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Yield Line Approaches for Design of End Plate  
Tension Connections for Square and Rectangular  
HSS Members Using End Plate Tensile Strength
WILLIAM A. THORNTON

ABSTRACT

End plates, which are sometimes called flange plates, are a common way to treat HSS members loaded in tension. In this application, prying 
action must be considered in the design of the plate and bolts. This paper demonstrates that the prying action model can use the end plate 
minimum tensile strength rather than the yield strength to achieve satisfactory designs. Only connections with bolts on all four sides of the 
HSS are considered here.

Keywords: HSS connections, end plate, prying action, yield line pattern.

INTRODUCTION

C alculations for prying action have, for many years, used 
the material minimum yield strength Fy in the calcula-

tions of the Struik and deBack (1969) model. This model has 
been the basis of the AISC Steel Construction Manual pry-
ing action analysis since the 8th Edition (1980). As early as 
1965, Douty and McGuire suggested that the material mini-
mum tensile strength Fu gives a better fit to the experimental 
results for tee stubs. Thornton (1992, 1996) showed that the 
use of Fu in place of Fy in the Struik-deBack model gave 
excellent predictions of the failure loads obtained by Kato 
and McGuire (1973). Because the experimental data of these 
two papers (Douty and McGuire; Kato and McGuire) were 
based on steels available in the 1960s, the AISC Manual 
Committee was reluctant to replace Fy with Fu in the Man-
ual prying calculations. In 2002, Swanson showed that the 
Struik-deBack model with Fu in place of Fy gave excellent 
correlation for tee stub connections using modern materi-
als. This is the reason that the Manual Committee adopted 
Fu for the prying calculations in the 13th Edition Manual 
(2005), and this continues in the 14th Edition (2011) and 
the soon-to-be-available 15th Edition Manual. Because the 
mode of failure of the plate (T-stub) material in the Swanson 
tests was ductile yield, not rupture, the resistance factor ϕ of 
0.90 is used with the tensile strength Fu.

A recent AISC publication, Design Guide 24—Hollow 
Structural Section Connections (Packer et al., 2010), uses 

Fy rather than Fu for the prying action analysis of end plated 
HSS tension connections with bolts on all four HSS faces. 
This is a variation in the prying action formulation of the 
current 14th Edition Manual, which uses Fu in these cal-
culations. This may cause confusion in the industry. For 
instance, when is it correct to use Fu and when should Fy 
be used? Many engineers will opt for the more conservative 
approach if there seems to be disagreement in AISC publi-
cations as to the correct approach.

The author notes that the method of Design Guide 24 is 
completely viable. It uses yield line patterns that are dif-
ferent than those proposed here, coupled with the use of Fy 
rather than Fu. The purpose of this paper is to show that with 
appropriate yield line patterns it is possible to use Fu in lieu 
of Fy. This is verified by the comparison of the predicted 
results with the available test results.

Using a yield line approach to the end plated HSS ten-
sion connection, which is similar to the method validated by 
Swanson (2002) for tee stub tension connections, this paper 
shows that, using the experimental data for end plated hol-
low structural steel (HSS) tension connections produced by 
Willibald, Packer and Puthli (2002, 2003); Kato and Mukai 
(1985); and Caravaggio (1988), a valid design method based 
on the tensile strength Fu can be justified.

DISCUSSION

Use of the Tensile Strength, Fu, in the 
Plate Flexure Model

A stress block with Fu at all points above and below the neu-
tral axis is not likely to be achieved. The fibers near the 
neutral axis will not achieve Fu, but because of their proxim-
ity to the neutral axis, they are relatively unimportant in the 
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overall capacity calculation. Because of this fact, the plastic 
stress block is currently used in many structural connection 
calculations even though it is theoretically impossible to 
achieve. It will be used in the method developed here.

Development of Yield Line Patterns and 
Bolt Tributary Length

There are many possible families of yield lines for the end 
plate HSS connections considered in this paper. Following 
the work of Willibald, Packer and Puthli (2002), three bolt 
arrangements are considered here. These are shown in Fig-
ures 1, 2 and 3 and are called patterns A, B and C, respec-
tively. For these three bolt patterns, there are available a 
total of 55 physical tests; 26 for pattern A, 2 for pattern B, 
and 27 for pattern C. These are obtained from Willibald et 
al. (2002, 2003), Kato and Mukai (1985), and Caravaggio 
(1988).

Because of the availability of the physical test data for the 
A, B and C bolt arrangements, only these arrangements are 
considered here. As mentioned earlier, many possible yield 
line families are available for each of the three bolt patterns. 
For instance, circular yield lines at the HSS corners with 
radial fans are a possible family, as are straight line yield 
families. The author has reviewed a number of possibilities 
and determined by “trial and error” that the families chosen 
for this paper give the best correlation to the test data.

Note that the bolt holes are not explicitly removed in any 
of the three bolt patterns A, B and C. Bolt holes are removed 
through the use of the quantity δ in the prying action for-
mulation presented in the “Proposed Analysis and Design 
Methods” section of the paper.

Yield Line Pattern A

This bolt pattern is applicable to both rectangular and square 
HSS members. Test data are available for both. The assumed 
yield line pattern is shown in Figure 1 for bolt pattern A. It is 
a combined curvilinear and straight line yield line pattern. It 
has an axial load capacity Pu given by

 
P

F t

b
w h bu

y p
i i

2

( )= + + π
 

(1)

where
Fy = end plate yield stress, ksi

tp = end plate thickness, in.

and b, hi and wi are defined in Figure 1. Figure 1 also shows 
the end plate size as wp × hp.

Equation  1 is derived by the usual upper-bound virtual 
work method of structural mechanics (see, e.g., Save and 
Massonnet, 1972), which satisfies equilibrium and compat-
ibility but not necessarily the constitutive equations.

From Dowswell (2011), the strength of an equivalent pair 
of straight-line yield lines of length, l, is Fig. 1. Bolt pattern A and associated yield line.
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Setting Equation  1 equal to Equation  2, the effective 
straight-line yield line pattern that gives the same strength 
as the multiple yield line pattern will have a length, l, using 
a T-stub analogy, as given by Equation 3, as

 l = 2(wi + hi + πb) (3)

Thus, for yield line pattern A, the tributary yield line length 
per bolt, where n is the number of bolts, is

 
p

w h b

n

2( )
A

i i=
+ + π

 
(4)

The tributary yield length per bolt is required for the prying 
action formulation that was mentioned earlier in this paper. 
This prying action formulation will be completely devel-
oped subsequently.

Yield Line Pattern B

This bolt pattern is applicable to square and rectangular 
HSS, but test data are available only for the square case. The 
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bolt pattern and the assumed yield line pattern are shown in 
Figure 2. This yield line pattern was solved by Kapp (1974) 
to give the axial capacity Pu as

 
P

F t

b
w h b( 4 )u

y p
i i

2

= + +
 

(5)

Using Dowswell’s (2011) approach to determine the effec-
tive length of an equivalent straight-line yield line, using a 
T-stub analogy, gives

 lB = 2(wi + hi + 4b) (6)

and the effective tributary length per bolt is

 
p

w h b

n

2( 4 )
B

i i=
+ +

 
(7)

Yield Line Pattern C

This yield line pattern has a single bolt on each HSS side. It 
could be applicable to both square and rectangular HSS, but 
test data are available in the referenced literature only for 
the square case. In order that the bolts on all sides be equally 
loaded, it is recommended that this pattern be used only for 
the square HSS case. Figure 3 shows the bolt pattern and 
the assumed yield line pattern. This yield line pattern is the 
same as that for bolt pattern A. Therefore

 
p

w h b

n

2( )
C

i i=
+ + π

 
(8)

Limitation on Tributary Yield Line Length per 
Bolt Length

It is assumed that the yield line patterns of Figures 1, 2 and 
3 will develop as shown. It is apparent that if the bolt spac-
ing (tributary yield line length per bolt length) is too great, 
yield line patterns with less capacity than that calculated by 
Equation 1, 5 or 8, can develop. Dowswell (2011) has shown 
that if the tributary bolt length p is greater than

 p b a b4 ( )= ′ +  (9)

where b′ = b − d/2, a and b are defined in the figures, and 
d is the bolt diameter, independent yield line patterns can 
develop at each bolt, producing a capacity less than that 
determined by any of the patterns A, B or C. This is shown 
in Figure 4. The bolt spacing at which the localized pattern 
of Figure 4 can develop at each bolt is

 p b a b4 ( )= ′ +  (10)

Therefore, to prevent this and to maintain the validity of the 

Fig. 2. Bolt pattern B and associated yield line. Fig. 3. Bolt pattern C and associated yield line.
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assumed yield patterns of Figures 1, 2 and 3, the maximum 
tributary bolt lengths (pA, pB and pC) are limited to

 p b a b4 ( )i, = ′ +max  (11)

Ultimately, whether or not the yield lines proposed for 
bolt patterns A, B and C are reasonable depends on how well 
they correlate to the physical test data. This is the subject of 
the “Physical Test Data” section of this paper. The next sec-
tion of the paper will develop analysis and design methods 
proposed for the general analysis and design of this system. 
The analysis method was also used to develop the results 
given in Table 2. The design method is perhaps more con-
venient to use for routine design of this system. An example 
problem will show the use of both methods.

PROPOSED ANALYSIS AND DESIGN METHODS

Analysis Method

The proposed analysis method is that given in Part 9 of the 
AISC Manual (2011), with an additional requirement on the 
maximum value of α′. The method is as follows:

Given a, b, d, tp, n, Fu, T and B = ϕFnt Ab, find Tu and Nu = nTu

A1. Check a ≤ 1.25b ; if not, set a = 1.25b

A2. Calculate a′, b′, ρ, d′:

 a′ = a + d/2 (12)

 b′ = b − d/2 (13)

 ρ = b′/a (14)

 d′ = d + z (for standard holes) (15)

Fig. 4. Local yield line pattern when spacing is too large to 
allow patterns A, B or C to develop their associated p.

A3.  Determine p = pi, as appropriate for the bolt pattern; 
pA, pB or pC:

 
p

w h b

n

2
A

i i( )=
+ + π

 
(4)
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B

i i( )=
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(7)

 
p

w h b

n

2
C

i i( )=
+ + π

 
(8)

A4.  Check that the determined p does not exceed pi,max. If 
it does, use p = pi,max.

 p b a b4i, ( )= ′ +max  (11)

A5. Calculate δ:

 δ = 1 − d′/p (16)

A6. Calculate tc:

 
t

Bb

pF

4
c

u
= ′

ϕ  
(17)

  Note that, as discussed in the “Introduction,” ϕ = 0.90 
is used here.

A7. Calculate α′:

 

t

t

1

(1 )
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p

2
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(18)
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(19)

If α′ ≤ 0, set α′ = 0, Tu = B → bolts control

If

 

T B
t

t
0 1, 1+

bolts and plate control

u
p

c

2

( )< ′α < = ⎛
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⎠⎟

δ ′α

→

If

 

T B
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t
1, set 1, 1+
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u
p

c

2

( )′α ≥ ′α = = ⎛
⎝⎜

⎞
⎠⎟

δ

→

If α′ > 1.5, choose a larger tp and repeat until 
α′ ≤ 1.5.

A8. Calculate Nu:

 Nu = nTu (20)

A9.  If Nu ≥ nT, where T is the required strength per bolt, 
the design is satisfactory. In Table 2, Nu as calculated 
in Equation  20, is compared with the experimental 
value, Nux.
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Design Method

The proposed design method is also that given in Part 9 of 
the AISC Manual (2011), with an additional requirement on 
the maximum value of α′, and is as follows:

Given T, a, b, p, Fu and B = ϕFntAb, find tp.

D1.  Check T ≤ B. If true, proceed; otherwise increase the 
bolt number or bolt strength.

D2. Calculate β:

 

B

T

1
1β =

ρ
−⎛

⎝
⎞
⎠  

(21)

D3. If β ≥ 1, set α* = 1

 
If 0 ≤ β < 1, set min

1

1
,1α* =

δ
β
−β

⎛
⎝⎜

⎞
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⎧
⎨
⎩

⎫
⎬
⎭ 

(22)

D4.  With the determined value of α* and tc from Equa-
tion 17, calculate tp:

 
t t

T

B

1

1 *p c=
+ δα

⎛
⎝

⎞
⎠  

(23)

D5. Calculate α′:

 

t

t

1

1
1c

p

2

( )′α =
δ +ρ
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⎞
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−
⎡
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⎢

⎤

⎦
⎥
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(18)

D6.  Check that α′ ≤ 1.5. If so, tp is the required end plate 
thickness. If not, increase tp until α′ ≤ 1.5. Note that α′ 
and α* are not the same physical quantity.

For the development of these methods, see Thornton (1985). 
Note that the methods are “reciprocal” to each other. That is, 
when the analysis method is run with a specified plate thick-
ness tp, a design strength Tu results. If the design method is 
then run with Tu as the required tension, the plate thickness 
tp will result.

The additional requirement for the application of these 
methods to end plated HSS tension members is based on the 
results discussed in the section of the paper entitled, “Fur-
ther Discussion and Observations.” It is that α′ should be 
less than or equal to 1.5.

Physical Test Data and Development of  
Tables 1, 2 and 3

Table 1 lists all of the physical properties of 55 specimens 
from four sources: (1) Willibald et al. (2002), (2) Kato and 
Mukai (1985), (3) Caravaggio (1988), and (4) Willibald et al. 
(2003). These test results are used to validate the yield line 
patterns proposed for the bolt patterns A, B and C. Except 

for some nominal HSS and plate dimensions, all of the data 
are measured rather than nominal.

Table  1 gives the physical specimen data, and Table  2 
gives all of the calculations necessary to validate the pro-
posed yield line patterns. The analysis method to provide 
these calculations is the same as the proposed analysis 
method given in the “Proposed Analysis and Design Meth-
ods” section of the paper, except that ϕ is taken to be 1.0 and 
actual measured values of Bu and Fu from Table 1 are used 
in the formula for tc. Thus, the experimental value of tc can 
be denoted as

 
t

B b

pF

4
cx

u

u
= ′

 
(19)

Other than the tcx value using ϕ = 1.0 and the actual mea-
sured bolt and plate material tensile strengths, as shown 
in Equation  12, the method used to generate the connec-
tion capacities of Table 2 is exactly that of the “Proposed 
Analysis Method” section of this paper, without the α′ ≤ 1.5 
requirement, which results from the physical data of Table 2.

The value of p, from Equation 4, 7 or 8, or from Equa-
tion  10, as appropriate, is included in Table  2. It is noted 
that Kato and Mukai (1985) include two specimens that 
exceeded the capacity of their testing system and, therefore, 
yielded no useful failure information. These are included in 
Tables 1 and 2 for completeness.

Discussion of Results

General

Table  2 shows excellent correlation between the experi-
mental capacities Nux and the predicted capacities Nu. The 
ratio Nux/Nu shown in the last column of Table 2 should be 
approximately 1.0 or slightly bigger. Except for three outli-
ers, this is the case, for types A and C. A discussion for types 
A and C follows. Type B will be discussed separately.

Types A and C

There are 26 type A specimens. Two of these exceeded the 
capacity of the testing apparatus and yielded no useful infor-
mation, so there are 24 specimens to consider. Of these, two 
can be considered to be outliers. These are specimens 16 and 
17. These had very thin end plates, approximately 4 in. and 
c in., respectively. The prying ratios, βux, for these speci-
mens were 233.4% and 77.5%, respectively. These very large 
prying ratios indicate that these connections are not acting as 
the theory assumes. The prying ratio is usually in the range 
of 0 to 30% for most connections in the author’s experience. 
Willibald et al. (2003) reported that no visible separation of 
the plates occurred at a prying ratio of 41.7%. Ratios greater 
than about 50% indicate excessive deformation is occurring 
and that the load is very likely being carried by catenary 
action or membrane action, rather than flexure as assumed 
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Table 1. Specimen Physical Data

No. Source
Specimen 

ID Type

HSS Plates n

a b c tp d d′ Fu Buhi × wi × t hp × wp # of 
Bolts(in.) (in.) (in.) (in.) (in.) (in.) (in.) (in.) (ksi) (kips)

1 Willibald et al. (2002) 1-1 A 6.02×6.02×0.370 11.5×11.5 8 1.40 1.36 5.50 0.638 0.618 0.681 72.3 36.0

2 Willibald et al. (2002) 1-2 A 6.02×6.02×0.370 11.5×11.5 8 1.41 1.35 5.50 0.791 0.618 0.681 75.6 34.2

3 Willibald et al. (2002) 1-3 A 6.02×6.02×0.370 11.5×11.5 8 1.40 1.36 2.74 0.642 0.618 0.681 72.3 36.0

4 Willibald et al. (2002) 1-4 A 6.02×6.02×0.370 11.5×11.5 8 1.43 1.36 2.74 0.791 0.618 0.681 75.6 34.2

5 Willibald et al. (2002) 2-1 A 6.02×6.02×0.370 12.25×12.25 8 1.57 1.57 5.50 0.496 0.618 0.681 74.8 31.0

6 Willibald et al. (2002) 2-2 A 6.02×6.02×0.370 12.25×12.25 8 1.58 1.56 2.74 0.496 0.618 0.681 74.8 31.0

7 Willibald et al. (2002) 2-3 A 6.02×6.02×0.370 12.25×12.25 8 1.36 1.75 5.50 0.504 0.618 0.681 74.8 31.0

8 Willibald et al. (2002) 2-4 A 6.02×6.02×0.370 12.25×12.25 8 1.37 1.76 5.50 0.626 0.618 0.681 74.3 30.2

9 Willibald et al. (2002) 2-5 A 6.02×6.02×0.370 12.25×12.25 8 1.32 1.76 2.74 0.492 0.618 0.681 74.8 31.0

10 Willibald et al. (2002) 2-6 A 6.02×6.02×0.370 12.25×12.25 8 1.35 1.76 2.75 0.626 0.618 0.681 74.3 30.2

11 Kato and Mukai (1985) 26 A 7.87×7.87×0.303 12.6×12.6 8 1.18 1.18 3.94 0.449 0.630 0.692 63.5 37.1

12 Kato and Mukai (1985) 27 A 7.87×7.87×0.303 12.6×12.6 8 1.18 1.18 3.94 0.602 0.630 0.692 67.4 36.8

13 Kato and Mukai (1985) 28 A 7.87×7.87×0.303 12.6×12.6 8 1.18 1.18 3.94 0.728 0.630 0.692 66.3 38.4

14 Kato and Mukai (1985) 29 A 7.87×7.87×0.303 12.6×12.6 8 1.18 1.18 3.94 0.882 0.630 0.692 62.8 36.5

15 Kato and Mukai (1985) 30 A 7.87×7.87×0.303 12.6×12.6 8 1.18 1.18 3.94 0.992 0.630 0.692 62.9 37.7

16 Kato and Mukai (1985) 31 A 7.87×7.87×0.303 12.6×12.6 8 1.18 1.18 3.94 0.246 0.787 0.850 70.2 59.6

17 Kato and Mukai (1985) 32 A 7.87×7.87×0.303 12.6×12.6 8 1.18 1.18 3.94 0.350 0.787 0.850 71.2 59.6

18 Kato and Mukai (1985) 33 A 7.87×7.87×0.303 12.6×12.6 8 1.18 1.18 3.94 0.602 0.787 0.850 67.4 59.9

19 Kato and Mukai (1985) 34 A 7.87×7.87×0.303 12.6×12.6 8 1.18 1.18 3.94 0.728 0.787 0.850 66.3 59.9

20 Kato and Mukai (1985) 35 A 7.87×7.87×0.303 12.6×12.6 8 1.18 1.18 3.94 0.882 0.787 0.850 62.8 58.3

21 Kato and Mukai (1985) 36 A 7.87×7.87×0.303 12.6×12.6 8 1.18 1.18 3.94 0.992 0.787 0.850 62.9 58.9

22 Caravaggio (1988) 1 A 5×5×0.177 11.2×11.2 8 1.72 1.38 3.94 0.630 0.626 0.688 73.5 32.8

23 Willibald et al. (2003) R1 A 9.98×5.98×.287 16.36×12.33 10 1.41 1.77 4.31 0.492 0.626 0.697 74.8 32.8

24 Willibald et al. (2003) R2 A 9.98×5.98×.287 16.42×12.30 10 1.42 1.77 4.31 0.624 0.626 0.695 74.3 31.7

25 Willibald et al. (2003) R3 A 9.98×5.98×.287 16.43×12.29 10 1.61 1.56 4.31 0.492 0.626 0.691 74.8 32.8

26 Willibald et al. (2003) R4 A 9.98×5.98×.287 16.33×12.36 10 1.60 1.57 4.32 0.623 0.626 0.694 74.3 31.7

27 Willibald et al. (2002) 1-5 B 6.02×6.02×0.370 11.5×11.5 8 1.41 1.36 — 0.642 0.618 0.681 72.3 36.0

28 Willibald et al. (2002) 1-6 B 6.02×6.02×0.370 11.5×11.5 8 1.41 1.36 — 0.787 0.618 0.681 75.6 34.1

29 Kato and Mukai (1985) 1 C 5.91×5.91×0.236 10.63×10.63 4 1.18 1.18 — 0.355 0.630 0.693 59.0 37.5

30 Kato and Mukai (1985) 2 C 5.91×5.91×0.236 10.63×10.63 4 1.18 1.18 — 0.449 0.630 0.693 63.5 37.1

31 Kato and Mukai (1985) 3 C 5.91×5.91×0.236 10.63×10.63 4 1.18 1.18 — 0.618 0.630 0.693 66.1 39.6

32 Kato and Mukai (1985) 4 C 5.91×5.91×0.236 10.63×10.63 4 1.18 1.18 — 0.728 0.630 0.693 66.3 38.4

33 Kato and Mukai (1985) 5 C 5.91×5.91×0.236 10.63×10.63 4 1.18 1.18 — 0.842 0.630 0.693 64.1 36.4

34 Kato and Mukai (1985) 8 C 5.91×5.91×0.236 10.63×10.63 4 1.18 1.18 — 0.350 0.787 0.850 71.2 59.6

35 Kato and Mukai (1985) 9 C 5.91×5.91×0.236 10.63×10.63 4 1.18 1.18 — 0.449 0.787 0.850 63.5 58.0

36 Kato and Mukai (1985) 10 C 5.91×5.91×0.236 10.63×10.63 4 1.18 1.18 — 0.602 0.787 0.850 67.4 59.8

37 Kato and Mukai (1985) 11 C 5.91×5.91×0.236 10.63×10.63 4 1.18 1.18 — 0.728 0.787 0.850 66.3 59.8

38 Kato and Mukai (1985) 12 C 5.91×5.91×0.236 10.63×10.63 4 1.18 1.18 — 0.882 0.787 0.850 62.8 58.2

39 Kato and Mukai (1985) 13 C 5.91×5.91×0.236 10.63×10.63 4 1.18 1.18 — 0.992 0.787 0.850 62.9 58.9

40 Kato and Mukai (1985) 14 C 5.91×5.91×0.236 10.63×10.63 4 1.18 1.18 — 0.449 0.787 0.850 63.5 58.0

41 Kato and Mukai (1985) 15 C 5.91×5.91×0.236 10.63×10.63 4 1.18 1.18 — 0.992 0.787 0.850 62.9 58.9

42 Kato and Mukai (1985) 16 C 7.87×7.87×0.315 12.6×12.6 4 1.18 1.18 — 0.449 0.787 0.850 63.5 58.0

43 Kato and Mukai (1985) 17 C 7.87×7.87×0.315 12.6×12.6 4 1.18 1.18 — 0.606 0.787 0.850 65.5 59.8

44 Kato and Mukai (1985) 18 C 7.87×7.87×0.315 12.6×12.6 4 1.18 1.18 — 0.729 0.787 0.850 66.3 59.8

45 Kato and Mukai (1985) 19 C 7.87×7.87×0.315 12.6×12.6 4 1.18 1.18 — 0.882 0.787 0.850 62.8 58.2

46 Kato and Mukai (1985) 20 C 7.87×7.87×0.315 12.6×12.6 4 1.18 1.18 — 0.941 0.787 0.850 68.3 58.9

47 Kato and Mukai (1985) 21 C 7.87×7.87×0.315 12.6×12.6 4 1.18 1.18 — 0.606 0.945 1.01 65.5 84.5

48 Kato and Mukai (1985) 22 C 7.87×7.87×0.315 12.6×12.6 4 1.18 1.18 — 0.728 0.945 1.01 66.3 88.6

49 Kato and Mukai (1985) 23 C 7.87×7.87×0.315 12.6×12.6 4 1.18 1.18 — 0.882 0.945 1.01 62.8 85.4

50 Kato and Mukai (1985) 24 C 7.87×7.87×0.315 12.6×12.6 4 1.18 1.18 — 0.940 0.945 1.01 68.3 88.1

51 Kato and Mukai (1985) 25 C 7.87×7.87×0.315 12.6×12.6 4 1.18 1.18 — 1.08 0.945 1.01 61.5 84.1

52 Willibald et al. (2002) 2-7 C 6.02×6.02×0.370 12.25×12.25 4 1.59 1.52 — 0.496 0.744 0.807 74.8 57.6

53 Willibald et al. (2002) 2-8 C 6.02×6.02×0.370 12.25×12.25 4 1.57 1.53 — 0.622 0.744 0.807 74.3 55.6

54 Willibald et al. (2002) 2-9 C 6.02×6.02×0.370 12.25×12.25 4 1.38 1.72 — 0.496 0.744 0.807 74.8 57.6

55 Willibald et al. (2002) 2-10 C 6.02×6.02×0.370 12.25×12.25 4 1.38 1.73 — 0.622 0.744 0.807 74.3 55.7
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Table 2. Validation of the Proposed Analysis Method

No.
a′ b′ ρ ∗Pi ∗Pi,max

δ
tcx

α′
Tu Nu Nux βux

Nux/Nu(in.) (in.) (in.) (in.) (in.) (kip) (kip) (kip) (%)

1 1.71 1.05 0.615 4.08 6.81 0.833 0.716 0.194 33.2 265 249 15.7 0.939

2 1.72 1.04 0.606 4.07 6.78 0.833 0.680 −0.195 34.2 274 261 4.8 0.954

3 1.71 1.05 0.615 4.08 6.81 0.833 0.716 0.182 33.3 266 279 3.2 1.05

4 1.74 1.05 0.604 4.08 6.85 0.833 0.683 −0.191 34.2 274 268 2.1 0.980

5 1.88 1.26 0.671 4.24 7.96 0.840 0.702 0.715 24.8 198 203 22.2 1.02

6 1.89 1.25 0.662 4.24 7.93 0.839 0.700 0.710 24.9 199 213 16.4 1.07

7 1.67 1.26 0.756 4.24 7.69 0.840 0.702 0.637 24.5 196 190 30.5 0.968

8 1.68 1.45 0.864 4.39 8.52 0.845 0.733 0.235 26.4 211 213 13.4 1.01

9 1.63 1.45 0.891 4.39 8.46 0.845 0.740 0.790 22.9 183 198 25.3 1.08

10 1.66 1.45 0.875 4.39 8.50 0.845 0.733 0.234 26.4 211 229 5.5 1.08

11 1.50 0.865 0.579 4.86 5.72 0.858 0.645 0.640 30.8 246 234 26.8 0.95

12 1.50 0.865 0.579 4.86 5.72 0.858 0.623 0.053 35.9 287 264 11.5 0.919

13 1.50 0.865 0.579 4.86 5.72 0.858 0.642 −0.164 38.4 307 299 2.7 0.973

14 1.50 0.865 0.579 4.86 5.72 0.858 0.643 −0.331 36.5 292 286 2.1 0.979

15 1.50 0.865 0.579 4.86 5.72 0.858 0.653 −0.418 37.7 302 302 −0.1 1.00

16 1.57 0.787 0.500 4.86 5.45 0.825 0.741 6.409 12.2 97 143 233.4 1.47

17 1.57 0.787 0.500 4.86 5.45 0.825 0.738 3.488 20.6 165 270 77.5 1.64

18 1.57 0.787 0.500 4.86 5.45 0.825 0.758 0.474 52.5 420 367 30.6 0.874

19 1.57 0.787 0.500 4.86 5.45 0.825 0.765 0.083 58.0 464 416 15.2 0.896

20 1.57 0.787 0.500 4.86 5.45 0.825 0.775 −0.184 58.3 466 — — —
21 1.57 0.787 0.500 4.86 5.45 0.825 0.778 −0.310 58.9 471 — — —
22 2.03 1.067 0.525 3.58 7.27 0.808 0.729 0.275 29.9 240 209 25.6 0.873

23 1.72 1.458 0.846 4.30 8.61 0.840 0.771 0.937 23.9 239 232 41.4 0.971

24 1.73 1.458 0.841 4.30 8.63 0.840 0.760 0.313 27.0 270 259 22.4 0.960

25 1.92 1.248 0.649 4.17 7.95 0.835 0.724 0.847 25.8 258 249 31.7 0.963

26 1.91 1.258 0.658 4.18 7.99 0.835 0.717 0.233 28.6 286 279 13.6 0.975

27 1.72 1.051 0.611 4.37 6.82 0.844 0.692 0.119 34.1 273 236 22.0 0.865

28 1.72 1.051 0.611 4.37 6.82 0.844 0.659 −0.220 34.1 273 256 6.6 0.938

29 1.50 0.865 0.579 7.76 5.72 0.879 0.620 1.480 23.1 92 97.6 53.7 1.06

30 1.50 0.865 0.579 7.76 5.72 0.879 0.595 0.544 31.3 125 126 17.8 1.01

31 1.50 0.865 0.579 7.76 5.72 0.879 0.602 −0.036 39.6 158 155 202 0.98

32 1.50 0.865 0.579 7.76 5.72 0.879 0.592 −0.244 38.4 154 154 −0.3 1.00

33 1.57 0.787 0.500 7.76 5.45 0.844 0.573 −0.409 36.4 146 149 −2.3 1.02

34 1.57 0.787 0.500 7.76 5.45 0.844 0.695 2.326 27.9 111 144 65.6 1.29

35 1.57 0.787 0.500 7.76 5.45 0.844 0.726 1.276 40.9 164 167 38.9 1.021

36 1.57 0.787 0.500 7.76 5.45 0.844 0.716 0.326 54.0 216 214 11.8 0.991

37 1.57 0.787 0.500 7.76 5.45 0.844 0.722 −0.014 59.8 239 236 1.4 0.987

38 1.57 0.787 0.500 7.76 5.45 0.844 0.731 −0.247 58.2 233 235 −0.9 1.009

39 1.57 0.787 0.500 7.76 5.45 0.844 0.735 −0.356 58.9 236 235 0.3 0.997

40 1.57 0.787 0.500 7.76 5.45 0.844 0.726 1.276 40.9 164 164 41.5 1.003

41 1.57 0.787 0.500 7.76 5.45 0.844 0.735 −0.356 58.9 236 233 1.1 0.989

42 1.57 0.787 0.500 9.72 5.45 0.844 0.726 1.276 40.9 164 172 34.9 1.05

43 1.57 0.787 0.500 9.72 5.45 0.844 0.726 0.344 53.8 215 209 14.4 0.97

44 1.57 0.787 0.500 9.72 5.45 0.844 0.722 −0.016 59.8 239 238 0.5 0.995

45 1.57 0.787 0.500 9.72 5.45 0.844 0.738 −0.237 59.2 237 237 −0.1 1.001

46 1.57 0.787 0.500 9.72 5.45 0.844 0.706 −0.346 58.9 236 234 0.7 0.993

47 1.65 0.708 0.428 9.72 5.17 0.805 0.840 0.803 72.3 289 262 29.0 0.905

48 1.65 0.708 0.428 9.72 5.17 0.805 0.855 0.331 81.3 325 298 18.9 0.917

49 1.65 0.708 0.428 9.72 5.17 0.805 0.863 −0.037 85.4 342 333 2.6 0.975

50 1.65 0.708 0.428 9.72 5.17 0.805 0.840 −0.175 88.1 352 348 1.3 0.988

51 1.65 0.708 0.428 9.72 5.17 0.805 0.865 −0.311 84.1 336 332 1.3 0.987

52 1.96 1.148 0.585 8.41 7.56 0.893 0.706 0.725 46.8 187 191 20.6 1.02

53 1.94 1.158 0.596 8.42 7.58 0.894 0.678 0.132 52.6 210 215 4.0 1.02

54 1.75 1.348 0.769 8.72 8.18 0.901 0.713 0.667 44.7 179 178 29.4 0.996

55 1.75 1.358 0.775 8.74 8.22 0.902 0.704 0.175 50.4 201 205 8.7 1.02
∗i = A, B or C based on bolt pattern type; see Column Heading “Type” in Table 1
Shaded  Indicates outlier not included in statistical analysis
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in the design method. This is indicated by the large Nux/Nu 
for these specimens, 1.47 and 1.64, respectively. In scanning 
Tables 1 and 2 and comparing tp to d, it can be seen that 
reasonable prying ratios βux occur when tp/d > 2. In addi-
tion to the two type A specimens that do not satisfy this 
criterion, there is one type C specimen that does not. This 
is specimen 34, which has a prying ratio of 65.6% and a 
Nux/Nu ratio of 1.29. The author considers these three speci-
mens, numbers—16, 17 and 34—to be outliers that skew the 
mean of Nux/Nu in a desirable direction—that is, μ > 1—
but this skewing is not correct. Thus, they are discounted 
in the Table 3 statistical analysis. Table 3 shows the mean, 
μ, the sum of the squares of the deviation from the mean,  
∑i(μ  − xi)

2, and the covariance as a percentage, COV(%), 
for each of the bolt group types, A, B and C, with the outli-
ers excluded. The means (μ) for types A and C are 0.977 
and 1.00, respectively, with covariances of 5.99% and 
1.96%, respectively. These values indicate excellent agree-
ment of theory and test results and that designs performed 
with the proposed type A and C yield lines can be used with 
confidence.

Type B

The sample size for this type of connection is too small to 
provide confidence in its use. The mean is 0.902, which, 
being less than 1.0, indicates that this type will yield uncon-
servative results. As such, its use is not recommended. This 
same observation is made by Willibald et al. (2002). They 
recognize that the corner bolts do not share the load equally 
with the side bolts. The side bolts fail first and reduce the 
connection capacity below what it would be if all bolts were 
equally loaded. The low mean value of 0.902 is suggestive 
of this observation.

The statistical data for type B is included in Table 3 only 
for completeness. The sample is too small for these data to 
be meaningful.

Further Discussion and Observations

Note that type C has pmax controlling in all specimens. This 
indicates that this type should be used only for small HSS, 
say, 3×3 and 4×4. For HSS5×5 and larger, there is no reason 
not to use a type A configuration.

Table 3 Statistical Analysis

Type Mean (μ) ∑(μ−xi)
2 n COV (%)

A 0.977 0.075 22 5.99

B 0.902 0.001 2 2.87

C 1.00 0.010 26 1.96

From the data of Table 2, a correlation between α′ and 
βux can be observed. When α′ < 0, the bolts theoretically 
control the design, which requires that βux be zero or small. 
That this is the case can be seen in Table 2. When 0 < α′ < 1,  
the largest value of βux is 41.4%. In this range of α′, both the 
plate and the bolts are active in controlling the design capac-
ity. The βux value of 41.4% indicates that prying is taking 
place but that no separation or excessive deformations are 
occurring. When α′ > 1, the plate controls the design capac-
ity. If the plate is too thin relative to bolt size, say, tp/d < 
2, large values of α′ and βux occur. Table 2 shows that if 
α′ ≤ 1.5, reasonable values of prying ratio, less than approxi-
mately 50%, occur. (Specimen 29, with α′ = 1.48 and βux = 
53.7%, is slightly over this 50% limit, but it is accepted here 
as a viable design.) Note that the outliers all have large val-
ues of α′.

The correlation of α′ to βux is important. The ideal param-
eter to test a design is βux, but this is an experimental param-
eter that is not available to the designer. The parameter α′,  
which mirrors the βux experimental values, is available to 
the designer. The author recommends, based on the Table 2 
results, that the designer control α′ to be ≤ 1.5. If α′ > 1.5, a 
thicker plate should be used.

When rectangular HSS are used, the bolt spacing should 
be kept uniform around the perimeter of the HSS. This will 
ensure that the bolts and HSS wall are uniformly loaded, as 
is assumed in the design of the HSS member. The parameter 
c shown in Figure 1 for pattern A is used to guarantee this.

CONCLUSIONS

Design and analysis procedures for end plate connected 
HSS tension members have been developed. The methods 
use yield lines matched to the end plate bolt pattern. The 
methods use the end plate tensile strength Fu rather than 
the end plate yield strength Fy, thereby bringing them into 
conformance with the AISC Manual (2011) procedure for 
prying action. The method recommends that, for end plated 
HSS tension members, the calculation parameter α′ be lim-
ited to 1.5.
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EXAMPLE PROBLEM—DESIGN

Given:

Determine the end plate thickness and the weld size, and the bolts required to resist forces of 16 kips dead load and 50 kips live 
load on an ASTM A500 Grade B HSS4×4×¼ section. The end plate is ASTM A36. Use E70 electrodes.

Solution:

From AISC Manual Tables 2-4 and 2-5, the material properties are:

HSS strut
Fy = 46 ksi
Fu = 58 ksi

End plate
Fy = 36 ksi
Fu = 58 ksi

From AISC Manual Table 1-12, the geometric properties are as follows:

HSS4×4×¼
t = 0.233 in.
A = 3.37 in.2

Find the required end plate thickness, tp.

From Chapter 2 of ASCE/SEI 7 (ASCE, 2016), the required tensile strength is:
 Pu = 1.2(16.0 kips) + 1.6(50.0 kips)
  = 99.2 kips

From Figure 5,
 a = 1.5 in
 b = 1.5 in.

A1. Check a ≤ 1.25b:
 a = 1.50 in.
 1.25b = 1.25(1.50 in.)
 = 1.88 in.
 a ≤ 1.25b  o.k.

A2. Calculate a′, b′, ρ, d′:

Fig. 5. Data for example problem.
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a a
d

2

1.50 in.
0.75 in.

2
1.88 in.

( )

′ = +

= +

=  

(12)

 

b b
d

2

1.50 in.
0.75 in.

2
1.13 in.

( )

′ = −

= −

=  

(13)

 

b

a
1.13 in.

1.88 in.
0.600

ρ = ′
′

=

=  

(14)

 d′ = d + z in. (15)
  = w in. + z in.
  = m in.

A3. The tributary length per bolt for pattern C is:

 

p
w h b

n

2

2 4.00 in. 4.00 in. 1.50 in.

4
6.36 in.

c
i i

[ ]

( )

( )

=
+ + π

=
+ + π

=  

(8)

A4. Check pmax:

 

p b a b4

4 1.13 in. 1.50 + 1.50 in.

7.35 in.

max ( )
( )

= ′ +

=
=  

(11)

 Because pc < pmax, the pattern C can be developed. Use p = pc = 6.36 in.

A5. Calculate δ:

 

d

p
1

1
m in.

6.36 in.
0.872

δ = − ′

= −

=  

(16)

A6. Calculate tc:

 From AISC Manual Table 7-2, the design strength per bolt is:

 B = 29.8 kips.
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t
Bb

pF

4

4 1.13 in.29.8 kip/bolt( )( )( )
)( )( )(0.90 58 ksi6.36 in.

0.636 in.

c
u

= ′
ϕ

=

=  

(17)

D1. Check T ≤ B:

 The required tension per bolt, T, is:

 

T
P

n
99.2 kips

4 bolts
24.8 kips

u=

=

=

 Because T < B, the procedure can continue.

D2. Calculate β:

 

B

T

1
1

1

0.600

29.8 kips

24.8 kips
1

0.336

β =
ρ

−⎛
⎝

⎞
⎠

= −
⎛
⎝⎜

⎞
⎠⎟

=  

(21)

D3. Because 0 < β < 1,

 

* min
1

1
,1

1

0.872

0.336

1 0.336
0.580

α =
δ

β
−β

⎛
⎝⎜

⎞
⎠⎟

⎡
⎢
⎣

⎤
⎥
⎦

=
−

⎛
⎝

⎞
⎠

=  

(22)

D4. Calculate tp:

 

t t
T

B

1

1 *

0.636 in.
24.8 kips

29.8 kips

1

1 0.872 0.580

0.473 in.

p c

( )

=
+ δα

⎛
⎝

⎞
⎠

=
+

⎛

⎝
⎜

⎞

⎠
⎟

=  

(23)

 Use a 2-in. A36 end plate.

D5. Calculate α′:

 

t

t

1

1 )(
1

1

0.872 1( )0.600

0.636 in.

0.500 in.
1

0.443

c

p

2

2

′α =
δ +ρ

⎛
⎝⎜

⎞
⎠⎟

−
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=
+

⎛
⎝

⎞
⎠ −

⎡

⎣
⎢

⎤

⎦
⎥

=  

(18)
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D6. Check α′:

 α′ = 0.443 < 1.5  o.k.

Therefore, the 2-in. A36 end plate is adequate.

Design the weld of the end plate to the HSS

From AISC Manual Table 1-12, the surface area of the HSS 4×4×¼ = 1.27 ft2/ft

Length of weld = lw = (1.27 ft2/ft)(12 in./ft)
 = 15.2 in.

From the AISC Specification Section J2.4 (AISC, 2016):

Fnw = 0.60FEXX (1.0 + 0.50sin1.5θ) (Spec. Eq. J2-5)

With θ = 90°:

1.0 + 0.50sin1.5 90 = 1.5

The weld size required, D, is then:

D
P

l1.392 1.5

99.2 kips

1.392 1.5 15.2 in.

3.12 sixteenths

u

w( )

( )( )

=

=

=  

(from Manual Eq. 8-2a)

Use 4-in. fillet weld.

EXAMPLE PROBLEM—ANALYSIS

Find the design strength of the previous example when a 2-in. A36 end plate is specified.

From the calculations of the previous problem:
tc = 0.636 in.
α′ = 0.443

A7. Because 0 < α′ < 1, bolts and plate control

 
T B

t

t
1u

p

c

2

( )= ⎛
⎝⎜

⎞
⎠⎟

+ δ ′α
 

(19)

 

29.8 kip/bolt
0.500 in.

0.636 in.
1 0.872 0.443

25.5 kip/bolt

2

[ ]( ) ( )( )= ⎛
⎝

⎞
⎠ +

=

A8. Calculate Nu:

 Nu = nTu (20)
  = (4 bolts)(25.5 kip/bolt)
  = 102 kips

A9. Because Nu = 102 kips > Pu = 99.2 kips, the design is satisfactory.
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SYMBOLS

B Design bolt tensile strength, ϕFntAb, used for routine 
analysis design calculations, kips [The notation 
used here is that of the AISC Specification, ANSI/
AISC 360-10; see the AISC Manual (2011), Part 16, 
Table J3.2.]

Bu Measured bolt tensile strength, Table 1, kips

Fu End plate tensile strength, measured values for 
Table 2 calculations, specified minimum values for 
routine analysis and design calculations, ksi

Fy End plate yield strength, ksi

Nu Predicted connection axial capacity, nTu, kips

Nux Experimental connection capacity, kips

Pu Required axial tension strength for the design 
problems and the yield line nominal tensile strengths 
for patterns A, B and C, kips

T Required tensile strength per bolt, kips

Tu Predicted tensile capacity per bolt, or design 
strength, kips

a Plate dimension from bolt center to edge of end 
plate, in.

a′ a + d/2, in.

b Plate dimension from bolt center to edge of HSS 
member, in.

b′ b − d/2, in.

c Reported bolt spacing in type A bolt pattern 
specimens, in. (Not explicitly used in this study, but 
see the discussion in the “Further Discussion and 
Observations” section.)

d Bolt diameter, in.

d′ Hole size (bolt diameter plus z in., except 
measured values for specimens 23–26), in.

hi Dimension of HSS, in.

hp Dimension of end plate, in.

l Length of equivalent straight line yield line, in.

n Number of bolts in bolt pattern or number of 
specimens in statistical sample

p Tributary length of end plate per bolt, in.

pi Tributary length of end plate per bolt for the ith 
pattern, A, B or C, in.

pi,max Maximum bolt spacing for the ith pattern, in.

tc End plate thickness that will develop the design bolt 
strength B, in.

tcx End plate thickness that will develop the 
experimental bolt strength Bu, in.

tp End plate thickness, in.

wi Dimension of HSS, in.

wp Dimension of end plate, in.

xi Specific datum value, (Nux/Nu)i, for the ith datum 
value

α* Calculation parameter for the proposed design 
method

α′ Calculation parameter for the proposed analysis 
method, representing the theoretical point at which 
the bolt strength and the plate strength are equal

β
 

Calculated prying ratio,
 

B

T

1
1

ρ
−⎛

⎝
⎞
⎠ , Eq. 9-25 of the

 
 AISC Manual (2011)

βux
 

Experimental prying ratio,
 

nB N

N
(100),u ux

ux

−

 
%

 

 
[similar to AISC Manual (2011), Eq. 9-25]

δ Factor in analysis and design methods that removes 
the bolt holes, 1 − d ′/p

ϕ Resistance factor from AISC Manual (2011) 
Eq. 9-30a

μ Mean value of a data set

ρ Parameter in analysis and design methods, b′/a′
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Design of Wrap-Around Gusset Plates
BO DOWSWELL, FOUAD FOUAD, JAMES DAVIDSON and ROBERT WHYTE

ABSTRACT

This paper addresses the design of wrap-around gusset plates, which are commonly used where a horizontal brace connects at a beam-to-
column intersection. Wrap-around gusset plates must be cut around the column, which can lead to high flexural stresses near the reentrant 
corner.

A rational design method is developed in this paper, based on the results of 15 experimental tests and the corresponding finite element mod-
els. The design method, which models the gusset legs as rectangular beams, considers the strength of each leg independently. Because 
the buckled shapes included both out-of-plane translation and twisting along the leg, the stability behavior is evaluated using a lateral- 
torsional buckling model according to AISC Specification Section F11. Based on the buckled shape of the specimens and finite element mod-
els, design buckling lengths are recommended. Information is also included for calculating the strength of wrap-around gusset plates with the 
interior corner cut on a diagonal. Three examples are provided to illustrate the proposed design procedure.

Keywords: wrap-around gusset plate, horizontal braced, design buckling length.

INTRODUCTION

In most commercial buildings, floor and roof diaphragms 
are used to distribute loads in the horizontal plane of the 

structure to the lateral load-resisting system. Due to the 
open nature of most industrial structures, diaphragms are 
not present, and horizontal bracing is often used to distribute 
the loads in the horizontal plane. Horizontal bracing is also 
used in commercial structures, where a diaphragm is not 
present or where the strength or stiffness of the diaphragm is 
not adequate. A simple horizontal bracing system is shown 
in Figure 1.

Connection Details

Figure 2a shows a typical horizontal bracing connection at a 
beam-to-beam intersection. Where a horizontal brace con-
nects at a beam-to-column intersection, the gusset plate is 
typically cut around the column as shown in Figure 2b. At 

locations with large columns and beam clip angles, as shown 
in Figure 2c, a significant portion of the gusset plate must be 
cut out. The optional diagonal cut shown at the inside corner 
of the plate can increase the bending strength of the gusset 
plate. The optional cut at the outside corner is used to ensure 
compliance with the maximum edge distance requirements 
in AISC Specification (AISC, 2010) Section J3.5.

Objective

A consistent design method for wrap-around gusset plates 
has not been established. The objective of this paper is to 
develop a rational design method, based on the results of 
15 experimental tests and the corresponding finite element 
models (Dowswell, 2005). The tests and finite element mod-
els were also documented by Dowswell and Fouad (2006), 
Dowswell et al. (2006) and Dowswell and Fouad (2007). 
This paper is focused on design information; therefore, only 
a brief discussion of the pertinent research data will be pre-
sented. Three examples are provided to illustrate the pro-
posed design procedure.

LOAD DISTRIBUTION

Due to the geometry of wrap-around gusset plates, shear and 
flexural stresses develop in the plate that must be accounted 
for in design. Because the force distribution in horizontal 
brace connections is indeterminate, simplifying assumptions 
are required for connection design. The load distribution can 
be determined using a stiffness analysis, but modeling the 
entire connection using finite elements is not practical for 
design. Localized yielding in bracing connections begins in 
the early stages of loading and the load distribution changes 
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as the brace force increases. Further complicating the analy-
sis are the effects of frame action, foundation settlements, 
thermal expansion, erection stresses, etc. Therefore, the 
loads used in connection design should be based on the ulti-
mate strength condition.

Interface Loads

The lower-bound theorem of limit analysis states that a load 
calculated based on an assumed load distribution that satis-
fies equilibrium conditions with forces nowhere exceeding 
the capacity will be less than or equal to the true limit load. 
Using the lower-bound theorem for a given connection, the 
strength calculated using the load distribution that results 
in the highest strength is closest to the actual strength. In 
practical terms, this means that engineers can choose any 
load distribution that is convenient if the following condi-
tions are satisfied:

1. All framing members and connection elements must be in 
equilibrium.

2. All elements in the load path must have adequate strength 
to resist the assumed loads.

3. All elements in the joint must have adequate ductility to 
allow the loads to redistribute so the assumed distribution 
can be achieved.

The assumed load distribution must be consistent through-
out the connection and member design. If the aforementioned 
conditions are satisfied, the loads can be distributed in any 
convenient manner. Because this is critical to the economy 
of the connection, selecting a reasonable load distribution 
often requires significant experience and judgment.

For the connection in Figure  2b, Figure  3 shows two 
potential methods to distribute the axial load in the brace to 

the gusset-to-beam interfaces. Using a deformation compat-
ibility approach, the interface forces shown in Figure 3a are 
incorrect. This is because the gusset-to-beam interfaces are 
typically much stiffer when loaded in the plane of the web 
relative to out-of-plane loading. The out-of-plane flexibility 
can be caused by weak-axis bending of the beams, local 
bending of the web, and bending (prying) of the clip angles.

If the forces perpendicular to the web at both interfaces 
are deemed negligible, the resulting interface forces are 
shown in Figure 3b. The load distribution in Figure 3b uses 
the simplest and most direct path to get the components of 
the brace force directly into the beams, and it is considered 
standard practice for these connections.

Even if deformation compatibility were not an issue, there 
are several negative consequences for selecting the load dis-
tribution in Figure 3a:

1. The connection angles and beam webs must be designed 
for the forces perpendicular to the webs, FE/2 or FN/2. 
This will require thicker connection angles and will likely 
require stiffeners in the beam webs.

2. The beams may be overstressed because they are not 
typically designed for weak-axis bending and weak-axis 
shear.

3. In addition to any transfer force and beam end reaction, 
the beam-to-column connections would be subjected to a 
horizontal shear force.

Internal Loads

The load distribution in wrap-around gusset plate connec-
tions is shown in Figure  4. The plate legs are subject to 
flexure, and each leg is modeled independently as a rectan-
gular beam with a linearly varying moment diagram. The 

Fig. 1. Plan view of a horizontal bracing system.
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 (a) (b)

(c)

Fig. 2. Horizontal brace gusset plates: (a) beam-to-beam interface; (b) beam-to-column interface  
with wrap-around gusset plate; (c) wrap-around gusset plate with a large cutout and optional diagonal cuts.

155-180_EJQ317_2016-02.indd   157 6/15/17   6:31 PM



158 / ENGINEERING JOURNAL / THIRD QUARTER / 2017

maximum moments are located at the interior face of the 
adjacent leg. Equations 1a and 1b, which may be conserva-
tive for some gusset plate geometries, can be used to calcu-
late the required moments at the critical section of each leg.

For leg 1

Mr1 = P1e2 (1a)

For leg 2

Mr2 = P2e1 (1b)

where
P1 = component of the brace load, P, at leg 1, kips

P2 = components of the brace load, P, at leg 2, kips

e1 = cutout dimension perpendicular to leg 1, in.

e2 = cutout dimension perpendicular to leg 2, in.

FLEXURAL STRENGTH

Each leg of the plate is subject to limit states common to 
flexural members; therefore, the legs are modeled inde-
pendently, as separate beams. In addition to the flexural 
strength, including lateral-torsional buckling, the shear 
strength of each leg should be considered in the design.

Stress

Each leg of the gusset plate must resist the moments gener-
ated by the load system in Figure 4. This results in maxi-
mum bending stresses at the reentrant corner where the two 
legs meet. Figure 5 shows the stress contour plots for a finite 
element model loaded in tension. Figure  5a shows maxi-
mum von Mises stresses at the reentrant corner. The normal 
stresses in the x- and y-directions are shown in Figures 5b 
and 5c, respectively. As expected, the maximum stresses 
are at the edges of each leg and at the intersection of the 
two legs—where the maximum moments occur. Because 
the brace load was in tension, the flexural stresses are com-
pressive at the inner edges and tensile at the outer edges. 
The stresses in the y-direction are higher than the stresses 
in the x-direction because of the larger cutout dimension in 
the y-direction.

The stress patterns from 15 finite element models and 
the strain gage data from the corresponding experimen-
tal specimens verified the accuracy of the load system in 

Fig. 4. Internal loads for wrap-around gusset plates.

(a)

(b)

Fig. 3. Interface loads at a horizontal 
brace connection: (a) inefficient; (b) efficient.

155-180_EJQ317_2016-02.indd   158 6/15/17   6:31 PM



ENGINEERING JOURNAL / THIRD QUARTER / 2017 / 159

        
 (a) (b) (c)

Fig. 5. Elastic stress contours for a typical model loaded in tension: (a) von Mises stresses; (b) x-x normal stresses; (c) y-y normal stresses.

(a)

(b)

Fig. 6. Specimens 2T and 7C after testing: (a) specimen 2T; (b) specimen 7C.

Figure 4. At the failure load, the strain gage data and finite 
element models indicated some yielding. Although most of 
the plates had a substantial amount of material above the 
proportional limit, none of the plates reached full plasticity 
before buckling.

Lateral-Torsional Buckling

Although five of the 15 specimens were tested with tensile 
brace loads, the gusset leg flexural loads caused buckling in 

all of the experimental specimens and finite element models 
as shown in Figures 6 and 7, respectively. Figure 6a shows 
the permanent deformation after testing for specimen  2T, 
which was tested in tension. Figure 6b shows the permanent 
deformation after testing for specimen 7C, which was tested 
in compression. For both specimens, the maximum out-of-
plane translation corresponds to the location of maximum 
compressive stress. The buckled shapes included both out-
of-plane translation and twisting along the leg.
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Effect of Diagonal Cut at the Interior Corner

Wrap-around gusset plates can have the interior corner cut 
on a diagonal as shown in Figure 2c. To determine the effect 
of the diagonal cut, test specimens 8 and 10, shown in Fig-
ure 8, were fabricated with identical geometry, except for the 
diagonal cut on specimen 10. The tests and finite element 
models showed a strength increase of about 20% due to the 
diagonal cut.

For each leg, the critical section could be located at either 
end of the diagonal cut; therefore, the flexural strength at 
both sections should be considered. Figures 9a and 9b show 
the normal stress contours for specimen  10 in the x- and 
y-directions, respectively. Because the gusset plate is loaded 
in tension, the interior edges of the cutout are subjected to 
compression stresses. The maximum x-direction stresses are 
located at the reentrant corner farthest from the beam center 
at leg  1. In this case, the critical section is subjected to a 
moment equal to P1e2. The maximum y-direction stresses 

are located at the reentrant corner closest to the beam center 
at leg 2. In this case, the critical section is subjected to a 
moment equal to P2er1. These results show the importance 
of calculating the flexural strength for each leg at both cross-
sections located at the reentrant corners of the diagonal cut.

DESIGN

The experimental and finite element results validate the 
practice of treating each leg of the gusset plate as a rectan-
gular beam. Because the buckled shapes included both out-
of-plane translation and twisting along the leg, the stability 
behavior can be evaluated using a lateral-torsional buckling 
model. Dowswell (2016) verified that AISC Specification
Section F11 can be used for designing connection elements 
subjected to lateral-torsional buckling. Dowswell and Whyte 
(2014) suggested this approach for calculating the local flex-
ural strength of double-coped beams, which had buckled 
shapes that are similar to those of wrap-around gusset plate 

  
 (a) (b)

Fig. 8. Details of specimens 8 and 10: (a) specimen 8; (b) specimen 10.

   
 (a) (b)

Fig. 7. Buckled shapes of finite element models: (a) tension load; (b) compression load.
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legs. The shear strength of each leg is calculated according 
to AISC Specification Section J4.2.

AISC Specification Section F11

AISC Specification (AISC, 2010) Section F11 defines the 
flexural strength of rectangular members. The nominal 
strength is the lower value obtained according to the limit 
states of yielding and lateral-torsional buckling.

For
 

L d

t

E

F

0.08b

y
2 ≤ , yielding is the controlling limit state.

The nominal strength is:

 Mn = Mp = FyZ ≤ 1.6My 
 (Spec. Eq. F11-1)
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For
 

L d

t

E

F

1.9b
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2 > , elastic lateral-torsional buckling is the 

controlling limit state.

 Mn = FcrSx ≤ Mp (Spec. Eq. F11-3)

where
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1.9
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b
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=

 

(Spec. Eq. F11-4)

  
 (a) (b)

Fig. 9. Elastic stress contours for specimen 10, which was loaded in
tension: (a) x-direction normal stresses; (b) y-direction normal stresses.

Cb =  lateral-torsional buckling modification factor for 
nonuniform moment diagrams

E =  modulus of elasticity of steel  = 29,000 ksi 
(200 000 MPa)

Fy =  specified minimum yield stress, ksi (MPa)

Lb =  distance between braces, in. (mm)

Mp =  plastic bending moment, kip-in. (N-mm)

My =  moment at yielding of the extreme fiber, kip-in. 
(N-mm)

Sx =  elastic section modulus taken about the x-axis, in.3

(mm3)

Z =  plastic section modulus about the axis of bending, 
in.3 (mm3)

d =  depth of the gusset plate leg, in. (mm)

t =  thickness of the gusset plate, in. (mm)

General Design Method

Because the buckling strength in AISC Specification Sec-
tion F11 is dependent on both Lb and Cb, appropriate values 
for these variables were developed to provide the best esti-
mate of the true strength and behavior of the specimens. To 
determine the buckling length, Lb, the buckled shape of the 
specimens and finite element models was observed. A gen-
eral trend was observed, where the buckling length of the 
tension specimens was limited to the cutout dimension and 
the buckling length of the compression specimens extended 
approximately to the mid-depth of the adjacent leg. The fol-
lowing buckling lengths are applicable when the plate is 
loaded in tension: Lb1 = e2 for leg 1, and Lb2 = e1 for leg 2. For 
plates loaded in compression, the following buckling lengths 
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are applicable: Lb1 = e2 + d2/2 for leg 1, and Lb2 = e1 + d1/2 
for leg 2. As shown in Figure 4, d1 and d2 are the depths of 
legs 1 and 2, respectively.

According to equations developed by Dowswell (2004), 
Cb  = 1.84 for a rectangular cantilever beam loaded at the 
shear center with bracing at each end and a concentrated 
load at the tip. However, the experimental and finite element 
results show that the legs can be assumed fully braced at 
both ends only under certain conditions. For gusset plates 
carrying tensile brace loads, Cb = 1.84.

For many gusset plates carrying compressive brace loads, 
both legs will not reach their critical load simultaneously. 
Therefore, the noncritical leg can provide restraint to the 
critical leg, and Cb = 1.84 provides accurate results. Con-
versely, when the critical load ratio of both legs are similar, 
full bracing cannot be assumed, and Cb = 1.00 is more accu-
rate. For gusset plates carrying compressive brace loads, Cb, 
can be determined based on the critical load ratio, α, which 
was developed by Dowswell (2012).

For gusset plates with α > 1.6 or α < 1/1.6, Cb = 1.84
For gusset plates with 1/1.6 ≤ α ≤ 1.6, Cb = 1.00

where
M M

M M

d L P e

d L Pe
d L e

d L e
tan

cr r

cr r

b

b

b

b

2

1

1 2 2 1

2 1 1 2

1 2 1

2 1 2

( )
( )

α =

=

= θ
 

(2)

(Mcr/Mr)1 =  critical moment to required moment ratio at 
leg 1

(Mcr/Mr)2 =  critical moment to required moment ratio at 
leg 2

Mcr = FcrSx

θ =  angle between the brace and the beam con-
nected to leg 1 (Figure 4)

For plates with a diagonal cut, Lb and Cb are calculated the 
same as plates with square cutouts. Plate leg depths, d1 and 
d2, are the dimensions between the parallel edges, without 
consideration of the diagonal cut. For buckling calculations, 
d1 and d2 are used to calculate the sectional properties. The 
required moments for buckling at the legs can be calculated 
using Equations 1a and 1b with em1 and em2 substituted for 
e1 and e2, respectively. The variables em1 and em2 are the dis-
tances along the adjacent leg, from the work point to the mid-
point of the diagonal cut, as shown in Figure 10. The fl exural 
yielding strength, using the available plastic moment, should 
also be checked at the reentrant corners of the diagonal cut.

The strength of each specimen was calculated using the 
general design method, with the results summarized in the 
second column of Table  1. All of the loads are expressed 

Fig. 10. Dimensions for wrap-around 
gusset plates with a diagonal cut.

as the brace load based on the minimum strength of the 
two legs. All loads were calculated using the actual plate 
thickness and yield strength measured before testing. The 
predicted failure modes are listed in the third column. The 
specimen numbers are suffixed with “T” if the plate was 
loaded in tension and “C” if it was loaded in compression.

The experimental loads are listed in the fourth and fifth 
columns of Table 1. Pep is the experimental load at the pro-
portional limit, determined using a line offset Q  in. from 
the linear portion of the experimental curve. Peu is the maxi-
mum experimental load. The experimental failure modes are 
listed in the sixth column. The experimental-to-calculated 
strength ratios, Pep/Pc and Peu/Pc, are listed in the seventh 
and eighth columns of Table  1, respectively. Pep/Pc varies 
from 0.786 to 1.89, with an average of 1.15 and a standard 
deviation of 0.302. Peu/Pc varies from 0.880 to 2.01, with an 
average of 1.40 and a standard deviation of 0.312.

Simplified Design Method

To simplify the design process, Cb = 1.00 can be used for all 
gusset plates with compressive brace loads. Using Cb = 1.84 
for gusset plates with tensile brace loads, four of the five 
experimental specimens were predicted to fail at the plastic 
strength. These four specimens were a-in. thick. Specimen 
6T, which had a predicted failure mode of elastic buckling, 
was only 4-in. thick. Because gusset plates in steel struc-
tures are usually at least a-in. thick, these gusset plates 
can be designed assuming the legs are fully braced against 
lateral-torsional buckling.

The strength of each specimen was calculated using the 
simplified design method, with the results summarized in 
the second column of Table 2. All of the loads are expressed 
as the brace load based on the minimum strength of the 
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Table 1. Calculated and Experimental Loads (General Design Method)

Specimen
No.

Pc,
kips

Predicted 
Failure Mode

Pep,
kips

Peu,
kips

Experimental 
Failure Mode

P

P
ep

c

P
P
eu

c

2T 49.7 P 69.0 89.9 I 1.39 1.81

6T 45.1 E 42.3 53.6 I 0.938 1.19

8T 69.0 P 85.3 91.2 I 1.24 1.32

9T 53.6 P 51.5 63.6 I 0.961 1.19

10T 82.7 P 96.2 110.0 I 1.16 1.33

1C 39.5 I 33.3 45.8 I 0.843 1.16

2C 49.3 I 47.3 63.9 I 0.960 1.30

3C 41.9 I 46.6 64.2 I 1.11 1.53

4C 16.9 E 32.0 32.0 E 1.89 1.89

5C 23.3 E 28.7 46.8 I 1.23 2.01

6C 15.7 E 25.3 25.3 E 1.61 1.61

7C 52.9 I 46.4 46.5 I 0.877 0.880

8C 48.9 I 38.4 60.8 I 0.786 1.24

9C 37.3 I 44.4 51.5 I 1.19 1.38

10C 57.0 I 57.0 66.5 I 1.00 1.17
Pc = calculated strength, kips
Pep = experimental load at proportional limit (Q in. offset), kips
Peu = maximum experimental load, kips
E: Elastic buckling
I:  Inelastic buckling
P: Plastic flexural strength

Table 2. Calculated and Experimental Loads (Simplified Design Method)

Specimen
No.

Pc,
kips

Predicted
Failure Mode

Pep,
kips

Peu,
kips

Experimental 
Failure Mode

P

P
ep

c

P
P
eu

c

2T 49.7 P 69.0 89.9 I 1.39 1.81

6T 47.7 P 42.3 53.6 I 0.887 1.12

8T 69.0 P 85.3 91.2 I 1.24 1.32

9T 53.6 P 51.5 63.6 I 0.960 1.19

10T 82.7 P 96.2 110.0 I 1.16 1.33

1C 28.4 I 33.3 45.8 I 1.17 1.61

2C 35.9 I 47.3 63.9 I 1.32 1.78

3C 41.9 I 46.6 64.2 I 1.11 1.53

4C 9.2 E 32.0 32.0 E 3.48 3.48

5C 12.6 E 28.7 46.8 I 2.28 3.71

6C 15.7 E 25.3 25.3 E 1.61 1.61

7C 52.9 I 46.4 46.5 I 0.877 0.880

8C 48.9 I 38.4 60.8 I 0.785 1.24

9C 37.3 I 44.4 51.5 I 1.19 1.38

10C 57.0 I 57.0 66.5 I 1.00 1.17
Pc = calculated strength, kips
Pep = experimental load at proportional limit (Q in. offset), kips
Peu = maximum experimental load, kips
E: Elastic buckling
I:  Inelastic buckling
P: Plastic flexural strength
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EXAMPLE 1—SIMPLIFIED DESIGN METHOD

In this example, the strength the gusset plate shown in Figure 11 is calculated using the simplified design method. The gusset 
plate is a-in.-thick ASTM A572 Grade 50 material. The LRFD and ASD loads are 50.0 kips tension/30 kips compression and 
33.3 kips tension/20 kips compression, respectively.

From AISC Manual Table 2-4, the yield strength is Fy = 50 ksi.

Fig. 11. Wrap-around gusset plate for Example 1.

two legs. All loads were calculated using the actual plate 
thickness and yield strength measured before testing. The 
predicted failure modes are listed in the third column. 
The experimental loads are listed in the fourth and fifth 
columns, and the experimental failure modes are listed in 
the sixth column. The Pep/Pc and Peu/Pc ratios are listed in 
the seventh and eighth columns of Table  2, respectively. 
Pep/Pc varies from 0.786 to 3.48, and Peu/Pc varies from 0.880 
to 3.70. The highest experimental-to-nominal load ratios are 
for cases where the general design method could be used to 
increase Cb from 1.00 to 1.84.

SUMMARY

A rational design method for wrap-around gusset plates was 
developed in this paper, based on the results of 15 experimen-
tal tests and the corresponding finite element models. The 
design method, which models the gusset legs as rectangular 
beams, considers the strength of each leg independently.

Because the buckled shapes included both out-of-plane 
translation and twisting along the leg, the buckling strength 
of each leg is evaluated using a lateral-torsional buckling 

model according to AISC Specification Section F11. Appro-
priate values for Lb and Cb were developed to provide the 
best estimate of the true strength and behavior of the spec-
imens. Three examples are provided to illustrate the pro-
posed design procedure.

For many practical geometries, the noncritical leg can 
provide restraint against lateral-torsional buckling of the 
critical leg. In these cases, including gusset plates carrying 
tensile brace loads, Cb = 1.84 is recommended for design. 
Otherwise, Cb = 1.00 is applicable. At the maximum experi-
mental load, the mean experimental-to-calculated strength 
ratio is 1.40 with a standard deviation of 0.312.

A simplified design method was also discussed, where 
Cb = 1.00 for all gusset plates carrying compressive brace 
loads. For gusset plates with tensile brace loads, the limit 
state of lateral-torsional buckling is neglected, and the flex-
ural strength is calculated using the plastic moment capacity. 
At the maximum experimental load, the experimental-to-
calculated strength ratios varied from 0.880 to 3.70. How-
ever, the highest experimental-to-nominal load ratios are 
for cases where the general design method could be used to 
increase Cb from 1.00 to 1.84.
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Tension Brace Load

The brace axial load is:

LRFD ASD

Pu = 50.0 kips (tension) Pa = 33.3 kips (tension)

The north–south and east–west brace components are:

LRFD ASD

PNS = (50 kips)sin40° = 32.1 kips

PEW = (50 kips)cos40° = 38.3 kips

PNS = (33.3 kips)sin40° = 21.4 kips

PEW = (33.3 kips)cos40° = 25.5 kips

Flexural Strength of Leg 1

The required moment at the interior face of the adjacent leg is:

LRFD ASD

 Mu = PNSe2

= (32.1 kips)(12.0 in.)
	 	 = 385 kip-in.

 Ma = PNSe2

= (21.4 kips)(12.0 in.)
  = 257 kip-in.

When the brace is in tension, the legs are assumed to be fully braced; therefore, the nominal flexural strength according to AISC 
Specification Section F11 is:

M M F Z

50 ksi
a in. 10.0 in.

4

469 kip-in.

n p y

2

( )
( )( )

= =

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=  

(Spec. Eq. F11-1)

The available flexural strength is:

LRFD ASD

M 0.90 469 kip-in.

= 422 kip-in. > 385 kip-in.

n

 o.k.
( )( )ϕ = M 469 kip-in.

1.67
= 281 kip-in. > 257 kip-in.

n

o.k.
Ω

=

Shear Yielding of Leg 1

Vn = 0.60FyAgv (from Spec. Eq. J4-3)
 = (0.60) (50 ksi) (10.0 in.) (a in.)
 = 113 kips

The available shear strength is:

LRFD ASD

V 1.00 113 kips

= 113 kips > 32.1 kips

n

o.k.

( )( )ϕ = V 113 kips

1.50
= 75.3 kips > 21.4 kips

n

o.k.
Ω

=

(from Eq. 1a) (from Eq. 1a)
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Flexural Strength of Leg 2

The required moment at the interior face of the adjacent leg is:

LRFD ASD

 Mu = PEWe1

= (38.3 kips) (84 in.)
	 = 316 kip-in.

 Ma = PEWe1

= (25.5 kips) (84 in.)
	 = 210 kip-in.

When the brace is in tension, the legs are assumed to be fully braced; therefore, the nominal flexural strength according to AISC 
Specification Section F11 is:

M M F Z

50 ksi
a in. 10.0 in.

4

469 kip-in.

n p y

2

( )
( )( )

= =

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=  

(Spec. Eq. F11-1)

The available flexural strength is:

LRFD ASD

M 0.90 469 kip-in.

= 422 kip-in. > 316 kip-in.

n ( )( )ϕ =
 o.k.

M 469 kip-in.

1.67
= 281 kip-in. > 210 kip-in.

n

Ω
=

o.k.

Shear Yielding of Leg 2

Vn = 0.60FyAgv (from Spec. Eq. J4-3)
 = (0.60) (50 ksi) (10.0 in.) (a in.)
 = 113 kips

The available shear strength is:

LRFD ASD

V 1.00 113 kips

= 113 kips > 38.3 kips

n ( )( )φ =
 o.k.

V 113 kips

1.50
= 75.3 kips > 25.5 kips

n

Ω
=

o.k.

Compression Brace Load

The brace axial load is:

LRFD ASD

Pu = 30.0 kips (compression) Pa = 20.0 kips (compression)

The north–south and east–west brace components are:

LRFD ASD

PNS = (30.0 kips)sin40° = 19.3 kips

PEW = (30.0 kips)cos40° = 23.0 kips

PNS = (20.0 kips)sin40° = 12.9 kips

 PEW = (20.0 kips)cos40° = 15.3 kips

(from Eq. 1b) (from Eq. 1b)
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Flexural Strength of Leg 1

S
a in. 10.0 in.

6

6.25 in.

x

2

3

( )( )
=

=

M F Z

50 ksi
a in. 10.0 in.

4

469 kip-in.

p y

2

( )
( )( )

=

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=  

(from Spec. Eq. F11-1)

The required moment at the interior face of the adjacent leg is:

LRFD ASD

 Mu = PNSe2

= (19.3 kips)(12.0 in.)
	 = 232 kip-in.

 Ma = PNSe2

= (12.9 kips)(12.0 in.)
	 = 155 kip-in.

Using Cb = 1.00 and Lb1 = e2 + d2/2 = 12 in. + 5 in. = 17.0 in.:

L d

t

17.0 in. 10.0 in.

a in.

1,210

b1 1
2 2

( )( )
( )

=

=

E

F

1.9 1.9 29,000 ksi

50 ksi

1,100

y

( )
( )

( )
=

=

Because 1,210 > 1,100, elastic lateral-torsional buckling is the controlling limit state, and the critical stress is:

F
EC

L d

t

1.9

1.9 29,000 ksi 1.00

1,210
45.5 ksi

cr
b

b1 1
2

( )( ) ( )

=

=

=  

(Spec. Eq. F11-4)

And thus the nominal flexural strength is:

Mn = FcrSx ≤ Mp (Spec. Eq. F11-3)
 = (45.5 ksi) (6.25 in.3) ≤ 469 kip-in.
 = 284 kip-in.

The available flexural strength is:

LRFD ASD

M 0.90 284 kip-in.

= 256 kip-in. > 232 kip-in.

n ( )( )ϕ =
 o.k.

M 284 kip-in.

1.67
= 170 kip-in. > 155 kip-in.

n

Ω
=

o.k.

(from Eq. 1b) (from Eq. 1b)
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Shear Yielding of Leg 1

Vn = 0.60FyAgv (from Spec. Eq. J4-3)
 = (0.60) (50 ksi) (10.0 in.) (a in.)
 = 113 kips

The available shear strength is:

LRFD ASD

V 1.00 113 kips

= 113 kips > 19.3 kips

n ( )( )ϕ =
 o.k.

V 113 kips

1.50
= 75.3 kips > 12.9 kips

n

Ω
=

o.k.

Flexural Strength of Leg 2

S
a in. 10.0 in.

6

6.25 in.

x

2

3

( )( )
=

=

My = FySx

	 = (50 ksi)(6.25 in.3)
	 = 313 kip-in.

M F Z

50 ksi
a in. 10.0 in.

4

469 kip-in.

p y

2

( )
( )( )

=

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=  

(from Spec. Eq. F11-1)

The required moment at the interior face of the adjacent leg is:

LRFD ASD

 Mu = PEWe1

= (23.0 kips)(84 in.)
	 = 190 kip-in.

 Ma = PEWe1

= (15.3 kips)(84 in.)
	 = 126 kip-in.

Using Cb = 1.00 and Lb2 = e1 + d1/2 = 84 in. + 5 in. = 134 in.:

L d

t

134 in. 10.0 in.

a in.

942

b2 2
2 2

( )( )
( )

=

=

E

F

0.08 0.08 29,000 ksi

50 ksi

46.4

y

( )
( )

( )
=

=

E

F

1.9 1.9 29,000 ksi

50 ksi

1,100

y

( )
( )

( )
=

=

Because 46.4 < 942 < 1,100, inelastic lateral-torsional buckling is the controlling limit state, and the nominal flexural strength is:

(from Eq. 1b) (from Eq. 1b)

155-180_EJQ317_2016-02.indd   168 6/15/17   6:31 PM



ENGINEERING JOURNAL / THIRD QUARTER / 2017 / 169

M C
L d

t

F

E
M M1.52 0.274

1.00 1.52 0.274 942
50 ksi

29,000 ksi
313 kip-in. 469 kip-in.

336 kip-in.

n b
b y

y p
2 2
2

( )( ) ( )( )

= − ⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

≤

= −
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤

=  

(from Spec. Eq. F11-2)

The available flexural strength is:

LRFD ASD

M 0.90 336 kip-in.

= 302 kip-in. > 190 kip-in.

n ( )( )ϕ =
 o.k.

M 336 kip-in.

1.67
= 201 kip-in. > 126 kip-in.

n

Ω
=

o.k.

Shear Yielding of Leg 2

Vn = 0.60FyAgv (from Spec. Eq. J4-3)
 = (0.60)(50 ksi)(10.0 in.) (a in.)
 = 113 kips

The available shear strength is:

LRFD ASD

V 1.00 113 kips

113 kips 23.0 kips

n ( )( )ϕ =
= > o.k.

V 113 kips

1.50
= 75.3 kips > 15.3 kips

n

Ω
=

o.k.

EXAMPLE 2—GENERAL DESIGN METHOD

In this example, the strength of the gusset plate in Example 1 is calculated using the general design method.

Tension Brace Load

Flexural Strength of Leg 1

S
a in. 10.0 in.

6

6.25 in.

x

2

3

( )( )
=

=

My = FySx

	 = (50 ksi)(6.25 in.3)
	 = 313 kip-in.

M F Z

50 ksi
a in. 10.0 in.

4

469 kip-in.

p y

2

( )
( )( )

=

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=  

(from Spec. Eq. F11-1)
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The required moment at the interior face of the adjacent leg is:

LRFD ASD

 Mu = PNSe2

= (32.1 kips)(12.0 in.)
	 = 385 kip-in.

 Ma = PNSe2

= (21.4 kips)(12.0 in.)
	 = 257 kip-in.

Using Cb = 1.84 and Lb1 = e2 = 12.0 in.:

L d

t

12.0 in. 10.0 in.

a in.

853

b1 1
2 2

( )( )
( )

=

=

E

F

0.08 0.08 29,000 ksi

50 ksi

46.4

y

( )
( )

( )
=

=

E

F

1.9 1.9 29,000 ksi

50 ksi

1,100

y

( )
( )

( )
=

=

Because 46.4 < 853 < 1,100, inelastic lateral-torsional buckling is the controlling limit state, and the nominal flexural strength is:

M C
L d

t

F

E
M M1.52 0.274

1.84 1.52 0.274 853
50 ksi

29,000 ksi
313 kip-in. 469 kip-in.

469 kip-in.

n b
b y

y p
1 1
2

( )( ) ( )( )

= − ⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

≤

= −
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤

=  

(from Spec. Eq. F11-2)

The available flexural strength is:

LRFD ASD

M 0.90 469 kip-in.

= 422 kip-in. > 385 kip-in.

n ( )( )ϕ =
o.k.

M 469 kip-in.

1.67
= 281 kip-in. > 257 kip-in.

n

Ω
=

o.k.

Shear Yielding of Leg 1

Vn = 0.60FyAgv (from Spec. Eq. J4-3)
 = (0.60) (50 ksi) (10.0 in.) (a in.)
 = 113 kips

The available shear strength is:

LRFD ASD

V 1.00 113 kips

= 113 kips > 32.1 kips

n ( )( )ϕ =
 o.k.

V 113 kips

1.50
= 75.3 kips > 21.4 kips

n

Ω
=

o.k.

(from Eq. 1a) (from Eq. 1a)
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Flexural Strength of Leg 2

S
a in. 10.0 in.

6

6.25 in.

x

2

3

( )( )
=

=

My = FySx

	 = (50 ksi)(6.25 in.3)
	 = 313 kip-in.

M F Z

50 ksi
a in. 10.0 in.

4

469 kip-in.

p y

2

( )
( )( )

=

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=  

(from Spec. Eq. F11-1)

The required moment at the interior face of the adjacent leg is:

LRFD ASD

 Mu = PEWe1

= (38.3 kips)(84 in.)
	 = 316 kip-in.

 Ma = PEWe1

= (25.5 kips)(84 in.)
	 = 210 kip-in.

Using Cb = 1.84 and Lb2 = e1 = 84 in.:

L d

t

84 in. 10.0 in.

a in.

587

b2 2
2 2

( ) ( )
( )

=

=

E

F

0.08 0.08 29,000 ksi

50 ksi

46.4

y

( )
( )

( )
=

=

E

F

1.9 1.9 29,000 ksi

50 ksi

1,100

y

( )
( )

( )
=

=

Because 46.4 < 587 < 1,100, inelastic lateral-torsional buckling is the controlling limit state, and the nominal flexural strength is:

M C
L d

t

F

E
M M1.52 0.274

1.84 1.52 0.274 587
50 ksi

29,000 ksi
313 kip-in. 469 kip-in.

469 kip-in.

n b
b y

y p
2 2
2

( )( ) ( )( )

= − ⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

≤

= −
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤

=  

(from Spec. Eq. F11-2)

(from Eq. 1b) (from Eq. 1b)
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The available flexural strength is:

LRFD ASD

( )( )ϕ =
= > oo..kk..

M 0.90 469 kip-in.

422 kip-in. 316 kip-in.

n

 Ω
=

oo..kk..

M 469 kip-in.

1.67
= 281 kip-in. > 210 kip-in.

n

Shear Yielding of Leg 2

Vn = 0.60FyAgv (from Spec. Eq. J4-3)
 = (0.60)(50 ksi)(10.0 in.)(a in.)
 = 113 kips

The available shear strength is:

LRFD ASD

( )( )ϕ =
oo..kk..

V 1.00 113 kips

= 113 kips > 38.3 kips

n

 Ω
=

oo..kk..

V 113 kips

1.50
= 75.3 kips > 25.5 kips

n

Compression Brace Load

Critical Load Ratio

θ = 50°

4 4

d L e

d L e
tan

10.0 in. 13 in. 8 in.

10.0 in. 17.0 in. 12.0 in.
tan 50°

0.639

b

b

1 2 1

2 1 2

( )( )( )
( )( )( )

( )

α = θ

=

=  

(2)

Because 1/1.6 < 0.639 < 1.6, Cb = 1.00 and the remaining calculations are identical to Example 1.

Both the tension and compression strength is the same as for Example 1, which used the simplified design method.

EXAMPLE 3—GUSSET WITH DIAGONAL CUT

In this example, a diagonal cut is added to the gusset plate in Figure 11 as shown in Figure 12. The simplified design method is 
used to calculate the strength. The gusset plate is a-in.-thick ASTM A572 Grade 50 material. The LRFD and ASD loads are 
60.0 kips tension/35.0 kips compression and 40.0 kips tension/23.3 kips compression, respectively.

From AISC Manual Table 2-4, Fy = 50 ksi.

Tension Brace Load

The brace axial load is:

LRFD ASD

Pu = 60.0 kips (Tension) Pa = 40.0 kips (Tension)
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The north–south and east–west brace components are:

LRFD ASD

PNS = (60 kips)sin40° = 38.6 kips

PEW = (60 kips)cos40° = 46.0 kips

PNS = (40.0 kips)sin40° = 25.7 kips

PEW = (40.0 kips)cos40° = 30.6 kips

Flexural Strength of Leg 1

The required moment at the reentrant corner of the diagonal cut is:

LRFD ASD

 Mu = PNSe2

= (38.6 kips)(8.00 in.)
	 = 309 kip-in.

 Ma = PNSe2

= (25.7 kips)(8.00 in.)
	 = 206 kip-in.

When the brace is in tension, the legs are assumed to be fully braced; therefore, the nominal flexural strength according to AISC 
Specification Section F11 is:

( )
( )( )

=

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

a

M F Z

50 ksi
in. 10.0 in.

4

469 kip-in.

p y

2

 

(from Spec. Eq. F11-1)

(from Eq. 1a) (from Eq. 1a)

Fig. 12. Wrap-around gusset plate for Example 3.
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The available flexural strength is:

LRFD ASD

( )( )ϕ =
oo..kk..

M 0.90 469 kip-in.

= 422 kip-in. > 309 kip-in.

n

 Ω
=M 469 kip-in.

1.67
= 281 kip-in. > 206 kip-in.

n

o.k.

Shear Yielding of Leg 1

Vn = 0.60FyAgv (from Spec. Eq. J4-3)
 = (0.60)(50 ksi)(10.0 in.)(a in.)
 = 113 kips

The available shear strength is:

LRFD ASD

( )( )ϕ =
oo..kk..

V 1.00 113 kips

= 113 kips > 38.6 kips

n

 Ω
=

oo..kk..

V 113 kips

1.50
= 75.3 kips > 25.7 kips

n

Flexural Strength of Leg 2

The required moment at the interior face of the adjacent leg is:

LRFD ASD

 Mu = PEWe1

= (46.0 kips)(84 in.)
	 = 380 kip-in.

 Ma = PEWe1

= (30.6 kips)(84 in.)
	 = 252 kip-in.

The depth of leg 2 at the interior face of the adjacent leg is 14 in. When the brace is in tension, the legs are assumed to be fully 
braced; therefore, the nominal flexural strength according to AISC Specification Section F11 is:

( )
( )( )

=

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

a

M F Z

50 ksi
in. 14.0 in.

4

919 kip-in.

p y

2

 

(from Spec. Eq. F11-1)

The available flexural strength is:

LRFD ASD

( )( )ϕ =
oo..kk..

M 0.90 919 kip-in.

= 827 kip-in. > 380 kip-in.

n

 Ω
=

oo..kk..

M 919 kip-in.

1.67
= 550 kip-in. > 252 kip-in.

n

Shear Yielding of Leg 2

The shear strength will be analyzed at a plane immediately beyond the clip angle leg. The gusset plate leg width at this  
location is:

(from Eq. 1b) (from Eq. 1b)
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d2V = 10.0 in + (4.00 in.)(3.50 in./8.25 in.)
	 = 11.7 in.

Vn = 0.60FyAgv (from Spec. Eq. J4-3)
 = (0.60)(50 ksi)(11.7 in.)(0.375 in.)
 = 132 kips

The available shear strength is:

LRFD ASD

( )( )ϕ =
oo..kk..

V 1.00 132 kips

= 132 kips > 46.0 kips

n

 Ω
=

oo..kk..

V 132 kips

1.50
= 88.0 kips > 30.6 kips

n

Compression Brace Load

The brace axial load is:

LRFD ASD

Pu = 35.0 kips (compression) Pa = 23.3 kips (compression)

The north–south and east–west brace components are:

LRFD ASD

PNS = (35.0 kips)sin40° = 22.5 kips

PEW = (35.0 kips)cos40° = 26.8 kips

PNS = (23.3 kips)sin40° = 15.0 kips

PEW = (23.3 kips)cos40° = 17.8 kips

Flexural Strength of Leg 1

( )( )
=

=

a
S

in. 10.0 in.

6

6.25 in.

x

2

3

( )
( )( )

=

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

a

M F Z

50 ksi
in. 10.0 in.

4

469 kip-in.

p y

2

 

(from Spec. Eq. F11-1)

The required moment at the mid-point of the diagonal cut is:

LRFD ASD

 Mu = PNSem2

= (22.5 kips)(10.0 in.)
	 = 225 kip-in.

 Ma = PNSem2

= (15.0 kips)(10.0 in.)
	 = 150 kip-in.

Using Cb = 1.00 and Lb1 = e2 + d2/2 = 12 in. + 5 in. = 17.0 in.:

( )( )
( )

=

=
a

L d

t

17.0 in. 10.0 in.

in.

1,210

b1 1
2 2

(from Eq. 1a) (from Eq. 1a)
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( )
( )

( )
=

=

E

F

1.9 1.9 29,000 ksi

50 ksi

1,100

y

Because 1,210 > 1,100, elastic lateral-torsional buckling is the controlling limit state, and the critical stress is:

( )( ) ( )

=

=

=

F
EC

L d

t

1.9

1.9 29,000 ksi 1.00

1,210
45.5 ksi

cr
b

b1 1
2

 

(from Spec. Eq. F11-4)

The nominal flexural strength is:

Mn = FcrSx ≤ Mp (Spec. Eq. F11-3)
 = (45.5 ksi)(6.25 in.3) ≤ 469 kip-in.
 = 284 kip-in.

The available flexural strength is:

LRFD ASD

( )( )ϕ =
oo..kk..

M 0.90 284 kip-in.

= 256 kip-in. > 225 kip-in.

n

 Ω
=

oo..kk..

M 284 kip-in.

1.67
= 170 kip-in. > 150 kip-in.

n

Shear Yielding of Leg 1

Vn = 0.60FyAgv (from Spec. Eq. J4-3)
 = (0.60)(50 ksi)(10.0 in.)(a in.)
 = 113 kips

The available shear strength is:

LRFD ASD

( )( )ϕ =
oo..kk..

V 1.00 113 kips

= 113 kips > 22.5 kips

n

 Ω
=

oo..kk..

V 113 kips

1.50
= 75.3 kips > 15.0 kips

n

Flexural Strength of Leg 2

( )( )
=

=

a
S

in. 10.0 in.

6

6.25 in.

x

2

3

My = FySx

	 = (50 ksi)(6.25 in.3)
	 = 313 kip-in.
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( )
( )( )

=

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

a

M F Z

50 ksi
in. 10.0 in.

4

469 kip-in.

p y

2

 

(from Spec. Eq. F11-1)

The required moment at the mid-point of the diagonal cut is:

LRFD ASD

 Mu = PEWem1

= (26.8 kips)(4a in.)
	 = 117 kip-in.

 Ma = PEWe1

= (17.8 kips)(4a in.)
	 = 77.9 kip-in.

Using Cb = 1.00 and Lb2 = e1 + d1/2 = 84 in. + 5 in. = 134 in.:

( )( )
( )

=

=

4

a

L d

t

13 in. 10.0 in.

in.

942

b2 2
2 2

( )
( )

( )
=

=

E

F

0.08 0.08 29,000 ksi

50 ksi

46.4

y

( )
( )

( )
=

=

E

F

1.9 1.9 29,000 ksi

50 ksi

1,100

y

Because 46.4 < 942 < 1,100, inelastic lateral-torsional buckling is the controlling limit state, and the nominal flexural strength is:

( )( ) ( )( )

= − ⎛
⎝

⎞
⎠

⎡
⎣⎢

⎤
⎦⎥

≤

= −
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

≤

=

M C
L d

t

F

E
M M1.52 0.274

1.00 1.52 0.274 942
50 ksi

29,000 ksi
313 kip-in. 469 kip-in.

336 kip-in.

n b
b y

y p
2 2
2

 

(from Spec. Eq. F11-2)

The available flexural strength is:

LRFD ASD

( )( )ϕ =
oo..kk..

M 0.90 336 kip-in.

= 302 kip-in. > 117 kip-in.

n

 Ω
=M 336 kip-in.

1.67
= 201 kip-in. > 77.9 kip-in.

n

o.k.

The required moment at the interior face of the adjacent leg is:

LRFD ASD

 Mu = PEWe1

= (26.8 kips)(84 in.)
	 = 221 kip-in.

 Ma = PEWe1

= (17.8 kips)(84 in.)
	 = 147 kip-in.

(from Eq. 1b) (from Eq. 1b)

(from Eq. 1b) (from Eq. 1b)
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The depth of leg 2 at the reentrant corner is 14 in. For yielding at the reentrant corner, the legs are assumed to be fully braced; 
therefore, the nominal flexural strength according to AISC Specification Section F11 is:

( )
( )( )

=

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

a

M F Z

50 ksi
in. 14.0 in.

4

919 kip-in.

p y

2

 

(from Spec. Eq. F11-1)

The available flexural strength is:

LRFD ASD

( )( )ϕ =
oo..kk..

M 0.90 919 kip-in.

= 827 kip-in. > 221 kip-in.

n

 Ω
=

oo..kk..

M 919 kip-in.

1.67
= 550 kip-in. > 147 kip-in.

n

Shear Yielding of Leg 2

The shear strength will be analyzed at a plane immediately beyond the clip angle leg. The gusset plate leg width at this location 
is:

d2V = 10.0 in + (4.00 in.)(3.50 in./8.25 in.)
	 = 11.7 in.

Vn = 0.60FyAgv (from Spec. Eq. J4-3)
 = (0.60)(50 ksi)(11.7 in.)(0.375 in.)
 = 132 kips

The available shear strength is:

LRFD ASD

( )( )ϕ =
oo..kk..

V 1.00 132 kips

= 132 kips > 26.8 kips

n

 Ω
=

oo..kk..

V 132 kips

1.50
= 88.0 kips > 17.8 kips

n
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Effective Shear Plane Model for Tearout and Block 
Shear Failure of Bolted Connections
LIP H. TEH and GREGORY G. DEIERLEIN

ABSTRACT

In spite of many revisions to the block shear requirements of the AISC Specification, the model in the current Specification can result in cal-
culated strengths and failure modes that are inconsistent with published test data. The inconsistencies are primarily related to the assumed 
interaction of tensile and shear resisting mechanisms, combined with the definition of net and gross shear planes that are unrealistic. Using 
recently published test results of single-bolt connections in mild and high-strength steel plates, the shear failure planes are observed to be 
neither the assumed net nor gross shear planes, which are the basis of the current design provision, but rather effective shear planes with a 
calculated area that is between the net and gross areas. Based on the tensile rupture and shear yielding mechanism, and assuming that the 
steel on the effective shear planes is fully strain hardened, a simpler and more accurate block shear design equation is proposed. The new 
equation is straightforward to implement as it requires a simple rearrangement of existing design variables to determine an effective shear 
failure area. Through verifications against 161 gusset plate specimens, tested by independent researchers around the world, the proposed 
equation is shown to be significantly more accurate than the current AISC, Canadian, European and Japanese block shear design provi-
sions. A resistance factor of 0.85 is recommended for use with the proposed equation, based on the available statistics from tests and well-
established LRFD reliability principles. An example is presented to illustrate the impact of the proposed design provision, which can result in 
significantly fewer bolts per connection and/or smaller gusset plates, leading to simpler and more economical designs.

Keywords: block shear, bolted connections, gusset plates, shear-out, shear planes, tearout.

INTRODUCTION

The block shear failure mode of bolted connections was 
first identified by Birkemoe and Gilmor (1978) and was 

incorporated in the 1978 AISC Specification for Structural 
Steel Buildings (AISC, 1978), which was still in the allow-
able stress design (ASD) format. Since then, the design pro-
vision to check block shear failures of bolted connections 
changed with every edition of the load and resistance fac-
tor design (LRFD) Specification until 2005, as summarized 
in Table  1 for concentrically loaded gusset plates. These 
changes were primarily motivated by ambiguities regard-
ing the interaction of tension and shear behavior on assumed 
gross or net yield and rupture planes. In all of these speci-
fications, there has been a presumption of yielding on gross 
areas and rupture on net areas, where the gross and net areas 
are Agt and Ant for tension and Agv and Anv for shear, and 
the corresponding stress limits for yielding and rupture are 
the tension yield stress, Fy, and ultimate stress, Fu. As will 

be described later, these basic assumptions about character-
izing behavior are much the reason for the perennial debate 
about block shear design provisions.

It may be noted that since the 2005 Specification (AISC, 
2005), there is a nonuniform stress distribution factor, 
denoted Ubs, applied to the tensile strength component, 
FuAnt, of the block shear resistance. This reduction factor 
is equal to unity in most cases, including a concentrically 
loaded gusset plate, and is therefore not shown in the equa-
tions contained in this paper.

The absence of changes in the block shear design provi-
sion since 2005 masks a curiosity of the current provision 
(AISC, 2016), which suggests that the load required to fail 
a bolted connection by simultaneous tensile and shear rup-
tures can be lower than that required for the tensile rupture 
and shear yielding mechanism. The practical outcome of 
this incongruence is that the design provision can underesti-
mate the actual block shear strength by almost 20% on aver-
age and up to 40% in certain cases.

There are several reasons for the repeated amendments 
and for the fact that the latest design provision is still substan-
tially inaccurate, even though it represents an improvement 
over earlier provisions. This paper reviews the evolution of 
the block shear design provisions in the AISC Specifications 
since the first LRFD edition (AISC, 1986). Based on physical 
reasoning, the authors contend that the underlying premises 
of the Specification equations are incorrect. In particular, 
the available evidence suggests that the shear failure planes 
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in bolted connections are neither the net nor the gross shear 
planes, as defined in the AISC Specifications. This evidence 
includes contact finite element analyses (Clements and Teh, 
2013) and connection tests (Cai and Driver, 2010) that fail in 
shear tearout.

The determination of the effective shear planes resolves 
the ambiguity involving the net and gross shear planes used 
in the current block shear design provision (AISC, 2016). 
In addition, Teh and Yazici (2013) provide an explanation, 
substantiated by tests and analysis, that there is only one 
feasible mechanism for conventional block shear failures 
in bolted connections, which involves tensile rupture and 
shear yielding. In fact, the simultaneous tensile and shear 
rupture mechanism postulated by the first equation in the 
bottom row of Table 1 has never been observed in published 
laboratory tests. However, Teh and Uz (2015a) have demon-
strated that the ductile shear yielding in a block shear failure 
is typically accompanied by significant strain hardening, 
such that the assumed yield stress can be significantly larger 
than 0.6Fy, up to or even beyond 0.6Fu. Based on these three 
observations, this paper proposes a design equation against 
the block shear failure mode of bolted connections that (1) is 
more accurate than existing models, including one proposed 
by Teh and Yazici (2013) and Teh and Uz (2015a); (2) is logi-
cal and straightforward to implement; and (3) is determined 
using parameters in current design provisions that are famil-
iar to engineers.

This paper presents a comprehensive verification of block 
shear failure models of bolted connections in gusset plates 
composed of structural steel (Hardash and Bjorhovde, 1985; 
Rabinovitch and Cheng, 1993; Udagawa and Yamada, 1998; 
Aalberg and Larsen, 1999; Nast et al., 1999; Swanson and 
Leon, 2000; Puthli and Fleischer, 2001; Huns et al., 2002; 
Mullin, 2002; Moze and Beg, 2014) and aluminum alloy 
(Menzemer et al., 1999). The exercise includes both conven-
tional and the less conventional “split” block shear failure 
mode. Comparisons are made against the design provisions 
found in the 2010 and 2016 AISC Specifications (AISC 

2010, 2016) and the Canadian (CSA, 2014), European (ECS, 
2005) and Japanese (AIJ, 2002) standards.

Design Provisions of AISC Specifications

As shown in Table 1, the first edition of the AISC LRFD 
Specification (AISC, 1986) specified that the larger of the 
following two resistances is to be used in determining the 
nominal block shear strength of bolted connections:

 Rn = FuAnt + 0.6FyAgv (1a)

 Rn = FyAgt + 0.6FuAnv (1b)

The net and gross shear and tension planes, as defined 
by the Specification are indicated in Figure 1. The accom-
panying Commentary argued that the provision was more 
conservative than the equation given in the earlier ASD 
Specification (AISC, 1978), which “implies that ultimate 
fracture strength on both planes occur simultaneously.” 
The 1978 equation, rewritten in the limit state format is as 
follows:

 Rn = FuAnt + 0.6FuAnv (2)

In contrast to the 1986 Commentary’s claim of being 
more conservative, depending on the relative values of Fy 
and Fu, the 1978 equation can result in a lower resistance 
than the 1986 equation due to the its smaller shear area, as 
demonstrated by Teh and Yazici (2013).

Therefore, there are two fundamental problems with the 
1986 provision (AISC, 1986). First, contrary to its inten-
tion of adopting a more conservative model, it often results 
in a less conservative design against the block shear fail-
ure mode compared to the original equation (AISC, 1978). 
Second, its prescription that “the controlling equation 
is one that produces the larger force” is contrary to well- 
established design conventions of choosing the lowest of 
multiple possible failure modes. The Commentary (AISC, 
1986) attempts to explain the oddity of the design check by 
way of two extreme examples, shown in Figure 2. According 

Table 1. AISC Specification Block Shear Design Provisions, 1978–2016

1978 Rn = FuAnt + 0.6FuAnv

1986 Rn = max(FuAnt + 0.6FyAgv; FyAgt + 0.6FuAnv)

1993
If FuAnt ≥ 0.6FuAnv : Rn = FuAnt + 0.6FyAgv

If FuAnt < 0.6FuAnv : Rn = FyAgt + 0.6FuAnv

1999
If FuAnt ≥ 0.6FuAnv : Rn = min(FuAnt + 0.6FuAnv; FuAnt + 0.6FyAgv)

If FuAnt < 0.6FuAnv : Rn = min(FuAnt + 0.6FuAnv; FyAgt + 06FuAnv)

2005

2010

2016

Rn = min(FuAnt + 0.60FuAnv; FuAnt + 0.60FyAgv)
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fail in individual shear tearout of the bolts rather than block 
shear if the tensile resistance is sufficiently larger than the 
shear resistance.

The second LRFD Specification (AISC, 1993) recognizes 
the first point described in the preceding paragraph and 
qualifies the use of Equations 1a and 1b as shown in Table 1. 
The Specification Commentary modifies the 1986 prescrip-
tion to “the controlling equation is one that produces the 
larger rupture force.” However, this modified prescription 
does not have a clear justification either, except that the 1993 
Commentary repeats the earlier Commentary’s statement 
that “block shear is a rupture or tearing phenomenon not a 
yielding limit state.”

The 1993 Commentary has an additional argument for 
the form of Equations 1a and 1b that survives into the latest 
Commentary (AISC, 2016). It argues that the equations are 
consistent with the philosophy of tension member design, 
“where gross area is used for the limit state of yielding and 
net area is used for rupture.” However, the gross area is used 
for the tension member design in conjunction with the yield 

to the Commentary, Equation  1a gives a lower resistance 
than Equation  1b for the connection shown in Figure  2a. 
However, considering that the total force is resisted primar-
ily by shear, the Commentary argues that shear fracture, not 
shear yielding, should control the block shear failure mode, 
and therefore, Equation 1b should be used for the connection 
in Figure 2a. A reverse argument is applied by the Commen-
tary to the other connection. The Commentary further states 
that “when it is not obvious which failure plane fractures, it 
is easier just to use the larger of the two formulas.”

There are two points that have been overlooked in the 
1986 Commentary. First, as with the comparison between 
Equations 1a and 2, Equation 1a does not, in general, give a 
lower resistance than Equation 1b for the connection shown 
in Figure  2a. Second, there is no evidence to support the 
contention that fracture will take place first in the primary 
resistance plane (i.e., tension or shear). In fact, the con-
nection in Figure 2a will fracture first in the tension plane 
irrespective of the steel material ductility (Teh and Yazici, 
2013). The connection in Figure 2b, on the other hand, will 

Fig. 1. Gross and net planes.

 (a) (b)

Fig. 2. Two extreme block shear examples cited in the AISC Commentary (AISC, 1986): 
(a) shear-resistance dominant; (b) tensile-resistance dominant.
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stress to prevent excessive member elongation due to yield-
ing along the member. This condition is not present in the 
design against a block shear failure, where yielding is local 
to the connection region only.

The third LRFD Specification (AISC, 1999) recognizes 
the fact that Equation  2 may give a lower resistance than 
either Equation 1a or 1b. Accordingly, as noted in Table 1, 
the 1999 Specification requires the checking of Equa-
tion 2 in applying Equations 1a and 1b.

Two further changes to the block shear design provision 
have been incorporated in the 2005 Specification (AISC, 
2005). First, the governing block shear strength is changed 
to simply the lower resistance computed from the prescribed 
equations. Second, the tensile yielding and shear rupture 
mechanism, Equation 1b, is no longer considered. The ratio-
nale for the removal of Equation  1b is explained by Teh 
and Yazici (2013), who point out that a conventional block 
shear failure cannot occur through tensile yielding and shear 
rupture.

Despite the first improvement mentioned in the preced-
ing paragraph, the resulting block shear design provision, 
which remains the same in the 2010 and 2016 Specifications 
(AISC, 2010, 2016), often reduces to Equation 2 for mod-
ern structural steels, where the ratio of tensile strength Fu to 
yield stress Fy is not particularly high. As will be evident in 
the next section, the net shear area Anv used in the equation 
is significantly smaller than the more realistic value given 
by the effective shear area. The practical outcome is that the 
design provision can be very conservative, relative to physi-
cal test data.

Effective Shear Planes

If one looks at Figures 1 and 2 closely, it will be become 
apparent that the shear failure planes cannot coincide with 
the centerlines of the bolt holes in the direction of loading, 
where shear stresses would be minimal due to the bolts bear-
ing “symmetrically” on the respective holes. This indication 

has been confirmed by the contact finite element analysis 
results of Clements and Teh (2012), which show that maxi-
mum in-plane shear stresses take place between the net and 
the gross shear planes.

This assertion is clearly evident in the observed failure 
mode in laboratory tests of bolted connections failing in 
shear tearout. For example, consider the failure mode shown 
in Figure 3 for the downstream bolt of a serial bolted con-
nection tested by Cai and Driver (2010). In a shear tearout 
failure, full strain hardening can be expected along the two 
shear failure planes, enabling the determination of their 
location and effective area based on simple calculation 
checks under the limiting stress of 0.6Fu. Moreover, from 
the photo in Figure 3, the shear tearout plane can be seen 
to be roughly midway between the net and the gross shear 
planes. For the shear tearout failure, the net Anv, gross Agv, 
and effective Aev shear planes are shown in Figure 4. Note 
that in contrast to the gross and effective shear planes, the 
literal interpretation of the net area is that it can have only 
one failure plane.

The Canadian steel design standard (CSA, 2014) deter-
mines the nominal shear tearout strength of bolts from the 
following equation:
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A0.6

2
2n

u y
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(3)

which assumes partial strain hardening along the total area 
of two gross shear planes (2Agv).

The shear tearout equation of the current AISC Specifi-
cation (AISC, 2016) and the North American cold-formed 
steel structures Specification (AISI, 2012) are described as 
follows,

 R∗
n = 1.2FuAnv (4)

While it is obviously impossible to have the two shear fail-
ure planes coinciding with the centerlines of the bolt hole, 
two net shear planes are implied by the limiting shear stress, 
1.2Fu. Note that this shear tearout equation corresponds to 
the case in the AISC Specification where deformations are 
to be controlled. As an aside, the AISC shear tearout equa-
tion for the case where deformations are not controlled has 
a limiting stress of 1.5Fu, which implies a failure stress of 
0.75Fu on each net shear plane. The authors are not aware 
of test evidence to support the use of 0.75Fu, and moreover, 
Teh and Uz (2015b) have pointed out that test evidence sup-
ports a limiting shear tearout stress of 0.6Fu on each effec-
tive shear area.

Following Teh and Uz (2015b), if each shear failure plane 
is taken to be midway between the gross and the net shear 
planes, then the nominal shear tearout strength is calculated 
as:

 R∗
n = 0.6Fu(2Aev) (5a)Fig. 3. A downstream bolt failing in  

shear tearout (Cai and Driver, 2010).
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is over 35% (1/0.73 = 1.37). These overestimations are due 
to the optimistic assumption that the shear failure planes 
are the gross shear planes, rather than the absence of shear 
strain hardening in the test specimens.

Conversely, even though full strain hardening is consid-
ered by Equation 4, as specified in the AISC Specification 
(AISC, 2016) and the cold-formed steel specification (AISI, 
2012), the use of the net shear planes leads to excessive con-
servatism in the predicted strengths.

Equation 5, which is based on the effective shear planes, 
calculated as the mean between the net and the gross shear 
planes, is consistently more accurate than both Equations 3 
and 4. Thus, these data indicate that the shear failure planes 
lie midway between the net and the gross shear planes—a 
conclusion that is consistent with the design recommenda-
tion of Tolbert and Hackett (1974) for pin lugs.

Proposed Equation against Block Shear Failure

Having established strong evidence that the effective shear 
failure planes are located between the net and the gross shear 
planes, the block shear failure mechanism can be revised to 
the one shown Figure 5.

The reasoning for this model is substantiated by Teh and 
Yazici (2013), who explain why there is only one feasible 
mechanism for the conventional block shear failure mode—
namely, the tensile rupture and shear yielding mechanism. 
Teh and Uz (2015a) have further pointed out that shear yield-
ing in a block shear failure is typically accompanied by full 
strain hardening (0.6Fu), even though shear fracture very 
rarely, if ever, is the triggering failure mechanism. This can 
be explained by the large ductility of steel in shear, where 
the steel in the shear yielding zone can strain harden up to 

where

 
=

+
A

A A

2
ev

gv nv

 
(5b)

Equations 3, 4, and 5 have been verified by Teh and Uz 
(2015b) against independent laboratory test results. How-
ever, at the time, they were not aware of the single-bolt con-
nection test results obtained by Moze and Beg (2010, 2014), 
which provide even stronger evidence that Equation 5 is sig-
nificantly more accurate than Equations 3 and 4. Table 2 lists 
the geometric and material variables of the Moze and Beg 
tests, which included specimens of mild and high-strength 
steels with bolt holes ranging from 18 to 30 mm. The table 
summarizes ratios of ultimate test load Pt to the predicted 
shear tearout strength R∗

n (such a ratio is called the “pro-
fessional factor”) given by Equations 3, 4 and 5. The vari-
able dh is the bolt hole diameter, e1 is the distance between 
the center of the bolt hole and the downstream end, and t is 
the plate thickness. An empty cell indicates that the data in 
the above cell applies. The summary statistics are separated 
between tests of mild steel specimens, where the ratio Fu/Fy 

is 1.36, and tests of high-strength steel specimens, where the 
ratio is 1.04. This distinction is important to help differenti-
ate between the assumed ultimate stresses versus shear fail-
ure planes used in the models. It should be noted that the 
reported Fy and Fu values are all measured, as opposed to 
nominal, values.

The results in Table  2 show that, despite the assump-
tion of only partial strain hardening, Equation 3 specified 
in the Canadian steel design standard (CSA, 2014) uncon-
servatively overestimates the shear tearout strengths of the 
mild steel specimens by about 10% on average. For the 
high-strength steel specimens, the largest overestimation 

Fig. 4. Illustration of net, gross and effective shear planes for shear tearout.
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Fu and sustain large strains without the necking and rupture 
behavior that occurs in standard tensile coupons.

Based on this reasoning, the following block shear equa-
tion is proposed:

Rn = FuAnt + 0.6FuAev (6)

This equation, in which the effective shear area Aev is sim-
ply the mean between the gross and the net shear areas, as 
shown in Equation 5b, is slightly more accurate than a simi-
lar equation proposed by Teh and Yazici (2013) and Teh and 
Uz (2015a), which computes the shear areas from the shear 
plane length that ignores a quarter of the bolt hole diameter. 
In addition to being more accurate, the concept of an effec-
tive shear area is intuitive and straightforward to implement.

Verifications of Block Shear Equations

Strengths calculated using the proposed block shear Equa-
tion 6 and the current AISC provision (AISC, 2016) are com-
pared to previously published test data in Table 3. The table 
covers 155 tests by 11 independent research teams, including 
tests of 20 aluminum specimens by Menzemer et al. (1999). 
Due to the large number of specimens involved, it is not 
practical to provide the details of individual specimens in 
the manner given by Table 2. In addition to the mean pro-
fessional factors Pt/Rn, Table 3 provides the number of tests 
by each research group (N), their maximum number of bolt 
rows (nrmax) and number of bolt lines (nlmax), the range of 
their bolt hole diameters (dh), the range of their ratios of mea-
sured tensile strength to yield stress (Fu/Fy), and the range of 
their ratios of ultimate test load to tensile strength compo-
nent [Pt/(FuAnt)]. The overall mean values and the coeffi-
cients of variation (COV) given at the bottom of the table 
refer to the professional factors of individual specimens, not 
the mean professional factors of the 11 test programs. All the 
specimens in the table failed in a conventional block shear 
mode along the failure planes illustrated in Figure 5.

It can be seen from Table 3 that strengths calculated by 
the proposed Equation  6 are consistently accurate across 
reported tests, where the overall mean professional factor 
of 1.01 has a 5% coefficient of variation. In contrast, the 
current AISC equation (AISC, 2016) has an overall mean 
professional factor of 1.18. Thus, the AISC provision is 
conservative by about 20%. Interestingly, the AISC results 
are almost always governed by Equation  2, simultaneous 
fracture on the net tension and shear areas, which is some-
what counterintuitive as being more conservative than the 

Fig. 5. Net tension and effective shear failure 
planes for proposed block shear model.

Table 2. Comparison of Shear-Out Equations with Tests by Moze and Beg (2010, 2014)

Specimen
Fy,

ksi (MPa)
Fu,

ksi (MPa)
t,

in. (mm) 
dh,

in. (mm)
e1,

in. (mm)

Pt/Rn
∗ of Equations

3 4 5

M101 45.4 (313) 61.6 (425) 0.472 (12) 1.02 (26) 1.26 (32) 0.89 1.30 0.97

M104 — — — — 1.02 (26) 0.90 1.57 1.05

M105 — — — — 1.26 (32) 0.97 1.41 1.05

M109 — — — 0.71 (18) 0.71 (18) 0.88 1.53 1.02

M110 — — — — 0.87 (22) 0.89 1.31 0.97

M111 — — — — 1.06 (27) 0.90 1.17 0.94

Moze and Beg (2014)
Mean 0.90 1.38 1.00

COV 0.034 0.109 0.047

B109 122 (847) 128 (885) 0.39 (10) 1.18 (30) 1.18 (30) 0.73 1.43 0.95

B118 — — — — 1.81 (46) 0.82 1.19 0.96

Moze and Beg (2010)
Mean 0.78 1.31 0.96

COV 0.082 0.127 0.005

181-194_EJQ317_2016-09.indd   186 6/15/17   6:31 PM



ENGINEERING JOURNAL / THIRD QUARTER / 2017 / 187

Resistance Factor

In conjunction with the proposed new model for determin-
ing shear tearout and block shear, the comparisons with test 
data can be used to evaluate an appropriate resistance fac-
tor. The reliability analysis methodology and the statistical 
parameters are adopted from Driver et al. (2006), who eval-
uated the required resistance factor ϕ using the following 
equation proposed by Fisher et al. (1978):

ϕ = (0.0062β2 − 0.131β + 1.338)MmFmPme−p (7)

in which β is the target reliability index, Mm is the mean 
value of the material factor equal to 1.11 (Schmidt and 
Bartlett 2002), Fm is the mean value of the fabrication factor 
equal to 1.00 (Hardash and Bjorhovde 1985), and Pm is the 
mean value of the professional factor.

combined yielding-fracture condition. The performance of 
Equation 1a is included in the Appendix.

As noted previously, Table  3 only includes bolted con-
nection specimens that failed in a conventional block shear 
mode along the failure planes illustrated in Figure 5. How-
ever, depending on the geometry, it is possible for a bolted 
gusset plate to fail in the “split” block shear mode along the 
planes indicated in Figure 6. In addition to testing six speci-
mens that failed in the conventional (C) block shear mode, 
Puthli and Fleischer (2001) tested six specimens that failed 
in the split (S) mode. The split mode occurred in gusset plate 
specimens where the gauge length, g, was more than twice 
the edge distance, e2. Results for the 12 specimens tested 
by Puthli and Fleischer (2001) are summarized in Table 4, 
including the six that failed in the conventional mode and 
are also included in Table 3. All the specimens had a plate 
thickness, t, of 17.5 mm, a bolt hole diameter, dh, of 30 mm, 
an end distance, e1, of 36 mm, and one row of two bolts. 
The measured yield stress, Fy, and tensile strength, Fu, were 
524 MPa and 645 MPa, respectively.

For determining the split block shear strength, the “nor-
mal” block shear equations are still applicable provided 
the appropriate net tension area, Ant, is used. Similar to 
the comparisons of Table 3, the results in Table 4 demon-
strate that the strengths based on the proposed Equation 6 
are significantly more accurate than those determined using 
the AISC (AISC, 2016), Canadian (CSA, 2014), European 
(ECS, 2005) and Japanese (AIJ, 2002) equations for both 
the conventional and the split block shear modes. Further 
details and discussion of the Canadian, European and Japa-
nese standard equations are given in the Appendix.

Table 3. Comparison between Test Data and Strengths Calculated by the Proposed and AISC Block Shear Equations

N nrmax n1max
dh,

(mm) Fu/Fy Pt/ (FuAnt)
Mean Pt/Rn

AISC Proposed

Hardash and Bjorhovde (1985) 28 5 2 14–17 1.30–1.41 2.2–6.7 1.20 1.03

Rabinovitch and Cheng (1993) 5 5 2 22 1.20 7.5–8.5 1.17 0.99

Udagawa and Yamada (1998) 72 4 4 18 1.08–1.70 1.7–6.0 1.18 0.99

Aalberg and Larsen (1999) 8 4 2 19 1.05–1.44 4.0–7.1 1.20 0.99

Menzemer et al. (1999) 20 7 2 17.5 1.12 3.7–14.0 1.16 1.00

Nast et al. (1999) 3 5 2 22 1.17 8.2–8.5 1.23 1.04

Swanson and Leon (2000) 1 4 2 24 1.33 4.1 1.30 1.05

Puthli and Fleischer (2001) 6 1 2 30 1.23 2.1–2.4 1.18 1.01

Huns et al. (2002) 5 3 4 21 1.34 2.6–8.0 1.26 1.08

Mullin (2002) 5 8 2 21 1.37 2.6–7.8 1.14 1.00

Moze and Beg (2014) 2 1 2 22 1.36 2.3–3.1 1.24 1.08

Overall mean 1.18 1.01

COV 0.051 0.048

Note: 1 in. = 25.4 mm

Fig. 6. Split block shear failure planes.
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The exponential term p in Equation 7 is computed from

= α β + +p V V VR m F P
2 2 2

 (8)

in which αR is the separation variable equal to 0.55 (Ravin-
dra and Galambos, 1978), VM is the coefficient of variation 
of the material factor equal to 0.054 (Schmidt and Bartlett 
2002), VF is the coefficient of variation of the fabrication 
factor equal to 0.05 (Hardash and Bjorhovde, 1985), and VP

is the coefficient of variation of the professional factor.
The mean professional factor Pm of the proposed Equa-

tion  6 for the 141 structural steel specimens included in 
Tables 3 and 4 is 1.01, and its coefficient of variation VP is 
0.051. The aluminum specimens tested by Menzemer et al. 
(1999) were not included in the reliability analysis, although 
it would have made little difference to the computed resis-
tance factor. Using these values, along with a target reliabil-
ity index β of 4.0, a resistance factor ϕ of 0.84 was computed 
per Equation 7. Accordingly, and based on the large number 
of test comparisons covering a very diverse range of connec-
tion geometry and steel grades, a resistance factor ϕ rounded 
up to 0.85 is recommended.

BLOCK SHEAR DESIGN EXAMPLE

Shown in Figure 7 is a connection between a pair of back-
to-back C6×13 tension braces and an ASTM A572 Grade 
50 s-in.-thick gusset plate (Fy of 50 ksi; Fu of 65 ksi). The 
gusset plate thickness is selected so as to have sufficient bolt 

bearing strength to develop the full design shear strength 
of each w-in. ASTM F3125 Grade A325 bolt of 45.1 kips 
(double shear, bearing). The bolted gusset plate, which has 
two lines of bolts with a hole diameter equal to m  in., is 
to be designed against the block shear failure mode under a 
factored load of Ru = 270 kips. The pitch, p, and gauge, g, are 
all equal to 22 in., while the end distance e1 is 12 in. These 
values satisfy the requirements prescribed in Sections J3.3 
and J3.4 of the AISC Specification (AISC, 2016).

Table 4. Comparison of Model Equations for Tests That Failed in Both Conventional (C) and Split (S) Block Shear 
(Puthli and Fleischer, 2001)

Specimen
g, 

(mm)
e2, 

(mm) Mode

Pt/Rn

AISC Eq. (6) CSA ECS AIJ

12 54 36 C 1.16 0.98 0.90 1.28 1.07

13 — 40.5 — 1.16 0.98 0.90 1.28 1.07

14 — 45 — 1.19 1.01 0.93 1.32 1.10

17 63 36 — 1.19 1.03 0.96 1.29 1.11

18 — 40.5 — 1.21 1.05 0.97 1.32 1.13

19 — 45 — 1.19 1.03 0.96 1.30 1.11

20 72 27 S 1.23 1.04 0.96 1.36 1.14

21 — 31.5 — 1.21 1.05 0.97 1.31 1.13

22 81 27 — 1.18 1.00 0.92 1.31 1.09

23 — 31.5 — 1.19 1.03 0.96 1.29 1.11

24 90 27 — 1.20 1.01 0.93 1.33 1.11

25 — 31.5 — 1.19 1.03 0.96 1.30 1.12

Puthli and Fleischer (2001)
Mean 1.19 1.02 0.94 1.31 1.11

COV 0.017 0.023 0.027 0.017 0.019

Fig. 7. Block shear design example.
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is larger than that given by the proposed block shear solution.
While it can be argued that this example is not necessarily 

representative of a typical condition, it demonstrates how the 
proposed block shear check can result in more economical 
connections.

COPED BEAM SHEAR CONNECTIONS

In essence, all of the changes to the AISC block shear design 
provisions listed in Table  1 and discussed in the section 
“Design Provisions of AISC Specifications” relate to ten-
sion members. While the block shear failure mode was first 
discovered by Birkemoe and Gilmor (1978) for coped beam 
shear connections, the coped beam condition may involve 
another level of complexity that clouds the basic behavior of 
block shear. The nonuniform stress distribution factor, Ubs, 
contained in the AISC block shear design provision since 
2005 (AISC, 2005), is believed to arise from the in-plane 
load eccentricity of the coped beam shear connection, which 
is outside the scope of this paper.

Nevertheless, a reviewer of this paper has suggested that a 
verification of Equation 6 be made against the recent coped 
beam test results of Fang et al. (2013). The experimental 
program of Fang et al. is well documented and interesting 
in that it included not only single- and double-line bolted 
connections, but also single- and double-sided angle cleat 
connections on the beam web. The single- and the double-
line bolted connections are believed to result in uniform 
(Ubs = 1.0) and nonuniform (Ubs = 0.5) tensile stress distri-
butions, respectively, as illustrated in Figure 8 adapted from 
the 2016 Specification (AISC, 2016). The single-sided cleat 
connections, on the other hand, result in out-of-plane load 
eccentricity.

Table 5 shows the professional factors of Equation 6 for 
the coped beam shear connections of Fang et al. (2013). The 
geometric variables are defined in Figure 8, with the bolt 
pitch, p, being uniform at 75 mm for all specimens except for 
T1-1-3-a. The first seven specimens were single-line bolted, 

Based on the bolt shear strength, six bolts are required 
to resist the factored load of 270 kips. The following cal-
culations determine the number of bolt rows, nr, required 
according to the AISC Specification (AISC, 2016) and the 
proposed block shear equation. For all block shear designs, 
the net tension area, Ant, is constant at 1.02 in.2. In all calcu-
lations, z in. is added to the nominal bolt hole diameter in 
accordance with Section B4.3b of the Specification.

Try nr = 3 → Agv = 8.12 in.2; Anv = 5.39 in.2:

AISC:
ϕRn = 0.75×min
(FuAnt + 0.60FuAnv; FuAnt + 0.60FyAgv) = 207 kips  n.g.

Proposed: 
ϕRn = 0.85×
[FuAnt + 0.6Fu(Anv + Agv)/2] = 280 kips  o.k.

Try nr = 4 → Agv =11.2 in.2; Anv = 7.42 in.2:

AISC: ϕRn = 267 kips < 270 kips

In this example, the AISC block shear check of the gusset 
plate requires much more than the minimum number of six 
bolts based on the bolt shear capacity. It requires five rows 
of bolts (10 bolts), whereas the proposed block shear model 
requires only three rows of bolts (six bolts). These calcula-
tions assume that plate thickness, bolt pitch, and end dis-
tance are to be maintained.

An alternative to increasing the number of bolt rows in 
the current AISC block shear check is to increase the bolt 
pitch (there is a very limited scope for increasing the bolt 
gage since the clear width of each channel brace is only 
5.31 in.). In order to resist the factored load of Ru = 270 kips, 
the bolt pitch must be increased to 32 in. in step increases 
of 2 in. each.

Try p = 32 in. → Agv = 10.62 in.2; Anv = 8.09 in.2:

AISC: ϕRn = 280 kips  o.k.

In either AISC solution, the resulting gusset plate dimension 

 (a) (b)

Fig. 8. AISC tensile stress distribution factor: (a) Ubs = 1.0; (b) Ubs = 0.5 (AISC, 2016).
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while the last three were double-line bolted. No nonuniform 
stress distribution factor was applied to any specimen. In 
this table, the ultimate test loads, Pt, are explicitly given in 
order to avoid potential confusion with the “Ultimate load 
Ptest” given in Table 4 of Fang et al. (2013), the latter refer-
ring to the ultimate load applied on the beam, which had two 
end connections (not carrying the same amount of load). In 
that paper, the ultimate block shear load, Pt, of each shear 
connection of the tested beam is called “ultimate connec-
tion reaction,” measured by a load cell. It can be seen that 
Equation 6 resulted in reasonable estimates of the ultimate 
block shear loads, including those of the double-line bolted, 
single-sided cleat connections.

The slightly conservative estimates by Equation  6—
despite the equivalent use of Ubs  = 1.0 in the presence of 
in-plane and out-of-plane load eccentricities, especially for 
Specimen T2-1-3-b—might have been due to the fact that 
the bolts were snug tightened. It may also be noted that Fang 
et al. (2013) have found that all the AISC, Canadian, Euro-
pean and Japanese block shear design provisions for coped 
beams were excessively conservative. The maximum pro-
fessional factors of the international design specifications 
for the specimens in Table 5 were computed by Fang et al. 
(2013) to be 1.66, 1.62, 2.05 and 1.63, respectively.

The only significant overestimation by Equation 6 con-
cerns specimen T2-2-2-a, for which the professional factor 
is 0.90. However, Fang et al. (2013) suggested that this speci-
men might have suffered from an “erratic test setup align-
ment” because it was similar to specimen T1-2-2-a (except 
for a slightly lower tensile strength Fu), but the latter had an 
ultimate test load that was 15% higher. In fact, the ultimate 
beam load of specimen T2-2-2-a obtained in the laboratory 

test was about 15% lower than the finite element prediction 
of Fang et al. (2013).

It may be noted that, in addition to the “erratic” test result 
discussed in the preceding paragraph, test results involving 
coped beam shear connections have been known to be quite 
variable for nominally identical specimens. Such results 
include those obtained by Franchuk et al. (2003), which 
were among the few well-documented coped beam shear 
tests available in the literature.

Due to the limited verification against coped beam test 
results, the authors do not propose amending the current non-
uniform stress distribution factor Ubs, which means that the 
proposed block shear design provision tends to be conserva-
tive for a double-line bolted coped beam shear connection.

CONCLUSIONS

In spite of changes to the block shear design provisions in 
the AISC Specifications over four decades, the current pro-
vision is shown to underestimate the block shear strength of 
bolted connections by about 20%, compared to published 
test data. The Canadian, European and Japanese block shear 
design provisions all have unique equations of their own, 
yet comparisons with these also reveal significant errors on 
either side of conservatism when verified against the inde-
pendent test results, as cited in this paper, including those 
presented in the Appendix. All the Specification equations 
share two fundamental shortcomings. First, they use either 
the net area (too conservative) or the gross area (too optimis-
tic) for the shear failure planes, neither of which is a reliable 
representation of the shear failure plane. Second, none of 
the provisions recognize that shear yielding in a block shear 

Table 5. Verification against Coped Beam Test Results of Fang et al. (2013), p = 75 mm

Specimen
g,

(mm)
e3,

(mm)
e1,

(mm)
t,

(mm)
Fu,

(MPa)
Bolt

Lines
Single 
Sided?

Pt,
(kN)

Pt/
Eq. (6)

A1-1-3-a N/A 28 28 6.6 459 Single N 305 0.96

T1-1-3-a* — 28 28 — 459 — Y 332 1.05

A1-1-3-b — 50 27 — 459 — N 393 1.03

T1-1-3-b — 50 28 — 459 — Y 415 1.08

T2-1-3-a – 27 28 6.8 464 — Y 358 1.09

T2-1-3-b — 51 28 — 464 — Y 485 1.20

A1-1-3-a-S — 28 29 — 459 — Y 319 1.02

A2-2-2-a 75 28 27 — 464 Double N 384 1.04

T1-2-2-a — 28 28 — 464 — Y 380 1.02

T2-2-2-a — 28 27 — 459 — Y 329 0.90

Mean 1.04

COV 0.077
* The upper pitch is equal to 74 mm.
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failure is typically accompanied by full strain hardening, 
prior to rupture of the net tension failure plane.

Observed deformations and failure modes in shear tearout 
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APPENDIX—INTERNATIONAL SPECIFICATIONS

The block shear equation in the Canadian standard (CSA, 
2014) is essentially the same as that originally proposed by 
Huns et al. (2002), which assumes partial strain hardening 
along the gross shear planes,
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point is further supported by the results of Equation  1a, 
which assumes no shear strain hardening at all, where the 
results are similar to those of the Canadian equation for the 
specimens with a low Fu/Fy ratio. Lack of shear strain hard-
ening is, therefore, not a factor. What is common to Equa-
tions 1a and A-2 is the use of gross shear planes, which are 
larger than the effective shear planes used by Equation 6. 
For specimens with relatively low ratios of Fu/Fy, the pes-
simistic assumption of nil, or only partial, strain hardening 
does not offset the excess of the gross shear areas over the 
effective shear areas.

In recent literature, the von Mises shear coefficient of 
1 3 is sometimes identified as a more “correct” value than 
the commonly used shear coefficient of 0.6 for evaluating 
the shear fracture limit state, 0.6Fu. For example, Moze and 
Beg (2014) proposed replacing the shear coefficient in the 
current AISC block shear provision (AISC, 2016) with the 
von Mises shear coefficient. However, given the discrepan-
cies noted in Table 3, the practical difference of about 4% 
between 1 3(= 0.577) and 0.6 is insignificant. Moreover, 
while the von Mises shear coefficient of 1 3 has a theo-
retical basis for yielding behavior (i.e., Huber–von Mises–
Hencky distortion energy theory, Timoshenko, 1953), there 
is no such theoretical basis for the ultimate shear coefficient.

While the Eurocode block shear design equation (ECS, 
2005) uses the von Mises coefficient in conjunction with 
shear yielding along the net shear planes,
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as shown in Tables 4 and A-1, the Eurocode’s Equation A-3 
is often excessively conservative.
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except that the von Mises shear coefficient (1 3 = 0.577) is 
replaced by 0.6 in the standard
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Huns et al. (2002) found that Equation 1 was reasonably 
accurate for many of the specimens included in Table  3. 
However, this apparent accuracy has been due to the fact 
that the optimistic use of the gross shear area, Agv, is offset 
by the pessimistic assumption of only partial strain harden-
ing in specimens having high ratios of tensile strength to 
yield stress, Fu/Fy. The specimens of Puthli and Fleischer 
(2001) listed in Table 4 had a Fu/Fy ratio of 1.23, which is 
not particularly high, and the Canadian standard’s equa-
tion (CSA, 2014) leads to overestimations as large as 10%, 
depending on the geometry. These overestimations are not 
due to the inability of the specimens to experience shear 
strain hardening, but rather are due to the assumption of 
gross shear planes.

Table A-1 lists the professional factors of alternative equa-
tions for the block shear specimens tested by Aalberg and 
Larsen (1999), where the first four specimens had material 
with a high Fu/Fy of 1.44 and the last four had a low Fu/Fy 
of 1.05. Data from the first four specimens might substanti-
ate the Canadian standard’s Equation A-2, which assumes 
partial strain hardening along the gross shear planes; how-
ever, the unconservative errors for the last four specimens, 
which have a low Fu/Fy ratio, highlight the overestimation 
of strengths that are based on the gross shear planes. This 

Table A-1. Effects of Assumptions and Approximations in Block Shear Equations

Specimens
Fy, 

(MPa)
Fu, 

(MPa)
t, 

(mm) nr

Pt/Rn

Eq. (1a) Eq. (6) CSA ECS AIJ

T7 373 537 8.4 2 1.21 1.06 1.05 1.59 1.38

T9 — — — 3 1.18 1.03 1.01 1.65 1.36

T11 — — — 4 1.13 0.99 0.96 1.64 1.32

T15 — — — 3 1.12 0.98 0.95 1.56 1.29

T8 786 822 7.7 2 0.90 1.00 0.89 1.21 1.04

T10 — — — 3 0.86 0.97 0.84 1.22 1.00

T12 — — — 4 0.82 0.94 0.80 1.20 0.96

T16 — — — 3 0.83 0.94 0.82 1.18 0.97

Aalberg and Larsen (1999)
Mean 1.01 0.99 0.91 1.41 1.16

COV 0.169 0.043 0.100 0.154 0.163

Note: dh = 19 mm; e1 = 38 mm; p = 48 mm; g = 48 mm
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Among the models in current standards, the Japanese 
one (AIJ, 2002) is the most accurate for the results shown 
in Table 4, where it is only about 10% conservative as com-
pared to the unconservative Canadian model (CSA, 2014) 
and the 20 to 30% conservatism in the AISC (AISC, 2016) 
and European (ECS, 2005) models. However, the AIJ equa-
tion, which assumes yielding along the gross shear planes 
with a reduced shear coefficient of 0.5 (AIJ, 2002)

 Rn = FuAnt + 0.5FyAgv (A-4)

is quite conservative in most cases. In addition to the first 
four specimens listed in Table A-1, the conservatism of 

Equation A-4 is 30% or more for many of the specimens 
tested by Udagawa and Yamada (1998), Huns et al. (2002), 
Mullin (2002), and Moze and Beg (2014).

In line with the results shown in Tables 3 and 4, the pro-
posed Equation 6 is shown to be reasonably accurate for all 
block shear specimens tested by Aalberg and Larsen (1999) 
and listed in Table A-1. It is the only equation that is consis-
tently accurate across all gusset plate specimens tested by 
independent research groups around the world.
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Analysis and Design of Cable-Stayed Steel Columns 
Using the Stiffness Probe Method
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ABSTRACT

The stiffness probe method (SPM) is a new numerical procedure that calculates buckling loads. SPM probes the local stiffness of a given 
structure at the point of application of a small transverse perturbation force as the applied load is increased. The local stiffness degrades from 
a maximum for an unloaded structure to zero at the buckling load. An artifice spring is added to the original structure that eventually absorbs 
the full perturbation force at a prescribed small deflection, thereby keeping structural deformations small as the buckling load is approached. 
As a result, using an indicator that approaches zero at buckling rather than having to rely on increasingly larger deflections at buckling as in 
conventional P-Δ methods, SPM ensures an accurate numerical result for the critical load. We use SPM herein to study the behavior of one 
and two cross-arm cable-stayed columns under applied load. A formula is given to calculate the minimum slenderness that justifies convert-
ing a tube into a cable-stayed column. Various factors such as cable prestrain, cable cross-sectional areas, and tiers of cross-arms affect-
ing column strength are examined for a series of cable-stayed columns. We find that cable-stayed columns may buckle either in a one-lobe 
symmetrical mode or two-lobe anti-symmetrical mode, the latter case being contrary to conventional thinking. A design example for a given 
cable-stayed column using the AISC Specification is presented. The effect of optimum cable prestrain to enhance column buckling strengths 
is discussed. A strength enhancement ratio (SER) is defined that evaluates the additional column strength gained after transforming a given 
steel tube into a cable-stayed column.

Keywords: analysis, behavior, buckling modes, eigenvectors, cable (slackening, stays, optimum prestraining), columns, design (ASD, LRFD), 
elastic stability, failure mode, numerical methods, residual tension, cross-arms, load (applied, external), spring (augmented, parallel, series), 
steel, stiffness probe, strength (enhancement, nominal).

INTRODUCTION

C able-stayed steel columns consist of a central steel 
tube, to which one or more sets of transverse cross-

arms are welded at equal spacings along the length and to 
which prestressed steel cables are attached as required to 
enhance column strength. Review of the existing literature 
indicates a number of papers that have dealt with the subject 
in various attempts to understand and predict their behavior 
and strength. The following investigators have contributed 
to this field: R.J. Smith et al. (1975), Hafez et al. (1979), 
Hathout et al. (1979), Temple (1977), Temple et al. (1984), 
E.A. Smith (1985), and Saito and Wadee (2009). We pres-
ent a new numerical approach to the subject that examines 
column behavior under axial load and calculates an accurate 
value of strength, followed by design using the 2010 AISC 
Specification for Structural Steel Buildings (AISC, 2010), 
hereafter referred to as the AISC Specification.

For this purpose, we first provide a simple introduction 
to the stiffness probe method (SPM), which was conceived 
jointly by the senior author and the late A.R. Robinson at the 
University of Illinois. R.E. Miller also contributed initially. 
Fundamentally, SPM is based on the incontrovertible fact 
that the stiffness of an axially compressed structure to resist 
the effects of a perturbation force or moment becomes zero 
only when subjected to its buckling load (Bleich et al., 1952; 
Hoff, 1941, 1956). We proceed to explain SPM first in full 
detail and then use the method specifically to calculate the 
buckling load of cable-stayed columns.

We recognize that two sets of internal forces are gener-
ated in any cable-stayed column—namely, compression in 
the central tube and tension in the stay cables. We identify 
these forces and provide equations for columns with one 
and two sets of cross-arms, respectively. We emphasize two 
distinct loading stages, initially at cable prestraining and 
finally at buckling. We also discuss two possible ways of 
specifying cable prestrains for use in the field and provide a 
formula to relate them both.

Cable slackening takes place as the external load increases 
because the applied compression on the tube causes shorten-
ing of both it and the cable stays. Ominous consequences to 
column stability may occur if total cable slackening takes 
place under service conditions. This effect could occur only 
if small amounts of cable prestrain were specified, a situa-
tion that must be prevented. We provide a formula to predict 
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the applied load at which total cable slackening occurs based 
on the initial amount of cable prestrain. For any case where 
the column load for total cable slackening is less than the col-
umn critical load, an enhancement of prestrain is required. 
We avoid this pitfall by specifying enough cable prestrain to 
make the load at which total cable slackening occurs to be 
greater than the column critical load by a reasonable margin.

We now calculate the critical load for a number of cable-
stayed columns. We find that there are cases where the 
governing mode for a cable-stayed column may not be the 
conventional one-lobe symmetrical mode but, rather, the 
two-lobe anti-symmetrical mode. This counterintuitive situ-
ation calls for designers to always calculate and examine 
both modes and then use the smaller of the two as the critical 
value for design. We found that for a given stayed column, 
the critical mode depends on the initial cable pretension. 
There is a value of the latter that gives the same critical load, 
Pcr, for both modes. This value is usually but not always 
the optimum prestrain. Thus, we label as optimum only the 
actual prestrain value that gives the maximum Pcr.

The fact that an antisymmetric two-lobe mode could 
become the governing buckling mode, instead of the con-
ventional symmetric one-lobe mode, was first pointed out 
for a given column using an analytical solution (Blumenthal, 
1937) and later verified numerically (Newmark, 1943). Both 
papers found the buckling load of a double-hinged column 
subjected to two opposing compression loads not at the ends 
but at the column mid-third points instead. The governing 
buckling mode corresponding to the smallest buckling load 
was an anti-symmetrical, two-lobe configuration. Newmark 
remarked at that time that “It is of interest and importance 
that the critical load corresponding to the anti-symmetrical 
deflection is lower than that corresponding to the symmetri-
cal configuration for the arrangement of loads chosen” and 
warned also that “this would not have been discovered if 
only symmetrical defection curves had been assumed.” This 
caveat also applies to the calculation of the critical load 
for a cable-stayed column, a fact that has been verified by 
Smith et al. (1975) as well as by our own calculations using 
SPM. Further work using SPM showed that had the distance 
between the two compressive loads been 0.361L instead of 
L/3, both buckling modes would have provided the same 
critical load at (π/0.361L)2 EI.

For columns provided with cross-arms in a cruciform con-
figuration, there are two principal axes about which buck-
ling of the column may occur. One axis is defined by the 
tube diameter where two opposite cross-arms are located. 
The other axis is at 45° with respect to the cross-arms. We 
studied columns with one and two sets of cross-arms, includ-
ing various areas of steel cables and prestrain levels, before 
concluding that the difference in buckling strength between 
the two axes is insignificant.

Designers shall not use the critical load, Pcr, to verify the 

strength of the supporting tube. Instead, they must use the 
actual compressive force, Ncr, in the tube, which is larger 
than Pcr by the amount of residual tension in the stay cables. 
We provide an example for this calculation using a given 
cable prestrain and find the AISC design strength for the 
given column for both LRFD and ASD values. For the sake 
of comparison, we now use the optimum cable prestrain and 
realize a major enhancement of the column design strength. 
Following this, we introduce the concept of a nominal 
strength enhancement ratio (SER) that effectively evaluates 
the additional strength gained by the unstayed-tube.

STIFFNESS PROBE METHOD

The stiffness probe method (SPM) is a new numerical pro-
cedure that can be used to evaluate the elastic stability of 
structures subjected to compressive forces. It is specifically 
used herein to calculate the buckling load of cable-stayed 
columns.

Consider a column made of a steel tube hinged at both 
ends and subjected to an axial load, P, (see Figure 1). The 
tube is reinforced with four steel cables, or rods, attached to 
each end and to the ends of horizontal cross-arms. The latter 
may be placed at either the mid-height of the column, at the 
mid-third points, or at equal spacing along the tube length as 
needed. Note that the cables are not continuous between the 
top and bottom ends of the tube but are segmental instead 
(see Figure 2). The schematic elevation and plan views of a 
one cross-arm column as shown in Figure 1 provide all nec-
essary structural and geometric information to analyze the 
column for elastic stability. A one cross-arm column is used 
for the sake of simplicity. Both principal axes for flexural 
buckling—namely, a-a and b-b—are shown. Axis a-a is for 
bending about a cruciform configuration of the stay cables, 
and axis b-b is for bending about a two-paired configura-
tion of stay cables. Two possible buckling modes—namely, 
a symmetric (one-lobe) and an anti-symmetric (two-lobe)—
must always be calculated to ascertain the lowest critical 
load, as either mode may govern buckling. Calculations 
of higher modes using SPM is possible as shown herein, 
although modes with three or higher number of lobes will 
not govern column design.

Characteristic to SPM are a perturbation force, PF, and 
an elastic artifice spring of stiffness Kspr. After both are 
attached to a given column, the latter is transformed into 
an augmented structure (Figure 1). For any given value of 
load P, the force PF triggers a transverse displacement δ(P) 
at its location on the column. For any P < Pcr, the column 
achieves an equilibrium configuration. At P = Pcr, the col-
umn buckles while the augmented structure still remains 
stable because of the enhanced stiffness Kspr provided by the 
artifice spring. We note that all of the above would apply as 
well if a perturbation moment PM and an artifice rotational 
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transverse displacement δ(P), the two components PFcol and 
PFspr can be calculated as follows:

( )P
( )
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PF PF
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col spr  
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spring of stiffness Krot were used instead of PF and Kspr, 
respectively.

As PF is applied to the augmented structure in the pres-
ence of the external load P, it is resisted by both the col-
umn and the artifice spring Kspr. We recognize these two 
components of PF as PFcol and PFspr, where PF = PFcol +	
PFspr. Because the column and the artifice spring actually 
behave as a set of two parallel springs of stiffness Kcol(P) 
and Kspr, respectively, we find that for any given value of the 

Fig. 1. Cable-stayed column showing applied load P and SPM parameters PF and Kspr.
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Note that Kspr is always constant, while Kcol(P) decreases 
as P increases. At P = 0, the column takes a substantial por-
tion of PF, while the artifice spring takes little. As P con-
tinues to increase, PFcol decreases while PFspr increases. At 
P = Pcr, the column is devoid of any stiffness and cannot 
support any portion of PF, resulting in PFcol = 0 and PFspr = 
PF. Thus, at buckling, the column is subjected exclusively to 
P and not at all to PF. Regardless of the value of PF used to 
trigger the column away from its initial vertical configura-
tion, the resulting Pcr is not affected by PF. This is because 
at P = Pcr, the column is no longer subjected to PF; the latter 
is fully resisted by the elastic spring alone. Similarly, the 
value of Kspr does not affect the resulting value of Pcr. It 
only decides the limiting value of the transverse deflection 
for an equilibrium position of the augmented structure at  
P = Pcr. Therefore, any reasonable set of values for PF and 
Kspr (say, PF = 0.1 kips and Kspr = 0.1 kip/in., or PF = 0.5 
kips and Kspr  = 0.2 kip/in.) should render the same result 
for Pcr. We have verified that the equilibrium configurations 
at Pcr from the preceding two sets of PF and Kspr have the 
same shape, except that the target displacement is 0.1 kip/0.1  
kip/in. = 1 in. for the former, and 0.5 kip/0.2 kip/in. = 2.5 in. 
for the latter set.

The purpose of using an artifice spring is thus clear. To 
wit, Kspr keeps the augmented structure stable even as the 
applied load approaches the column critical load. As a result, 
there is always computational control using SPM, and at the 

location of PF, the transverse deflection is always small and 
limited to the target value. An accurate calculation of Pcr 
is thus possible, with as many significant digits as desired. 
In the absence of an artifice spring, transverse deflections 
at P close to Pcr may increase nonsensically toward infin-
ity, making an accurate calculation of Pcr difficult. We note 
again that at P = Pcr, all of the PF has been absorbed by the 
artifice spring, and none of it is acting on the column. As 
such, SPM differs substantially from the conventional way 
of triggering P-δ effects for which the initial perturbation 
force remains in the column and displacements grow uncon-
trollably as P approaches Pcr.

The artifice spring must be placed so that it acts together 
with the column as two springs in parallel, and not in series 
(Figure  2). For the configuration shown in Figure  2a, the 
column is between the PF and the artifice spring; both the 
column and the artifice spring are subjected to the same dis-
placement, and both share PF according to their respective 
stiffness, Kcol(P) and Kspr. This is an acceptable configura-
tion that we have used for the column shown in Figure 1. 
One could also achieve the same result by placing the PF 
between the column and the artifice spring (Figure  2b). 
What one cannot do is place the artifice spring between the 
column and the PF (Figure 2c). Such a location would make 
the artifice spring and the column act as two springs in 
series, rather than in parallel. As a result, the PF would not 
be shared because both the artifice spring and the column 

 (a) (b) (c)

Fig. 2. Three possible ways for placing the PF and Kspr with respect to the column.
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co-author as part of his doctoral dissertation at the Depart-
ment of Civil Engineering at the University of Illinois at 
Urbana-Champaign (Krishnan, 2015). SPM has been taught 
in class to graduate students by the senior author since 2010.

Numerical Example

We apply SPM to find the buckling modes for the stayed 
column shown in Figure 1 that are within the possible load 
range, 0 ≤ P ≤ Psl. Note that Psl is the applied load that would 
be large enough to cause the stay cables to fully slacken. 
When this happens at T(P) = 0, the cables become ineffec-
tive thereby rendering the column into an unstayed tube. 
Let the steel cables be prestrained to εsspec = 0.002, which 
results in an initial prestrain value εsini = 0.00169 after losses 
caused by compression of the tube. Also, let PF = 0.1 kips 
and Kspr = 0.1 kip/in.

Starting at P = 0, we increase the load, P, gradually for 
the sake of probing the variation of Kcol with P in order to 
ascertain Pcr. The results are given in Figures 3 and 4.

For P = 0:

δ(0) = 0.0289 in.

Kavg (0) = PF/δ(0)
	 	 = 0.100 kip/0.0289 in.
	 	 = 3.46 kip/in.

Kcol(0) = Kavg(0) − Kspr

	 	 = 3.46 kip/in. − 0.100 kip/in.
	 	 = 3.36 kip/in.

Further increasing P results in Pcr = 343 kips at Kcol = 0. At 
this point, we also find:

δ = δmax

	 = PF/Kspr

	 = 0.100 kip/0.100 kip/in.
	 = 1.00 in.

Note that we have chosen not to plot Kaug(P) because it 
is irrelevant for design and also for the sake of clarity. Had 
we done so, the plot of Kaug(P) would have been exactly 
like Kcol(P) except separated above it by a vertical distance 
Kspr = 0.1 kip/in. As such, the value of P that would cause 
buckling of the entire augmented structure would always be 
larger than Pcr and lie to the right of it in Figure 3.

Finding Pcr = 343 kips is all a designer needs, and no fur-
ther work would be necessary, as far as instability is con-
cerned, because this is the load at which the given column 
would fail. Nevertheless, if we look at the column eigenvec-
tor (Figure 4b), we might be surprised to recognize it as a 
two-lobe, anti-symmetric configuration that is convention-
ally associated by designers with the second mode of buck-
ling and not the first. Further loading of the column gives 
the actual second buckling mode as a one-lobe configura-
tion at Pcr2 = 422 kips > Pcr1 = 343 kips (Figures 3 and 4d). 

would take the whole PF, except at different displacements. 
To summarize, never place the artifice spring between the 
PF and the column.

For any given value of the load, P, we define the stiff-
ness of the augmented structure, Kaug(P), as the sum of 
the column stiffness, Kcol(P), and artifice spring stiffness, 
Kspr—that is, Kaug(P) = Kcol(P) + Kspr. We calculate Kaug(P) 
as the ratio PF/δ(P), where δ(P) is the transverse displace-
ment of the column (in the presence of P) as measured at the 
location of PF. We may use any commercial program with 
a P-δ analysis option such as SAP 2000, to calculate δ(P). 
The quantities Kcol(P) and Kaug(P) are functions of P, while 
Kspr is a constant. Once the quantity Kaug(P) is calculated as 
before, we may find Kcol(P) as follows:

 Kcol(P) = Kaug(P) − Kspr (3)

For an unloaded structure—that is, at P = 0—Kaug(0) and 
Kcol(0) are maximum values. As P increases, both Kaug(P) 
and Kcol(P) diminish in value. We probe the stiffness Kcol(P) 
as P increases. Instability ensues at P = Pcr when the stiff-
ness of the column Kcol(Pcr) becomes zero. This leads to 
Kaug(Pcr) − Kspr = 0, or Kaug(Pcr) = Kspr. Note that although 
the column has buckled, the augmented structure remains 
stable at P = Pcr because its remnant stiffness Kaug(Pcr) = 
Kspr is greater than zero. Users of SPM may, alternatively, 
probe the transverse displacement δ(P), instead of Kcol(P), as 
an indicator to check the onset of instability. In which case, 
δ < δmax denotes P < Pcr, while δ = δmax = PF/Kspr is true 
only at P = Pcr. In addition, either the value of PFcol(P) or 
PFspr(P) may also be probed as other possible indicators of 
instability. As such, instability may ensue when PFcol(P) = 
0 or PFspr(P) = PF.

The correctness and accuracy of SPM results have 
been verified using cases with closed-form solutions from 
Timoshenko and Gere (1961), Gurfinkel and Robinson 
(1965), Column Research Committee of Japan (1971), and 
others. SPM may be used to calculate structural instability 
caused not just by static compression loads, as discussed in 
the paper, but also by vibrations at their natural frequencies. 
The concept is the same whether instability ensues by either 
the application of a static load or by structural excitation to 
a natural frequency. They both would cause zero stiffness 
in any given structure. As such, the P-Δ effects caused by 
vibrating masses in reducing the natural frequency of a given 
structure may be readily calculated using SPM. That said, 
SPM is applicable to any problem for which the stiffness 
of a structure will go to zero, thereby leading to instability. 
Some other examples include lean-on columns, polygonal 
frames, arches, and domes. SPM has also been used in prac-
tice by the senior author in 2007 for stability calculations of 
a huge, steel-framed, paper storage structure that collapsed 
in Wisconsin. The method was used to calculate the critical 
load of cable-stayed struts on cable-dome structures by the 
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Fig. 3. Variation of column stiffness Kcol with applied load P, indicating Pcr for the first 
three modes of buckling and Psl at the end of range. Note that the two-lobe buckling mode governs.

This sequence of buckling configurations is definitively 
counterintuitive to conventional thinking. Finally, we find 
a third buckling mode (a three-lobe configuration) at Pcr3 = 
956 kips, which is still less than Psl = 1,048 kips, although 
otherwise irrelevant (Figure 3). A summary of the results is 
shown in Table 1.

We emphasize in both Figures 3 and 4 that stable equilib-
rium for the given column under applied compression load, 
even ideally, would be only possible for P < 343 kips, and 
any applied load larger than that would not be realistic, but 
only a mathematical curiosity. In Figure 4, note that for all 
three buckling modes, the column is only subjected to the 

Table 1. Single Cross-Arm Column as Shown in Figure 1. Summary of SPM Results for the First Three Buckling 
Modes (results in bold characters are for the governing two-lobe buckling mode)

Buckling 
Lobes

Applied 
Load

Tension in 
Cables

Force in 
Tube

Transverse 
Display at 

PF location Stiffness 
Perturbation Force 

Components

Augmented 
Structure Column

Artifice 
Spring Column

No.
P

kips
∑Tcosα

kips
N

kips
δ(P)1

in.
Kaug(P)2

kip/in.
Kcol(P)3

kip/in.
PFspr(P)4

kips
PFcol(P)5

kips

— 0 162 162 0.0289 3.46 3.36 0.0029 0.0971

2 343 109 452 1 0.1 0 0.1 0

1 422 97 519 1 0.1 0 0.1 0

3 956 15 971 1 0.1 0 0.1 0
Notes
1 Maximum value of δ at P = Pcr is δmax = PF/Kspr. For the given case, δmax = 1 in.
2 Kaug(P) = PF/δ(P); where PF = 0.1 kip.
3 Kcol(P) = Kaug(P) − Kspr ; where Kspr = 0.1 kip/in.
4 PFspr(P) = Kspr δ(P).  
5 PFcol(P) = PF − PFspr(P).
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an obvious impossibility when the PF is located therein. To 
find the two-lobe buckling mode, use the column in Figure 1 
again, except we apply instead a perturbation moment PM =
1 kip-in. and rotational artifice spring Krot = 100 kip-in./rad 
at mid-height, which results in θmax = 1/100 = 0.01 rad, at 
Pcr. Use SPM as before to obtain the two-lobe mode at Pcr = 
343 kips as before. Neither the one-lobe nor the three-lobe 
modes may be captured using this model because they both 
require θ = 0 at column mid-height, which is again an obvi-
ous impossibility when PM is located therein. Comparing 
the results from the two models, we find that the governing 
Pcr = 343 kips corresponds to the two-lobe configuration.

The calculation process for the preceding simplified 
models need not start at P = 0. We may use any reasonable 
value of P1 > 0 for this purpose. If Kcol(P1) were found to be 

corresponding Pcr and not to any transverse force or hori-
zontal reactions at the column supports. This is true because 
using SPM guarantees that, at any P = Pcr, all of the PF is 
absorbed by the artifice spring—that is, PFspr = PF. As such, 
no part of PF remains on the structure—that is, PFcol = 0.

Simplified SPM Models for Calculating Pcr

Let us try the following two simple models to ascertain 
which buckling mode governs. To find the one-lobe buck-
ling mode, use the column in Figure 1 with the same per-
turbation set PF  = 0.1 kips and Kspr  = 0.1 kip/in., except 
located now at mid-height. Using SPM, again we obtain 
Pcr = 422 kips, at δmax = 1 in. as before. Note that the two-
lobe mode would not be captured by this model because it 
requires zero displacement at column mid-height, which is 

Fig. 4. Column eigenvectors at various loading stages, including a tabulated 
list of variables; cable stays and cross-arms are not shown for clarity.
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positive, this would mean P1 < Pcr. We then try P2 > P1 and 
calculate Kcol(P2). A negative value for Kcol(P2) would mean 
P2 > Pcr. Linear interpolation between Kcol(P1) and Kcol(P2) 
should provide an educated guess for the next trial P = P3. 
The process should converge quickly to a value of Kcol(Pi) as 
close to zero as possible or to a value small enough to satisfy 
the designer’s criterion for accuracy.

INTERNAL FORCES GENERATED  
IN CABLE-STAYED COLUMNS

Cable-stayed columns are usually hinged at both ends and 
braced there against lateral displacements. Actual bracing 
may take place either by direct attachment or through dia-
phragm action of the floor or roof against shear walls or 
X-braced frames available elsewhere in the structure. For 
design purposes, we emphasize two distinct stages of load-
ing: at initial cable stressing and at ultimate cable stressing. 
Vertical equilibrium calls for the following equation:

 N = P + ∑T(P)cosα (4)

to be true at all times, where ∑T(P) is the sum of the ten-
sion of all four individual cables at any given load P and 
α is the angle between each cable and the axis of the tube. 
We also consider the small variation of the angle α between 
the initial stage and any given value of P that is caused by 
column shortening. Although practically this variation is 
negligible, we have accounted for it by automatically updat-
ing the angle α as the load increases. We recognize that 
N(P) > P at all times. The difference N(P) − P is largest at 
cable prestressing (P = 0), and smallest at buckling (P = Pcr) 
when the cables are subjected to a residual tension, Tres > 0. 
Only for the unacceptable case when cables slacken totally 
as P increases (usually because of small initial prestress-
ing) would ∑T = 0 and N(P) = P. The quantity Tres depends 
mostly on the amount of initial cable prestressing To, which 
is gradually reduced as the column shortens by a strain Δε, 
while inclined cables shorten simultaneously, except by a 
smaller strain equal to Δεcos2α.

Consider now a stayed column with two tiers of cross-
arms. Force equilibrium at the two end segments of this col-
umn is also given by Equation 4. For the central segment, 
the same equation holds true, except for α = 0. Our previous 
discussion on the difference between forces N and P is appli-
cable here as well. However, we note that the change in strain 
imposed on the central segment by a change in applied load, 
is identical to that in the corresponding steel cables. This is 
because being parallel to each other makes the cables and 
the central segment of the tube of the same length. Also for 
α = 0, Δεcos2α = Δε, which results in the tube internal force 
N being always somewhat larger in the central rather than in 
the end segments. Regardless of the number of tiers of cross-
arms, it is the maximum force in the tube N(Pcr), and not the 
applied Pcr, that governs the design of the tube.

PRESTRAINING THE STAYED CABLES

The amount of cable prestraining influences the behavior of 
a stayed column under axial load. For any given cable-stayed 
column, the amount of initial straining that is imposed on 
the stays determines the axial strength of the column. Con-
sider the stayed column shown in Figure 1. We may specify 
the amount of cable prestrain by requiring that either the 
cables be stretched by a certain amount (as measured by 
cable elongation or recovery) or, at the end of the stretch-
ing operation, they be prestrained to a given level (as mea-
sured by a strain gauge or transverse vibration device). Let 
us specify a prestrain εsspec = 0.002 for the inclined cable seg-
ment measuring 468 in. We calculate the cable elongation at 
0.002(468 in.) = 0.936 in. but recognize that, at the end of the 
cable-stretching operation, the actual prestrain in the cable 
would be less than 0.002 because of tube shortening from 
cable-induced compression. We may calculate the prestrain 
in the cable using the following approximate formula:
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where 

εsini =  actual initial strain in the stays at P = 0
εsspec =  specified prestrain
∑As = total area of the cables, in.2

A  = area of the tube, in.2

Es and E =  respective moduli of elasticity of the cable-
stays and the tube, ksi

α  =  initial value of the angle between the cables 
and the axis of the tube

Substituting εsspec = 0.002 and the values of other variables 
shown in Figure 1 into Equation 5, we obtain εsini = 0.001693 
< 0.002, as expected. Compare this value to εsini = 0.001695 
obtained using SAP 2000 or an equivalent program, which 
accounts not just for the shortening of the column as in 
Equation 5, but also for the resulting small increase in angle 
α, which Equation 5 would not do. The two results are prac-
tically identical.

The second option considers the specified prestrain as 
that required in the cable at the end of the prestretching 
operation—say, εsini = 0.002. This is the strain to be read in a 
strain gauge attached to the stay when we stop stretching the 
cable. Using Equation 5, we calculate an equivalent εsspec = 
0.002363 and a corresponding cable elongation of 1.105 in. 
As expected, both values for the second option are larger 
than those corresponding to the first option. For computa-
tional purposes, we recommend εsspec, while for implementa-
tion in the field, the anticipated value of εsini would be easier 
to verify for consistency. Whichever option is used must be 
clearly specified by the designer for proper implementation 
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specified cable prestrain to a value large enough to guaran-
tee compliance.

Note that for the case of a column with two cross-arms, 
where cable slackening may first occur at the central seg-
ment of the tube, use α = 0 in Equations 6 and 7.

2. Load at Which Steel Tube Yields

We now consider the possibility that the steel tube for the 
column in Figure 1 may yield under a force, Ny, caused by a 
load Py < Pcr. If such were the case, total slackening of the 
stay cables might occur abruptly following inelastic defor-
mations in the steel tube. Failure would result from the col-
umn reverting to an unstayed-tube condition.

Hand calculation of Py is possible using the following lin-
earized relation between Py and Psl:

 Py = Psl(Ny − No)/(Nsl − No) (8)

which assumes that the cable inclination angle α remains 
constant. Substituting data already available to us in Equa-
tion 8, such as No = 162 kips from Table 1, Psl = Nsl = 1,048 
kips, and Ny = 758 kips from Figure 3, we obtain Py = 706 
kips. This value is also indicated by a thick vertical line 
in Figure  3. Because Py > Pcr  = 343 kips, the latter value 
remains the governing critical load.

DECIDING COLUMN CRITICAL AXIS

The core of cable-stayed columns is conventionally made 
of a steel tube, although we note that a solid wood core has 
been used in Germany (Keil, 2000). Whether hollow or 
solid, the core is axisymmetric and may buckle about any 
transverse plane that contains its axis. However, once four 
stay cables are attached in cruciform fashion to the core, 
two distinct transverse planes are created about which the 
column may buckle. These we have labeled a-a (case A) and 
b-b (case B) in Figure 1. Plane a-a passes through the center 
of the core and two of the stays. Plane b-b makes a 45° angle 
with plane a-a, and does not contain any of the cable stays. 
Both planes create corresponding axes of bending about the 
column cross-section.

We calculate Pcr for both such axes of the one cross-arm 
column shown in Figure 1 using SPM. Various cable pre-
strains are considered. The relative difference between any 
pair of results for cases A and B for any given prestrain is 
small and well within 2% of each other. Similar results are 
found for a stayed column with two cross-arms. For prac-
tical design purposes, the buckling strength of a stayed 
column may be considered the same about either of its prin-
cipal axes. These findings stem from our selected numerical 
examples and are not the result of a parametric study.

Tacitly, however, the transverse axis about which the col-
umn section buckles is within the prerogative of the column 
designers, who ultimately decide the position of both pin 

in the field. As far as our study is concerned, we shall show 
both corresponding values in our results. Further, we expect 
that a designer would specify low-relaxation cables. As 
such, any consideration of time-induced prestrain loss in the 
cables can be safely ignored.

LIMIT LOADS

We now discuss the following two limit loads, namely, 
1. Load at which stay cables fully slacken; and 2. Load at 
which the steel tube yields. We calculate these loads to ver-
ify if any of the two might be lower than the column critical 
load.

1. Load at Which Stay Cables Fully Slacken

Design of a cable-stayed column is not adequate unless the 
stays remain taut as the load varies from zero to ultimate. 
We must guarantee that Psl > Pcr is satisfied by a reason-
able margin, where Psl is the load at which full slackening 
may occur and Pcr is the column buckling strength. Let us 
calculate Psl now.

We first recognize that the initial tensile strain in the stay 
cables, εsini, is reduced by the load P. Also, the actual strain 
in the cables, εs(P), is given as the difference between εsini 
and the strain caused by the shortening of the tube under the 
load, P. Using elastic analysis, we find:
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where all terms have been previously identified. Consider 
the column example in Figure 1. Let us calculate if the stay 
cables are still taut for P = Pcr = 343 kips (Figure 3). We have 
already found εsini = 0.001693 after specifying εsspec = 0.002. 
Substituting P = 343 kips and the values of all other vari-
ables in Equation 6, we find εs(P) = 0.001693 − 0.000554 = 
0.00114 > 0. Thus, at P = 343 kips, there is residual tension 
in the cables at Tr = 0.00114 (24,000 ksi)(1 in.2) = 27.36 kip/
cable. As such, full cable slackening will not occur at a load 
smaller than the critical load. To calculate the actual value 
of the load P = Psl at which full slackening occurs, we sub-
stitute εs(Psl) = 0 into Equation 6 and obtain:
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Using Equation 7 or SAP 2000, we find Psl = 1,048 kips 
after substituting all previous values from Figure 1 for the 
given column. Note this limit load is indicated by a thick 
vertical line in Figure 3. Because Pcr = 343 kips < Psl, the 
stay cables will not fully slacken before failure. For the unac-
ceptable case where Psl < Pcr, the designer must increase the 
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ends and their corresponding axis of rotation. The latter are 
conventionally contained in the same vertical plane, one at 
the top and one at the bottom of the column. As such, col-
umn buckling may take place only in a vertical plane nor-
mal to the axis of rotation of both hinges. Usually, designers 
provide hinges made of opposing vertical steel plates that 
transfer the load through a steel pin placed across them. This 
hinge is not perfect in that it may provide a small rotational 
restraint, mostly generated by friction of the transverse pin 
against its supporting plates. This may cause the actual ulti-
mate load to exceed Pcr by a margin. Thus, calculating Pcr 
as if the column were ideally double hinged is conservative.

The axis of buckling, whether it is case A or B, is deter-
mined by the designer’s selection of the position of the end 
hinges. As a result, only Pcr about the actual axis of buckling 
need be calculated. Buckling about the other axis would call 
for larger values of Pcr because of the resulting rotational 
restraint at the ends. For the same reason, if the two end 
hinges were placed in planes normal, rather than parallel, 
to each other, one could expect higher values of Pcr. In the 
extreme case where fixed ends were provided, using either 
bolted or welded end-plate connections instead of hinges 
will result in even higher values of Pcr. Using fixed-ends to 
enhance Pcr may become more cost-effective for large slen-
derness of the tube. The subject of cable-stayed columns on 
end supports other than hinges is outside the scope of this 
paper.

CRITICAL LOAD

Previously we showed that cable-stayed columns may fail 
by cable total slackening at an axial load that causes stayed-
cable action to cease and the column to revert to a slender 
unstayed tube. However, the most prevalent cause for failure 
of these naturally slender columns is at an applied load equal 
to Pcr. Even after Pcr is calculated, we must design the tube 
to resist the force N(Pcr). This, because Ncr > Pcr due to the 
additional compression imposed by the residual tension in 
the cables (see Equation 4). Once N(Pcr) is calculated, the 
design procedure for a cable-stayed column need not be dif-
ferent from that provided by the AISC Specification (2010) 
for a conventional steel column.

For any given column, Pcr is calculated using SPM to find 
the lowest value, which is given by either the one-lobe sym-
metric or the two-lobe anti-symmetric modes of buckling. 
As shown in Figures 3 and 4, this example confirmed that 
the anti-symmetric mode gives the lowest Pcr and may thus 
prevail as the governing condition. In the following section, 
we check the design validity of the tube selected for Figure 1.

First, however, we study the effects of cable size and 
number of cross-arms on the axial strength of cable-stayed 
columns. We run a series of numerical evaluations for the 
governing buckling load for two types of columns, one with 

a single mid-height cross-arm and the other with two cross-
arms at mid-third points. For either case, we consider four 
cable stays, placed orthogonally to each other, and use three 
specific areas of steel cable, namely, As  = 0.5  in.2, 2As  = 
1.0 in.2 and 4As = 2.0 in.2 per cable. Various levels of cable 
prestrain ranging between zero and 0.004 are used.

The results are shown in two sets of three plots each (see 
Figure 5). All plots show the two respective variations of Pcr 
(but Ncr only for governing Pcr) with cable prestrains εsspec 

and εsini. Specifically shown is the following information: 
(1) column buckling load, Pcr, for the two buckling modes, 
including the governing Pcr shown in bold; (2)  compres-
sion force in the tube, Nc, for the governing mode only; and 
(3)  two indicators of tube compressive strength—namely, 
Euler buckling load of the unstayed tube, NE = (π/L)2 EI = 
98.86 kips as the lower limit, and yield load, Ny  = AFy  = 
758 kips of a robust short tube as the upper limit. Each point 
indicates the results for either the one or two cross-arm col-
umn at a given cable prestrain. It is always true that (1) Ncr > 
Pcr and (2) the quantity Tres = Ncr − Pcr measures the residual 
tension in the stay cables. Theoretically, for a given solu-
tion to be acceptable, Ncr must not exceed the upper limit, 
Ny. However, to account for potential nonlinear behavior and 
uncertainties predicting column strength, we conservatively 
recommend that this limit be taken instead as 0.85Ny. If the 
latter value were exceeded by Ncr, a designer should con-
sider specifying a higher yield strength for the steel.

Engineers interested in drawing the most value from their 
designs may wish to use the optimum cable prestrain for that 
purpose. We define this prestrain as that which generates 
the largest Pcr of the governing set; see the bold variations in 
each plot of Figure 5. For the four plots in Figures 5b and 5c, 
the optimum prestrain is found at the intersection of the Pcr 
(symmetric) and the Pcr (anti-symmetric) buckling modes. 
As such, it is the prestrain at which both modes give the 
same value of Pcr. For the two plots in Figure 5a, the varia-
tions of Pcr do not intersect; the optimum prestrain for both 
plots is given by the largest value of the Pcr (symmetric) vari-
ations. Clearly, for the latter case, the anti-symmetric buck-
ling mode never governs. This makes the resulting stayed 
columns behave as conventional columns if ever loaded to 
buckling. Optimum prestrain points are identified by large 
solid circles in Figure 5.

We recognize both quantities Ny and NE as approximate 
bounds to the corresponding actual values for the lower and 
upper strengths, respectively, of the cable-stayed column. As 
such, it may not be unreasonable to take the vertical distance 
between Ny and NE in Figure 5 as an approximate indicator 
of the maximum amount of strength enhancement caused 
by the transformation of a steel tube into a cable-stayed col-
umn. Justification for this transformation increases with the 
quantity Ny − NE, as in the case of slender columns. From a 
strength point of view, tubes need not be transformed when 
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Fig. 5. Variation of Pcr and Ncr with εsspec and εsini for single and double cross-arm columns with four cables each at 
(a) 0.5 in.2, (b) 1.0 in.2 and (c) 2.0 in.2. Pcr is given for both symmetrical and anti-symmetrical modes. The governing Pcr variation 

is shown in bold. Ncr is only shown for the governing Pcr . Optimum cable prestrain for maximum Pcr is shown by large solid circles.
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the quantity NE ≥ Ny as in the case of robust tubes. On the 
other hand, if Ny > NE were true for a given tube, a simple 
indicator (of the minimum value of slenderness for a double-
hinged tube) that might justify transforming it into a cable-
stayed column would be obtained as follows:

 
( ) = π

min
L/ r E/Fy  

(9)

Note, however, that the additional costs in materials and 
labor that are associated with cable-stayed columns may 
make the preceding limit on slenderness substantially 
smaller than the actual practical value.

For the steel tube used in this study (Figure 1), we sub-
stitute E = 29,000 ksi, Fy = 42 ksi, in Equation 9 and obtain 
(L/r)min = 82.55 and Lmin = 82.55(4.07 in.) = 336 in. Compare 
this to the actual L/r of the tube at 930.71 in./4.07 in. = 229 > 
82.55. This difference may be enough to justify convert-
ing the given steel tube into a cable-stayed column to seek 
additional compressive strength. An alternative solution for 
using instead a larger and heavier conventional steel tube 
may be less attractive.

All six plots in Figure 5 show two distinct variations for 
Pcr as cable prestrain increases. There is first a steep increase 
to a maximum value of Pcr at a certain optimum cable pre-
strain. This is followed by a gradual decline for Pcr as cable 
prestrain increases beyond the optimum. For the initial seg-
ment, we find the quantity Tres = Ncr − Pcr is rather small. It is 
only past the optimum value for Pcr that Tres increases gradu-
ally as cable prestrain increases. We have no structural con-
cern with the latter effect unless it causes the compression 
force in the tube, N, to reach an unacceptable stress level 
under service conditions that would require using a heavier 
tube. There is no good reason to seek a larger prestrain for 
the stay cables than that necessary to obtain the optimum 
value for Pcr (Figure 5).

At the low end of cable prestrains, total slackening may 
result from the loss of cable tension as the applied axial 
load increases, thereby negating cable-stayed action for the 
column. Thus, all six plots in Figure 5 indicate an AVOID 
range for prestrain that leads to total cable slackening under 
the applied load. Designers should heed this advice by mak-
ing sure that enough prestraining is specified to prevent pre-
mature failure.

We now examine Figure 5 again to compare the strength 
of stayed-columns with either one or two cross-arms for the 
same given cable areas and prestrain. All columns with one 
cross-arm provide a smaller buckling strength, case by case, 
than corresponding columns equipped with two cross-arms. 
We conclude that cable-stayed columns with two cross-arms 
are more efficient than those with one cross-arm because 
they require a smaller amount of cable area to achieve the 
same strength. Whether they are also more cost efficient 
would require a comparison accounting for the cost of addi-
tional cross-arms, connections and labor.

DESIGN AXIAL LOAD

Calculation of the critical load of a stayed column, Pcr, is fol-
lowed by determination of its nominal compressive strength, 
Pn = FcrAg, where Fcr is the nominal critical stress and Ag is 
the gross area of the tube. We use the provisions of AISC 
Specification Chapter E, Section E3 (AISC, 2010) to calcu-
late Pn for the one cross-arm stayed-column shown in Fig-
ure 1. Our previous calculations using SPM (see Figure 3 and 
Table 1) indicate that the two-lobe rather than the one-lobe 
buckling configuration governs the strength of the column. 
We obtain Pcr = 343 kips from Table 1. This corresponds to 
a compression force in the tube, Ncr = 452 kips, for which the 
compressive stress, given by Ncr/A = 452 kips/18.06 in.2 = 25 
ksi. This is well within the elastic range for steel specified 
at 42 ksi yield strength and our recommended 0.85(42 ksi) = 
37.5 ksi maximum compressive stress. There is also a resid-
ual vertical tension force in the stay cables, ∑Tcosα = 109 
kips. These results verify Ncr  = Pcr  + ∑Tcosα. We recog-
nize that it is the force in the tube, Ncr, and not the applied 
load, Pcr, that controls the nominal compressive strength 
of the stayed column. As such, the value of AISC’s design 
strength, Fcr, depends exclusively on the tube.

We may find the equivalent slenderness ratio of the cable-
stayed tube, kL/r, using:

= π

⎛
⎝

⎞
⎠

N
EA

kL

r

cr

2

2

Solving for kL/r:

( )( )

= π

=
π

= <

kL

r

EA

N

29,000 ksi 18.06 in.

452 kips

107 200

cr

2

2 2

Because AISC’s control quantity λ = 4.71 =E/Fy 	
4.71 = 123.8 > 107/42 ksi29,000 ksi , we calculate Fcr 
using AISC Specification Equation E3-2:

 

=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

F F0.658cr

F

F
y

y

e

 

(Spec. Eq. E3-2)

where

= π

⎛
⎝

⎞
⎠

F
E

kL
r

e

2

2

 

(Spec. Eq. E3-4)
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( )

= π

=

F
29,000 ksi

107

25 ksi

e

2
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( )=
=

F 0.877 5.46 ksi

4.79 ksi
cr

Using this value of Fcr, Pn,tube is calculated as:

( )( )=

= <<

P 18.06 in. 4.79 ksi

86.5 kips 252 kips

n tube,
2

The nominal strength enhancement of the cable-stayed 
column over that of the tube alone is measured by the dif-
ference of the corresponding nominal strengths, which is 
substantial:

− = −P P 252 kips 86.5 kips

= 165.5kips
n n tube,

The nominal strength enhancement ratio (SER) may be 
defined as the ratio (Pn − Pn,tube)/Pn,tube. For the given col-
umn, we find SER = 165.5 kips/86.5 kips = 1.91. In other 
words, the relative nominal strength of the cable-stayed tube 
will be 2.91 times as large as that of the unstayed-tube.

At this point, a designer may question whether higher col-
umn strength could have been attained had a cable prestrain 
other than εsspec = 0.002 been chosen. It behooves the designer 
to do so as our previous work clearly indicates (see Figure 5, 
plot 1b). Thus, had the optimum prestrain at εsspec = 0.000888 
been found first and selected for use, this new design would 
have provided No = 71.4 kips at P = 0, Pcr = 446 kips and 
Ncr = 449 kips from SPM. Now using the AISC Specifica-
tion obtain Fe = 24.9 ksi, Fcr = 20.7 ksi, Nn = 374 kips, and 
finally, Pn = 357 kips. The latter value exceeds that of the 
previous design, Pn = 253 kips, by a substantial margin. This 
is due to the much smaller cable residual tension 39.2 kips at 
optimum prestrain εsspec = 0.000888 versus 139 kips at εsspec = 
0.002. Even when a designer would likely not know the opti-
mum cable prestrain at the outset, evaluating a few values of 
cable prestrain may help enhance Pn as desired.

SUMMARY AND CONCLUSIONS

1. Adding cross-arms and cables to a slender steel 
tube transforms it into a cable-stayed column with a 
substantially larger axial compressive strength. A simple 
approximate formula is given that evaluates the minimum 
tube slenderness for which this transformation may be 
justified. Because the formula is based only on strength 
considerations, and does not account for additional costs 
involved in the transformation, the result should be 
considered a low estimate.

2. A cable-stayed column with two cross-arms at the mid-
third points of its height may resist a larger applied 
compression load for the same size cables and prestraining 
than an identical column with only one set of cross-arms 
at mid-height.

and then,

( )=
⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

=

F 0.658 42 ksi

20.8 ksi

cr

42 ksi

25 ksi

With this value of Fcr, the nominal compressive strength of 
the tube is:

( )( )
=

=

=

N F A

20.8 ksi 18.06 in.

375 kips

a cr g

2

Let us now calculate the value of Pn on the column that 
would correspond to the preceding value of Nn. Hand cal-
culation is possible using the following linearized relation 
between Pn and Nn, which is similar to Equation 8, except 
adapted to AISC design notations:

 Pn = Pcr(Nn − No)/ (Ncr − No) (10)

Equation  10 also assumes that the cable inclination angle 
α remains constant. Using Table 1, we find No = 162 kips, 
Ncr = 452 kips, and Pcr = 343 kips. Substituting these values 
and the preceding Nn = 375 kips into Equation 10, we find 
Pn = 252 kips. This value is slightly larger than the more 
accurate value 251.6 kips provided by computer analysis that 
accounts for the slight increase in the angle α due to tube 
shortening under load.

Designers using LRFD or ASD may now take the design 
compressive strength at ϕPn = 0.90(252 kips) = 226 kips or 
the allowable compressive strength at Pn/Ω = 252 kips/1.67 = 
151 kips, respectively. Let us compare Pn = 252 kips for the 
given cable-stayed column to that of the tube alone. We find 
kL/r = 1.0(931 in.)/(4.07 in.) = 229 > 200. While this exceeds 
the recommended limit of 200 for non-stayed columns as 
mentioned in AISC Specification Section E2 (AISC, 2010), 
it is viewed as acceptable for the purpose of strength com-
parison. We now calculate Pn:

Pn = AFcr 

Because λ = 123.8 < kL/r = 229, use AISC Specification 
Equation E3-3:

 Fcr = 0.877Fe (Spec. Eq. E3-3)

where,

= π

⎛
⎝
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kL
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(Spec. Eq. E3-4)
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and then,
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3. The amount of cable prestraining is important. Too 
little prestrain must be avoided to prevent total cable 
slackening and premature column failure under applied 
load. Too much prestrain may cause overstressing of the 
steel tube and a subsequent reduction in column strength. 
An optimum value for cable prestraining that provides the 
highest column strength for a given set of cables can be 
calculated.

4. Once the stay cables are pretensioned, they impose an 
initial compression force on the tube. The applied load 
increases the tube compression force but reduces the cable 
initial tension. The axial compression force in the tube 
is always larger than the applied load by the amount of 
residual tension in the cables. It is the axial force in the 
tube, and not the applied load causing column buckling, 
that must be used to verify the nominal strength of the 
cable-stayed column.

5. Premature failure caused by total cable slackening due 
to low prestraining can and must be avoided. Failure of 
cable-stayed tubed caused by buckling under increasing 
axial load may occur in both the symmetric (one-lobe) 
and anti-symmetric (two-lobe) modes. The critical load 
for both modes must be calculated to ascertain which 
one governs. Although counterintuitive to conventional 
column design, it is a fact that the anti-symmetric mode 
may govern design.

6. Buckling calculations for cable-stayed columns are 
easily accomplished using the stiffness probe method 
(SPM), which is presented here for the first time. SPM 
is conceptually based on the fact that the local structural 
stiffness at the point of application of a perturbation 
force (or moment) in the presence of an artifice spring 
(translational for a perturbation force and rotational for 
a perturbation moment) degrades from a maximum 
for the unloaded column to zero at the buckling load. 
This measurement of the stiffness under controlled 
deformations as the structure approaches instability allows 
for a very accurate calculation of the buckling load. SPM 
has been successfully used in various structures to predict 
elastic instability generated not just by compression loads 
as shown herein, but also by masses forced to vibrate at 
their natural frequencies.
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SYMBOLS

A  Cross-sectional area of core (tube), in.2

Aca Cross-sectional area of cross-arm, in.2

Ag Gross cross-sectional area of core (tube), in.2

As Cross-sectional area of each stay cable, in.2

E  Modulus of elasticity of core (tube), ksi

Eca Modulus of elasticity of cross-arm, ksi

Es Modulus of elasticity of cable, ksi

Fcr Critical compressive stress used to calculate nominal 
strength, ksi

Fe  Critical elastic buckling stress of core (tube), ksi

Fu  Specified minimum tensile strength of the type of 
steel used, ksi

Fy Specified minimum yield stress of the type of steel 
used, ksi

I Moment of inertia of core (tube), in.4

Kaug Stiffness of augmented column, kip/in.

Kcol Column stiffness, kip/in.

Krot Rotational spring stiffness, kip-in./rad.

Kspr Translational spring stiffness, kip/in.

L Length of core (tube), in.

N Compression force in tube due to applied load, kips

Ncr Compression force in tube at buckling, kips

NE Euler buckling force for core (tube) alone, kips

Nn Nominal design force for core (tube), kips

No Axial force in core (tube) at P = 0, kips

Ny Yield force for core (tube) cross-section, kips

P Applied axial load at column ends, kips

PF Perturbation force, kips

PM Perturbation moment, kip-in.

Pcr1 Governing critical buckling load for cable-stayed 
column, kips

Pcr2,  Buckling loads for unattainable modes 2 and 3, 
Pcr3  respectively, kips

Pn Nominal compressive strength, kips

Pn, tube Nominal compressive strength of unstayed-tube, kips

Psl Axial load causing cables to fully slacken (T = 0), 
kips
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Pu Ultimate strength of cable-stayed column, kips

SER Strength enhancement ratio

T(P) Tension force in stay cable at a given load P, kips

To Initial tension in stay cables, kips

Tres Residual tension in stay cables, kips

bca Horizontal length of cross-arm between cable 
attachments, in.

k Effective length factor for compression members

kL/r Equivalent slenderness ratio of cable-stayed core 
(tube)

r Radius of gyration of the tube, in.

Ω Safety factor

α Angle between the core (tube) and stay cables, deg. 
or rad.

δ Transverse displacement of the artifice translational 
spring, in.

εs Strain in cable

εsini Initial strain in cable

εsspec Specified strain in cable

λ Control quantity used for steel column design

θ Nodal rotation of the artifice rotational spring, rad.

ϕ Strength reduction factor
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