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Buckling of Conventional and High-Strength 
Vanadium Steel Double-Angle Compression Members: 
Computational Parametric Study
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MOHAMED M. TALAAT and FRANK W. KAN

ABSTRACT

High-strength, low-alloy vanadium (HSLA-V) steel offers higher strength and toughness than conventional steel. The resulting lighter weight 
and more slender structural components are more susceptible to buckling in compression. A series of conventional Grade 50 steel and 
HSLA-V (nominal Grade 80) steel angle compression components was tested at Lehigh University’s ATLSS laboratory. This experimental 
database was used to develop and verify a modeling approach using the general-purpose finite element (FE) software ABAQUS to simulate 
the component buckling response.

This study extensively evaluates the 2010 American Institute of Steel Construction (AISC) and Steel Joist Institute (SJI) design equations for 
double-angle buckling, resulting in significant findings and recommendations for both specifications. The primary objective of this paper was 
to assess the validity of applying the buckling equations given in the SJI 2010 Design Specification for long-span and deep-long-span joists 
(SJI, 2010) to double-angle compression members manufactured using 80-ksi HSLA-V steel. Present SJI specifications are applicable only 
for steel with specified yield stress of 50 ksi or less. Another objective of this study was to compare the design equations for compression 
buckling in the SJI Design Specification and the AISC 2010 Specification (AISC, 2010) and to develop recommendations for enhancing the 
accuracy of buckling equations commonly used in current practice. To achieve these goals, an extensive database of analytical buckling 
simulations was created to compare the performance of the code buckling equations in determining the buckling strength for regular and 
HSLA-V steel compression members.

Potential solutions for resolving the observed lack of conservatism in the strong-axis buckling predictions were investigated. The use of the 
modified component slenderness ratio in the AISC provisions significantly improved the accuracy of the SJI buckling strength predictions for 
strong-axis buckling cases with Q-factor values less than 1.0.

Keywords: high-strength vanadium steel, compression, computational parametric study, modification factors, buckling analysis.

INTRODUCTION

A long-term research project sponsored by the Army 
Research Laboratory (ARL) under Cooperative Agree-

ment DAAD 19-03-2-0036 and executed by the Advanced 
Technology Institute (ATI) was initiated in 2003 to assess the 
impact of high-strength, low-alloy microalloyed vanadium 

(HSLA-V) steels on a wide variety of different applications. 
HSLA-V steels have specified yield strengths as high as 90 
ksi and thus provide the opportunity both for weight reduc-
tion and enhanced sustainabiltiy.

This paper presents results from a computational cor-
relation and parametric study the authors performed on 
double-angle compression components (SGH, 2011, 2012). 
A previous correlation study describes the successful use 
of nonlinear analytical modeling to closely match failure 
modes and strengths observed in 20 compression tests of 
double-angle members with a range of properties (SGH, 
2011). Based on the success of the correlation study, the 
parametric study was performed to extend our findings 
beyond the range of parameters included in the experimen-
tal test program.

The primary objective of this parametric study is to assess 
the validity of applying the buckling equations given in the 
2010 Steel Joist Institute (SJI) Design Specification for long-
span and deep-long-span joists (SJI, 2010) to double-angle 
compression members manufactured using 80-ksi HSLA-V  
steel. Present SJI specifications are applicable only for 
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steel with specified yield stress of 50 ksi or less. The 2010 
SJI Specification is based on the 2010 AISC Specification 
(AISC, 2010) but omits flexural-torsional buckling and the 
application of the slenderness modification ratio for built-up 
members, both of which are included in the AISC Specifica-
tion. Another objective of this study is, therefore, to assess 
whether these particular AISC provisions are applicable to 
the design of double-angle compression members in general.

SJI long-span joists typically have double-angle top and 
bottom chords and single- or double-angle web members. 
SJI classifies steel joists into several design categories, each 
with its own specification. The long-span LH and DLH 
series share the same specification. LH-series joists com-
monly range in span from 25 to 95 feet, while the DLH-
series can reach lengths of more than 140 feet. These joists 
are used for both floor and roof applications and typically 
support steel deck with or without concrete topping.

This paper describes the establishment of an extensive 
database of analytical buckling simulations covering a wide 
range of section parameters to compare the performance 
of the code buckling equations in determining the buck-
ling strength for regular and HSLA-V steel compression 
members.

DESIGN FOR BUCKLING

The estimation of the critical buckling load depends on the 
mode and type of buckling (i.e., elastic or inelastic). The 
critical buckling load is computed for several possible buck-
ling modes depending on the compression member profile. 
The lowest critical load for the associated buckling mode is 
assumed to represent the governing buckling phenomenon. 
The 2010 SJI Specification mostly follows the 2010 AISC 
Specification but makes some important modifications, 
which we discuss in this section.

Flexural Buckling

The classical buckling equation defining elastic flexural 
buckling, also known as Euler buckling, is used to deter-
mine the critical stress after which instability in the com-
pression member occurs, causing it to lose its strength. This 
relationship, given here, is valid for slender members:
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where Fe is the theoretical elastic buckling stress, E is the 
material’s Young’s modulus of elasticity, L is the length of 
the compression member, and r is the radius of gyration of 
the cross-section. Subscript i refers to the two buckling axes: 
strong and weak axis.

A particular focus in the development of buckling equa-
tions has been the transition curve between elastic buckling 
and full-section yielding, which accounts for the effects of 

residual stresses and imperfections. Figure  1 illustrates a 
comparison from published literature (Salmon and John-
son, 1990) between experimental tests and critical load 
estimates using the AISC equations for flexural buckling of 
I-shape columns. The figure suggests that a larger spread 
of experimental results from the analytical prediction takes 
place at lower slenderness ratios, where inelastic buckling 
dominates.

The critical stress for flexural buckling given in both the 
SJI and AISC specifications is as follows:
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where Fcr is the critical buckling stress, Q is the slen-
derness reduction factor for unstiffened elements, and 
KL r E QF/ /4.71 y=  is the demarcating slenderness ratio 
between elastic and inelastic buckling.

Equation 2 lists as equivalent alternatives a condition on 
the slenderness ratio KL/r and another condition on the criti-
cal elastic stress QFy/Fe = 2.25. On closer examination, the 
equivalence of both limits only holds unconditionally for 
purely flexural buckling.

The flexural buckling equation is applied about both pro-
file axes, and the lower critical buckling stress governs.

Modified Flexural Buckling for Built-Up Sections

The slenderness term may be modified if the buckling mode 
of a compression member built up from two or more shapes 
interconnected by bolted or welded elements is subject to 
relative displacement due to shear forces in the connectors 
between the individual shapes forming the member. For 
double angles with welded spacers, the AISC Specification 
modifies the slenderness ratio as follows:

For
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r
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where (KL/r)y,m is the modified slenderness ratio of the built-
up member, (KL/r)o is the slenderness ratio of the built-up 
member acting as a unit, Ki = 0.50 for back-to-back angles, 
a is the connector spacing along the length of the member, 
and ri is the minimum radius of gyration of an individual 
component.
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where J is the torsional moment of inertia, A is the double-
angle area, t is the angle leg thickness, G is the shear modu-
lus of elasticity, ro is the polar radius of gyration about the 
double-angle section’s shear center, and xo and yo are the dis-
tances from the composite centroid to the angle shear center.

For double-angle members with slender elements, Equa-
tion 5 does not apply. Instead, Equation 2 is used where sub-
script i is ft, and the following modification:
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with Fe,z = Fcr,z according to Equation 6 and Fe,y according 
to Equation 1.

Single-Angle Buckling

Flexural buckling about the angle minor principal axis, rz, 
of the individual angles forming a double-angle compression 

This modification addresses the ability of the built-up 
section to act compositely in the direction(s) where the 
radius of gyration of a single element is significantly less 
than the composite value (Aslani and Goel, 1991). In the 
case of double-angle compression members, this modifica-
tion applies only to strong-axis buckling because there is no 
spacer influence in the weak-axis buckling case.

Flexural-Torsional Buckling

The critical flexural-torsional buckling stress, Fcr, ft, for sin-
gly symmetric compression members—for example, double 
angles—without slender elements is given in the 2010 AISC 
Specification as follows. This relationship is valid for mem-
bers with both compact and noncompact sections.
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Slender leg elements are defined as those with width-
to-thickness ratio, b t // E F0.45 y< . For double angles, the 
relationship for this mixed-mode buckling in Equation  5 
combines the strong axis flexural buckling stress, Fcr,y, 
given in Equation 2 and the pure torsional buckling stress, 
Fcr,z, given in Equation  6. The other terms used in Equa-
tion 5 are defined as follows:

Fig. 1. Comparison of I-beam compression tests with AISC flexural buckling equations (Salmon and Johnson, 1990).
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member is checked using Equation 2. Using a K factor of 
1.0 implying pin-pin boundary conditions is conservative; a 
lower value is more realistic. This check must be performed 
when using both the AISC and SJI specifications.

Difference between AISC and SJI Specification 
Buckling Calculations

The 2010 SJI Specification considers only the flexural buck-
ling modes of the individual angle components and the over-
all double-angle section, including the element slenderness 
reduction factor Q, which accounts for local buckling. The 
component slenderness modification for built-up sections 
and the flexural-torsional buckling mode that are a part of 
the AISC requirements are not considered in the SJI Speci-
fication. These additional checks in the AISC Specification
result in more conservative design strengths, especially for 
double angles with low slenderness ratios (KL/r), which are 
common in the chord members of open web joists.

The difference among the various strong-axis buckling 
load strengths plotted against varying slenderness ratios for 
a given double-angle section geometry is shown in Figure 2. 
These curves are calculated for the member end conditions 
pinned about the strong axis and fixed about the weak axis 
and the two angles connected by a single spacer element. 
The following buckling modes are calculated:

• Sum of the buckling strength of the individual single 
angles between spacers, Pcr-flex z.

• Global double-angle flexural buckling about both weak 
and strong axis, Pcr-flex x and Pcr-flex y.

• Flexural-torsional buckling, Pcr-flex tor.

• Flexural buckling with the modified member slenderness 
ratio which accounts for the influence of the connector 
between the angles per the AISC Specification, Pcr-flex y mod.

The solid red line represents the AISC lower-bound nom-
inal strength envelope bounding all five buckling modes. 
Among these buckling strength curves, the dashed green 
line represents the strong-axis flexural buckling mode con-
stituting the lower bound of modes considered by the SJI 
Specification.

PAST RESEARCH

While the behavior of single-angle compression mem-
bers has been studied extensively (Kennedy and Murty, 
1982; Chuenmei, 1984; Elgaaly et al., 1991; Elgaaly et al., 
1992; Galambos, 1991; Popovic et al., 1999), there is less 
research in the literature related to double-angle compres-
sion members.

Kennedy and Murty (1972) performed compression tests 
of single-angle, double-angle, and tee members. The tests 
included six sets of three equal-leg double-angle tests with 
pinned ends and six sets of three double-angle tests with 
fixed ends. The Q factors for these tests, calculated using the 
current AISC Specification, ranged from 0.58 to 0.92, and 
the slenderness ratios from 22 to 90. The research found that 
for members with low slenderness ratios flexural-torsional 
buckling equations produced better results than the flexural 
buckling equations.

Kitipornchai and Lee (1986) performed compression tests 
of single-angle, double-angle, and tee pin-ended members. 
The tests included six sets of two equal-leg double-angle 

 (a) (b)

Fig. 2. Example AISC and SJI nominal buckling strength curves of different buckling modes 
for double-angle compression members: (a) 2L4×4×a − Q = 1; (b) 2L4×4×x − Q = 0.7.
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50, 65, and 80 ksi nominal yield strengths. The angle sizes 
included were LL8×8, LL6×6, LL4×4, and LL2×2. Table 1 
lists the geometric variables used for each of the nomi-
nal yield strengths and angle sizes. A total of 3552 cases 
were analyzed. These cases included multiple simulations 
for each member size using initial geometric imperfection 
shapes generated by linear super-position of elastic mode 
shapes generated with both fixed-fixed and pinned-pinned 
boundary conditions at each end. For each specimen, the 
lower buckling strength result was reported, resulting in a 
database of 1776 buckling strengths. Figure 3 shows the axis 
definitions.

For each yield strength and angle size combination, the 
leg thicknesses of the angles were selected to approximate 

tests. The Q factors varied from 0.71 to 0.87 and the slen-
derness ratios from 53 to 75. This research found good 
agreement with the 1978 AISC ASD Specification (AISC, 
1978), which did not include equations for flexural-torsional 
buckling.

Galambos (1991) proposed simplifying the 1986 AISC 
equations and replacing the Q factor with effective leg 
widths to address local buckling. He reported good results 
using test data from previous studies.

PARAMETERS ASSESSED

This parametric study consisted of a large number of ana-
lytical buckling simulations of double-angle specimens with 

Table 1. Variable Matrix of the Double-Angle Compression Member Parametric Study

Size

L/r 
(based 

on weak 
axis)

Fy,  
ksi

Thickness t, in.

Spacers
Imperfection 
Magnitude

End 
Conditions

Residual 
Stress, 

ksi
Total 

CasesQ = 1 Q = 0.85 Q = 0.7

2L8×8 
20, 40, 
80, 160 

50 
65 
80

¾ 
d 
,

2 
b 
s

— 
— 
—

1, 2 bars
L/500, 
L/1500

Weak, 
strong

0 192

2L6×6 
20, 40, 
60, 80, 

100, 160 

50 
65 
80

b 
n 
w

a 
v 
2

— 
— 
—

1, 2 bars 
L/500, 
L/1500

Weak, 
strong

0 288

2L4×4 
50, 70, 
90, 130, 
150, 240 

50 
65 
80

a 
v 
I 

4 
T 
c 

x 
R 
4

1, 2 
angles

L/500, 
L/1500

Weak, 
strong

0 432

2L2×2 
50, 70, 
90, 130, 
150, 240 

50 
65 
80

x 
R 
4

8 
E 
E

W 
8 
8 

1, 2 
angles 

L/500, 
L/1500

Weak, 
strong

0, 11 864

Fig. 3. Definition of local axes in double-angle member cross-sections.
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the assigned element slenderness, Q, in the matrix. For the 
larger double-angle sizes, thicknesses were selected to pro-
duce Q factors of 1.0 and 0.85, while for the smaller angles, 
Q factors of 0.7, 0.85 and 1.0 were selected. Q factors for 
angles are defined per the AISC Specification (Figure 4).

The effect of spacer type and spacing between the double 
angles was evaluated. The large double-angle members (i.e., 
LL8×8 and LL6×6) were modeled assuming that bar spac-
ers are used with a 1-in. gap between the angles. This cor-
responds to the typical use of these sizes as chord members 
within a girder assembly. The smaller double-angle mem-
bers (i.e., LL4×4 and LL2×2) were modeled assuming that 
angle spacers are used with a larger gap of 2 in. between the 
angles. This corresponds to the typical use of these sizes as 
web members connected to the chord member legs in gird-
ers as shown in Figure 5. The spacers were located either at 
the midpoint between the ends of the double angles or at the 
third-points (one or two spacers, respectively). Bar spacers 
were welded 1-in.-diameter round bars located between the 
back-to-back angle legs. Angle spacers were angles welded 
to the outstanding legs of the double angles. Figure 5 shows 
a typical angle spacer.

The geometrical imperfections were modeled by using 
superimposed buckling modeshapes and scaling the maxi-
mum out-of-straightness to the target magnitude value 
(either L/500 or L/1500). This procedure is more completely 
described in a separate study by the authors (SGH, 2011). 
The imperfection magnitude of L/1500 is the basis of design 
code buckling equations. Cases with geometric imperfec-
tion magnitudes of L/500 were included to understand the 
effect of larger imperfections.

For each analysis model, two sets of boundary condi-
tions were imposed. The first set corresponded to weak-axis 
flexural buckling, while the second set corresponded to 
strong-axis flexural buckling. For the first set, the rotations 
about the strong axis were restrained and rotation about the 

weak axis was permitted at the top and bottom ends of the 
specimen. Opposite restraints were used for the second set, 
enforcing a strong-axis buckling condition. Torsional rota-
tion was restrained at both ends in all cases. Figure 6 illus-
trates the weak- and strong-axis set-ups.

A previous study by the authors (SGH, 2011) found 
that the sensitivity of the simulated buckling strength to 
residual stresses is minor except in small cross-sections 
(LL1.75×1.75×8), where residual stresses decreased the 
buckling strength by up to 10%. In larger cross-sections 
(LL3×3×x and LL3.5×3.5×a), the modeling of residual 
stresses affected the buckling load by less than 5%. For the 
present study, only the LL2×2 series specimens were ana-
lyzed with and without residual stresses, and the lower buck-
ling strength was used.

MODELING APPROACH

Double-Angle Modeling Steps

The generation of the set of parametric models was auto-
mated using customized scripts and the mesh generation 
program Truegrid (XYZ Scientific Applications, n.d.). The 
buckling analyses of the double angles were carried out 
using the general-purpose, nonlinear, finite element (FE) 

Fig. 4. Angle local element slenderness ratio.
Fig. 5. Double-angle spacing definition  

for typical joist configuration.
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• Buckling mode shapes of each specimen were determined 
using an elastic eigenvalue analysis for each perfect 
geometry model. The analyses yielded the critical loads 
and mode shapes for a large number of buckling modes. 
Initial geometric imperfections were introduced by 
combining a number of buckling mode shapes that fall 
within a given multiple of the fundamental elastic load.

ANALYSIS RESULTS

Table 2 summarizes the ratios of analysis results to the pre-
dictions of the SJI Specification for the different parameter 
study variables. Figures 11 through 14 show typical graphi-
cal comparisons of the analytical results to the SJI Specifi-
cation. The weak-axis buckling strengths are well-predicted 
by the flexural buckling curve in the SJI Specification (Fig-
ures 11 and 13), while the SJI Specification overpredicts the 
strong-axis buckling strength (Figures 12 and 14).

Figure 15 summarizes these results for the LL4×4 analy-
ses, sorted by Q factor and the number of spacers. For small 
slenderness ratios, the strong-axis results are closer to the 
SJI predictions, but the SJI Specification becomes increas-
ingly nonconservative with increasing slenderness ratios.

Table 3 and Figure 16 illustrate a key finding: Across all 
investigated parameters, the SJI Specification predicts the 
buckling strength of high-strength vanadium steel (80 ksi) 
and conventional steel (50 ksi) equally well. The table indi-
cates (Pfe/PnSJI)Fy/(Pfe/PnSJI)50, where:

(Pfe/PnSJI)Fy =  ratio of the analytical buckling strength to 
the strength predicted by the SJI Specifi ca-
tion for steel with a yield stress of FY 

(Pfe/PnSJI)50 =  ratio of the analytical buckling strength to 
the strength predicted by the SJI Specifi ca-
tion for steel with a yield stress of 50 ksi

The graphs provide a similar metric using the ratios of ana-
lytical to predicted buckling stress for 80-ksi and 50-ksi 
steel. Values of unity indicate that the equations predict 
the buckling strength (or stress) equally well for both yield 
stresses.

There is no discernible bias in these current buckling 
equations when used with grades representative of HSLA-V 
material. The overall mean value of the ratio of the ratios 
from Table  3 is 1.00 and 1.01 for imperfection ratios of 
L/1500 and L/500, respectively. This result clearly demon-
strates that the overall margin of safety for the higher yield 
strength HSLA-V steels is the same as 50-ksi steel when 
considering all of the variables included in this study.

The results for weak-axis buckling show that the SJI 
buckling equations are adequate and appropriately conser-
vative for almost all cases included in this study. The results 
for strong-axis buckling, however, show that the SJI buck-
ling equations are nonconservative for many cases, and the 

software ABAQUS (2007). ABAQUS has extensive capabil-
ities for modeling continuum mechanics, including contact, 
and for solving elastic buckling as well as unstable post-
buckling problems. The nonlinear buckling analyses were 
solved using the Modified Riks algorithm, which is avail-
able in ABAQUS for loading regimes with geometrically 
unstable phases.

The modeling process included the following steps:

• Angles and angle spacers were modeled using four-node 
shell elements; eight-node continuum elements were used 
to model the bar spacers. A cross-section of a model is 
shown in Figure 7.

• To ensure conservative buckling strengths for the LL2×2 
and LL4×4 double-angle members, L1×1×8 spacer 
angles were used, which are on the lighter side of standard 
industry practice. For the LL6×6 and LL8×8 members, 
4-in.- and 5-in.-long bar spacers were used, respectively. 
The configurations of the spacers are shown in Figure 8.

• The material properties are shown in Figure 9.

• For LL2×2 angles, an alternate series of models were 
analyzed that included the effect of residual stresses. 
The residual stresses were imposed at the angle legs in 
the longitudinal direction prior to loading and allowed 
to equilibrate. The residual stress distribution profile 
across each angle leg cross-section is shown in Figure 10. 
A maximum residual stress magnitude of 10.8 ksi was 
imposed.

Fig. 6. Double-angle model boundary conditions 
for weak and strong axis buckling analyses: 
(a) weak-axis pinned; (b) strong-axis pinned.
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nonconservatism increases as the Q factor decreases from 
1.0 to 0.7. This nonconservatism occurs regardless of mate-
rial yield stress.

To address the nonconservatism in the SJI strong-axis 
buckling results, the following possible modifications to the 
SJI Specification were investigated:

• Full adoption of the AISC Specification equations.

• Adoption of the AISC component slenderness (KL/r) 
modification equation only.

• Adoption of a revised Q factor calculation.

This paper addresses the first two options. A separate 
paper by the authors (Talaat et al., 2017) evaluates proposed 
changes to the Q factor calculation that would address the 
nonconservatism associated with low Q factors. It is shown 
that using the Q factor formulation from the 1968 AISI 
Specification, which accounts for twisting of the angle cross 
section when both legs buckle locally in the same direction, 
eliminates the Q factor nonconservatism seen in the results.

PROPOSED MODIFICATIONS TO THE  
2010 SJI BUCKLING DESIGN EQUATIONS

A number of potential solutions for resolving the lack of 
conservatism in the SJI Specification’s strong-axis strength 
predictions were investigated. Two options are addressed in 
this paper:

1. The adoption by SJI of all of the AISC provisions, 
including both the torsional flexural buckling and 
the slenderness modification ratio used for built-up 
compression members.

2. The adoption by SJI of the AISC slenderness modification 
ratio used for built-up compression members but not the 
AISC flexural-torsional provisions.

Use of All AISC Buckling Provisions

In addition to the flexural buckling modes considered by 
the SJI Specification, the AISC Specification considers the 
flexural-torsional buckling failure mode and modification 
of the slenderness ratio (KL/r) for built-up members. In the 
case of double angles, this modification applies only to the 
strong-axis buckling where the spacers affect the deforma-
tion of the overall section.

Table 2. Global Comparison of Analysis versus SJI Specification Buckling Strength Ratio

Global Average of Pfe/Pn_SJI

  L/1500   L/500

Axis Variable 50 ksi 65 ksi 80 ksi   50 ksi 65 ksi 80 ksi

  Q Factor        

Strong

0.7 0.855 0.890 0.868   0.782 0.808 0.787

0.85 1.033 1.034 1.021   0.900 0.916 0.917

1 1.019 1.011 1.004   0.928 0.930 0.929

Weak

0.7 1.045 1.104 1.095   0.945 1.016 1.021

0.85 1.186 1.172 1.160   1.066 1.083 1.080

1 1.136 1.126 1.116   1.062 1.060 1.055

Number of Spacers              

Strong
1 0.973 0.973 0.958   0.872 0.878 0.873

2 1.005 1.015 1.005   0.899 0.918 0.915

Weak
1 1.124 1.127 1.116   1.030 1.050 1.043

2 1.148 1.151 1.142   1.047 1.069 1.072

Mean: Strong 0.989 0.994 0.982   0.886 0.898 0.894

Mean: Weak 1.136 1.139 1.129   1.038 1.060 1.058

Mean: Weak and strong 1.063 1.067 1.055   0.962 0.979 0.976

Grand total 1.061 0.972
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Fig. 7. Double-angle cross-section modeling scheme and constraint between angle and spacer nodes.

Fig. 8. Double-angle bar spacers (chord members) and angle spacers (web).
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Fig. 9. Fitted hardening shapes compared to coupon tests or ASTM standard response for  
50-, 65- and 80-ksi materials [ASTM A36/A 36M-08 (2008) and A 572/A 572M-07 (2007)].
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Fig. 10. Residual stress profile discretization across the angle leg.

Fig. 11. LL4×4 analytical weak-axis (pinned) buckling strengths compared to the SJI Specification 
equations; L/500 and L/1500 imperfection magnitudes; Fy = 50-ksi and 80-ksi materials; Q = 0.7.
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Fig. 12. LL4×4 analytical strong-axis (pinned) buckling strengths compared to the SJI Specification  
equations; L/500 and L/1500 imperfection magnitudes; Fy = 50-ksi and 80-ksi materials; Q = 0.7.
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Fig. 13. LL4×4 analytical weak-axis (pinned) buckling strengths compared to the SJI Specification  
equations; L/500 and L/1500 imperfection magnitudes; Fy = 50-ksi and 80-ksi materials; Q = 1.0.
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Fig. 14. LL4×4 analytical strong-axis (pinned) buckling strengths compared to the SJI Specification  
equations; L/500 and L/1500 imperfection magnitudes; Fy = 50-ksi and 80-ksi materials; Q = 1.0.
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Fig. 15. LL4×4 ratios of analytical buckling strength to the SJI Specification buckling strength; L/500 and  
L/1500 imperfection magnitudes; Fy = 50-, 65- and 80-ksi materials—organized per Q values and spacer count.
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Fig. 16. LL4×4 ratio of ratios of analytical to SJI Specification buckling strength for the 80- and 50-ksi  
grade steel; L/500 and L/1500 imperfection magnitudes organized per Q values and spacer count.
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Table 3. Global Comparison of Analytical to SJI Specification Buckling Strength Ratio of Ratios per Material Strength

Global Average of (Pfe/Pn_SJI)Fy/(Pfe/Pn_SJI)50

  L/1500   L/500

Axis Variable 50 ksi 65 ksi 80 ksi   50 ksi 65 ksi 80 ksi

  Q Factor        

Strong

0.7 1.000 1.040 1.015   1.000 1.036 1.009

0.85 1.000 1.000 0.986   1.000 1.017 1.017

1 1.000 0.991 0.986   1.000 1.000 1.001

Weak

0.7 1.000 1.056 1.048   1.000 1.077 1.084

0.85 1.000 0.989 0.981   1.000 1.017 1.014

1 1.000 0.993 0.986   1.000 0.999 0.995

Number of Spacers              

Strong
1 1.000 1.000 0.984   1.000 1.007 0.999

2 1.000 1.010 1.001   1.000 1.022 1.019

Weak
1 1.000 1.005 0.997   1.000 1.022 1.016

2 1.000 1.005 0.998   1.000 1.024 1.028

Mean: Strong 1.000 1.005 0.992   1.000 1.014 1.009

Mean: Weak 1.000 1.005 0.998   1.000 1.023 1.022

Mean: Weak and strong 1.000 1.005 0.995   1.000 1.019 1.015

Grand total 1.000 1.011

Tables 4 and 5 and Figures 17 through 22 illustrate the 
results of our study using the same format used above for 
presentation of the SJI Specification buckling equation com-
parison for different material yield stress values.

It is clear from the results that the use of the AISC buck-
ling equations solves the nonconservatism observed with 
the use of the SJI equations for strong-axis bending and low 
Q factors. However, due to the flexural-torsional buckling 
check, the AISC buckling equations are highly conservative 
for combinations of low slenderness ratio and Q factor under 
1.0. Also, as seen in Table 5, the AISC equations produce 
less conservative nominal buckling strength predictions for 
higher-strength steels than for 50-ksi steel, though they are 
conservative even for the higher strength steels, as indicated 
in Table 4.

Use of AISC Modified Slenderness Ratio 
Provision Only

As observed, the AISC flexural-torsional buckling equa-
tion for double-angle sections results in highly conservative 
strength predictions in many cases. The flexural buckling 
equations used alone provide better predictions for compres-
sion members with low slenderness ratios.

The following tables and figures illustrate the results of 
SJI adopting the AISC modified slenderness ratio provi-
sions without the flexural-torsional buckling equations. 
Table  6 summarizes the ratios of the analytical results to 
the predicted buckling strengths. This approach provides 
good results, except for strong-axis buckling cases with Q = 
0.7, where the buckling strengths are overpredicted by the 
SJI Specification equations and are thus unconservative. 
However, even for these cases, this approach provides better 
results than the existing SJI equations that do not include 
the modified slenderness ratio (Figure  12 compared to 
Figure 18).

Figures  23 through 25 compare normalized analyti-
cal results to predicted strengths for Q = 1.0, 0.85 and 0.7, 
respectively. These graphs also include the test results from 
the Kennedy and Murty (1972) and Kitipornchai and Lee 
(1986) studies. These historical test results generally fall 
within the range of the parametric study results, with the 
exception of the Kennedy and Murty test results for speci-
mens with low slenderness ratios and Q = 1.0, which, though 
at the lower edge of the range of our study results, still show 
good agreement with the predicted strengths using the AISC 
flexural buckling equation with the modified slenderness 
ratio.
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Table 4. Global Comparison of Analytical to AISC Specification  
Nominal Buckling Strength Ratios (compare to Table 2)

Global Average of Pfe/Pn_AISC

  L/1500   L/500

Axis Variable 50 ksi 65 ksi 80 ksi   50 ksi 65 ksi 80 ksi

  Q Factor        

Strong

0.7 2.243 1.988 1.996   2.068 1.813 1.828

0.85 1.714 1.610 1.624   1.491 1.425 1.454

1 1.199 1.169 1.159   1.094 1.075 1.074

Weak

0.7 1.892 1.678 1.657   1.722 1.547 1.559

0.85 1.549 1.431 1.420   1.391 1.321 1.319

1 1.163 1.140 1.125   1.088 1.074 1.064

Number of Spacers              

Strong
1 1.607 1.504 1.505   1.444 1.354 1.371

2 1.643 1.532 1.538   1.474 1.387 1.399

Weak
1 1.452 1.353 1.337   1.332 1.260 1.251

2 1.490 1.387 1.373   1.353 1.285 1.290

Mean: Strong 1.625 1.518 1.521   1.459 1.371 1.385

Mean: Weak 1.471 1.370 1.355   1.343 1.272 1.270

Mean: Weak and strong 1.548 1.444 1.438   1.401 1.322 1.328

Grand total 1.477 1.350

Table  7 summarizes the ratios of ratios (compare to 
Table 3). It is clear from these results that the three material 
strengths result in generally similar degrees of conserva-
tism for the range of variables in this study. For cases where 
Q = 0.7, there is slightly more conservatism for the higher-
strength material specimens.

The results show that the modified slenderness ratio in the 
current AISC provisions significantly improves the accu-
racy of the SJI buckling strength predictions for strong-axis 
buckling of members with Q lower than 1.0. The ratio of 
analytical to code buckling prediction is above unity for all 
but the lowest Q factor value of 0.7 and strong-axis buckling 
using the code-basis imperfection magnitude of L/1500. The 
overall means are above unity for both weak- and strong-
axis buckling, and the grand total mean is 1.09. Moreover, 
the ratios shown in Table 7 exhibit no discernible bias based 
on material yield stress, which means that the proposed 
buckling prediction equation is equally reliable for conven-
tional 50-ksi and HSLA-V steels when considering all of the 
variables included in this study.

CONCLUSIONS

This study extensively evaluates the 2010 AISC and 
SJI design equations for double-angle buckling, result-
ing in significant findings and recommendations for both 
specifications.

One of the primary goals of this parametric study was 
to determine if the 2010 SJI design equations for double-
angle buckling would produce a similar margin of safety 
for HSLA-V and 50-ksi steels. By comparing the ratio of 
the analytical buckling strength to the limiting SJI buckling 
strength for the higher-grade steels to the ratio of the analyti-
cal buckling strength to the limiting SJI buckling strength 
for the base 50-ksi strength material, it was demonstrated 
that there is no discernible bias in the SJI current buckling 
equations when used with grades representative of HSLA-V 
material. The overall margin of safety for the higher-yield 
stress HSLA-V steels is the same as 50-ksi steel when con-
sidering all of the variables included in this study.

211-242_EJQ417_2016-13.indd   228 9/21/17   11:40 AM



ENGINEERING JOURNAL / FOURTH QUARTER / 2017 / 229

Fig. 17. LL4×4 analytical weak-axis (pinned) buckling strengths compared to AISC Specification equations;  
L/500 and L/1500 imperfection magnitudes; Fy = 50-ksi and 80-ksi materials; Q = 0.7 (compare to Fig. 11).
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Fig. 18. LL4×4 analytical strong-axis (pinned) buckling strengths compared to AISC Specification equations;  
L/500 and L/1500 imperfection magnitudes; Fy = 50-ksi and 80-ksi materials; Q = 0.7 (compare to Fig. 12).
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Fig. 19. LL4×4 analytical weak-axis (pinned) buckling strengths compared to AISC Specification equations;  
L/500 and L/1500 imperfection magnitudes; Fy = 50-ksi and 80-ksi materials; Q = 1.0 (compare to Fig. 13).
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Fig. 20. LL4×4 analytical strong-axis (pinned) buckling strengths compared to AISC Specification equations;  
L/500 and L/1500 imperfection magnitudes; Fy = 50-ksi and 80-ksi materials; Q = 1.0 (compare to Fig. 14).
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Fig. 21. LL4×4 ratios of analytical to AISC Specification nominal strength; L/500 and L/1500 imperfection magnitudes;  
Fy = 50-, 65- and 80-ksi materials—organized per Q values and spacer count (compare to Fig. 15).
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Fig. 22. LL4×4 ratio of ratios of analytical to AISC Specification nominal strength for 80- and 50-ksi grade steel;  
L/500 and L/1500 imperfection magnitudes—organized per Q values and spacer count (compare to Fig. 16).
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Table 5. Global Comparison of Analytical to AISC Specification  
Nominal Strength Ratio of Ratios per Material Strength (compare to Table 3)

Global Average of (Pfe/Pn_AISC)Fy/(Pfe/Pn_AISC)50

  L/1500   L/500

Axis Variable 50 ksi 65 ksi 80 ksi   50 ksi 65 ksi 80 ksi

  Q Factor        

Strong

0.7 1.000 0.890 0.883   1.000 0.887 0.877

0.85 1.000 0.946 0.944   1.000 0.963 0.972

1 1.000 0.976 0.969   1.000 0.985 0.985

Weak

0.7 1.000 0.902 0.889   1.000 0.920 0.919

0.85 1.000 0.940 0.927   1.000 0.966 0.958

1 1.000 0.982 0.972   1.000 0.989 0.981

Number of Spacers              

Strong
1 1.000 0.947 0.942   1.000 0.955 0.958

2 1.000 0.944 0.939   1.000 0.956 0.957

Weak
1 1.000 0.949 0.936   1.000 0.965 0.953

2 1.000 0.948 0.937   1.000 0.965 0.964

Mean: Strong 1.000 0.946 0.941   1.000 0.955 0.957

Mean: Weak 1.000 0.949 0.937   1.000 0.965 0.958

Mean: Weak and strong 1.000 0.947 0.939   1.000 0.960 0.958

Grand total 0.962 0.973

The use of all the AISC buckling provisions resolved the 
nonconservatism observed with the use of the SJI buckling 
equations for strong-axis bending of members with low Q 
factors. However, the AISC buckling equations were overly 
conservative and were biased against higher-strength steels. 
This option is not recommended for adoption.

The modified slenderness ratio in the AISC provisions 
significantly improved the accuracy of the SJI buckling 
strength predictions for strong-axis buckling cases for mem-
bers with Q values less than 1.0. Furthermore, the results 
did not show significant bias in conservatism in relation to 
material strength. The authors strongly recommend that SJI 
consider adopting the AISC slenderness modification ratio 
for built-up members into the SJI Specifications. [Note: SJI 
adopted the modified slenderness ratio for built-up web 
members in its 2015 Specification (SJI, 2015).]

Additional investigation of the use of the AISC flexural-
torsional buckling equations for double angles is recom-
mended because this study suggests that these provisions 
produce overly conservative results in the low slenderness 
ratio range.

Another goal of the parametric study was to determine 
if modifications to the 2010 SJI buckling equations would 
be required for the use of HSLA-V material. Results for 
weak-axis buckling showed that the SJI buckling equations 
are adequate and appropriately conservative for almost all 
weak-axis buckling cases included in the study. Results for 
strong-axis buckling showed that the SJI buckling equations 
are nonconservative for many cases, and the nonconserva-
tism increases as the Q factor decreases from 1.0 to 0.7. This 
nonconservatism in the strong-axis buckling equations is an 
issue that is independent of the steel strength.

This paper investigated the following potential solutions 
and their impact on resolving the observed lack of conserva-
tism in the strong-axis buckling predictions:

• SJI adoption of all AISC provisions, including flexural-
torsional buckling and a modified slenderness ratio.

• SJI adoption of only the modified slenderness ratio from 
the AISC Specification.
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Table 6. Global Comparison of Analytical to AISC Specification Nominal Buckling  
Strength Ratios Excluding Flexural-Torsional Buckling Checks (compare to Table 2)

Global Average of Pfe/Pn_AISC_NoFT_Balloted

  L/1500   L/500

Axis Variable 50 ksi 65 ksi 80 ksi   50 ksi 65 ksi 80 ksi

  Q Factor        

Strong

0.7 0.898 0.950 0.936   0.819 0.861 0.846

0.85 1.091 1.094 1.089   0.949 0.969 0.976

1 1.087 1.075 1.084   0.988 0.987 1.003

Weak

0.7 1.047 1.102 1.093   0.946 1.014 1.020

0.85 1.185 1.172 1.161   1.065 1.083 1.081

1 1.135 1.126 1.115   1.062 1.061 1.054

Number of Spacers              

Strong
1 1.062 1.076 1.070   0.950 0.969 0.973

2 1.034 1.036 1.038   0.924 0.937 0.944

Weak
1 1.124 1.127 1.116   1.030 1.051 1.043

2 1.148 1.151 1.141   1.047 1.069 1.071

Mean: Strong 1.048 1.056 1.054   0.937 0.953 0.959

Mean: Weak 1.136 1.139 1.129   1.038 1.060 1.057

Mean: Weak and strong 1.092 1.098 1.091   0.988 1.006 1.008

Grand total 1.094 1.001
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Fig. 23. Comparison of the normalized flexural buckling equation and parametric study  
analyses with Q = 1.0 and using the AISC slenderness modification for built-up sections.
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Fig. 24. Comparison of the normalized flexural buckling equation and parametric study  
analyses with Q = 0.85 and using the AISC slenderness modification for built-up sections.
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Fig. 25. Comparison of the normalized flexural buckling equation and parametric study  
analyses with Q = 0.7 and using the AISC slenderness modification for built-up sections.
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Table 7. Global Comparison of Analytical to AISC Specification Nominal Buckling  
Strength Ratio of Ratios Excluding Flexural-Torsional Buckling Checks (compare to Table 3)

Global Average of (Pfe/Pn_AISC_NoFT_Bal)Fy/(Pfe/Pn_AISC_NoFT_Bal)50

  L/1500   L/500

Axis Variable 50 ksi 65 ksi 80 ksi   50 ksi 65 ksi 80 ksi

  Q Factor        

Strong

0.7 1.000 1.059 1.043   1.000 1.056 1.037

0.85 1.000 1.002 0.997   1.000 1.020 1.028

1 1.000 0.989 0.999   1.000 0.997 1.015

Weak

0.7 1.000 1.053 1.045   1.000 1.074 1.080

0.85 1.000 0.991 0.983   1.000 1.018 1.016

1 1.000 0.994 0.986   1.000 1.000 0.994

Number of Spacers              

Strong
1 1.000 1.015 1.009   1.000 1.022 1.025

2 1.000 1.004 1.006   1.000 1.016 1.024

Weak
1 1.000 1.005 0.997   1.000 1.022 1.015

2 1.000 1.005 0.998   1.000 1.024 1.027

Mean: Strong 1.000 1.009 1.007   1.000 1.019 1.025

Mean: Weak 1.000 1.005 0.997   1.000 1.023 1.021

Mean: Weak and strong 1.000 1.007 1.002   1.000 1.021 1.023

Grand total 1.003 1.015
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Buckling of Conventional and High-Strength 
Vanadium Steel Double-Angle Compression Members: 
Computational Parametric Evaluation of Slenderness 
Modification Factors
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ABSTRACT

High-strength, low-alloy vanadium (HSLA-V) steel offers higher strength and toughness than conventional steel. The resulting lighter weight 
and more slender structural components are more susceptible to buckling in compression. Of particular interest to this study are open-web 
joists, which utilize double-angle sections—typically for chord members and often for web members. Design specification treatment for both 
global and specifically local buckling of double-angle compression members is evaluated in this study. Specification equation predictions of 
the buckling load strength for a wide range of specimens and material strengths are examined and compared to analytical simulations. This 
paper proposes two alternative modifications to the so-called Q-factor formulation in order to address the nonconservative buckling strength 
predictions for double-angle compression members with low Q factors. This study concludes that the adoption of a modified Q-factor for-
mulation for local elements of compression members in the element elastic buckling region produces consistent predictions of the buckling 
strength. This finding is equally applicable to both HSLA-V and conventional steels. For design and other applications where a lower-bound 
estimate of the strength is required, this combination of proposed Q-factor formulation and AISC built-up member slenderness modification 
is recommended.

Keywords: high-strength vanadium steel, compression, computational parametric study, modification factors, buckling analysis, Q factor.

INTRODUCTION

A long-term research project sponsored by the Army 
Research Laboratory (ARL) under Cooperative Agree-

ment DAAD 19-03-2-0036 and executed by the Advanced 
Technology Institute (ATI) was initiated in 2003 to assess 
the impact of high-strength, low-alloy microalloyed vana-
dium (HSLA-V) steels on a wide variety of different appli-
cations. HSLA-V steels can have specified yield strengths of 
up to 90 ksi and thus provide the opportunity both for weight 
reduction and enhanced sustainabiltiy.

This paper evaluates the treatment for both global and 
specifically local buckling of double-angle compression 
members in the Steel Joist Institute (SJI) Specification and 
proposes modifications to improve the specification equa-
tion buckling strength results for a wide range of parameters 
and material strength. It presents results from a computa-
tional correlation and parametric study the authors per-
formed on double-angle compression components (SGH, 
2011, 2012) and complements a companion paper by the 
authors (Webster et al., 2017).

In Correlation and Sensitivity Study on the Buckling of 
HSLA-V Steel in Single and Double Angle Members (SGH, 
2011), the authors described the successful use of nonlinear 
finite element (FE) analysis to closely match buckling fail-
ure modes and strengths observed in 20 double-angle com-
pression member tests with a range of properties. Based on 
the success of this correlation study and verification of the 
modeling and simulation approach, a parametric study was 
executed to extend the range of parameters beyond those in 
the physical test program.

In the companion paper (Webster et al., 2017), the authors 
described the validity of applying the buckling equations 
in the SJI Design Specification (SJI, 2010) to double-angle 
compression members manufactured using higher strength 
HSLA-V steel. Present SJI specifications are applicable 
only for steel with specified yield stress of 50 ksi or less. 
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The design equations for compression buckling in the 
SJI Specification were also compared to the 2010 Ameri-
can Institute of Steel Construction (AISC) Specification. 
For both conventional and HSLAV steel members, the  
Webster et al. study found that the flexural-torsional buck-
ling equation in AISC produces highly conservative esti-
mates of nominal buckling strength and that the 2010 AISC 
slenderness modification for built-up members enhances the 
accuracy of the SJI buckling equations, which do not incor-
porate the AISC flexural-torsional buckling provisions. 
When comparing the analytical results to the nominal buck-
ling strengths calculated using SJI equations, the observed 
differences showed a pattern dependence on element local 
slenderness—that is, the Q factor. The use of AISC built-up 
member slenderness modification improved the accuracy of 
the buckling equation on average yet did not significantly 
reduce this dependence on element slenderness. [Note: SJI 
adopted the modified slenderness ratio for built-up web 
members in its 2015 Specification (SJI, 2015)]

This paper extends the analytical parametric study to 
examine the effect of element slenderness (Q factor) on the 
accuracy of the specification buckling equations. The ana-
lytical and design specification nominal buckling strengths 
of double-angle members with Q factors ranging from 0.7 to 
1.0 are compared. The impacts of introducing two proposed 
reformulations of the Q factor are examined. The two alter-
native Q-factor formulations are based on the American Iron 
and Steel Institute (AISI) 1968 Specifications for the Design 
of Cold-Formed Steel Structural Members. The influence of 
each alternative Q factor is examined with and without the 
modified built-up section slenderness ratio as defined in the 
2010 AISC Specification.

PROVISIONS FOR BUCKLING IN  
SJI AND AISC SPECIFICATION

The estimation of the critical buckling load depends on the 
mode and type (i.e., elastic or inelastic) of buckling. Criti-
cal buckling load is computed for several possible buck-
ling modes depending on the compression member profile. 
The lowest critical load for the associated buckling mode is 
assumed to represent the governing buckling phenomenon. 
The SJI Specification mostly follows the AISC Specification 
but ignores the provisions for built-up member slenderness 
modification and flexural-torsional buckling. The details 
of these equations are discussed in the authors’ companion 
paper, mentioned earlier (Webster et al., 2017). This paper 
focusses on an assessment of various formulations for the 
Q-factor definition.

Element Slenderness Modification

Compression members with slender cross-section elements 
have a reduced inelastic buckling strength due to local insta-
bilities that can be evaluated based on plate buckling theory. 
To capture this local effect, a reduction factor, Q, is intro-
duced to the buckling equations as a reduction multiplier to 
the material yield strength, with values ranging from 0.7 to 
1.0 for common angle sizes.

The local slenderness of an element of the compression 
member (i.e., angle leg) is determined by the ratio of ele-
ment size to thickness (b/t) and material yield stress. More 
slender elements have lower Q-factor values (Figure 1) and 
thus greater reduction in the buckling strength.

Fig. 1. Angle local element slenderness ratio.
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stress, E is the material’s Young’s modulus of elasticity, and 
KL/r is the slenderness ratio of the compression member 
(modified for built-up sections in AISC). Subscript i refers 
to the two buckling axes: strong and weak axis.

Hence, the material yield stress is multiplied directly by 
the Q factor and reduced to account for local buckling of 
slender elements, while the modified global slenderness 
indirectly reduces the nominal buckling strength by reduc-
ing the value of the elastic buckling stress to account for 
influence of the built-up section.

BACKGROUND AND PROPOSED  
MODIFICATIONS FOR Q FACTOR

The companion paper by the authors that presented the com-
putational parameter study (Webster et al., 2017) reviewed 
past research on single- and double-angle buckling behav-
ior, published over the course of nearly three decades. The 
following sections will present the theoretical and historical 
development of the Q factor.

Theoretical Development of Element  
Slenderness Factor

The 2010 AISC Specification identifies two types of ele-
ments when considering local buckling depending on the 
element disposition within the overall member (Figure  2). 
An element bounded on both edges along its length with 
other elements, such as the web of an I-beam, is defined 
as a stiffened element. An element that has one free edge 
along its length, such as the leg of an angle, is defined as an 
unstiffened element.

The 2010 AISC slender element reduction factor for uns-
tiffened slender member elements (e.g., angle legs), Qs, is 
directly based on a simple-element, elastic buckling model 
of a plate subjected to uniform in-plane compression. The 
reduction factor is simply the ratio of the critical (local) 
buckling stress determined by this simple plate model to 
the material yield strength. This reduction factor is directly 
applied to the material yield strength when specifying the 
overall member nominal buckling strength.

The plate elastic buckling stress relationship is given in 
Equation 4, where μ is the material Poisson ratio and k is a 
plate buckling coefficient dependent on the plate boundary 
conditions and aspect ratio. For unstiffened slender-angle 
elements, the buckling coefficient, k converges to 0.425:
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Figure 3 plots the ratios of critical buckling stress to yield 
stress versus compression member slenderness for plates and 
columns. Three distinct regions of behavior are observed in 
this figure:

Modified Flexural Buckling for Built-Up Sections

The member slenderness term may be modified if the com-
pression member is built up from two or more sections and 
interconnected by bolted or welded elements. The modifica-
tion in slenderness accounts for the impact on the buckling 
strength of the relative displacement due to shear forces in 
the connectors between the individual components form-
ing the member. For double angles with welded spacers, the 
2010 AISC Specification modifies the slenderness ratio as 
follows:
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where (KL/r)y,m is the modified slenderness ratio of the built-
up member, (KL/r)o is the slenderness ratio of the built-up 
member acting as a unit, Ki = 0.50 for back-to-back angles, 
a is the connector spacing along the length of the compres-
sion member, and ri is the minimum radius of gyration of an 
individual component.

This modification addresses the ability of the built-up sec-
tion to act compositely in the direction(s) where the radius 
of gyration of a single component is significantly less than 
the distance between the centroids of the individual compo-
nents and, consequently, than the composite radius of gyra-
tion of the built-up member (Aslani and Goel, 1991). In the 
case of double-angle compression members, this modifica-
tion applies only to strong-axis buckling because the spacers 
have no influence in the weak-axis buckling case.

Effect of Modification Factors on Strong-Axis  
Flexural Buckling Strength

The critical stress for flexural buckling given in both the SJI 
Specification and the 2010 AISC Specification is as follows:
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• For very slender elements with a slenderness parameter, 
λc greater than 1.4 the buckling is essentially elastic.

• For very stout elements (λc less than e.g. 0.46 for plates), 
the entire cross-section under compression can reach and 
exceed the yielding stress of the material by hardening. 
However, for design purposes, hardening in the material 
is ignored, and the cross-section strength is limited to the 
material yield stress.

• Finally, there is a transition zone between the element 
elastic buckling region and the full yielding region, where 
the buckling strength is lower than the theoretical critical 
load envelope (solid line in Figure 3) due to residual stress 
and geometric imperfections.

For unstiffened plates under uniform compression, the 
transition zone is idealized as a linear transition as shown 
in Figure 4a, which also compares the analytical buckling 

Fig. 2. Plate buckling configuration for unstiffened and stiffened compression elements [AISI S100-2007-C (AISI, 2007)].

Fig. 3. Comparison of critical buckling stress to yield stress ratio versus member slenderness for  
(a) columns, (b) unstiffened plates, and (c) stiffened plates (Salmon and Johnson, 1990).
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stresses defined in the three regions to test results. For each 
test, two data points are plotted in the figure: the local buck-
ling stress and the member failure stress. For stout com-
pression members with low slenderness parameters, the 
difference between the two plotted points is small, whereas 
as the slenderness parameter increases the difference 
between the two points becomes greater. This is attributed to 
the post-buckling strength where the section stress increases 
as the applied displacement increases.

The additional post-buckling strength available in slender 
elements is accounted for by increasing the element elastic 
buckling stress as shown in Figure  4b. Line A marks the 
strength of elements that are stout enough to reach the full-
section yield strength. Line B is the linear transition zone 
between the element yielding and elastic buckling zones. 
Line D is the plate elastic buckling curve, which is increased 
by a factor to account for the post-buckling strength men-
tioned earlier and is shown with line E.

The 2010 AISC Specification accounts for post-buckling 
strength of unstiffened elements as depicted by line E in 
Figure 4b. The 1968 AISI Specification ignored this addi-
tional strength for angle components, stating the following 
in its Commentary: “There is a type of cross-section com-
posed entirely of unstiffened elements which shows little or 
no post-buckling strength. This is the angle section when 
used for compression struts. This is because, when an equal 
leg, thin angle reaches the buckling stress of the two equal, 
component plates (legs), both of them buckle in the same 
direction; this results in a twisting distortion of the angle 
as a whole, leading to early collapse…” The compression 
strength is thus distinguished for angle components, as 
shown in Figure 5a. The 2010 AISC Specification does not 
distinguish the behavior of slender elements and slender 
angle legs, as shown in Figure 5b.

Proposed Q Factor Modifications

Two alternative redefinitions for the slender cross-section 
element buckling reduction factor, Q, are proposed and 
assessed in this study. Both proposals are based on a return 
to the 1968 AISI Specification that did not consider post-
buckling strength for angle components. The two alternative 
Q-factor formulations use the plate elastic buckling formu-
lation for calculating the local buckling strength of slender 
elements. Alternative 1, QA1, shown in Figure  6, uses the 
plate elastic buckling relationship up to the point where it 
intersects the linear transition zone as defined in the 2010 
AISC Specification. Alternative 2, QA2, shown in Figure 7, 
uses the plate elastic buckling relationship until it reaches 
the full cross-section yield strength.

COMPUTATIONAL PARAMETER STUDY

The parameter study consisted of analytical buckling simu-
lations on double-angle specimens made of steel materials 
with 50-, 65- and 80-ksi nominal yield strengths (Candas et 

al., 2008). The angle sizes included in the study were LL8×8, 
LL6×6, LL4×4 and LL2×2. The parameters assessed were 
the member slenderness (KL/r), element slenderness (Q fac-
tor), number of spacers, the imperfection magnitude, and the 
end conditions about the weak and strong axes. A total of 
3552 cases were analyzed, resulting in a database of 1776 
buckling strengths.

The generation of the set of parametric models was auto-
mated using customized scripts and the mesh generation 
program Truegrid (XYZ Scientific Computing, n.d.) The 
buckling analyses of the double angles were carried out using 
the general-purpose, nonlinear, FE software ABAQUS. 
ABAQUS has extensive capabilities for modeling contin-
uum mechanics, including contact, and for solving elastic 
buckling as well as unstable post-buckling problems. The 
nonlinear buckling analyses were solved using the Modified 
Riks algorithm, which is available in ABAQUS for loading 
regimes with geometrically unstable phases. Further details 
are discussed in the companion paper (Webster et al., 2017).

Analysis Results

Table  1 summarizes the ratios of buckling strengths from 
the analysis results to the nominal buckling strengths cal-
culated using the SJI Specification equations for the dif-
ferent parameter study variables. The comparison results 
are shown for modeled geometric imperfection magnitude 
values of code-basis L/1500 as well as L/500. The results 
for weak-axis buckling show that the SJI buckling equations 
are adequate and appropriately conservative for nearly all 
the cases included in the study. The results for strong-axis 
buckling show that the SJI buckling equations are noncon-
servative for many cases in the study. This nonconservatism 
is particularly pronounced for cases where Q = 0.7 and is 
present for all three steel grades.

While the average strong-axis results for Q  = 1.0 and 
Q = 0.85 cases are above unity when the code-basis L/1500 
imperfection magnitude is used (note that the ratios for Q = 
0.85 are slightly yet consistently more conservative than Q = 
1.0), the results for several individual specimens are noncon-
servative, as can be seen in Figure 8. Hence, this noncon-
servatism increases as the member slenderness (L/r) and/or 
element slenderness (b/t) increases.

To address the nonconservatism in the strong-axis buck-
ling results, the two alternative formulations proposed for 
the Q factor were investigated. In the companion paper, the 
adoption of all the 2010 AISC Specification buckling equa-
tions and the adoption of selected provisions addressing the 
built-up member slenderness (KL/r) modification equation 
were evaluated. In this study, the influence of the proposed 
changes to the Q-factor calculation in order to specifically 
address the nonconservatism associated with the low Q fac-
tors is evaluated. Using the proposed Q factors both with 
and without the AISC built-up member slenderness modifi-
cation is also assessed.
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(a)

(b)

Fig. 4. Relationship between unstiffened compression plate elements and predicted maximum compressive  
stress: (a) correlation between test data and predicted maximum stress (Yu, 2010); (b) comparison  

between idealizations that include and exclude post-bucking strength (AISI S100-2007-C).
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legs once the element elastic buckling load is reached. A 
preliminary comparison of both alternatives suggests the 
following characteristics:

1. Alternative QA1 represents a more limited change from the 
2010 provisions, while alternative QA2 represents a more 
simplified relationship for design.

2. For elements in the elastic local buckling region (Q  < 
0.8), both alternatives result in lower Q factor values than 

PROPOSED MODIFICATIONS TO ELEMENT AND 
COMPONENT SLENDERNESS EFFECTS

Element Slenderness

The slender cross-section element buckling reduction fac-
tor alternatives QA1 and QA2 introduced in Figures 6 and 7 
are based on the 1968 AISI assumptions regarding slender 
angle cross-sections and their inability to develop post-
buckling strength due to twisting instability in the angle 

(a)

(b)

Fig. 5. Q factor according to 1968 AISI and 2010 AISC: (a) permissible design stress for unstiffened  
compression elements for 33-ksi steel in the 1968 AISI Specification Commentary (Winter, 1970);  

(b) 2010 AISC Specification definition (dashed line labeled (C) shows plate elastic buckling).
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Table 1. Global Comparison of FE Analysis to SJI Nominal Strength Ratios

Global Average of Pfe/Pn_per SJI Specification

  L/1500   L/500

Axis Variable 50 ksi 65 ksi 80 ksi   50 ksi 65 ksi 80 ksi

  Q Factor        

Strong

0.7 0.855 0.890 0.868   0.782 0.808 0.787

0.85 1.033 1.034 1.021   0.900 0.916 0.917

1 1.019 1.011 1.004   0.928 0.930 0.929

Weak

0.7 1.045 1.104 1.095   0.945 1.016 1.021

0.85 1.186 1.172 1.160   1.066 1.083 1.080

1 1.136 1.126 1.116   1.062 1.060 1.055

Number of Spacers              

Strong
1 0.973 0.973 0.958   0.872 0.878 0.873

2 1.005 1.015 1.005   0.899 0.918 0.915

Weak
1 1.124 1.127 1.116   1.030 1.050 1.043

2 1.148 1.151 1.142   1.047 1.069 1.072

Mean: Strong 0.989 0.994 0.982   0.886 0.898 0.894

Mean: Weak 1.136 1.139 1.129   1.038 1.060 1.058

Mean: Weak and strong 1.063 1.067 1.055   0.962 0.979 0.976

Grand total 1.061 0.972
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calculated by the 2010 AISC provisions. This can offset 
the nonconservatism observed in Table 1 for Q = 0.7 cases.

3. For elements in the transition region (1 > Q > 0.8), QA1 
follows the 2010 AISC provisions, while QA2 results in 
higher Q factor values. This can reduce the consistent 
slight conservatism in Q = 0.85 cases.

4. For elements in the inelastic local buckling region (Q = 1), 
QA1 and QA2 follow the 2010 AISC provisions.

Member Slenderness

The use of the slender cross-section element buckling reduc-
tion factor alternatives was investigated with and without 
the built-up member slenderness modification per the 2010 
AISC provisions according to Equations 1 and 2. The built-
up member slenderness modification only affects the strong-
axis buckling strength. It primarily affects the buckling  
strength of slender members in the elastic buckling region by 
increasing their effective slenderness and, therefore, reduc-
ing their nominal buckling strengths. (Meanwhile, the mod-
ified element slenderness—i.e., modified Q factor—reduces 
the nominal buckling strength of members with slender 
elements in the inelastic buckling range.) The companion 
paper (Webster et al., 2017) demonstrated that the adoption 
of AISC slenderness modification adequately addresses the 
observed nonconservatism in analytical-to-nominal buck-
ling strength ratios with increasing member slenderness.

ASSESSMENT OF PROPOSED MODIFICATIONS

Modification of Element Slenderness Q Factor

Table  2 summarizes the ratios of the analytically deter-
mined to the calculated buckling strengths using the SJI 
Specification and modified using the proposed Q factor 
alternative QA1. Comparison with Table 1 reveals the follow-
ing observations:

• The proposed Q factor modifications only affects the 
results for Q = 0.7 cases.

• For Q = 0.7, strong-axis buckling, the average ratios for 
all steel grades is between 0.99 and 1.04 (for code-basis 
L/1500 imperfection magnitude). This reflects a consistent 
margin of safety when compared to components with 
higher Q-factor values (the corresponding margins of 
safety for Q = 0.85 and Q = 1.0 cases in Table 2 range 
between 1.00 and 1.03). The overall mean ratios for 50-, 
65- and 80-ksi steels grades are 1.03, 1.02 and 1.01, 
respectively.

• For weak-axis buckling, the average ratios for all steel 
grades and Q factor combinations are between 1.13 
and 1.17, reflecting a consistent margin of safety when 
compared to angles of higher Q-factor values. The overall 
mean ratios for all three steel grades are between 1.14 and 
1.16.

Table 3 summarizes the ratios of the analytically deter-
mined to the calculated buckling strengths using the  
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Fig. 8. LL4×4 analytical strong-axis (pinned) buckling strengths compared to the SJI nominal  
strengths; L/500 and L/1500 imperfection magnitudes; Fy = 50-ksi and 80-ksi materials; Q = 1.0.
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SJI Specification and modified using the proposed Q factor 
alternative QA2. Comparison with Tables 1 and 2 reveals the 
following observations:

• The effect of the QA2 proposal on the Q = 0.7 cases is 
identical to that of the QA1 proposal.

• For Q = 0.85, the QA2 proposal results in a reduction in 
the average ratios of analytical-to-predicted buckling 
strengths for all steel grades. For strong-axis buckling, 
this reduction results in nonconservative predictions of 
the buckling load. For weak-axis buckling, this reduction 
results in a minor decrease in the margin of safety.

• For strong-axis buckling, the overall mean ratios for all 
three steel grades are between 0.98 and 1.0, which reflects 
a nonconservative bias.

Figures 9 through 13 show graphical comparisons of the 
analytical results to the predictions of the SJI Specifica-
tion using the 2010 AISC nominal buckling strengths and 
the buckling strengths modified using the two proposed  
Q-factor definitions.

Figures  9 and 10 show the results for LL8×8 LL6×6 
angles, respectively. These two angle sizes have Q-factor 
values not lower than 0.8. For angles with relatively low 

member slenderness parameters (λcr < 1), it is clear that QA2 
returns a better fit on average, while QA1 and QSJI can be 
seen as a lower bound for design, which maintains a safety 
margin. For angles with higher member slenderness param-
eter λcr, there are cases where the SJI Specification slightly 
overpredicts the strong-axis buckling strength for all three 
Q-factor formulations.

Figures 11 and 12 show the results for LL4×4 and LL2×2 
angles, respectively. These two angle sizes have Q-factor 
values as low as 0.67. For specimens with Q = 0.8 or higher, 
the comparison yields similar results to that of LL8×8 and 
LL6×6 angles (Figures  9 and 10). For angles with lower 
Q-factor values and relatively low member slenderness 
parameter (λcr < 1), both proposed Q-factor formulations 
result in predicted buckling strengths that constitute a lower 
bound of nearly all the analytical results, while the 2010 
AISC Q-factor formulation overpredicts the strong-axis ana-
lytical strength in all but four of 72 cases. For angles with 
higher member slenderness parameters λcr, there are cases 
where the SJI Specification slightly overpredicts the strong-
axis buckling strength for all three Q-factor formulations.

Figure  13 shows that the inclusion of residual stresses 
in the analytical model to determine the buckling strength 
produces limited reduction in the analytical strength for 

Table 2. Global Comparison of FE Analysis to QA1 Modified SJI Strength Ratios (compare to Table 1)

Global Average of (Ffe/Fy)/(Fcr/Fy_QA1)

  L/1500   L/500

Axis Variable 50 ksi 65 ksi 80 ksi   50 ksi 65 ksi 80 ksi

  Q Factor        

Strong

0.7 1.044 0.986 0.988   0.958 0.897 0.898

0.85 1.032 1.034 1.022   0.899 0.916 0.917

1 1.018 1.012 1.003   0.927 0.930 0.929

Weak

0.7 1.171 1.162 1.164   1.061 1.070 1.088

0.85 1.185 1.172 1.161   1.065 1.083 1.081

1 1.135 1.126 1.115   1.062 1.061 1.054

Number of Spacers              

Strong
1 1.012 0.993 0.983   0.908 0.897 0.896

2 1.046 1.037 1.032   0.937 0.938 0.939

Weak
1 1.149 1.139 1.130   1.054 1.062 1.057

2 1.176 1.165 1.157   1.071 1.081 1.086

Mean: Strong 1.029 1.015 1.007   0.923 0.918 0.918

Mean: Weak 1.163 1.152 1.144   1.063 1.072 1.072

Mean: Weak and strong 1.096 1.084 1.075   0.993 0.995 0.995

Grand total 1.085 0.994
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Table 3. Global Comparison of FE Analysis to QA2 Modified SJI Strength Ratios (compare to Table 1)

Global Average of (Ffe/Fy)/(Fcr/Fy_Qa2)

  L/1500   L/500

Axis Variable 50 ksi 65 ksi 80 ksi   50 ksi 65 ksi 80 ksi

  Q Factor        

Strong

0.7 1.044 0.986 0.988   0.958 0.897 0.898

0.85 0.953 0.956 0.951   0.829 0.846 0.853

1 1.018 1.012 1.003   0.927 0.930 0.929

Weak

0.7 1.171 1.162 1.164   1.061 1.070 1.088

0.85 1.126 1.118 1.114   1.012 1.033 1.037

1 1.135 1.126 1.115   1.062 1.061 1.054

Number of Spacers              

Strong
1 0.981 0.963 0.955   0.882 0.870 0.871

2 1.015 1.006 1.004   0.909 0.910 0.913

Weak
1 1.127 1.118 1.112   1.034 1.043 1.040

2 1.152 1.143 1.138   1.051 1.061 1.069

Mean: Strong 0.998 0.984 0.979   0.895 0.890 0.892

Mean: Weak 1.139 1.131 1.125   1.042 1.052 1.054

Mean: Weak and strong 1.069 1.057 1.052   0.969 0.971 0.973

Grand total 1.059 0.971
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Fig. 9. LL8×8 normalized analytical buckling strength (L/1500 imperfection) compared to  
normalized flexural buckling equations using Q-factor definitions per 2010 AISC Specification, QA1, and QA2.
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Fig. 10. LL6×6 normalized analytical buckling data (L/1500 imperfection) compared to  
normalized flexural buckling equations using Q-factor definitions per 2010 AISC Specification, QA1, and QA2.
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Fig. 11. LL4×4 normalized analytical buckling data (L/1500 imperfection) compared to  
normalized flexural buckling equations using Q-factor definitions per 2010 AISC Specification, QA1, and QA2.
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Fig. 12. LL2×2 normalized analytical buckling data (L/1500 imperfection) compared to  
normalized flexural buckling equations using Q-factor definitions per 2010 AISC Specification, QA1, and QA2.
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Fig. 13. LL2×2 (with residual stress) normalized analytical buckling data (L/1500 imperfection)  
compared to normalized flexural buckling equations using Q-factor definitions per 2010 AISC Specification, QA1, and QA2.
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members with low slenderness parameters λcr, yet it does 
not have a significant effect on the relative impact of switch-
ing from the 2010 AISC provisions to the proposed Q-factor 
modifications when compared to Figure 12.

It is clear from the results that the use of the proposed 
Q-factor modifications eliminates the nonconservatism in 
the average analytical-to-predicted buckling strength ratios 
for members with low Q factors (Q = 0.7). Alternative QA1 
produces consistent average margins of safety for all steel 
grades and Q-factor values. Alternative QA2 produces non-
conservative average ratios for members with intermediate 
Q factors (Q  = 0.85). For all three Q-factor formulations, 
there are a few individual cases with high member slen-
derness parameters (λcr ≥ 1) where the predicted buckling 
strengths are nonconservative.

Inclusion of AISC Built-Up Member Slenderness 
Modification Provision

Table  4 summarizes the ratios of the analytically deter-
mined to the calculated buckling strengths using the SJI 
Specification with the AISC built-up slenderness modifica-
tion and the proposed Q-factor alternative QA1. Comparison 

with Table 2 and Table 3 reveals the following observations:

• The proposed Q-factor and built-up slender modifications 
only affect the results for strong-axis buckling.

• For all Q-factor values and steel grade combinations, the 
average ratio for strong-axis buckling is between 1.06 and 
1.10 (for code-basis L/1500 imperfection magnitude), 
which reflects a consistent average margin of safety above 
unity.

• The average ratio for weak-axis buckling is always 
greater than one. The average margins of safety are nearly 
consistent between 1.12 and 1.19.

• The overall mean ratios for strong-axis buckling in all 
three steel grades are about 1.09. The overall mean 
ratios for weak-axis buckling in all three steel grades are 
between 1.14 and 1.16. Hence, the design equation leads 
to similar levels of conservatism for both sets of boundary 
conditions and corresponding failure modes.

• The individual result plots (not shown) demonstrate a 
better performance for the calculated buckling strengths 
at relatively high member slenderness parameters λcr than 

Table 4. Global Comparison of Ratios of FE Analysis to SJI Strength Modified QA1 and  
AISC Built-Up Member Slenderness Modification (compare to Tables 1 and 2)

Global Average of (Ffe/Fy)/(Fcr/Fy_Modified_QA1)

  L/1500   L/500

Axis Variable 50 ksi 65 ksi 80 ksi   50 ksi 65 ksi 80 ksi

  Q Factor        

Strong

0.7 1.092 1.053 1.064   0.999 0.956 0.965

0.85 1.090 1.104 1.100   0.949 0.977 0.986

1 1.087 1.090 1.090   0.989 0.999 1.008

Weak

0.7 1.171 1.162 1.164   1.061 1.070 1.088

0.85 1.185 1.172 1.161   1.065 1.083 1.081

1 1.135 1.126 1.115   1.062 1.061 1.054

Number of Spacers              

Strong
1 1.102 1.101 1.103   0.987 0.992 1.004

2 1.077 1.074 1.073   0.964 0.971 0.976

Weak
1 1.149 1.139 1.130   1.054 1.062 1.057

2 1.176 1.165 1.157   1.071 1.081 1.086

Mean: Strong 1.089 1.088 1.088   0.975 0.981 0.990

Mean: Weak 1.163 1.152 1.144   1.063 1.072 1.072

Mean: Weak and strong 1.126 1.120 1.116   1.019 1.026 1.031

Grand total 1.121 1.025
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ratios for weak-axis buckling in all three steel grades are 
between 1.13 and 1.14.

The inclusion of the 2010 AISC slenderness modification 
produces better predictions for members with high slender-
ness parameter values. At relatively low member slenderness 
ratios, it introduces moderate conservatism in the strong-
axis buckling prediction (within 10% margin on average). 
For QA1, the extra conservatism is consistent on average 
for each steel grade and range of Q factors. The margins of 
safety for strong- and weak-axis buckling are more aligned 
than they are using QA2. For QA2, the extra conservatism is 
not consistent, having lower values for Q = 0.85 cases than 
Q = 0.70 and Q = 1.0 cases for each steel grade.

In summary, the use of the modified Q-factor definitions 
eliminates the nonconservatism observed with the use of the 
SJI equations for strong-axis bending in members with low 
Q-factor values. However, alternative QA1 produces consis-
tent average margins of safety of about unity for all exam-
ined combinations of Q-factors and steel grades, while QA2 
produces less conservative average predictions for Q = 0.85 
cases. To achieve a consistent factor of safety across the full 
range of Q factors, the authors recommend the use of the 

observed in Figures 9 through 13. Fewer cases underpredict 
the analytically determined buckling strength than shown 
in Figures 9 through 13.

Table 5 summarizes the ratios of the analytically deter-
mined to the calculated buckling strengths using the SJI 
Specification with the AISC built-up slenderness modifica-
tion and the proposed Q-factor alternative QA2. Comparison 
with Tables 1, 3 and 4 reveals the following observations:

• The effect of QA2 proposal on Q = 0.7 cases is identical 
to that of QA1 proposal. Its effect on cases with relatively 
high member slenderness parameters, λcr, is also similar 
to using alternative QA1.

• For all combinations of Q-factor values and steel grades, 
the average ratio for strong-axis buckling is between 1.01 
and 1.09 (for code-basis L/1500 imperfection magnitude), 
which reflects an average margin of safety slightly 
above 1. However, the average margin of safety for Q = 
0.85 cases are consistently lower than other cases.

• The overall mean ratios for strong-axis buckling in all 
three steel grades are about 1.06. The overall mean 

Table 5. Global Comparison of Ratios of FE Analysis to SJI Strength Modified by QA2 and  
AISC Built-Up Member Slenderness Modification (compare to Tables 1, 3 and 4)

Global Average of (Ffe/Fy)/(Fcr/Fy_Modified_QA2)

  L/1500   L/500

Axis Variable 50 ksi 65 ksi 80 ksi   50 ksi 65 ksi 80 ksi

  Q Factor        

Strong

0.7 1.092 1.053 1.064   0.999 0.956 0.965

0.85 1.013 1.027 1.031   0.881 0.909 0.924

1 1.087 1.090 1.090   0.989 0.999 1.008

Weak

0.7 1.171 1.162 1.164   1.061 1.070 1.088

0.85 1.126 1.118 1.114   1.012 1.033 1.037

1 1.135 1.126 1.115   1.062 1.061 1.054

Number of Spacers              

Strong
1 1.072 1.072 1.077   0.961 0.966 0.980

2 1.046 1.043 1.046   0.936 0.942 0.951

Weak
1 1.127 1.118 1.112   1.034 1.043 1.040

2 1.152 1.143 1.138   1.051 1.061 1.069

Mean: Strong 1.059 1.057 1.061   0.949 0.955 0.966

Mean: Weak 1.139 1.131 1.125   1.042 1.052 1.054

Mean: Weak and strong 1.099 1.094 1.093   0.995 1.003 1.010

Grand total 1.095 1.003
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cross-section element slenderness factor alternative QA1. The 
effect of using the proposed Q-factor modifications only 
affects cases with low member slenderness parameters.

CONCLUSIONS

In a separate computational parametric study (Webster et 
al., 2017), the authors showed that the SJI buckling equa-
tions are nonconservative in the strong-axis direction for 
many double-angle configurations, independent of material 
strength, and that this nonconservatism increases as the Q 
factor decreases from 1.0 to 0.7 and as the member (global) 
slenderness ratio increases. The authors demonstrated that 
the modified slenderness ratio for built-up sections in the 
2010 AISC Specification significantly improves the accu-
racy of the SJI nominal buckling strength predictions for 
strong-axis buckling of members with high slenderness 
ratios in steel grades ranging from 50 to 80 ksi, yet it does 
not completely eliminate the nonconservatism for members 
with low Q-factor values. The authors also found that the 
2010 AISC equations for flexural-torsional buckling pro-
duced overly conservative results for members with low 
slenderness ratios.

The present paper investigated the adoption of modified 
Q-factor definitions for element slenderness, based on the 
1968 AISI Specification, to resolve the observed lack of 
conservatism in strong-axis buckling predictions for mem-
bers with low Q factors. Two alternative element slenderness 
definitions, QA1 and QA2, were proposed.

For both conventional and HSLA-V steels, the use of 
the modified Q-factor definitions in conjunction with the 
AISC built-up member slenderness modification elimi-
nated the nonconservatism observed with the use of the SJI 
equations for strong-axis bending for members with low Q 
factors. Alternative Q-factor definition QA1 produced consis-
tent average margins of safety of about 1.1 for all examined 
combinations of Q factors and steel grades, while alternative 
Q-factor definition QA2 produced lower average margins of 
safety for Q = 0.85 cases compared to Q = 0.7 and Q = 1.0 
cases.

The authors recommend modifying both the AISC and 
the SJI Specifications to uniformly address double-angle 
compression members as follows:

• Eliminate the flexural-torsional buckling provisions 
for double-angle compression members from the AISC 
Specification.

• Add the 2010 AISC modified slenderness ratio provisions 
for built-up members to the SJI Specifications.

• Replace the existing Q-factor definition with the proposed 
QA1 definition in both the AISC Specification and the SJI 
Specification.
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ABSTRACT

Beam designers and connection designers have a different standard of care in the analysis of beams in inverted V- and V-type braced frames 
subjected to lateral loads. When the summation of the vertical components of the brace forces is nonzero, (1) beam designers evaluate 
required beam shear and moment, treating the unbalanced vertical load as a concentrated force acting at the work point of the braces while 
ignoring any local effects resulting from the brace connection geometry, and (2) the connection designer evaluates the required beam shear 
based only on the moment acting at the gusset-to-beam interface(s). Thus, the beam designer considers beam span and work point location, 
ignoring the local effect of the connection, and the connection designer considers the local effects of the connection while ignoring beam 
span and the location of the work point.

This paper proposes a new method for evaluating required beam shear and moment that includes consideration of beam span, location of 
work point, and the local effects of the connection—a method that can be used by both the beam designer and the connection designer. Dis-
cussion is also provided to illustrate how this proposed method can be used to evaluate whether or not the local connection effect dominates 
the global effect. It is shown that the magnitude of the unbalanced vertical load influences the impact of the local connection effects; when 
the summation of the vertical brace force components is zero or relatively small, the local connection effects dominate the global effect. Con-
versely, when the unbalanced vertical load is relatively large, the global effects dominate; in this case, including the local connection effects 
will predict a smaller required beam moment possibly allowing for lighter beams.

Keywords: chevron effect, braced frames, work point, V-type, inverted V-type, unbalanced vertical load.

INTRODUCTION

The presence of the gusset plate in a chevron brace con-
nection imparts increases in beam shear and moment 

demand not captured by the analysis procedures currently 
used by beam designers and connection designers. This phe-
nomenon was introduced by Fortney and Thornton (2015), 
who exposed the issue and made recommendations that 
beam designers could use to estimate connection geom-
etry in an attempt to capture the chevron effect when sizing 
the frame beams. However, those recommendations were 
empirically based—more rules of thumb than approaches 
based on mechanics.

In this follow-on paper, the authors provide recommenda-
tions for an approach that can be used by both beam design-
ers and connections designers; the approach is based on first 
principles and is given in the form of relatively easy-to-use, 
closed-form equations.

BRACE CONNECTION FORCE DISTRIBUTION

The force distribution in chevron brace connections where 
braces frame to the bottom side of the frame beam are 
derived by Fortney and Thornton (2015). For convenience, 
those equations are shown in Equations 1 through 10 and 
are supported with the free-body diagram (FBD) shown in 
Figure 1. Fortney and Thornton did not provide force distri-
butions for braces framing to the top side of a frame beam. 
Those equations are given in Equations 11 through 19 and 
are supported in the FBD shown in Figure 1. Equations 11 
through 19 were derived in a similar manner as that shown 
by Fortney and Thornton relative to bottom side braces.

SIGN CONVENTION

The sign convention used throughout this paper assumes 
that forces on gusset(s) acting to the right or upward, and 
clockwise moments acting on gusset(s), are positive.

FORCE AND MOMENT EQUATIONS

When the centroid of the gusset-to-beam interface is not 
horizontally aligned with the work point (see Figure 1), the 
parameter Δ can be calculated as
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Fig. 1. FBD of force distribution in V-type and inverted V-type brace connections.
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 (Ha−a)t = −(H1 + H2)t (11)

 (Va−a)t = −(V1 + V2)t (12)

 (Ma−a)t = (H1 + H2)t eb  + (V1 + V2)t Δ (13)

The forces and moment acting on the top gusset at section 
b-b (left half of gusset) are
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(16)

The forces and moment acting on the top gusset at section 
b-b (right half of gusset) are
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(19)

Note that the equations describing the forces and moment 
acting on the left half of the gusset on section b-b (Equations 
14–16) give forces and moment equal to those forces and 
moment acting on the right half of the gusset on section b-b 
(Equations 17–19) but are opposite in sign.

THE CHEVRON EFFECT

When the summation of the vertical components of brace 
forces, ∑Vi, sum to zero, a beam analysis assuming a con-
centrated load acting transversely to the beam and located 
at the work point (referred to as a Pb/L, Pab/L analysis) 
will result in the beam having zero shear and zero moment. 
However, the presence of the brace connection imparts local 
shear and moment to the beam within the connection region. 
This local effect is referred to as the chevron effect (Fort-
ney and Thornton, 2015). Under this loading, the beam end 
reactions and beam shear and moment outside of the con-
nection region are zero. Figure 2 shows representative dia-
grams for beam shear and moment when ∑Vi sum to zero. 
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Bottom Gusset

The forces and moment acting on the bottom gusset at sec-
tion a-a are

 (Ha−a)b = −(H1 + H2)b (2)

 (Va−a)b = −(V1 + V2)b (3)

 (Ma−a)b = (V1 + V2)b Δ −(H1 + H2)beb (4)

The forces and moment acting on the bottom gusset at sec-
tion b-b (left half of gusset) are
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(7)

The forces and moment acting on the bottom gusset at sec-
tion b-b (right half of gusset) are
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 (10)

Note that the equations describing the forces and moment 
acting on the left half of the gusset on section b-b (Equa-
tions 5–7) give forces and moment equal to those forces and 
moment acting on the right half of the gusset on section b-b 
(Equations 8–10) but are opposite in sign.

TOP GUSSET

The forces and moments acting on the top gusset at section 
a-a are
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A new proposed analysis method will be discussed in more 
detail later in this paper. The uniformly distributed loads 
and moment shown in Figure 2 are a fundamental assump-
tion in that proposed analysis method.

DIVERGENT ANALYSES

The Beam Designer’s Approach

Typically, designers charged with beam analysis and design 
(beam size selection) will evaluate required beam shear and 
flexural strength with an analysis that assumes that the ∑Vi 
is a concentrated load that acts at the work point. Figure 3a 
shows a representative beam model and resulting beam 
shear and moment distribution for this loading assumption. 
This analysis takes into account the span of the beam and 
the location of the work point along the beam span, but it 
ignores the local effects of the brace connection, which can 
be significant as shown previously in Figure 2. Note that the 
loading in Figure 3a assumes that the brace tension load, P1, 
is larger than the brace compression load, P2. The sign of the 
beam shear and moment is dependent on the relative magni-
tudes of the brace tension and compression loads.

The Connection Designer’s Approach

Conversely, connection designers will evaluate beam shear 
based on the moment that acts at the gusset-to-beam interface 

and the required beam shear is 2Ma-a/Lg (the nonzero ∑Vi is 
ignored altogether). Because the unbalanced vertical force is 
ignored by connection designers, beam shear and moment 
as well as beam end reactions are taken as zero. Figure 3b 
shows a representative beam model and resulting beam 
shear and moment distribution with this loading assump-
tion. Typically, connection designers do not even evaluate 
required beam moment. However, to complete this type of 
analysis, the beam moment associated with this beam shear 
is Ma-a/2. With this type of analysis, connection designers 
consider the local effects of the connection but neglect the 
beam span and location of the work point and do not wholly 
consider the unbalanced vertical load. Additionally, because 
the beam shear is taken as the force couple of the moment, 
Ma-a, beam shear and moment are assumed to exist only 
within the middle half of the gusset length, Lg.

Comparison of the Two Approaches with the 
Chevron Effect

Figure  3 compares the divergent analyses performed by 
beam designers and connection designers. Note that the cur-
rent standard of care performed by connection designers 
assumes concentrated forces that are the force couple of the 
moment, Ma-a, and act only within the middle half of the 
gusset length—unlike the uniformly distributed loads that 
are assumed when generating the beam shear and moments 
shown in Figure  2, where the loads are distributed along 
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Fig. 2. Representation of the chevron effect; (∑Vi) = 0.
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the entire gusset length. Note that the maximum beam 
shear is the same for either case. However, the maximum 
beam moment when assuming uniformly distributed loads 
as shown in Figure 2 is one-fourth of that when assuming 
concentrated loads as shown in Figure 3 (recall that beam 
shear and moment using the current connection designer’s 
approach is independent of the unbalanced vertical load).

As discussed previously, the beam designer’s approach 
neglects the brace connection geometry, thereby neglecting 
the chevron effect altogether.

As one might expect, the required beam shears and 
moments determined from the two different procedures (i.e., 
beam designer versus connection designer) vary drastically. 
The following discussion attempts to address this issue and 
propose an analysis procedure that synergizes the analysis 
performed by beam designers and connection designers such 
that both individual approaches arrive at the same solution.

SYMBIOTIC ANALYSIS MODEL

The objective for a common method is to develop a proce-
dure that can be used by both beam designers and connec-
tion designers, with both arriving at the same required beam 
shear and moment. The method accounts for beam span, 
location of work point, and connection geometry. In that 
there are virtually an infinite number of different possible 
connection geometries, the method presented here makes 
the following simplifying assumptions:

• Only lateral load is considered to focus on the issue; in 
real design, the combination of other applicable loads will 
need to be carefully considered.

• When braces frame to both the top and bottom flanges,

– Gusset lengths, Lg, at top and bottom are the same.

– The vertical edges of the top and bottom gussets are 
horizontally aligned.

 Note that with these two assumptions, the Δ term will be 
the same for the top and bottom gussets.

• The unbalanced vertical force(s), ∑Vi, is distributed 
uniformly along the interface(s), Lg.

• The moment(s), Ma-a, is distributed uniformly along the 
interface(s) using a plastic distribution.

• The moment(s) needed to transport the summation of the 
horizontal forces acting at the interface(s) to the gravity 
axis of the beam is applied as a uniformly distributed 
moment, q, over the interface length, Lg.

The Beam Model

The following equations used to evaluate required beam 
shear and moment are consistent with the sign convention 
used to derive the equations describing the connection force 
distributions given in Equations 1 through 19. Refer to the 
“Sign Convention” section.

The chevron effect does not produce beam end reactions; 
end reactions are only a function of the unbalanced load, 
(∑V)T, beam span, L, and location of the work point along 
the span of the beam, a. Thus, the left beam end reaction, R1, 
shown in Figures 4 and 5 is as given in Equation 20:

 

( )
=
− ∑

R
V b
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(20)

where

 ( ) ( ) ( )∑ = ∑ + ∑V V VT t b (21)

In Equation 21, the subscripts t and b represent forces acting 
on the top and bottom sides of the beam, respectively.

The uniformly distributed loads acting on the beam, wl 
and wr, shown in Figures 4 and 5 are the net transverse loads 
from both the unbalanced vertical force(s), (∑V)T, and the 
interface moment(s), Ma-a, distributed as a plastic moment 
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Fig. 4. Beam model; see Fig. 5 for FBDs.
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The moment distribution, M(x1), is

 M(x1) = R1a′ + R1x1 + 0.5wlx1
2 + qx1 (26)

To locate where the maximum moment occurs, the deriva-
tive of Equation 26 is taken and set equal to zero:
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1
1 1 1

 
(27)

Solving Equation 27 for x1, the maximum moment occurs a 
distance from the left edge of the gusset at
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R q
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1

 
(28)

where x1 is valid for a range of

 
≤ ≤x

L
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(29)

Substituting Equation 28 into Equation 26 gives the equa-
tion for maximum beam moment:
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To ensure that Equation 30 gives maximum and not mini-
mum moment, the second derivate of Equation 26 is taken. 
The second derivative is
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(31)

When wl is negative (acting downward), Equation 30 gives 
a maximum moment in the x1 region when the moment is 
positive and gives a minimum moment when the moment is 
negative. When wl is positive (acting upward), Equation 30 
gives a minimum moment in the x1 region when the moment 
is positive and a maximum moment when the moment is 

uniformly over the left and right halves of the gussets, 
respectively, and are calculated as
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The third and fourth terms shown in Equations 22 and 23 
can be simplified in terms of the total unbalanced vertical 
force, (∑V)T, as
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The uniformly distributed moment, q, shown in Figures 4 
and 5, is the sum of the horizontal loads acting at the gusset-
to-beam interface(s) multiplied by one-half the depth of the 
beam, eb, and divided by the gusset length Lg, and is given 
in Equation 25:
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Maximum Beam Shear and Moment in the Left Half of 
the Gusset

When the magnitude of the tension brace force is larger 
than the magnitude of the compression brace force and the 
left brace and right braces are in tension and compression, 
respectively, the direction of the distributed moment, q, will 
be positive (clockwise). Under this type of loading, the max-
imum beam moment will occur somewhere between the left 
edge of the gusset(s) and mid-length of the gusset(s), Lg/2. 
The FBD shown in Figure 5a can be used to write equations 
that describe the distribution of beam shear and moment 
along the span of the beam.
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Fig. 5. FBDs used to write beam shear and moment equations; see Fig. 4 for beam model.
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negative. In either case, it is best to check the x2 region (see 
Figure 5b) and compare the results to determine the over-
all maximum moment as the maximum beam moment may 
occur in the beam along the region of the right half of the 
gusset(s). The equations for the x2 region (right half of gus-
set) are presented in the next section of this paper.

The beam shear is distributed over the span of the beam, 
V(x1), as given by Equation 32:

 

= +V x R w x( )
Pb L

l1 1
/

Analysis

1
Effect of Gusset

 

(32)

In most cases, the maximum beam shear occurs at mid-
length of the gusset, Lg/2. In rare cases, the net uniformly 
distributed loads, wl and wr, can be the same sign (i.e., both 
acting downward or both acting upward). In these rare cases, 
the magnitude of the uniformly distributed plastic moment 
is smaller than the magnitude of the uniformly distributed 
unbalanced vertical load. So for most cases, when the mag-
nitude of the plastic moment distribution exceeds the mag-
nitude of the uniformly distributed unbalanced vertical load, 
the maximum shear can be calculated by substituting Lg/2 
for the x1:

 Vmax = R1 + 0.5wlLg (33)

Maximum Shear and Moment in Right Half of Gusset

When the magnitude of the tension brace force is larger 
than the magnitude of the compression brace force and the 
left brace and right braces are in compression and tension, 
respectively, the direction of the distributed moment, q, will 
be negative (counterclockwise). Under this type of loading, 
the maximum beam moment will occur somewhere between 
the mid-length of the gusset(s), Lg/2 and the right edge of the 
gusset(s). The FBD shown in Figure 5b can be used to write 
equations that describe the distribution of beam shear and 
moment along the span of the beam.

The moment distribution, M(x2), is
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To locate where the maximum moment occurs, the deriva-
tive of Equation 34 is taken and set equal to zero:
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Solving Equation 35 for x2, the maximum moment occurs a 
distance from the mid-length of the gusset at
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where x2 is valid for a range of
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Substituting Equation 36 into Equation 34 gives the equa-
tion for maximum beam moment:
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(38)

To ensure that Equation  38 gives maximum moment, and 
not minimum moment, the second derivate of Equation 34 
is taken. The second derivative is
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(39)

When wr is negative (acting downward), Equation  38 
gives a maximum moment in the x2 region when the moment 
is positive and a minimum moment when the moment is 
negative. When wr is positive (acting upward), Equation 38 
gives a minimum moment when the moment is positive and 
a maximum moment when the moment is negative. As stated 
previously, it is good practice to evaluate moments in both 
the x1 and x2 regions to determine the overall maximum 
moment.

The beam shear is distributed over the span of the beam, 
V(x2), as given by Equation 40:

 

= + +V x R w L w x( ) 0.5
Pb L

l g r2 1
/

Analysis

2

Effect of Gusset
 

(40)

In most cases, the maximum beam shear occurs at mid-
length of the gusset, Lg/2. In rare cases, the net uniformly 
distributed loads, w1 and w2, can be the same sign (i.e., either 
both acting downward or both acting upward). In these rare 
cases, the magnitude of the uniformly distributed plastic 
moment is smaller than the magnitude of the uniformly 
distributed unbalanced vertical load. And for the majority 
of cases, when the magnitude of the plastic moment distri-
bution exceeds the magnitude of the uniformly distributed 
unbalanced vertical load, the maximum shear can be cal-
culated by substituting x2 = 0 for x2. Note that this gives the 
same maximum shear as given in Equation 33:

 Vmax = R1 + 0.5wlLg (41)
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EVALUATING THE CHEVRON EFFECT

Does the Chevron Effect Dominate?

There are many ways the chevron effect can be evaluated. Two methods are presented here:

1. For a given condition (i.e., the beam span, work point location, and unbalanced vertical force are known), an equivalent gusset 
length is calculated and compared to the provided gusset length to determine if the chevron effect will dominate—a method 
that will be useful to the connection designer.

2. For a known beam span, L, an approximated gusset length, Lg,app, and an approximated half beam depth, eb,app, an equivalent 
unbalanced vertical force can be calculated and compared to the actual unbalanced vertical force to determine if the chevron 
effect will dominate—a method that will be useful to beam designers.

The equations shown for the following two methods assume that the maximum beam moment occurs in the left half of the gus-
set. For a specific case where the maximum beam moment occurs in the right half of the gusset, the equations presented can be 
used by reversing the brace loads.

Comparison of Gusset Lengths, Lg

Figure 6 shows representative beam shear and moment diagrams that consider the local effect as well as the unbalanced vertical 
loads (brace loads). The maximum moment occurs somewhere between the left edge and the middle of the gusset at a distance, 
x, from the left edge of the gusset. The change in moment, ΔMlocal, considering the local effects is

 = + +ΔM w x R q x0.5 ( )local l
2

1  (44)

where R1 is given in Equation 20, wl is given by Equation 22, and q is given in Equation 25.

Figure 6b shows representative beam shear and moment diagrams that consider only the unbalanced vertical load effect (brace 
loads). The maximum moment, Mmax,unbal, occurs at the mid-point, which, for this discussion, is considered to be located at mid-
length of the gusset (i.e., at Lg/2 from the left edge of the gusset). Thus, the change in moment, ΔMunbal, from the left edge of the 
gusset to mid-length of the gusset is

 = +Δ ΔM R L(0.5 )unbal g1  (45)

Equations can be written that will allow one to determine, rather easily, whether or not the chevron effect produces a beam 
moment larger than what would be calculated considering only the unbalanced vertical loads. It’s important to recognize the 
local connection effects produce no beam end reactions. Thus, the beam end reactions R1 and R2 are a function of only the unbal-
anced vertical load (∑Vi). By setting Equations 44 and 45 equal, one could calculate an equivalent gusset length, Lg,eq, that would 
produce the same beam moment change, ΔM, using either Equation 44 or 45. If the actual gusset length, Lg, is larger than Lg,eq, 
the beam moment using the symbiotic method will be smaller than what would be calculated using the connection designer’s 
current method (i.e., if the connection designer even checked beam moment).

Setting Equations 44 and 45 equal, and setting Lg equal to Lg,eq,

 = + + = = + ΔΔ ΔM w x R q x M R L0.5 ( ) (0.5 )local l unbal g
2

1 1

 + + = + Δw x R q x R L0.5 ( ) (0.5 )l g eq
2

1 1 ,  (46)

Rule of Thumb for Connection Geometry

In order for the beam designer to use the proposed equa-
tions, the length of the gusset, Lg, and the depth of the beam, 
2eb, would need to be known. Typically, the brace connec-
tion geometry is not known by the beam designer at the 
time the beam size is selected. Fortney and Thornton (2015) 

recommend an approximated gusset length, Lg,app, equal to

 
=L

L

6
g app,

 
(42)

and an approximated half beam depth, eb,app, in in., equal to

 eb,app = 0.375 (span of beam in feet) (43)
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Substituting Equation 28, which is in terms of x1, for x into Equation 46 and solving for Lg,eq gives a quadratic equation. It’s 
important to recognize that the terms wl and q are also a function of Lg and that when Δ is nonzero, q = [(Ma-a)T − (∑V)TΔ]/Lg.

When Δ is nonzero, the quadratic equation is the closed-form equation shown in Equation 47. In Equation 47, the square root 
of the discriminant, η, is given as a separate calculation for simplification. When using this equation, the negative value of the 
square root of the discriminant is used.
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(47b)

In Equation 47, the term MT is the total moment acting on the upper and lower gussets calculated using Equations 4 and 13 
[(Ma-a)t and (Ma-a)b, respectively].

When Δ is equal to zero, the quadratic shown in Equation 47 reduces to the closed-form equation shown in Equation 48:

   

wp aa

Lg 2
Lg 2
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ΔM
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l

R2

a b

i

0
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Δ
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 (a) ΔM for local effect (b) ΔM for unbalanced load 

Fig. 6. Change in beam moment from edge of gusset to maximum moment.
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• When Lg is smaller than Lg,eq, then an analysis that includes the chevron effect will result in a moment that is larger than the 
moment calculated neglecting the chevron effect (Pab/L is unconservative for bending).

• When Lg is larger than Lg,eq, then an analysis that includes the chevron effect will result in a moment that is smaller than the 
moment calculated neglecting the chevron effect (Pab/L is conservative for bending).

Comparison of Unbalanced Vertical Forces

The maximum beam moment using the symbiotic method given by Equation 26 can be set equal to the maximum moment calcu-
lated using the current beam designer’s, which is Pab/L and is equal to the left beam end reaction, R1 multiplied by the distance 
from the left beam end to the location of the work point, a (R1a). By setting these two equations equal to each other, an equivalent 
unbalanced vertical force, (∑V)T, can be determined, thereby identifying a magnitude of unbalanced vertical force for which both 
equations will give the same maximum moment. Setting Equation 26 equal to R1a gives

 R1a′ + R1x1 + 0.5wlx1
2 + qx1 = R1a (49)

The left beam end reaction, R1, in terms of the unbalanced vertical force, (∑V)T, is given by Equation 20. Equation 28 provides a 
relationship between x1 and R1, and Equation 22 gives a relationship for wl with the unbalanced vertical force, (∑V)T. The equa-
tion for wl is also a function of the interface moments, (Ma-a)t and (Ma-a)b. Given these relationships, some tedious substitutions, 
and taking (∑V)T to be equal to an equivalent unbalanced vertical force for which both equations produce the same moment, 
(∑V)T,eq, gives the following equation:
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(50)

Equation 50 reduces to a simpler form when the eccentricity, Δ, is equal to zero, as shown in Equation 51.

The roots of Equations 50 and 51 of interest for this application are the negative roots. Therefore, if the eccentricity, Δ, is non-
zero, the equivalent unbalanced vertical force, (∑V)T,eq, is given by Equation 52:
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If the eccentricity, Δ, is zero, the equivalent unbalanced vertical force, (∑V)T,eq, is given by Equation 53:
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(53)
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A few comments regarding the use of Equations 52 and 53:

• The signs of the quantities (∑V)T,eq and (∑V)T will be the same. For example, if the actual total unbalanced vertical force, 
(∑V)T, is negative, the quantity calculated from Equation 52 (or 53), (∑V)T,eq, will also be negative, and vice versa.

• When the absolute value of (∑V)T,eq is smaller than the absolute value of (∑V)T, then an analysis that includes the chevron 
effect will result in a moment that is smaller than the moment calculated neglecting the chevron effect (Pab/L is conservative 
for bending).

• When the absolute value of (∑V)T,eq is larger than the absolute value of (∑V)T, then an analysis that includes the chevron effect 
will result in a moment that is larger than the moment calculated neglecting the chevron effect (Pab/L is unconservative for 
bending).

Note that every term in Equations 52 and 53 is a function of the position of the work point along the span of the beam, b/L. 
Although it may be counterintuitive to some, Equations 52 and 53 show that the position of the work point along the span of the 
beam has an effect on whether or not the chevron effect will dominate maximum beam moment.

Possible Beam Shear Diagrams

Unlike beam moment, the local effects of the connection will almost always give a beam shear in excess of the beam shear deter-
mined by assuming the unbalanced vertical load acts as a concentrated load at the work point. Figure 7a shows a representative 
beam shear diagram of this case. However, there are rare instances when the net transverse loads on the beam, wl and wr, act 
in the same direction. This occurs when the magnitude of the uniformly distributed plastic moment acting on section a-a (see 
Figure 1) is smaller than the magnitude of the net uniformly distributed unbalanced vertical load. In this case, the maximum 
beam shear calculated using the symbiotic method will be equal to the beam end reaction. Figure 7b shows a representative beam 
shear diagram for this case.

Note that it is assumed that the unbalanced vertical load acts downward for the shear diagrams shown in Figure 7. When the 
unbalanced vertical force acts upward, the beam shear diagrams would be mirrored about the x-axis to those shown in Figure 7.

Possible Beam Moment Diagrams

Many factors affect the beam moment diagram in a chevron frame; relative magnitude of the unbalanced vertical force, the 
direction of the unbalanced vertical force (up or down), the magnitude of the tension brace force relative to the compression brace 
force, whether or not the tension brace is on the left side and the compression brace on the right side or vice versa can all affect 
the beam shear diagram. Figure 8 shows some possible diagrams.
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Fig. 7. Representative beam shear diagrams.
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In the diagrams shown in Figure 8, it is assumed that the unbalanced vertical force acts downward. Readers should be aware 
that this is not always the case—for example, if the braces frame to only the bottom side of the beam and the magnitude of the 
compression brace is larger than that of the tension brace, the unbalanced vertical force will act upward resulting in moment 
diagrams that would be mirrored about the x-axis to those diagrams shown in Figure 8.

When the unbalanced vertical force is zero (a balanced case) or relatively small, the chevron effect will dominate the demands 
on the beam relative to considering only the unbalanced vertical load (i.e., the current beam designer method). Figure 8a shows 
a representative moment diagram for such a case. The required beam moment calculated neglecting the local effect of the con-
nection can be significantly underestimated when the unbalanced load is relatively small.

When q and R1 are the same sign, the maximum moment calculated considering the local effect will be maximum within the 
left half of the gusset, but whether the local effect is dominant depends on the relative magnitude of the unbalanced load. See 
Figures 8a and 8b.

When q and R1 have different signs, one of two things will occur: (1) The local effect does not dominate the maximum moment 
(see Figure 8c), and considering the local effects will result in a lighter beam in regard to required moment, or (2) the maximum 
moment considering the local effects occurs within the right half of the gusset (see Figure 8d), but whether the local effect is 
dominant varies on the relative magnitude of the unbalanced load. In this case, the maximum moment should be evaluated using 
the equations derived above for M(x2). 

Additionally, the moment diagram shown in Figure 8d shows a case where the local effect is dominant. This type of diagram 
occurs when q and R1 have different signs and Mmax,local is less than Mmax,unbal. Equations for calculating Mmax,local and Mmax,unbal 
were derived in the “Evaluating the Chevron Effect” section.
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Fig. 8. Representative beam moment diagrams. (Note: Δ is assumed to be zero in these figures.)
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EXAMPLE PROBLEM 1

The braced frame shown in the elevation in Figure 9a is used in a special concentrically braced frame. Figure 9b shows the 
brace forces calculated using the requirements of Section F2.3 of AISC 341-16 (AISC, 2016), which requires an analysis of the 
frame when the compression braces reach their expected buckling and post-buckling strength while the tension brace reaches 
its expected tension strength.

Part 1

Considering only the brace forces and load cases shown in Figure 9b for joint 1,

• Determine the approximate gusset length, Lg,approx, and half-beam depth, eb,app.

• Use the proposed equations, using the approximate gusset geometry,

- To determine if the chevron effect needs to be considered for the required beam moment.

- To size the beam for shear and bending. Check both load cases; buckling load case and post-buckling load case.

Note that beam selected in this part will be the beam used by the connection designer for performing Part 2 of the problem. 
Additionally, the beam designer does not communicate the approximated gusset length, Lg,app, determined in this part to the 
connection designer for the work to be performed Part 2.

Part 2

Figure 10 shows the connection geometry (chosen by the connection designer) and brace forces for the two load cases being 
considered. Note that this is not necessarily the Lg dimension approximated by the beam designer in Part 1. The beam size given 
in Figure 10 is the beam size provided by the beam designer as given in Part 1 of this problem.
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Fig. 9. Braced frame elevation and brace loads.
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• Draw free-body diagrams of the left and right halves of the gussets showing the forces acting on sections a-a and b-b for both 
the top and bottom gussets (similar to Figure 1).

• Draw beam-loading diagrams for the two load cases showing the uniformly distributed loads and moments acting on the beam 
due to the brace forces (similar to Figure 4).
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(b) Post-buckling load case

Fig. 10. Connection geometry and brace forces.
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Part 3

Draw the beam shear and moment diagrams for both load cases. On each diagram, show plots for the two paradoxical methods 
(current standard of care used by beam designers and connection designers) as well as the symbiotic method.

Solution

General Calculations

Buckling load case:

(∑V)t = (−67.0 kips) + 218 kips

 = 151 kips

(∑V)b = (−359 kips) + 172 kips

 = −187 kips

(∑H)t = (67.0 kips) + 218 kips

 = 285 kips

(∑H)b = (−359 kips) + (−172 kips)
 = −531 kips

(∑V)T = (151 kips) + (−187 kips)
 = −36.0 kips

Similar to Equation 21, the total net horizontal load, (∑H)T is

(∑H)T = (∑H)t + (∑H)b

 = 285 kips + (−531 kips)
 = −246 kips

Post-buckling load case:

(∑V)t = (−20.1 kips) + 218 kips

 = 197.9 kips

(∑V)b = (−359 kips) + 51.5 kips

 = −307.5 kips

(∑H)t = 20.1 kips + 218 kips

 = 238.1 kips

(∑H)b = (−359 kips) + (−51.1 kips)
 = −410.5 kips

(∑V)T = 197.9 kips + (−307.5 kips)
 = −109.6 kips

(∑H)T = 238.1 kips + (−410.5 kips)
 = −172.4 kips
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Part 1

The approximate length of the gusset, Lg,app, and half-depth of the beam, eb,app (Fortney and Thornton, 2015) can be determined 
using Equations 42 and 43, respectively:

L
L

6
g app, =

 
(42)

 

(28 ft)(12 in./ft)
6

56.0 in.

=

=

eb,app = (0.375)(span of beam in feet) (43)

 = (0.375)(28 ft)
 = 10.5 in.

Equation 48 (Δ = 0) can be used to determine if the chevron effect needs to be considered in regard to beam bending. Equation 48 
requires the calculation of MT [Equations 4 and 13, for (Ma-a)b and (Ma-a)t, respectively].

Buckling Load Case

The gusset interface moments for the buckling case are (noting that Δ = 0 for this problem)

(Ma-a)t = (H1 + H2)t eb + (V1 + V2)tΔ (13)

  = (67.0 kips + 218 kips)(10.5 in.) + [(−67.0 kips) + 218 kips](0 in.)
  = 2,993 kip-in.

(Ma-a)b = (V1 + V2)bΔ − (H1 + H2)b eb (4)

  = (−359 kips + 172 kips)(0 in.) − [(−359 kips) + −172 kips](10.5 in.)

  = 5,576 kip-in.

MT = (Ma-a)t + (Ma-a)b

 = 2,993 kips-in. + 5,576 kips-in.

 = 8,569 kip-in.

The net uniformly distributed moment, q, is

q H H
e

Lt b
b

g
( ) ( )= ∑ − ∑⎡⎣ ⎤⎦

⎛
⎝⎜

⎞
⎠⎟  

(25)

 

285 kips ( 531 kips)
10.5 in.

56.0 in.
153 kip-in./in.

[ ]= − − ⎛
⎝

⎞
⎠

=

The net uniformly distributed load on the left half of the gusset, wl, is

w
M

L

M

L

V

L

V

L

4 4
l

a a

g t

a a

g b g t g b
2 2= −

⎛
⎝⎜

⎞
⎠⎝ ⎟ −

⎛
⎝⎜

⎞
⎠⎟

+ ∑⎛
⎝⎜

⎞
⎠⎟

+ ∑⎛
⎝⎜

⎞
⎠⎟

− −

 

(22)

 

(4)(2,993 kip-in.)
(56.0 in.)

(4)(5,576 kip-in.)
(56.0 in.)

151 kips

56.0 in.

( 187 kips)
56.0 in.

11.6 kip/in.

2 2= − ⎡
⎣⎢

⎤
⎦⎥
− ⎡
⎣⎢

⎤
⎦⎥
+ ⎛⎝

⎞
⎠ +

−⎛
⎝

⎞
⎠

= −

263-296_EJQ417_2016-16.indd   279 9/21/17   11:02 AM



280 / ENGINEERING JOURNAL / FOURTH QUARTER / 2017

The left beam end reaction, R1, is
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The chevron effect will dominate the beam moment, producing a larger moment relative to the classical Pab/L type of analysis 
(i.e., the beam designer’s approach). It is unreasonable to consider increasing the gusset length to 135 in.

Post-Buckling Load Case

The gusset interface moments for the post-buckling case are

(Ma-a)t = (H1 + H2)t eb + (V1 + V2)tΔ (13)

 = (20.1 kips + 218 kips)(10.5 in.) + [(−20.1 kips) + 218 kips](0 in.)
 = 2,500 kip-in.

(Ma-a)b = (V1 + V2)bΔ − (H1 + H2)b eb (4)

 = (−359 kips + 51.5 kips)(0 in.) − [−359 kips + (−51.5 kips)](10.5 in.)
 = 4,310 kip-in.

The net uniformly distributed moment, q, is
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The net uniformly distributed load on the left half of the gusset, wl, is
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g b g t g b
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⎞
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−
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⎞
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The left beam end reaction, R1, is

R
V b

L
T

1
( )

=
− ∑

 
(20)

 

( 109.6 kips)(14 ft)
28 ft

= 54.8 kips

= − −

The equivalent gusset length, Lg,eq is

L
M

V

b

L

b

L
b

L

b

L

g eq
T

T

, 2( )=
∑

−

− ⎛⎝
⎞
⎠

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
 

(48)

 L
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109.6 kips
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2

,

( )
=

−
−
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⎡

⎣
⎢

⎤

⎦
⎥

= < =

The chevron effect will not dominate the beam moment and will produce a slightly smaller moment relative to the classical 
Pab/L type of analysis.

The maximum beam shear can be calculated using Equation 33.

For the buckling case, R1 = 18.0 kips, wl = −11.6 kip/in., and Vmax is then

Vmax = R1 + 0.5wlLg (33)

 = 18.0 kips + 0.5(−11.6 kip-in.)(56.0 in.)
 = −307 kips

For the post-buckling case, R1 = 54.8 kips, wl = –10.7 kip/in., and Vmax is then

Vmax = 54.8 kips + 0.5(−10.7 kip-in.)(56.0 in.)
 = −245 kips

For both load cases, wl acts downward. As discussed previously, wl is the second derivative of M(x1); when wl acts downward, the 
maximum moment occurs along the left half of the gusset. Therefore, Equation 30 can be used to calculate the maximum beam 
moment, using Equation 28 to determine the location of maximum moment (x1).

The maximum beam moment for the buckling case is located at

x
R q

wl
1

1= − −

 
(28)

 

18.0 kips 153 kip-in./in.

11.6 kip/in.

14.8 in.

= − −
−

=

and is

M R a R q
R q

w
w

R q

w
0.5max

l
l

l
1 1

1 1
2

( )= ′ + + − −⎛
⎝⎜

⎞
⎠⎟
+ − −⎛

⎝⎜
⎞
⎠⎟  

(30)

 = (18.0 kips)(140 in.) + (18.0 kips + 153 kips)(14.8 in.) + 0.5(−11.6 kip/in.)(14.8 in.)2

 = 3,780 kip-in.
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The maximum beam moment for the post-buckling case is located at

x
54.8 kips 122 kip-in./in.

10.7 kip/in.

16.5 in.

1 = − −
−

=

and is

Mmax = (54.8 kips)(140 in.) + (54.8 kips + 122 kips)(16.5 in.) + 0.5(−10.7 kip/in.)(16.5 in.)2

 = 9,130 kip-in.

As can be seen in Table 1, the buckling case gives the largest beam shear, −307 kips, and the post-buckling case gives the largest 
beam moment, 9,130 kip-in. A beam size will be selected for these values. Also recall that the beam half-depth, eb, was approxi-
mated to be 10.5 in. Therefore, a beam size will be selected from the W21 family.

Assuming the beam will be laterally braced such that its plastic bending strength can be reached, the required plastic section 
modulus, Zreq, is

Z
9,130 kip-in.

(0.9)(50 ksi)

203 in.

req

3

=

=

Using AISC Manual Table 3-2 (AISC, 2017), a W21×93 has an available design shear and flexural strength of 376 kips and 9,948 
kip-in., respectively.

Final beam size: W21×93

Part 2

The force distributions in the top and bottom connections for the buckling and post-buckling load cases are shown in Figures 11a 
and 11b, respectively. The force distribution equations given in Equations 2 through 19 were used to calculate the forces and 
moment shown, but the calculations are not shown here in order to conserve space. Fortney and Thornton (2015) provide several 
examples showing the use of these equations.

Beam Loading Using the Symbiotic Method

Buckling load case:

The moments, (Ma-a)t and (Ma-a)b, are

(Ma-a)t = (H1 + H2)t eb + (V1 + V2)tΔ (13)

(Ma-a)t = (67.0 kips + 218 kips)(10.8 in.) + (−67.0 kips + 218 kips)(0 in.)
 = 3,078 kip-in.

Table 1. Maximum Beam Shear and Moment

Load Case

Vmax Mmax

(kips) (kip-in.)

Buckling −307 3780

Post-buckling −245 9130
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(Ma-a)b = (V1 + V2)bΔ − (H1 + H2)b eb (4)

(Ma-a)b = (−359 kips + 172 kips)(0 in.) − [−359 kips + (−172 kips)](10.8 in.)
 = 5,735 kip-in.

MT = (Ma-a)t + (Ma-a)b

 = 3,078 kips-in. + 5,735 kips-in.

 = 8,813 kip-in.

The net uniformly distributed loads, wl and wr, can be calculated using Equations 22 and 23, respectively:
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⎞
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=

The net uniformly distributed moment, q, is

q H H
e

Lt b
b

g
( ) ( )= ∑ − ∑⎡⎣ ⎤⎦

⎛
⎝⎜

⎞
⎠⎟  
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⎝

⎞
⎠

=

Given that R1 = 18.0 kips (calculated previously), and the gusset length, Lg, is 54.0 in., the equivalent gusset length, Lg,eq, is

L
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Therefore, the local effects will dominate the moment. However, for this example, the post-buckling case governs for beam 
moment.
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Post-buckling load case:

The moments, (Ma-a)t and (Ma-a)b, are

(Ma-a)t = (20.1 kips + 218 kips)(10.8 in.) + (−20.1 kips + 218 kips)(0 in.)
 = 2,571 kip-in.

(Ma-a)b = (−359 kips + 51.5 kips)(0 in.) − [−359 kips + (−51.5 kips)](10.8 in.)
 = 4,433 kip-in.

MT = (Ma-a)t + (Ma-a)b

 = 2,571 kips-in. + 4,433 kips-in.

 = 7,004 kip-in.
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 (a) Buckling load case (b) Post-buckling load case

Fig. 11. Connection force distributions.
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The net uniformly distributed loads, wl and wr, can be calculated using Equations 22 and 23, respectively:

w
4 2,571 kip-in.
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4 4,433 kip-in.
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The net uniformly distributed moment, q, is
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(a) Uniformly distributed beam loading
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(b) Statically equivalent net beam loading

Fig. 12. Beam loading for buckling load case—symbiotic method.
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Given that R1 = 54.8 kips (calculated previously), and the gusset length, Lg, is 54.0 in., the equivalent gusset length, Lg,eq, is

L
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, 2( )
=

−
−
−

⎡

⎣
⎢

⎤

⎦
⎥

= < =

Therefore, the symbiotic method will produce a slightly smaller (very slight difference) beam moment than the current 
beam designer’s method which neglects the local effect. Note that the beam designer used an approximate gusset length of 
56.0 in.—2 in. longer than the 54.0 in. used by the connection designer. It is important however, to recognize that neglecting the 
local effects when determining beam shear will still produce a very unconservative estimate of beam shear. The beam loading 
for the buckling and post-buckling load cases are shown in Figures 12 and 13, respectively.

Beam Shear and Moment—Current Beam Designer’s Method

With this method, the span of the beam and the location of the work point are considered; local effects from the connection are 
not considered.
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(a) Uniformly distributed beam loading
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7.58 kip/in.

(b) Statically equivalent net beam loading

Fig. 13. Beam loading for post-buckling load case—symbiotic method.
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The total summation of the vertical components of the brace forces is treated as a concentrated load acting on the beam at the 
work point. For this example, the work point is located at mid-span of the beam, so beam shear and moment will be distributed 
using the following equations. In the following equations, x1 and x2 are measured starting from the left beam end and the loca-
tion of the work point, respectively:

R R
V

V x R

V x R

M x R x

M x R a R x

( )
2

( )

( )

( )

( )

T
1 2

1 1

2 2

1 1 1

2 1 2 2

= = − ∑

=
= −
=
= −

Beam Shear and Moment—Current Connection Designer’s Method

With this method, the span of the beam and the location of the work point are not considered; local effects from the connection 
are considered. Regardless of the unbalanced vertical load, this method assumes that beam shear and moment outside of the 
connection region are zero.

The beam shear and moment distribution will be as shown in Figure 3b; constant shear with linearly distributed moment acting 
on the along the middle half of the gusset.

Buckling load case:

V
M M
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a a t a a b
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Post-buckling load case:

V
M M

L
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a a t a a b

g
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M
M M( ) ( )

2
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2
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a a t a a b= +

= +

=

− −

The beam shear and moment diagrams for the three methods considered in this example problem are shown in Figures 14 and 
15 for the buckling and post-buckling loads cases, respectively.
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Fig. 14. Beam shear and moment for buckling load case.
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Fig. 15. Beam shear and moment for post-buckling load case.
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EXAMPLE PROBLEM 2

Figures 14b and 15b show the moment diagrams for Example Problem 1, Part 2, based on the actual connection geometry as 
shown in Figure 11. Based on the geometry and loading, calculate the equivalent summation of vertical forces, (∑V)T,eq, for the 
buckling and post-buckling cases given in Example Problem 1 (see Figures 11, 12 and 13).

Solution

As can be seen in Figure 11, the eccentricity term, Δ, is zero. Therefore, Equation 53 is used to compute the equivalent unbal-
anced vertical force, (∑V)T,eq. As can be seen in Figures 12 and 13, the work point is located at mid-span of the beam, therefore, 
the position ratio, b/L, is equal to 0.50. Figures 12 and 13 also give the values for the net uniformly distributed moments, q.

For the buckling case, q = 163 kip-in./in. and (∑V)T = –36.0 kips. Therefore, Equation 53 gives

V q

b
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b
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b
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b
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⎦

⎥
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⎥
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(53)
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2( )
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−
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⎤

⎦
⎥

= −

The absolute value of (∑V)T = 36.0 kips is smaller than the absolute value of (∑V)T,eq = 135 kips. Therefore, the chevron effect 
will dominate the moment demand on the beam. The moment diagrams shown in Figure 14b support this conclusion.

For the post-buckling case, q = 130 kip-in./in. and (∑V)T = −109.6 kips. Therefore, Equation 53 gives

V( ) 130 kip-in./in.
0.50 0.50

0.50 0.50

108 kips

T eq, 2( )
∑ = −

−
⎡

⎣
⎢

⎤

⎦
⎥

= −

The absolute value of (∑V)T = 109.6 kips is larger than the absolute value of (∑V)T,eq = 108 kips. Therefore, the chevron effect 
analysis will produce a beam moment smaller than what would be calculated using the classic Pab/L analysis. However, the 
two values are very close, therefore the moment calculated using the symbiotic method should be only slightly smaller than that 
computed using the beam designer’s method (Pab/L). The moment diagrams shown in Figure 15b support this conclusion; the 
symbiotic moment is 9,158 kip-in. as compared to the Pab/L moment equal to 9,206 kip-in.

EXAMPLE PROBLEM 3

Figures 16 and 17 show a braced frame elevation and corresponding gusset-to-beam interface forces. The total unbalanced load, 
(∑V)T, is −112 kips. The total moment, MT, is 10,203 kip-in. Referring to Figure 16, it can be seen that Δ is nonzero and that the 
work point is not located at mid-span of the beam. Figure 18 shows the beam moment diagram. Using the information given in 
Figures 16, 17 and 18:

1. Use Equation 52 to determine if the chevron effect will dominate the maximum beam moment. That is, compare the calculated 
(∑V)T,eq from Equation 52 to the actual (∑V)T.

2. Use Equation 47 to determine if the chevron effect will dominate the maximum beam moment. That is, compare the calculated 
Lg,eq from Equation 47 to the actual Lg.

3. Calculate the maximum beam moments, M(x1)max and M(x2)max, evaluate the second derivatives for each region, and compare 
to the beam moment diagram shown in Figure 18.
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Solution

Part 1

Equation 52 is a function of the b/L and Δ/Lg ratios. Those ratios are

b

L

b

L

L

L

204 in.

336 in.
0.6071

0.6071

0.3686

4.50 in.

57.0 in.

0.07894

0.07894

0.006233

g

g

2
2

2
2

( )

( )

=

=

⎛
⎝

⎞
⎠ =

=

= −Δ

Δ

= −

⎛
⎝⎜

⎞
⎠⎟

= −

=

To simplify the number crunching required in Equation 52, the following terms within Equation 52 will be calculated and then 
substituted into the equation:
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Fig. 16. Frame elevation, loading and connection geometry.
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Equation 52 gives the following:
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The magnitude of the total unbalanced force, (∑V)T, for this problem is 112 kips. Comparing this magnitude of load to the mag-
nitude of the equivalent unbalanced force, (∑V)T,eq gives

V V( ) 154 kips ( ) 112 kipsT eq T,∑ = > ∑ =

Therefore, the chevron effect will dominate the beam moment. Referring to Figure 18, it can be seen that Equation 51 accurately 
predicts this.

Part 2

Equation 47 is a function of b/L ratios as well as MT and (∑V)T. The (b/L), (b/L)2 and (b/L)3 ratios are 0.607, 0.369 and 0.224, 
respectively. The variables MT and (∑V)T were given as 10,203 kip-in and −112 kips, respectively. The square root of the dis-
criminant, η, is
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Therefore, the chevron effect will dominate the beam moment relative to the Pab/L moment. The moment diagrams shown in 
Figure 18 support this result.

Part 3

As can be seen in Figure 16, the wl and wr terms are negative and positive, respectively. Additionally, the moments are in the 
positive region. Therefore, the second derivative of the M(x1) equation gives a maximum moment, and the second derivative of 
the M(x2) equation gives a minimum. The moment diagram shown in Figure 17 supports this conclusion.

FURTHER DISCUSSION

The procedures presented in this paper provide a general 
solution that both beam designers and connection design-
ers can use in a consistent manner to evaluate beam shear 
and moment in beams of V-type and inverted V-type braced 
frames. Beyond the general need to have a consistent analy-
sis procedure, the proposed procedure also has the advan-
tage that the beam designer can account for brace connection 
geometry at the time the beam is sized in a manner that will 
ensure that beam web and flange reinforcement is not found 
to be required during the connection design phase.

The example problem used to illustrate the application 
of the proposed procedure is illustrated in the context of a 
seismic system using the mechanistic analysis required in 
the AISC Seismic Provisions (2016) for special concentri-
cally braced frames. It is important to recognize that the 
chevron effect has an impact on beams in systems designed 
for low seismic and wind requirements. Posted brace forces 
that are used for design in low seismic and wind applications 
often result in an unbalanced vertical force—usually rela-
tively small unbalanced vertical loads. As has been shown 
in this paper, if a beam is sized for beam shear and moment 
strength for relatively small unbalanced vertical loads using 
the current beam and connection designer’s methods, the 
beam shear and moment arising from the chevron effect in 
the connection region can be significantly underestimated, 
leading to expensive beam web and flange reinforcement. 
The proposed symbiotic method will minimize, if not elimi-
nate, the need for such reinforcement.

Several assumptions (see the “Symbiotic Analysis Model” 
section) are made in regard to connection geometry, as 

discussed at the beginning of this paper. It is also important 
to recognize that beam shear and moment can be very sensi-
tive to beam span, location of work point, brace bevel, and 
brace loading. The proposed procedures are based on these 
assumptions and several checks are provided to ensure that 
the equations that have been derived apply to the problem 
being considered. When these assumptions are not valid, 
designers must take care to return to engineering fundamen-
tals and first principles to solve that particular problem.

CONCLUSIONS

The methods used by beam designers and connection design-
ers to evaluate beams in V-type or inverted V-type frames 
are not consistent. Beam designers consider beam span and 
work point location but ignore the effects of the connection 
geometry (chevron effect), while connection designers con-
sider the effect of the moment acting on the gusset–beam 
interface(s) but neglect the unbalanced vertical load as well 
as the beam span and work point location. The symbiotic 
method proposed in this paper provides a consistent analysis 
model that can be used by beam and connection designers 
alike.

This paper provides beam and connection designers 
with methods for evaluating whether the chevron effect 
will dominate the moment demand on the beam and also 
to determine whether the current methods being used are 
conservative. Equation 47 can be used to evaluate a beam for 
a given set of brace forces and frame geometry to determine 
a gusset length interface that will reduce the chevron effect 
relative to the Pab/L moment, which is more likely useful 
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to a connection designer for a specific case. Equations 50 
and 51 can be used to evaluate a beam for a given beam 
span and work point location, combined with approximated 
gusset lengths, Lg,app, and half-beam depths, eb,app (see 
Equations 42 and 43), to determine at what level of unbal-
anced vertical force the chevron effect will dominate beam 
demand relative to a Pab/L moment, which is more likely 
useful to a beam designer to use in a more general sense 
when evaluating multiple joints in a frame.

When the chevron effect dominates, the current analysis 
procedure used by beam designers and connection designers 
can significantly underestimate beam shear and moment in 
the balanced case and when a relatively small unbalanced 
vertical load is present. In this case, the beam can be sig-
nificantly undersized for the demands imposed on the beam 
by the chevron effect. When the unbalanced vertical load is 
relatively large, the symbiotic method potentially provides a 
smaller beam moment demand, which may lead to a lighter 
beam relative to one required using the methods currently 
used by beam and connection designers.
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SYMBOLS

H1 Horizontal component of force in brace 1, kips

H2 Horizontal component of force in brace 2, kips

Ha-a Horizontal (shear) force acting at the gusset-to-
beam interface, kips

Hbi Horizontal (normal) force acting on the critical 
vertical section of the gusset, kips

L1 Horizontal distance from the left edge of the 
gusset to the work point, in.

L2 Horizontal distance from the right edge of the 
gusset to the work point, in.

L Span of frame beam, in.

Lg Contact length of the gusset-to-beam interface, 
in.

Lg,app Approximation of length of gusset, Lg, in.

Lg,eq Minimum gusset length required such that the 
chevron effect does not dominate, in.

Ma-a Moment acting at the gusset-to-beam interface, 
kip-in.

Mmax Maximum required beam moment, kip-in.

Mmax,local Maximum beam moment when local effects are 
considered, kip-in.

Mmax,unbal Maximum beam moment when local effects are 
not considered, kip-in.

MT Sum of moments at top and bottom gusset 
interfaces, (Ma-a)t and (Ma-a)b, kip-in.

Mu,max Maximum required (design) flexural strength, 
kip-in.

M(x1) Beam moment as a function of x1, kip-in.

M(x2) Beam moment as a function of x2, kip-in.

Neq Couple of the moment, Ma-a, kip-in.

Pi(T) Tension brace force, kips

Pi(C) Compression brace force, kips

P1 Axial force in brace 1, kips

P2 Axial force in brace 2, kips

R1 Left beam end reaction, kips

R1,eq Left beam end reaction that identifies the 
magnitude of an unbalanced force at which local 
effects dominate beam moment demands, kips

V1 Vertical component of the force in brace 1, kips

V2 Vertical component of the force in brace 2, kips

Va-a Vertical (normal) force acting at the gusset-to-
beam interface, kips

Vmax Maximum required beam shear, kips

Vu,max Maximum required (design) shear strength, kips

V(x1) Beam shear as a function of x1, kips

V(x2) Beam shear as a function of x2, kips

Z Plastic section modulus, in.3

a Distance from left beam support to location of 
work point, in.

a′ Distance from left beam support to left edge of 
gusset, in.

b Distance from work point to right beam support, 
in.

d Depth of frame beam, in.

eb Perpendicular distance from the gusset interface 
to the gravity axis of the frame beam, in.

eb,app Approximation of length of half-depth of the 
frame beam, in.

h Vertical dimension of the gusset, in.
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q Net uniformly distributed moment, kip-in.

wl Net uniformly distributed transverse load on left 
half of gusset, kip/in.

wr Net uniformly distributed transverse load on right 
half of gusset, kip/in.

w.p. Brace work point

Δ Horizontal misalignment between the work point 
and the centroid of the gusset-to-beam interface, 
in.

ΔMlocal Change in beam moment from the left edge of 
the gusset to location of maximum moment when 
local effects are considered, kip-in.

ΔMunbal Change in beam moment from the left edge of 
the gusset to location of maximum moment when 
local effects are not considered, kip-in.

∑Vi Summation of vertical brace force components 
(unbalanced vertical force), kips
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INTRODUCTION

Ongoing work on the strongback braced frame is high-
lighted. The research is led by Dr. Stephen Mahin, pro-

fessor at the University of California–Berkeley, and Byron L. 
and Elvira E. Nishkian, professors of structural engineering. 
Dr. Mahin currently leads the SimCenter as part of the Natu-
ral Hazards Engineering Research Infrastructure (NHERI) 
and was recently awarded an AISC grant to research and 
develop a possible design method for the strongback system.

There have been a number of investigations and exam-
ples of implementation of the strongback system in recent 
years. Dr. Jiun-Wei Lai, an engineer at Degenkolb Engi-
neers in California, compared the behavior of strongback 
systems with conventional braced-frame systems through 
monotonic, cyclic, and nonlinear dynamic time-history 
analyses as a doctoral student at the University of California– 
Berkeley (Lai and Mahin, 2015). Barbara Simpson, a doctoral 
candidate at U.C. Berkeley, conducted the first experimental 
test of a strongback system (Simpson and Mahin, 2016) and 
is currently focused on developing the strongback system. 
In tandem, a strongback buckling restrained braced frame 
(BRBF) was constructed by Tipping Structural Engineers 
in Berkeley, California, and tested under quasi-static cyclic 
loading at U.C. Berkeley (Panian et al., 2015). Modified ver-
sions of the strongback have also been employed by Gregory 
P. Luth & Associates for several buildings on the West Coast 
as well as throughout the Central United States over the past 
6 years (Luth, 2017). Pollino et al. (2017) have more recently 
studied and conducted hybrid testing (Slovenec et al., 2017) 
on the Stiff Rocking Core (SRC), a rehabilitation scheme 
utilizing conventional buckling and yielding brace behavior. 
Related work on rocking and self-centering braced frames 
has been conducted by Eatherton et al. (2014), Sause et al. 
(2014), and others.

Similar resisting systems have been studied interna-
tionally. In Canada, a dual system utilizing a pinned-base 

vertical elastic truss has been investigated by Tremblay et al. 
(1997) to mitigate soft-story response in tension-only braced 
frames and, later, buckling restrained brace (BRB) frames 
(Tremblay, 2003; Tremblay and Merzouq, 2004; Tremblay 
and Poncet, 2004; Merzouq and Tremblay, 2006). In the 
1990s, Japanese researchers also studied spine systems with 
elastic trussed stems coupled with BRBFs to mitigate dam-
age concentration, and the concept was applied in a 24-story 
building in Tokyo (Aoki et al., 1998; Taga et al., 2004). The 
contribution of a vertical elastic spine has similitudes with 
the role played by an ancient Japanese pagoda’s central col-
umn (shinbashira) in controlling floor sways to prevent seis-
mic collapse (Nakahara et al., 2000). In Japan, researchers 
have also proposed an elastic truss system with BRB fuses 
(Takeuchi and Suzuki, 2003; Takeuchi et al., 2015), a con-
cept also studied by Tremblay et al. (2004) and Wu and Lu 
(2015) in China. Retrofit of seismically deficient structures 
with stiff rocking walls was initially proposed and imple-
mented in Japan (Wada et al., 2009; Qu et al., 2012). A con-
tinuous column concept with gravity columns distributing 
demands from weak or soft stories at adjacent stories was 
studied in Canada (Tremblay and Stiemer, 1994; Tremblay, 
2000), New Zealand (MacRae et al., 2004; MacRae, 2011), 
and Japan (Ji et al., 2009). In Canada, minimum column 
continuity requirements have been implemented for seis-
mic design of multistory steel-braced frames (CSA, 2001). 
For eccentrically braced steel frames (EBFs), Martini et al. 
(1990) proposed to vertically tie the links to achieve more 
inelastic demand in links. The resulting tied-EBF consisted 
of two elastic trussed masts pinned at their bases and inter-
connected by a series of ductile links. The structural system 
was further examined by researchers from Italy (Ghersi et 
al., 2000, 2003; Rossi, 2007). Researchers in Canada pro-
posed to divide the tied-EBF masts in pin-connected mod-
ules to reduce the force demands on the truss members 
while preserving the beneficial drift concentration mitigat-
ing effect (Chen et al., 2012; Tremblay et al., 2014).

STRONGBACK CONCEPT

While current AISC provisions have greatly improved the 
seismic behavior of conventional braced frame systems, 
they still have a tendency to form weak stories (e.g., Uriz 
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and Mahin, 2008; Khatib et al., 1988; Tremblay and Poncet, 
2004) (Figure 1a). The strongback system was developed 
as a method of delaying or preventing weak-story behavior. 
Conceptually, the inclusion of an “essentially elastic” back-
bone, or strongback, enforces a nearly uniform drift distribu-
tion, thereby engaging adjacent stories upon the initiation of 
inelastic behavior in the opposite braces (Figure 1b). In this 
sense, the bay of a conventional braced frame is designed 
to be asymmetric with both an inelastic, energy dissipation 
portion and an essentially elastic, distributed deformation 
demand portion.

A variety of different strongback or elastic truss con-
figurations can be utilized. Options based on Simpson and 
Mahin (in press), Slovenec et al. (2017), and Merzouq and 
Tremblay (2006) are shown in Figure 2. The elastic portion 
of the frame could be a truss or, alternatively, a concrete or 
steel plate shear wall. The elastic portion is often pinned at 
its base and is not intended to increase lateral strength but, 
instead, to supply a means of transferring demands verti-
cally between stories. Vertical ties or connecting elements 
are required to transfer forces. The inelastic portion of the 
frame could be buckling restrained braces (BRBs) or con-
ventional yielding and buckling brace members.

The strongback provides an economical means of engag-
ing both the strength and energy absorption capacity of an 
entire system and averaging damage over the height of the 
building. Peak inelastic demands and damage are reduced. 
Further, the ability of the strongback to bridge across and 
distribute forces over multiple stories allows for removal of 

braces at some stories, as shown in Figure 2a. As noted by 
Panian et al. (2015), the backbone may require extra strength 
to remain elastic, but cost savings can be found in use of 
“ordinary details in the elastic truss, the utilization of the 
same brace cross section and connection details at every 
story, and a reduction of the strength or number of braced 
frames if a reduced redundancy factor could be justified” 
(Simpson and Mahin, 2016).

RESEARCH AND PRACTICE

The strongback has been utilized in both research and 
practice. Previous numerical investigations of strongback 
behavior have focused on nonlinear time-history analyses. 
A strongback retrofit was also tested experimentally as an 
extension of research on older concentrically braced frames. 
This preliminary work has shown that the strongback 
method could be a viable method of resisting a weak-story 
response. The design and construction of several buildings 
with strongback frames has shown that this system also has 
the potential of being integrated into current design practice.

Past Numerical Studies

Numerical investigations into strongback and similar sys-
tems include work by Lai and Mahin (2015) and Merzouq 
and Tremblay (2006). Both studies compared conventional 
systems and strongback or elastic truss systems.

Merzouq and Tremblay (2006) compared the performance 
of five prototype office buildings ranging from 8 to 24 sto-
ries and located in Victoria, British Columbia. Three differ-
ent configurations were studied for each prototype building: 
chevron bracing with BRB members, chevron bracing with 
BRBs and elastic trusses split between two exterior bays, 
and a two-story X-bracing configuration with a central 
elastic truss (Figure 2c). Nonlinear, dynamic time-history 
analyses were conducted for two suites of ground-motion 
records. One suite included four simulated and six historical 
ground-motion time histories typical of the Victoria region 
at magnitude 6.5 and magnitude 7.2. The second suite was 
comprised of four ground-motion time histories simulated 
for magnitude 8.5 rupture scenarios along the Cascadia 
subduction fault plane. “The ground motion amplitude was 
adjusted to match, on average, the 2% in 50 year probability 
of exceedance spectrum over the applicable period range” 
(Merzouq and Tremblay, 2006).

The analysis results highlighted the potential of the elastic 
truss, or “dual BRB,” system and the shortcomings of the 
conventional chevron configuration with BRBs. Despite the 
stable hysteretic response of the BRBs, failure of the conven-
tional BRB frames occurred for some of the Victoria ground 
motions and for all of the Cascadia ground motions. “These 
structures experienced large story drifts and several occur-
rences of dynamic instability were observed, indicating that 
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Fig. 1. Comparison of (a) conventional and (b) strongback 
braced frames (courtesy of Barbara Simpson).
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expected variation between floors for the expected BRB 
plastic deformations. Further investigation of the empirical 
design approach is needed to confirm efficacy with respect 
to performance objectives, other building heights, and other 
frame geometries.

Lai and Mahin (2015) investigated six different configu-
rations, including a typical chevron brace configuration, a 
typical two-story X-bracing configuration (model X6; Fig-
ure 3a), and an offset two-story X-bracing configuration 
with the intersection of the braces at a third point of the 
beam (model X6-3; Figure 3b). They also studied an offset 
two-story X-bracing configuration with conventional braces 

the frames did not possess sufficient capacity to redistribute 
the inelastic demand over their height” (Merzouq and Trem-
blay, 2006). By contrast, collapse of the dual BRB system 
occurred only for the 12-story prototype for one of Cascadia 
ground motions. “However, even in that case, all members of 
the elastic truss remained elastic, as was also the case under 
all other ground motions, confirming the adequacy of the 
proposed empirical design rules” (Merzouq and Tremblay, 
2006). The empirical design rules included first designing 
the BRBs for the code-specified forces, conducting capacity 
design for all other members, and determining forces in the 
elastic truss according to stiffness of the elastic truss and 

elastic truss, typ.     elastic truss
 (a) (b)

elastic truss elastic truss
(c)

Fig. 2. Possible strongback or elastic truss system configurations based on (a) Simpson and Mahin (in press),  
(b) Slovenec et al. (2017), and (c) Merzouq and Tremblay (2006) (courtesy of Barbara Simpson).
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and vertical strongback “spines” (model SB6-3; Figure 3c). 
Additional variations included the use of BRB braces with 
standard and low-yield steel in the cores. A pair of braced 
bays was located on each side of the five-by-five bay, six-
story office prototype building.

Highlighted here are models X6, X6-3 and SB6-3 (Fig-
ure 3). Lai and Mahin (2015) utilized an overstrength fac-
tor approach for design of the strongback spines, conducted 
nonlinear time histories on the prototype buildings, and 
compared the performance of the conventional and strong-
back braced frames. Model X6 exhibited somewhat fewer 
concentrated deformations compared to the chevron frame, 
with higher story drift ratios observed in two-story panel 
mechanisms. The concentration of deformation was reduced 
further with model X6-3. However, it was model SB6-3 
that successfully prevented localized concentration of story 
deformation. The behavior of model X6-3 was as expected; 
most of the strongback spine braces remained elastic, and 
braces outside of the spines buckled. Lai and Mahin (2015) 
noted that the “design optimization of this simple strategy 
should be studied further”; the use of the overstrength factor 
did not fully account for physical behavior, force redistribu-
tions, and resulting demands on the strongback spines.

Large-Scale Experimental Study

Building upon the computational studies to date, a large-
scale experimental investigation explored the viability of 
the strongback system under cyclic loading and its ability 
to mitigate weak-story behavior (Simpson and Mahin, 2016; 
Simpson et al., in press). The two-story, one-bay specimen 
was a nearly full-scale frame and included a BRB and a 
strongback with conventional HSS braces (Figure 4). This 
specimen represented a possible retrofit scheme for a con-
ventional chevron braced frame, two of which were also 
tested in the experimental program. The original chevron 
braced frame (NCBF-B-1) was designed to older code stan-
dards, did not satisfy current seismic provisions, and formed 
a weak story after severe brace local buckling and fracture. 
A second chevron braced frame (NCBF-B-2) had braces 
filled with low-strength concrete to delay local buckling, but 

it also experienced brace local buckling and fracture, yield-
ing in the first story beam, and a weak story. For the retrofit, 
new braces and gusset plates were oriented in a strongback 
configuration (NCBF-B-3SB). The original beam and col-
umn sizes were kept the same as the older braced frame tests. 
The column, HSS braces, and right half of the beam formed 
the elastic strongback. The BRB on the left side of the frame 
was intended as the primary energy-dissipating element, 
and the strongback brace members were sized based on the 
maximum forces that the BRB could deliver to the rest of the 
frame. Plastic hinging was expected at both column bases; 
the right (strongback) column base was oriented for bend-
ing about the weak axis to better simulate a “pinned” base. 
Inelastic behavior was also expected in the left half of the 
first-story beam, acting as a sort of shear link; the web of 
the original beam was reinforced with doubler plates at the 
gusset plate connection. No inelastic brace was required in 
the second story because the strongback was able to engage 
the entire system.

The test specimen was subjected to quasi-static load-
ing, following a testing protocol similar to cyclic qualifica-
tion procedures for BRBs (AISC, 2016). Displacement was 
applied at the roof beam; a force equal to half of the load at 
the roof was applied at the first-story beam. The strongback 
successfully mitigated weak-story formation and was able to 
maintain nearly uniform drift over both stories for the entire 
loading history. The uniform drift for NCBF-B-3SB is dem-
onstrated in Figure 5. In this figure, the ratio of first-story 
drift (Δ1) to total drift (Δ1 + Δ2) remains at approximately 
50% for the duration of the test. This is contrast to speci-
mens NCBF-B-1 and NCBF-B-2, which deviate from 50% 
with the onset of local buckling (LB) of the braces, indicat-
ing weak-story formation.

The strongback specimen did experience a reduction in 
strength and stiffness after local buckling of the BRB casing 
in a cycle to a roof drift of 2.5%, but it continued to exhibit 
stable hysteresis loops (Figure 6) and to resist forces in com-
pression after rupture (noted as Fr in Figure 5). The BRB did 
satisfy current cyclic testing requirements for BRBs (AISC, 
2016) prior to rupture. As expected, plastic hinges did form 

spine spine
 (a) (b) (c)

Fig. 3. (a) Conventional two-story X-bracing frame, (b) offset two-story X-bracing frame, and  
(c) offset two-story X-bracing with vertical strongback spines (based on Lai and Mahin, 2015).
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(a)

(b)

Fig. 4. (a) Schematic and (b) photo of strongback test specimen (courtesy of Barbara Simpson).
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Fig. 6. Comparisons of experimental versus numerical simulation results for strongback frame:  
(a) base shear versus roof drift ratio; (b) BRB axial force versus deformation (courtesy of Barbara Simpson).

at the column bases and in the first-story beam to the left 
of the gusset plate. Residual drift was similar in both sto-
ries. The inelastic demands were significant in some cases; 
current research is investigating an offset bracing scheme 
designed to decrease these inelastic demands while limiting 
the demands developed in the strongback. The strongback 
braces, meanwhile, remained essentially elastic. Figure 6 
shows predictable behavior through comparisons of numeri-
cal simulations and NCBF-B-3SB experimental results for 
base shear versus roof drift ratio and BRB axial force versus 
deformation. In the numerical model, the braces were able 
to buckle out of plane, and the BRB element included a low-
cycle fatigue material model (Uriz and Mahin, 2008).

Implementation in Practice

Strongback frames have been used for the seismic-force-
resisting systems in a number of buildings in recent years. 
Different versions of the strongback have been explored, 
including a buckling restrained braced mast (BRBM) frame, 
a rocking frame, and a pivoting frame.

Tipping Structural Engineers designed a buckling 
restrained braced mast (BRBM) frame for the four-story 
Heinz Avenue Building in Berkeley, California (Panian et 
al., 2015). The BRBM for this laboratory building utilized 
wide-flange shapes in a vertical truss, or mast, and BRBs for 
the yielding elements (Figure 7). The same BRB size could 
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(a)

(b)

Fig. 7. (a) Elevation drawing and (b) photograph of BRBM frame in the Heinz Avenue  
building under construction (images courtesy of Tipping Structural Engineers).

297-308_EJQ417_LiuResearch.indd   303 9/21/17   11:02 AM



304 / ENGINEERING JOURNAL / FOURTH QUARTER / 2017

‘tune’ the brace areas for things other than strength. We can 
distribute the overturning moment across multiple columns 
by manipulating the brace area. The braces are effective no 
matter where you put them as long as you provide collec-
tors to transfer the required forces. Conceptually, you could 
[place] all the braces at the top floor, the middle floor, or 
the bottom floor and there would be a complete load path. 
Of course the demands on the strongback change dramati-
cally with these three basic arrangements. We found that 
the most efficient strategy was to use heavier BRB’s in the 
middle story rather than the top or bottom. The most effi-
cient arrangement ended up being a single full height chev-
ron which creates a ‘guyed’ strongback arrangement” (Luth, 
2017).

BEHAVIOR AND DESIGN OF 
STRONGBACK SYSTEMS

While there has been a variety of work on the strongback 
system in both research and practice, these analyses and 
design methods have depended largely on the use of itera-
tive, nonlinear time-history analyses. These investigations 
have not indicated that a simple and reasonable design meth-
odology exists that can robustly be extended to any gener-
alized building system. Thus, research has focused on the 
development of a design methodology that can be simply 
and easily applied in practice. The current objectives of this 
research include:

1. Clarify which parameters influence the behavior of the 
strongback.

2. Develop a simple and coherent design methodology for 
the strongback system.

3. Validate the effectiveness of potential design, proportion-
ing and detailing guidelines.

4. Present refined design methods to address enhanced 
performance objectives.

Requirements for the relative strength of the essentially 
elastic strongback to the strength of the inelastic bracing ele-
ments and the use of a redundancy factor is currently being 
studied. Parametric studies will be used to determine effects 
of various story heights and number of stories. Future work 
also includes investigation of alternative bracing configu-
rations, types of inelastic braces (e.g., buckling restrained 
braces versus conventional brace members with buckling 
and yielding), and the effects of vertical or mass irregulari-
ties. Detailing of critical regions, such as the column base 
and of the strongback to inelastic frame connections, is also 
warranted. Finally, a cost–benefit analysis and performance 
evaluation is necessary to quantify the strongback’s repair 
time and repair cost compared to conventional bracing 

be used at all stories because of the mast’s ability to engage 
all stories to resist any additional-story shear, thus prevent-
ing a soft-story mechanism. Pinned column bases were used 
to reduce local bending and foundation loads. The BRBM 
utilized an offset geometry, as shown by Lai and Mahin 
(2015), to help to reduce inelastic demands.

The mast in the BRBM was designed to remain elastic for 
the design basis earthquake. Nonlinear time-history analy-
sis, capacity design principles, and an overstrength factor of 
2.0 were used. The overstrength factor was validated against 
forces obtained through a redundancy analysis; removal of 
a brace at any level did not result in more than a 33% reduc-
tion in story shear capacity or extreme torsional irregularity. 
The redundant BRBM used less than a third of the BRBs 
and approximately half of the number of frames as a con-
ventional BRB frame.

Gregory P. Luth & Associates designed a number of mod-
ified rocking frames with essentially elastic strongbacks 
over the past 6 years. Their frames utilize either a “rocking” 
system, with columns lifting up in a rocking motion, or a 
“pivoting” frame that rotates around a pin at its base. Says 
Luth, “the latter may result in less non-structural damage 
as it does not involve differential movement at the floors.” 
In 2011, post-tensioned shop-fabricated frames created a 
self-centering rocking frame system for a casino in Cape 
Girardeau, Missouri, at a site with ground motions compa-
rable to those of San Francisco. “Krawinkler fuses” (Fig-
ure  8c) provided connections between the rocking frames 
and 10-ft-deep shop-fabricated trusses to dissipate energy. 
In 2014, a pivoting frame with a buckling restrained column 
(BRC) on one side and true pin on the other side was used 
in a casino in Jamul, California. After yielding of the BRC, 
“additional overturning resistance is provided by a full-story 
vierendeel frame at the top floor with Krawinkler fuses as 
the shear connection at the center of the vertical members of 
the vierendeel” (Luth, 2017).

In 2016, the Tesla Gigafactory in Reno, Nevada, presented 
a challenge with a fast-paced design for “potential equipment 
loads of up to 250 psf and 350 psf on the 2nd and 3rd floors 
respectively although actual loading was not defined until 
after steel fabrication had started (i.e. vertical mass distribu-
tion was undefined at the structural design phase)” (Luth, 
2017). To economically accommodate significant variations 
in vertical mass distribution, Luth, working with nonlinear 
time histories and pushover analyses by Exponent, devel-
oped a pivoting strongback system. A pair of pinned-base, 
shop-fabricated frames flanking and connected to gravity 
columns with Krawinkler fuses (Figure 8) provide approxi-
mately 20% of the seismic resistance; the rest is provided by 
buckling restrained braces. Luth notes that the BRBs and 
the Krawinkler fuses “are forced to yield more or less uni-
formly by the strongback which remains elastic. Because of 
the redistribution function of the strongbacks, we are able to 
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(a)

  
 (b) (c)

Fig. 8. (a) Elevation drawing and (b) photograph of strongback frame for the  
Tesla facility; (c) Krawinkler fuses (images courtesy of Gregory P. Luth & Associates).
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systems. Validation through future experimental testing uti-
lizing a strongback would confirm the effectiveness of the 
developed design method.

SUMMARY

The viability of the strongback braced frame has been dem-
onstrated through computational parametric studies and 
experimental investigations. The strongback frame is able to 
engage multiple stories and eliminate weak-story behavior, 
resulting in improved seismic performance. Variations—
from a buckling restrained braced mast (BRBM) to a piv-
oting, guyed strongback frame—have been implemented in 
buildings in high seismic regions, typically at a cost sav-
ings compared to conventional BRB frames. To date, each 
study or implementation has utilized its own combination 
of nonlinear time-history analyses and capacity design prin-
ciples. Ongoing research is focused on developing a simple 
and coherent design methodology for the strongback braced 
frames.
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