The first three modal periods for the three building 
cases obtained from eigenvalue analyses of the OpenSees 
models, are summarized in Table 4.

Ground Motions

Nonlinear response history analyses are conducted on the 
structural models of the three building cases using a single 

Table 3.  Summary of Demand-to-Capacity Ratios for Braces  
and SCBF Beams and Columns

Building

Demand-to-Capacity Ratios

Braces Beams Columns

SCBF-3S 0.70 to 0.86 0.82 to 0.92 0.04 to 0.52

SCBF-9S 0.23 to 0.78 0.84 to 0.89 0.04 to 0.82

SCBF-20S 0.54 to 0.95 0.85 to 0.95 0.02 to 0.82

Fig. 2.  Schematic illustration of OpenSees model for a typical three-story SCBF.

Table 4.  Modal Periods from Eigenvalue Analyses 

Building

Modal Periods, (s)

1st Mode 2nd Mode 3rd Mode

SCBF-3S 0.38 0.37 0.15

SCBF-9S 0.81 0.81 0.38

SCBF-20-S 2.00 2.00 0.82
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PROBABILISTIC ASSESSMENT OF FORCE 
DEMANDS IN SCBF COLUMNS

Brace Force Demands at MCE Hazard Level

The primary goal of this section is to probabilistically assess 
the force demands in the SCBF columns relative to (1) the 
demands based on expected brace strengths, (2) the design 
demands obtained from response spectrum analysis (before 
amplifying by the overstrength factor), and (3) the nominal 
strengths. To facilitate interpreting those demands, median 
brace compressive forces at the MCE hazard level, Cmax, in 
each direction, normalized by the expected brace strengths 
Cexp, are shown in Figure 5. The median Cmax/Cexp ratio is 
approximately 0.95 for both (x and z directions) orthogo-
nal first-story braces of all three buildings. The Cmax/Cexp 

interest. However, as described later, the demands in the uni-
axially loaded columns (Figure 4) are used as a benchmark 
to evaluate the combinatorial effect of orthogonal loading. 
Demands from the SCBF braces in the two principal direc-
tions of the LFRS transmit axial forces to the biaxially loaded 
columns. Flexural demands in the SCBF beams, which 
develop because of the unbalanced tension-compression  
response of the chevron braces, are also transmitted to 
these columns in the form of biaxial bending moments. 
Incremental dynamic analyses (IDA) are performed using  
bi-directional loading at ground-motion hazard levels rang-
ing from 10 to 100% of the MCE at 10% increments. This 
range of ground-motion intensities is used to evaluate the 
effect of the extent of inelastic response on the combinato-
rial effects of demands from orthogonal ground motions. In 
the analyses, each ground-motion pair is scaled such that the 
geometric mean spectra matches the target intensity at the 
building’s fundamental period.

Fig. 3.  Response spectra for ground motions  
used in nonlinear structural analysis. Fig. 4.  Identifying biaxially and uniaxially loaded columns.

	 (a)  SCBF-3S	 (b)  SCBF-9S	 (c)  SCBF 20-S

Fig. 5.  Brace force demands normalized by expected strength.
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ratio is generally much lower in the uppermost stories of  
SCBF-3S (0.6 to 0.7) and SCBF-9S (0.55 to 0.6). The  
Cmax/Cexp profile in SCBF-20 is uniform along the height 
of the building between the 1st and 18th stories because the 
brace compressive demands for many (more than half) of 
the ground motions are at or near the expected strength

SCBF Column Axial Compressive Force Demands  
at MCE Level

Figure 6 shows the full profile of the maximum compres-
sion force in the biaxially (median, 16th and 84th percentile) 
and uniaxially (median) loaded columns, Pmax, normal-
ized by the demands based on the expected strength of the 
braces, Pexp. The median Pmax/Pexp ratio for the biaxially 
loaded columns in the first story of SCBF-3S, SCBF-9S and  
SCBF-20S is 1.16, 0.61 and 0.6, respectively. The reduction 
in the first-story column Pmax/Pexp ratio in SCBF-3S and 
SCBF-9S with building height is consistent with the pro-
file trend of brace demands shown in Figures 5(a) and 5(b). 
Note that, for biaxially loaded columns, Pexp is based on 
100% of expected compressive strength of the braces in one 
direction and 30% in the orthogonal direction—that is, the  
100–30 rule is applied to obtain Pexp. The overall trend is 
that Pmax/Pexp decreases up the height of the building. For 
example, in the uppermost story, the median Pmax/Pexp ratio 
is between 0.06 and 0.25 for the biaxially loaded columns 
in all three structures. The dispersion in Pmax/Pexp also 
decreases up the height of the building as evidenced by the 
reduction in the difference between the 84th and 16th per-
centile values, which ranges from 0.48 in the first story of 
SCBF-3S to 0.2  in the uppermost story. In SCBF-9S, the 
range is 0.18 in the first story to 0.11 in the uppermost story.

Figure  6(a) shows that Pmax/Pexp in the uniaxially 
loaded columns is comparable to that of the biaxially 
loaded columns for SCBF-3S. For example, the median  
Pmax/Pexp  = 1.16  in the first story of the uniaxially 

loaded columns in SCBF-3S. However, for SCBF-9S and  
SCBF-20S, Pmax/Pexp is higher for the uniaxially loaded col-
umns (Pmax/Pexp ranges from 0.69 to 0.73 in the first story). 
As expected, Pmax is generally higher in the biaxially loaded 
columns. However, because Pexp for the uniaxially loaded 
columns is based on the compressive strength of braces in 
one direction, it is smaller than that of the biaxially loaded 
columns, which, as noted earlier, are based on 100% of com-
pressive strength of braces in one direction and 30% in the 
other. The Pmax/Pexp being higher for the uniaxially loaded 
columns in the 9- and 20-story structures but comparable to 
that of the biaxially loaded columns for the 3-story struc-
ture suggests that the combinatorial effects of loading from 
orthogonal braced frames is more significant in the latter. 
This finding is further explored later in the paper when a 
more direct approach to evaluating “orthogonal effect” is 
implemented.

Figure 7 shows that the median of the ratio Pmax/Prsa is 
2.6, 1.7 and 1.8 in the biaxially loaded columns at the first 
story of SCBF-3S, SCBF-9S and SCBF-20S, respectively. 
Note that Pmax/Prsa is greater than the Ω0  = 2.0 for the 
biaxially loaded column in SCBF-3S, which means that the 
median demand at the MCE level exceeds the upper limit on 
the design axial force set by the AISC Seismic Provisions. 
However, as noted earlier, the upper limit corresponding to 
the design level demands amplified by the overstrength fac-
tor has been removed in the 2016 Provisions. For SCBF-3S, 
Pmax/Prsa = 1.9 for the uniaxially loaded first-story columns, 
which is 37% smaller than its biaxially loaded counterpart, 
where Pmax/Prsa = 2.6 [Figure 7(a)]. However, Pmax/Prsa for 
uniaxially and biaxially loaded first-story columns are 
approximately equal for SCBF-9S and SCBF-20S. Again, 
this observation is consistent with the Pmax/Pexp ratios dis-
cussed earlier and will be explored further later in the paper.

The maximum compression force in biaxially (median, 
16th and 84th percentile) and uniaxially (median) loaded 

	 (a)  SCBF-3S	 (b)  SCBF-9S	 (c)  SCBF 20-S

Fig. 6.  Compression force demands in SCBF columns at MCE level normalized by demands based on expected strength of braces.
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columns normalized by the nominal strength, Pmax/Pn is 
shown in Figure  8. For SCBF-3S, the peak demand ratio 
occurs in the first-story columns and is about 0.5 for the 
biaxially loaded columns [Figure  8(a)]. For SCBF-9S and 
SCBF-20S, the maximum Pmax/Pn also occurs at the first 
story, and the median values are 0.67 and 0.76, respectively 
for the biaxially loaded columns. These relative ratios are 
somewhat consistent with the demand-to-capacity ratios 
used in the design (reported in Table 3), which were 0.52, 
0.82 and 0.82  in SCBF-3S, SCBF-9S and SCBF-20S, 
respectively. Pmax/Pn drops off to less than 0.05  in the 
uppermost columns of all three buildings for the biaxially 
loaded columns. Pmax/Pn in the first-story uniaxially loaded 
columns of SCBF-3S is approximately 20% less than its 
biaxially loaded counterpart. For SCBF-9S and SCBF-20S,  
Pmax/Pn in the first-story uniaxially loaded columns is 
approximately 14% and 7% less, respectively, when com-
pared to the biaxially loaded ones. The reduction in the 

difference between the demands in the uniaxially and biaxi-
ally loaded columns as the building height increases is con-
sistent with earlier observations. The higher dispersion in 
the lower-story demands on the taller buildings is also con-
sistent with earlier observations.

SCBF Column Flexural and Axial-Flexure Interaction 
Demands at MCE Hazard Level

Figure 9 shows that the median of the maximum flexural 
demands, Mmax, in the biaxially loaded columns at the 
MCE hazard level are as high as approximately 100% of 
the nominal flexural strength, Mn, for all three buildings. 
The lower flexural demands in upper stories is consistent 
with the brace demand pattern observed in Figure 5. For all 
three buildings, the flexural demand ratios are comparable 
about the two axes. Except for the first two stories of each 
building, the flexural demand ratios in the uniaxially loaded 
columns are higher about the strong axis. The exceptions 

	 (a)  SCBF-3S	 (b)  SCBF-9S	 (c)  SCBF 20-S

Fig. 7.  Compression force demands in SCBF columns at MCE level normalized by demands from response spectrum analysis.

	 (a)  SCBF-3S	 (b)  SCBF-9S	 (c)  SCBF 20-S

Fig. 8.  Compression force demands in SCBF columns at MCE level normalized by nominal strength.
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are due to high drift concentrations in the first-story weak-
axis direction, which results in high flexural demands at the 
top of the first-story and bottom of second-story columns. 
Recall that these flexural demands originate from the unbal-
anced tension-compression response of the chevron braces, 
which results in significant flexural demands in the SCBF 
beam. If the SCBF beam column connections are flexur-
ally restrained, as was assumed in this study, these moments 
are also transmitted to the columns. The AISC Seismic Pro-
visions require the chevron beams to be designed for the 
moments caused by the brace force imbalance. However, as 
noted earlier, there is no explicit language requiring that the 
moment demands in the column be considered in the design.

It is well understood that axial force and flexural demands 
in beam-column elements interact to produce axial stresses. 
For the most part, very little attention is given to axial-
flexure interaction in SCBF systems because it is generally 
assumed that SCBF columns are not subjected to signifi-
cant moment demands. However, as presented earlier, using 
chevron-configured SCBF with flexurally rigid beam- 
column connections resulted in moment demands as high 
as 100% of the nominal flexural strength for the buildings 
considered in this study.

Figure  10 shows the profile of maximum axial-flexure 
interaction demands at the MCE hazard level for the biaxi-
ally and uniaxially loaded columns. The P-M interaction 
demands are described in terms of the sum of the axial and 
flexural demands (both axes) normalized by their respective 
nominal strengths (Pmax/Pn + Mmax,1/Mn,1 + Mmax,2/Mn,2).  
The median interaction ratio is greater than 1.0 for the biaxi-
ally loaded first- and second-story columns of SCBF-3S 
and the first, second, fourth and fifth stories of SCBF-9S. 
In SCBF-20S, the median ratio is approximately 1.17 in the 
first-story biaxially loaded column. The interaction ratio is 
generally higher for the biaxially loaded columns compared 

to the uniaxially loaded ones. The maximum ratio (first-
story) is 5%, 8% and 14% higher for the biaxially loaded col-
umns of SCBF-3S, SCBF-9S and SCBF-20S, respectively. 
The median interaction ratio drops off to approximately 
40% in the uppermost biaxially loaded columns for SCBF-
9S and SCBF-20S. For SCBF-3S, the median interaction 
ratio is approximately 65% in the uppermost story.

PROBABILISTIC EVALUATION OF 
COMBINATORIAL EFFECTS FOR  

ORTHOGONAL RESPONSE DEMANDS  
IN BIAXIALLY LOADED SCBF COLUMNS

When designing LFRS elements, the structure is typically 
analyzed independently for each horizontal translational 
component of earthquake loading, and the demands are com-
bined accordingly. The rules used to combine the demands 
from orthogonal loads are intended to account for the simul-
taneous actions of ground-motion components. In ASCE/
SEI 7–10, which was used to design the building cases for 
the current study, the 100–30 rule (Rosenblueth and Contre-
ras, 1977) is adopted, which uses the larger of the responses 
obtained from combining 100% of the demand from loading 
in one direction with 30% of the demands associated with 
loading in the orthogonal direction. Other approaches to 
combining the demands from orthogonal earthquake loads 
include the 100–40 rule Newmark (1975), the square-root-
sum-of-squares (SRSS) and the CQC3 rule (Smeby and Der 
Kiureghian, 1985). Several researchers have investigated the 
efficacy of these combination rules (e.g., Menun and Der 
Kiureghian, 1998; Heredia-Zavoni and Machiacao-Barrion-
uevo, 2004; Lopez et al., 2001). However, most of these stud-
ies did not consider nonlinear response in their evaluations, 
and none have focused on the specific issue of biaxially 
loaded columns in SCBF.

	 (a)  SCBF-3S	 (b)  SCBF-9S	 (c)  SCBF 20-S

Fig. 9.  Flexural demands in SCBF columns at MCE level normalized by nominal strength.
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The “orthogonal effects” combination rules are used 
to amplify the force demands from uni-directional load-
ing so that they are representative of the demands from  
bi-directional loading. As noted earlier, the corner SCBF 
columns are loaded biaxially by the two orthogonal ground-
motion components. However, because of the symmetry of 
the LFRS used in the current study, the axial demands in the 
“non-corner” or uniaxially loaded columns are affected by 
a single ground-motion component. As such, the ratio of the 
axial compression demands in the biaxially and uniaxially 
loaded columns is used as the basis of evaluating the combi-
natorial effects of the response demands in the former. The 
maximum axial compressive force in the biaxially and uni-
axially loaded columns are denoted as Pmax,bi and Pmax,uni, 
respectively. For bi-directional nonlinear response history 
analysis performed using a single ground-motion pair, the 
ratio Pmax,bi/Pmax,uni is obtained. By using a set of ground 
motions for each of the load cases, a full probability distri-
bution of Pmax,bi/Pmax,uni is determined.

	 (a)  SCBF-3S	 (b)  SCBF-9S	 (c)  SCBF 20-S

Fig. 10.  Axial-flexure (P-M) interaction demands (Pmax/Pn + Mmax,1/Mn,1 + Mmax,2/Mn,2) in SCBF columns at MCE level.

	 (a)  SCBF-3S	 (b)  SCBF-9S	 (c)  SCBF 20-S

Fig. 11.  Full-height profile for the ratio of compression force demands in biaxially and uniaxially loaded columns at MCE level.

Figure 11 shows the full height profile of the median, 16th 
and 84th percentile of Pmax,bi/Pmax,uni corresponding to the 
MCE hazard level. In SCBF-3S, the median ratio is 1.3  in 
the first story and reduces to 1.16 in the uppermost story. It 
can also be observed that Pmax,bi/Pmax,uni generally decreases 
as building height increases. In the first-story columns of 
SCBF-9S and SCBF-20S, the median Pmax,bi/Pmax,uni is 1.17 
and 1.12, respectively, which serves as further evidence that 
the combinatorial effects of orthogonal loading is lower for 
taller buildings.

Figure  12 shows the effect of ground-motion intensity 
on the Pmax,bi/Pmax,uni ratios in the first-story columns. Fig-
ure 12(a) shows the median, 16th and 84th percentile ratios 
for SCBF-3S, which are obtained from an IDA performed 
at intensities ranging from 10 to 100% of the MCE hazard 
level. An overall increase in Pmax,bi/Pmax,uni with the ground-
motion intensity is observed. For example, the 84th percen-
tile value ranges from 1.39 at the lowest intensity level to 1.58 
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at the highest intensity level. This observation highlights the 
need to consider both inelastic response and ground-motion 
intensity level when evaluating rules for combining response 
demands from orthogonal ground-motion components.

Figures  12(b) and 12(c) show that in addition to  
Pmax,bi/Pmax,uni being generally lower, the effect of ground-
motion intensity is also less significant for taller buildings. 
For instance, the difference between the 84th percentile 
Pmax,bi/Pmax,uni at 10% and 100% of the MCE intensity level 
is only 0.07 in SCBF-9S compared to 0.19 in SCBF-3S. For 
the SCBF-20S building, the 84th percentile Pmax,bi/Pmax,uni 

is approximately the same at the 10% and 100% MCE inten-
sity levels.

The uncertainty in the values of Pmax,bi/Pmax,uni con-
ditioned on the ground-motion intensity level can be 
described by fitting a theoretical probability distribution 
to the empirical data-points at that intensity. The two-
sample Kolmogorov-Smirnov (KS) test (Massey, 1951) 
is performed to determine the appropriate distribution 
based on the null hypothesis that the empirical values of  
Pmax,bi/Pmax,uni follow that distribution. The output of the KS 
test is a p-value, which corresponds to the probability that 
there is a match between the empirical and theoretical distri-
butions. A threshold of 5% is used as the acceptable margin 
of the p-value. The difference between the theoretical and 
empirical distributions is deemed significant if the p-value 
obtained from the hypothesis test falls below this threshold. 
The results from the KS test showed that the log-normal dis-
tribution produces a p-value that is larger than 5% across all 
intensity levels. Therefore, Pmax,bi/Pmax,uni is assumed log-
normal. Probability of exceedance curves for Pmax,bi/Pmax,uni 
conditioned on the MCE hazard level, which are generated 
from the theoretical probability distributions, are shown in 
Figure  13. The distribution for each building is generated 
using the median and log-standard deviation values from the 

	 (a)  SCBF-3S	 (b)  SCBF-9S	 (c)  SCBF 20-S

Fig. 12.  Ratio of compression force demands in biaxially and uniaxially loaded first columns from IDA.

empirical data. As noted earlier, the median Pmax,bi/Pmax,uni 
is generally lower for tall buildings, which results in higher 
overall exceedance probabilities. For example, SCBF-20S 
has an exceedance probability of 0.43 at Pmax,bi/Pmax,uni = 
1.0, which is almost half that of SCBF-3S. The exceedance 
probability corresponding to Pmax,bi/Pmax,uni  = 1.3, which 
ranges between 0.12 for SCBF-20S and 0.48 for SCBF-3S, 
can be used as the basis for evaluating the 100–30 rule.

CONCLUSIONS

A probabilistic evaluation of the force demands in the biaxi-
ally loaded columns of special concentrically braced frames 
(SCBF) is presented with a specific focus on (1) the maxi-
mum considered earthquake (MCE) demand levels relative 
to the capacity-design-based and design level forces; (2) the 
implications of flexural demands, which are transmitted 
from the chevron beams; and (3) the adequacy of the com-
binatorial effects of loading from orthogonal ground-motion 
components. Nonlinear response history analyses of three-
dimensional models of 3-, 9- and 20-story SCBF are used as 
the basis of the evaluation.

For both the biaxially and uniaxially loaded columns, the 
ratio of the median MCE level axial compression demands, 
Pmax, normalized by (1) the demands based on the expected 
brace strength, Pexp, (2) the demands from response spec-
trum analysis before amplification by the overstrength fac-
tor, Prsa, and (3) the nominal compressive strength, Pn, was 
assessed. By comparing Pmax/Pexp and Pmax/Prsa for the 
biaxially and uniaxially loaded columns in the three build-
ing cases, the combinatorial effect of orthogonal loads was 
found to decrease as the building height increased. More-
over, the three-story building case was the one where, 
in the first-story columns, Pmax/Pexp exceeded 1.0 and  
Pmax/Prsa exceeded the overstrength factor for an SCBF 
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building (2.0). However, it should be noted that the latter is 
no longer a concern because the 2016 AISC Seismic Provi-
sions (AISC, 2016) require SCBF columns to be designed 
for Pexp. The demand dispersion was found to be highest 
in the lower stories and generally increased with building 
height.

The highest Pmax/Pn values in the biaxially loaded col-
umns were found to be comparable with the demand-to-
capacity-ratio used in design: 0.25, 0.82 and 0.82 in the 3-, 
9- and 20-story building cases, respectively. For the biaxi-
ally loaded columns, the median of the maximum MCE 
level flexural demands was as high as 100% of the nomi-
nal strength in all three buildings. An interaction ratio was 
computed by summing the axial and flexural demands (both 
axes) normalized by their respective nominal strengths. The 
median of the maximum MCE level value of this ratio was 
found to be greater than or equal to 1 for both the uniaxi-
ally and biaxially loaded columns of all three buildings. It 
is worth reiterating that the goal here was to highlight the 
performance implications of neglecting the seismic moment 
generated in the SCBF columns via the chevron beams. 
However, it is recognized that some engineers do account for 
these moments in their design, and the axial-flexural inter-
action demand ratios presented in this study are not repre-
sentative of those cases.

The combinatorial effects of orthogonal response 
demands in the biaxially loaded columns was evalu-
ated by generating full probability distributions of these 
demands normalized by the demands in the uniaxially 
loaded columns (Pmax,bi/Pmax,uni). The full profile (along 
building height) of the median, 16th and 84th percentile of  
Pmax,bi/Pmax,uni at the MCE hazard level showed that com-
binatorial effects are generally higher in the lower stories 

Fig. 13.  Probability of exceedance curves for ratio of compression force  
demands in biaxially and uniaxially loaded first columns at MCE level.

of the three building cases and decreased as the building 
height increased. Results from incremental dynamic analy-
ses showed that while Pmax,bi/Pmax,uni generally increased 
with ground-motion intensity, the effect was smaller for 
taller buildings.

The 100–30 combination rule was evaluated by comput-
ing the probability of Pmax,bi/Pmax,uni > 1.3. This probability 
was found to range from 0.12 to 0.48 for the 20- and 3-story 
buildings, respectively. At least for SCBF systems, this sug-
gests that the current 100–30 rule underestimates the axial 
force demand in biaxially loaded columns. Note that the 
2016 AISC Seismic Provisions implies that a 100–100 com-
bination rule should be used to account for the simultaneous 
action of orthogonal ground-motion components. However, 
the results of this study suggest that for the considered SCBF 
systems, this would be overly conservative.

This study did not attempt to identify a more appropri-
ate combination rule, principally because its focus was to 
assess whether the current combination rule resulted in con-
sistently underestimating biaxial column demands in SCBF 
systems. It is important to note that mere exceedance of esti-
mated demands in individual columns does not necessarily 
lead to poor performance (e.g., collapse). Moreover, appro-
priately estimating demands on biaxially loaded columns is 
not a material-dependent issue. Further research is needed 
to evaluate the performance implications of alternative 
combination rules. For SCBF systems, such research must 
consider the impact of all relevant limit states that might 
dominate behavior as the combination rule is varied. Similar 
research investigating orthogonal load effects in other seis-
mic-force-resisting systems is also needed to assess whether 
the existing combination rule should be changed or alterna-
tive approaches implemented.
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Steel Structures Research Update

Steel Diaphragm Innovation Initiative
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INTRODUCTION

A multiyear academic-industry partnership to advance 
the seismic performance of steel floor and roof dia-

phragms in steel buildings is highlighted. Lead investiga-
tors for the Steel Diaphragm Innovation Initiative (SDII) 
are Samuel Easterling, Matthew Eatherton, and Cristopher 
Moen (Year 1), Virginia Tech; Jerome Hajjar, Northeastern 
University; and Rafael Sabelli, Walter P. Moore, and Benja-
min Schafer, Johns Hopkins University. The team includes 
AISC T.R. Higgins Lectureship Award and AISC Milek 
Fellowship Award winners for topics ranging from develop-
ments in long-span composite slabs to buckling-restrained 
braced frames to continuity plate detailing for steel moment-
resisting connections.

SDII has been made possible through a collaboration 
between the American Iron and Steel Institute (AISI) and 
the American Institute of Steel Construction (AISC) with 
contributions from the Steel Deck Institute (SDI), the Metal 
Building Manufacturers Association (MBMA), and the 
Steel Joist Institute (SJI). Additional support is provided by 
the National Science Foundation (NSF). SDII is managed 
by the Cold-Formed Steel Research Consortium (CFSRC).

The team’s motivations for creating SDII stemmed 
from issues with respect to the knowledge base for steel 
diaphragm performance, codes and standards, as well 
as missed opportunities for advancements in seismic  
performance–based design. The available research on steel 
diaphragms was primarily focused on the strength of iso-
lated systems; little was known about ductility or whole-
building performance. Code changes were being made to 
increase design diaphragm forces to be commensurate with 
elastic load levels, despite research supporting economical 
design of the diaphragm considering overstrength or ductil-
ity in steel deck diaphragms (O’Brien et al., 2016). Stiffness 
and redundancy in steel diaphragms and their connections 
to the vertical system were not being utilized to their full 
advantage and presented opportunities for advancements 
and innovations in steel building systems.

The team developed a five-year case and plan to “advance 
the seismic performance of steel floor and roof diaphragms 
utilized in steel buildings through better understanding of 
diaphragm-structure interaction, new design approaches, 
and new three-dimensional modeling tools that provide 
enhanced capabilities to designers utilizing steel diaphragms 
in their building systems” (SDII, 2017). The work includes 
providing research support for much-needed revisions to 
proposed seismic codes and standards for steel diaphragms. 
SDII is also working on innovative steel diaphragm solu-
tions for efficient, robust and resilient steel building systems.

The Steel Diaphragm Innovation Initiative is more than 
halfway through its five-year effort and recently held a 
workshop with key stakeholders. The workshop included 
presentations from the research team and a brainstorming 
session, soliciting feedback for future research, standards 
development, and outreach to the engineering community 
(www.steeli.org). Some of the accomplishments from the 
third year of the initiative are highlighted here.

RESEARCH OBJECTIVES

With the overarching goal of advancing the seismic perfor-
mance of steel floor and roof diaphragms utilized in steel 
buildings, SDII has organized its efforts into three primary 
thrust areas: Innovation and Practice, Experiments, and 
Modeling (Figure  1). Innovation and Practice tasks range 
from evaluation of existing design methods and technologies 
to seismic standards work to development and validation 
of new designs and technologies. The Experiments tasks 
include developing databases of available steel diaphragm 
testing and conducting new experiments to fill knowledge 
gaps. Modeling tasks include modeling to support the exper-
iments as well as development of high-fidelity diaphragm 
models and whole-building models for exploration of vari-
ous factors for diaphragm and whole-building performance. 
“The objective is to move the practice forward through the 
adoption of new design specifications for diaphragms and 
the creation and use of tools that allow engineers to under-
stand and optimize in their designs of steel diaphragms for 
steel buildings” (SDII, 2017).

EXPERIMENTS

The team is making good progress in the Experiments 
thrust area. Available data on fastener tests, shear connector 
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pushout tests, and full-scale diaphragm tests has been col-
lected into databases. Within the Experiments area, the data 
have been used to identify testing needs. In the other thrust 
areas, the data are being used in development of new 
analysis and design methods. Testing technologies, such 
as photogrammetry, are being explored and developed for 
monitoring cracking in the concrete-filled diaphragm tests 
and for use in other tests. Cyclic deck sidelap and structural 
framing connector tests have been conducted. Diaphragm-
style tests are being conducted on standing seam roof panel 
assemblies. The team is collaborating with investigators 
studying chords and collectors.

Testing to Characterize Behavior across Scales

The third year saw a continuation of the coordinated test-
ing effort to characterize the behavior from the individual 
fasteners to the diaphragm panel to the full composite slab 
and steel framing systems. The experimental investigations 

highlighted here are isolated fastener tests; tests to explore 
the sensitivity of fastener behavior to installation details; 
shear connector pushout tests; composite deck cantile-
ver diaphragm tests; and full-scale, beam-style composite 
deck diaphragm tests. These investigations aim to fill gaps 
in knowledge needed for the design of bare deck for roof 
diaphragms and for concrete-filled floor deck diaphragms 
common in multistory steel building construction.

Isolated Fastener Tests

A series of 80 tests were conducted on isolated sidelap and 
structural framing fasteners with flat sheets of steel deck. 
The fasteners were tested in this manner in order to separate 
fastener behavior from the effects of deck geometry, such as 
bends, embossments, and edge distances. The sidelap fas-
teners tested were #10 and #12 screws. Structural framing 
fasteners included powder-actuated fasteners, pneumatic 
power-actuated fasteners, arc seam welds, and #12 screws. 

Fig. 1.  SDII summary figure: Scope and three thrust areas.



ENGINEERING JOURNAL / SECOND QUARTER / 2019 / 125

Other parameters included number of deck plies for the 
structural fasteners (1, 2 and 4 ply to the support), deck 
thickness (22, 20 and 18 gage), and loading (monotonic and 
cyclic). For the structural framing connection tests, a x-in.-
thick plate represented the structural support steel.

Each test specimen consisted of a single fastener and 
overlapping sheets of steel. The test setup for the isolated 
fastener tests used aluminum U-shaped fixtures to keep 
the deck plies flat and in contact while the specimen was 
loaded axially [Figure 2(a)]. Load, cross-head displacement, 
and relative displacement between plies were measured. 
Observed failure modes included sidelap screw tilting and 
pullout, shear failure of structural screws, bearing failure 
at power-actuated fasteners, tearing of the sheet around the 
weld, and shear failure of the weld. Cyclic loading generally 
resulted in lower strength, with some exceptions. Arc seam 
welds were generally stronger than the other fasteners but 
also more variable in strength and failure mode. Meanwhile, 
comparison to companion tests showed that the presence of 
corrugations and realistic boundary conditions resulted in 
an increase in strength, 14% on average (Shi et al., 2018).

Sensitivity of Fastener Behavior  
to Installation Details

The sensitivity of sidelap fastener behavior to screw instal-
lation details was also investigated. This testing expanded 
upon the study of cyclic performance of steel deck sidelap 
and structural framing connections (Torabian et al., 2018a). 
Parameters for this study included screw edge distances 
(0.25, 0.375 and 0.5  in.), deck thicknesses (22, 20 and 18 
gage), screw size (#10, #12), and loading (cyclic, monotonic). 
Note that the 0.5-in. edge distance placed the screw at a 
bend in the deck, and results from those tests were not avail-
able at the time of this article. In the test setup, the sidelap 

connected the stationary side of the deck to the moving part 
of the specimen, which was connected to a dynamic actua-
tor [Figure 2(b)]. As in the other fastener tests, screw tilting 
and pullout was observed. For monotonic and cyclic tests, 
a larger edge distance resulted in a higher shear strength. 
The effect of edge distance on the sidelap stiffness is being 
analyzed (Torabian et al., 2018b).

Shear Connector Tests

Monotonic and cyclic composite shear connector tests, 
also referred to as “pushout” tests, are under way. The 
shear connector test specimens are correlated to the cyclic  
concrete-filled steel deck cantilever tests described later in 
this section. For the monotonic pushout tests, each side of 
the symmetric specimen has two shear studs that are welded 
to the flange of a WT and embedded in a 36-in. × 36-in. slab. 
A hydraulic jack applies load to the ends of the WTs [Fig-
ure 3(a)]. Parameters for the 41 monotonic tests include type 
of concrete (lightweight or normal weight), thickness of slab 
(4, 6.25 or 7.5 in.), and position of the stud in the rib (strong or 
weak). Cyclic pushout tests are conducted using a new test-
ing rig developed for the purpose [Figure 3(b)]. Monotonic 
pushout tests will also be conducted with the new testing 
rig. The concrete portion of specimen is restrained at each 
side. Steel roller guides underneath the steel beam allow the 
steel portion of the specimen to move as load is applied in 
line with the top beam flange, thereby imposing realistic 
demands on the shear connectors. In the 16 monotonic and 
cyclic tests, effects of stud position, deck rib orientation, slab 
thickness, and lightweight or normal-weight concrete will 
again be investigated. Behavior for a deck oriented parallel 
to an edge beam will also be studied. Stud number and spac-
ing will include 1 @ 12 in. and 2 @ 12 in. on center.

 
	 (a)  isolated fastener test specimen	 (b)  deck sidelap test setup

Fig. 2.  Test setup.
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Cantilever Composite Deck Diaphragm Tests

Cantilever composite deck diaphragm tests are also under 
way [Figure 4(a)]. In these specimens, the composite deck 
is connected with perimeter studs to a steel frame, with the 
frame restrained at one side and cyclic displacements applied 
at the other side [Figure 4(b)]. A total of six specimens will 
be tested to investigate effects deck depth, slab thickness, 
perimeter stud configuration, and lightweight vs. normal-
weight concrete. Four specimens have been designed to fail 
from diagonal concrete cracking; two will be limited by the 
strength of the perimeter shear stud anchors.

Full-Scale, Beam-Style Composite Deck 
Diaphragm Tests

A test program of full-scale, beam-style composite deck dia-
phragm tests with realistic floor framing is in development. 
The primary objective for these tests is to provide informa-
tion on the response of the complete floor system. The test 
setup will be designed to follow the load path during seismic 
excitation of a building, from the inertia force in the concrete 

floor, through the shear studs into the framing system of 
chords and collectors, and then to the vertical lateral-force-
resisting system. The test program will investigate typical 
floor framing as well as integration of energy dissipating 
fuses in the chords and collectors.

MODELING

The Modeling area has been critical for achieving objectives 
in the Experiments as well as the Innovation and Practice 
thrust areas. The team is developing and using models to 
support and supplement the testing programs, to assess cur-
rent seismic codes and standards, and to explore potential 
innovations in design. Improved simplified models have 
been developed for conventional and new design. High-
fidelity models with new capabilities (e.g., predicting frac-
ture) are also being developed. The team is actively working 
on whole-building models, validated with experimental data 
and useful for validation of proposed designs and technolo-
gies. Some recent progress on the whole building models is 
highlighted.

	 	
	 (a)  test setup	 (b)  new testing rig for cyclic and monotonic pushout tests

Fig. 3.  Monotonic pushout test.

  
	(a)  cantilever composite deck specimen after testing	 (b)  schematic of test setup

Fig. 4.  Cantilever composite desk diaphragm testing.
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Building-Scale Simulations

The whole-building models make use of the SDII archetype 
designs from the Innovation and Practice thrust area. The 
inventory of archetype buildings ranges from 1 to 12 stories 
in height and includes different lateral force-resisting sys-
tems such as special concentrically braced frames (SCBF), 
buckling restrained braced frames (BRBF), and moment 
frames. To date, 1-, 4-, 8- and 12-story buildings with SCBF 
and BRBF have been designed. The completed archetype 
buildings are 300  ft by 100  ft in plan with seismic-force-
resisting systems designed for Seismic Design Category 
(SDC) D at an Irvine, California, site (Figure 5). At the floor 
levels, the composite slab has a 3-in. metal deck with either 
7.5 in. total thickness of normal weight concrete or 6.25 in. of 
lightweight concrete. The roof diaphragm is assumed to be a 
bare 1.5-in. metal deck. The diaphragms have been designed 
following Minimum Design Loads and Associated Criteria 
for Buildings and other Structures, ASCE/SEI 7–16 (ASCE, 
2016) standard and alternative design methods, providing 
opportunities for evaluation of different diaphragm design 
methods. Drawings, reference spreadsheets, and models can 
be found in Torabian et al. (2017).

Various options have been considered for reduced order 
modeling of the diaphragms in the building models. The 
options include rigid diaphragms, elastic or nonlinear shell 
elements, and nonlinear truss elements. These reduced-
order models have been calibrated using experimental 
data obtained from cantilever diaphragm tests, as seen for 
development of the nonlinear truss element model. In the 
model, elastic beam-column elements were used for the 
perimeter steel members, and X-braces represented the deck 
or composite slab [Figure  6(b)]. The Pinching 4  material 
model in OpenSees was used in the X-braces to simulate 
the hysteretic behavior of the diaphragm. A comparison 
of the calibrated simulation and the experimental results 

shows that the hysteretic behavior was reasonably captured 
by the nonlinear truss element model of an 18-gauge deck 
with power-actuated fasteners and screws tested by Beck 
(2013) [Figure 6(a)]. Other reduced-order modeling options 
being explored include a hybrid shell-truss model, utiliz-
ing the shell element’s ability to handle out-of-plane gravity 
demands.

Work continues on other aspects of the reduced-order 
modeling and analysis of the archetype buildings. Initial 
investigations of the one-story and four-story archetype 
building models with the diaphragm truss elements included 
nonlinear time history analysis at the design basis and max-
imum considered earthquake levels. Qayyum et al. (2017) 
evaluated force transfer, deformation and ductility demands, 
distribution of inelasticity, peak displacements, and residual 
displacements. Further modeling refinements included non-
linear beam-column elements with plastic hinging for the 
frame members and modifications to better represent fixity 
of the joints. Nonlinear pushover and time-history analyses 
have been conducted on these improved models, and the 
work has been extended to the other archetype buildings.

INNOVATION AND PRACTICE

The Innovation and Practice thrust area is focused on trans-
lation of SDII to industry, with improved seismic codes 
and standards, experimental benchmarks, modeling proto-
cols, and new diaphragm technologies. Progress within this 
thrust area has included development of archetype designs, 
evaluation of existing design methods and technologies, 
performing gap analysis for seismic as well as nonseismic 
and nonstructural design, and exploring new design meth-
ods and technologies. Another important task is the team’s 
efforts in codes and standards to improve the design of steel 
deck diaphragms. Some activities in the seismic standards 
work are briefly summarized.

 
	 (a)  isometric rendering	 (b)  floor plan

Fig. 5.  Building archetype. 
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SUMMARY AND FUTURE WORK

SDII seeks to advance the seismic performance of steel floor 
and roof diaphragms utilized in steel buildings and is doing 
so in a multi-institution effort with three coordinated thrust 
areas: Innovation and Practice, Experiments, and Modeling. 
Accomplishments in the third year of their five-year plan 
included experimental investigations ranging from isolated 
fastener tests to cantilever diaphragm tests and filling gaps 
in knowledge for bare deck roof diaphragms and concrete-
filled floor deck diaphragms; development of models to 
support and supplement the testing programs, to assess cur-
rent seismic codes and standards, and to explore potential 
innovations in design; and significant efforts in codes and 
standards to improve the design of steel deck diaphragms.

The research team continues to improve understanding of 
diaphragm-structure interaction and to develop new design 
approaches and three-dimensional modeling tools with 
enhanced capabilities. Outcomes from work by the Steel 
Diaphragm Innovation Initiative will include much-needed 
revisions to proposed seismic codes and standards for steel 
diaphragms and innovative steel diaphragm solutions for 
efficient, robust and resilient steel building systems.
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Seismic Standards Work

SDII is already influencing standards and specifications. 
Contributions in the third year include technical support for 
the AISC Seismic Provisions for Structural Steel Buildings 
(AISC, 2016) related to horizontal truss diaphragms and the 
alternative diaphragm design provisions in the Minimum 
Design Loads and Associated Criteria for Buildings and 
Other Structures, ASCE/SEI 7–16 (ASCE, 2016). Updates 
to the AISC Seismic Provisions for concrete-filled deck 
diaphragms are also in progress. Research team members 
are making use of the SDII test database to provide model-
ing parameters and nonlinear acceptance criteria for steel 
deck systems for the new AISC standard that is currently in 
development, Seismic Provisions for Evaluation and Retro-
fit of Structural Steel Buildings. Team members have also 
proposed improvements in the AISI North American Stan-
dard for the Design of Profiled Steel Diaphragm Panels, 
AISI S310–16 (AISI, 2016), for strength predictions of steel 
deck diaphragms and in the AISI North American Stan-
dard for Seismic Design of Cold-Formed Steel Structural 
Systems, AISI S400–15 (AISI, 2015), for diaphragm design 
provisions. Through the Building Seismic Safety Council 
and with a peer review team from the Applied Technology 
Council, steel deck provisions for the alternate diaphragm 
design method are being prepared, and the groundwork is 
being laid for steel deck provisions for rigid-wall flexible 
diaphragm systems in ASCE/SEI 7–16.

    
	 (a)  comparison to experimental results	 (b)  schematic of the nonlinear truss element model

Fig. 6.  Reduced-order diaphragm simulation.
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ERRATA

Clearance for Welded Joints
Bo Dowswell

Vol. 56, No. 1, 2019

In the paper ABSTRACT, the last two sentences of the paragraph are revised to:

The results of this study, which was limited to only eight specimens, validated the common practice of cutting the edge square at doubler 
plates less than a-in. thick. For doubler plates thicker than ¼ in., a groove angle, α, of 15° to 30° may be required to ensure consistent weld 
quality.
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