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INTRODUCTION

Conventional steel lateral force-resisting systems
(LFRSs) that comply with current building codes 

and the AISC seismic provisions (AISC, 2010) used in the 
United States are typically expected to suffer damage dur-
ing moderate to severe earthquakes. Designed in accordance 
with prescribed detailing requirements proven by research 
to ensure ductile response (and protect occupants), these 
structural systems are not expected to collapse during a 
severe earthquake but will likely require significant repairs 
following a design level earthquake. Furthermore, the struc-
ture could be left with significant residual drifts and visible 
leaning following the earthquake (AIJ, 1995; Krawinkler et 
al., 1996; Kawashima et al., 1998; Christopoulos et al., 2003; 
Pampanin et al., 2003). Thus, although current conventional 
LFRSs can meet the code-specified objective of collapse 
prevention for standard buildings, significant structural 
damage occurs (albeit controlled damage), preventing use 
of the building for a significant repair period after a design 
level earthquake and possibly leading to demolition of the 

building in some cases. This seismic performance is typi-
cally expected for conventional LFRSs of any material and 
construction.

Recent research (Winkley, 2011; Clayton, 2013; Dowden, 
2014) on self-centering steel plate shear walls (SC-SPSWs) 
has demonstrated that structures can be designed to achieve 
greater performance objectives by providing frame recenter-
ing capabilities after a seismic event, together with replace-
able, energy-dissipating components. This self-centering 
capability in SPSWs is achieved here by using beam-to-
column post-tensioned (PT) moment rocking frame con-
nections, similar to what was done in past research on 
self-centering moment frames (e.g., Ricles et al., 2002; 
Christopoulos et al., 2002; Garlock et al., 2005; Rojas 
et al., 2005). However, to be fully successful, such self- 
centering strategies need to account for the interaction (due 
to the PT boundary frame expansion) between the LFRS 
and the gravity frame. Because self-centering buildings 
could economically provide a level of protection designated 
as available for “immediate occupancy” following an earth-
quake, this design strategy makes sense from a life-cycle 
cost perspective.

Toward that goal, this paper presents information on the 
analytical modeling and kinematics of a SC-SPSW with 
the proposed NewZ-BREAKSS (NZ) rocking connec-
tion (Dowden and Bruneau, 2011), a beam-to-column joint 
detail inspired by a moment-resisting connection developed 
and implemented in New Zealand (Clifton, 1996, 2005; 
Clifton et al., 2007; MacRae et al., 2008). This PT beam-
to-column (i.e., horizontal boundary element–to–vertical 
boundary element, or HBE-to-VBE) rocking connection 
seeks to eliminate PT boundary frame expansion (i.e., beam 
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growth) that occurs in all the other previously researched 
rocking connections (referenced earlier). First, a review of 
the basic principles of the NZ-SC-SPSW is presented, from 
which equations for the moment, shear and axial force dia-
grams along the HBE are obtained from a capacity design 
approach based on yielding of the SPSW infill web plates. 
Using the derived equations, numerical models are then 
developed and results are compared with the closed-form 
analytical equations. Next, additional insight on the global 
force-displacement response of the NZ-SC-SPSW frame is 
provided through nonlinear monotonic pushover analyses. 
Furthermore, detailed free-body diagrams are developed to 
investigate infill web plate demands with frames with HBE-
to-VBE rocking connections. Finally, insight on unrestrained 
PT boundary frame expansion of frames with HBE-to-VBE 
rocking connections gained from experiments (Dowden and 
Bruneau, 2014; Dowden et al., 2016) is provided, leading to 
an improved NewZ-BREAKSS detail.

BASIC PRINCIPLES OF  
THE NZ-SC-SPSW SYSTEM

An SC-SPSW differs from a conventional SPSW in that 
HBE-to-VBE rigid moment connections in a conventional 
SPSW are replaced by PT rocking moment connections. 
This allows a joint gap opening to form between the VBE 
and HBE interface about a rocking point, leading to a PT 
elongation, which is the self-centering mechanism. This 
particular rocking connection then eliminates PT bound-
ary frame expansion typically encountered in the previously 
researched connections (that rock about both of their beam 
flanges) by, instead, maintaining constant contact of the 
HBE top flange with the VBEs during lateral drift. By doing 
so, when one of the rocking joint “opens,” the rocking joint 
at the opposite end of the HBE “closes,” as shown schemati-
cally in Figure 1a. As a result, the net gap opening (due to 
PT boundary frame expansion) is zero over the full length 
of the HBE. However, in this configuration, the PT elements 
require anchorage to the HBE, and while the PT at the open-
ing joint will always contribute to frame recentering, the PT 
element at the closing joint may or may not, depending on 
the relationship between the initial PT force provided and 
the instantaneous frame drift.

A schematic of the NewZ-BREAKSS detail is shown in 
Figure 1b. In that figure, the connection detail includes an 
initial gap at the bottom of the HBE flanges, which allows 
rocking about the HBE top flanges only. As a result, during 
frame sway, an immediate increase and decrease of PT force 
occurs at the opening and closing joint locations, respec-
tively. Compared to frames with HBE-to-VBE rocking joints 
that rock about both flanges (i.e., flange-rocking, or FR, 
connections), this results in a reduced PT boundary frame 
stiffness because, for FR connections, a delay in relative 

HBE-to-VBE gap opening occurs (because both top and 
bottom HBE flanges are initially in contact with the VBE). 
For frames detailed with FR connections, this frame type 
has the benefit that, at incipient initiation of joint gap open-
ing (referred to as the condition when the “decompression-
moment” strength of the joint is reached), the joint stiffness 
is comparable to that of a rigid-moment connection. Addi-
tionally, PT boundary frame stiffness softening also occurs 
with frames detailed with the NewZ-BREAKSS connec-
tion due to the relaxation of the PT elements at the closing 
joints during frame sway. However, scaled and full-scale 
tests (Dowden and Bruneau, 2014; Dowden et al., 2016) 
have shown that the absence of a decompression moment 
and relaxation of the PT elements at the closing joints do not 
have a detrimental effect on the response of NZ-SC-SPSWs.

Furthermore, the base connection of the VBEs for an 
SC-SPSW should be detailed such to allow free rotation 
without the formation of a plastic hinge mechanism (in con-
trast to conventional SPSWs, where a fixed VBE base con-
nection is typically assumed). If a plastic hinge is able to 
form at the base of the VBE member, this could limit the 
self-centering potential of the PT boundary frame. Further-
more, providing a foundation detail free of damage would 
also use the SC-SPSW to its full potential. As a result, the 
only needed replaceable elements after a moderate or design 
level earthquake would be the infill web plates because all 
other elements are designed to remain essentially elastic.

Figure  1c shows the free-body diagram (FBD) of a 
NZ-SC-SPSW frame,

where
PS1 =  PT axial compression force applied to the HBE 

at the gap opening joint

PS2 =  PT axial compression force applied to the HBE 
at the gap closing joint

Vi  =  externally applied lateral forces at story i due to 
applied seismic forces

VBASE =  total base shear

MBASE =  total base overturning moment

ω  =  diagonal tension yield force developed by the 
steel web plates

All other terms have been previously defined. The diagonal 
tension yield forces of the web plate, ω, can be resolved into 
vertical and horizontal components on the VBE and HBE as 
provided in Equations 1 and 2 (Sabelli and Bruneau, 2007; 
Berman and Bruneau, 2008), respectively:
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where
wcx and wcy =  horizontal and vertical components, 

respectively, along the height of the VBEs

wbx and wby =  horizontal and vertical components, 
respectively, along the length of the HBEs

Fyp and t =  yield stress and thickness of the web 
plate, respectively

α  =  angle of inclination of the diagonal 
tension field from the vertical axis, 
as typically calculated for SPSWs 
(AISC, 2010)

Here, forces shown on the FBD are taken assuming that the 
web plate thickness varies proportional to increasing story 
shears. Furthermore, the PT boundary frame is designed to 
essentially remain elastic, and hysteretic energy dissipation 
is intended to be provided by the infill web plates only.

The total hysteretic response of an NZ-SC-SPSW is pro-
vided by the combined elastic response of the PT boundary 
frame and the inelastic energy dissipation of the infill web 
plates. The idealized tension-only cyclic hysteretic response 
assuming a rigid boundary frame and an elastic-perfectly 
plastic hysteretic model of the infill web plates is shown in 
Figure 2. In particular, the PT boundary frame stiffness is 
bilinear elastic, where a reduced secondary PT boundary 

frame stiffness occurs when the PT at the closing joint 
becomes fully relaxed; analytical and experimental results 
(Dowden and Bruneau, 2014) show that this phenomenon 
has no significant detrimental effect on structural behavior 
and can be accommodated by design. Furthermore, past 
research has shown that solid infill web plates do not exhibit 
a tension-only behavior (as typically assumed for design), 
but some compression strength of the infill web plate devel-
ops due to the deformation of the infill web plate through 
tension field action (Winkley, 2011; Clayton, 2013; Webster, 
2013; Dowden, 2014). However, recent research has also 
shown that, for dynamic earthquake loadings, this compres-
sion effect provides a slight amount of additional energy dis-
sipation and strength but does not affect frame recentering 
(Dowden and Bruneau, 2014; Dowden et al., 2016).

HBE FREE-BODY-FORCE DIAGRAM

To understand the behavior of an NZ-SC-SPSW system, 
the moment, shear, and axial force diagrams for the HBE 
are first developed based on first principles. First, Figure 3 
shows the general FBD of HBE and VBE elements located at 
an intermediate floor level of an SC-SPSW frame once the 
web plate has fully yielded, where Wbx1, Wbx2 and Wby1, Wby2 
are, respectively, the horizontal and vertical force resultants 
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Fig. 1. NZ-SC-SPSW: (a) rocking joints; (b) rocking joint detail; (c) yield mechanism.
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along the length of the HBE; Wcx1, Wcx2 and Wcy1, Wcy2 are, 
respectively, the horizontal and vertical force resultants 
along the height of the VBE; subscripts 1 and 2, respectively, 
denote the level below and above the HBE (here assuming 
that the force components labeled with subscript 1 are larger 
than subscript 2 associated with a thicker web plate below 
the HBE than above); H is the story height; and all other 
terms have been previously defined. Note that the vertical 
HBE end reactions would have to be resisted by a shear tab 
connection to the VBE (or equivalent); however, for clarity, 
the shear tab is not shown in the FBD illustrated.

Next, Figure 4 shows the resultant force FBD of an inter-
mediate HBE for the condition shown in Figure 3 (neglect-
ing gravity forces), 

where
Vi  =  story shear force (as presented in Dowden et 

al., 2012, for the flange-rocking SC-SPSW) 
and is assumed to be equally distributed on 
each side of the frame

Wbx  =  infill web plate horizontal yield force 
resultant along the length of the HBE

Wby  =  infill web plate vertical yield force resultant 
along the length of the HBE

PHBE(VBE)  =  horizontal reaction at the rocking point of 
the yield force resultant of the infill web 
plate acting on the VBE (as presented in 
Sabelli and Bruneau, 2007)

Ps  =  PT force

PsVBE  =  horizontal reaction of the post-tension force 
at the rocking point

R1  =  vertical reaction required for equilibrium 
of the vertical yield force component of the 
infill web plate along the HBE, as shown in 
Figure 5

R2  =  vertical reaction required for equilibrium of 
the horizontal yield force component of the 
infill web plate along the HBE, as shown in 
Figure 6

R3  =  vertical reaction required for equilibrium 
of the post-tensioned forces acting on the 
HBE, as shown in Figure 7
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Ps1 Ps2
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α
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Fig. 3. Resultant force free-body diagram.
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Fig. 2. Idealized hysteretic response of NZ-SC-SPSW: (a) cycle 1; (b) cycle 2.
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y  =  distance from the HBE neutral axis to the 
centroid of the PT

d  =  depth of the HBE

R =  length of the radius corner cutout of the 
infill plate and represents the length of 
the end segments of the HBEs where the 
infill web plate is not attached as shown in 
Figure 1b (and will be further addressed 
subsequently)

L1  =  length of the HBE that corresponds to the 
HBE-to-VBE rocking point to the location 
of the post-tension anchor at the “opening 
joint” end of the HBE

L2  =  length of the HBE that corresponds to the 
HBE-to-VBE rocking point to the location 
of the post-tension anchor at the “closing 
joint” end of the HBE

L  =  clear span of the HBE. Also, it is assumed 
that the boundary frame and PT remain 
elastic and only the infill web plate yields

Furthermore, in Figure 4, the location of the PT anchor 
point along the beam will depend on the strain demands of 
the PT elements at the maximum target drift. The anchor 
location should be provided such to ensure that the PT 
strains remain elastic up to that drift demand. Additionally, 
to clarify the effects of Ps1 and Ps2, each Ps component is 
composed of two forces: the initial post-tension force Po, 
applied prior to drift and the force induced due to post- 
tension elongation during building drift, ΔP. For the condi-
tion shown, from geometry, elongation of post-tension will 
occur in Ps1 while “relaxation” of the post-tension element 
Ps2 will occur (for reasons described earlier), resulting in the 
following post-tension forces on the HBE:

 
( )= +Δ Δ Δ= + −P P P P

A E

L
s o o

PT PT

PT
drift loss1

1 1

1  
(3)

 
( )= − Δ ΔΔ = − +P P P P

A E

L
s o o

PT PT

PT
drift loss2

2 2

2  
(4)

Here, the subscripts 1 and 2 refer to the equation variables 
located on the HBE segment at the opening and closing 
joint, respectively, and

LPT  =  length of the post-tension elements

APT  =  area of post-tension

EPT  =  modulus of elasticity of the post-tension

Δloss  =  axial shortening that occurs along the HBE span 
length between the end of the HBE to the post-
tension anchor point locations on the HBE

Δdrift  =  drift-induced elongation of the post-tension 
elements at the HBE-to-VBE joint connection 
producing the incremental force ΔP, calculated 
as:

 
= ϕΔ +⎛

⎝
⎞
⎠

d
y

2
drift drift

 
(5)

where ϕdrift is the relative HBE-to-VBE joint rotation in units 
of radians, and all other terms have been defined previously. 
From Equations 3 and 4, for a given lateral frame drift, an 
increase in force Ps1 results in a simultaneous decrease in 
force of Ps2 (and vice versa for lateral drift in the opposite 
direction). Additionally, if the force ΔP equals Po, Ps2 will 
become fully “relaxed,” and this force component will van-
ish. In other words, for the condition when Δnet (i.e., Δdrift 
less Δloss) is equal to or greater than Δo, Ps2 will equal 
zero. Consequently, the effectiveness of Ps2 depends on the 
amount of initial post-tension force Po as well as the maxi-
mum drift reached.

To calculate the loss in post-tension force from HBE 
axial shortening, using the PT located at the opening joint 
location to illustrate (as that condition will govern the PT 
design), equilibrium of axial forces in the post-tension ele-
ments requires that the increase in tension forces in the 
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Fig. 4. Complete force-resultant free-body diagram of HBE.
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post-tension elements equals the increase in compressive 
forces on the HBE (Garlock, 2002). For SC-SPSW systems, 
for equal story force at each end of the HBE (i.e., Vi/2 each 
end of the SC-SPSW frame), the post-tension force losses 
are attributed to the HBE axial shortening under the axial 
compression force from the VBE and the axial compres-
sion force due to the post-tension elongation during lateral 
drift (with the simplified assumption of rigid VBEs). Fur-
thermore, the PT force contributing to HBE axial shorten-
ing along the length of the HBEs between PT anchor points, 
is a smaller fractional value of the tension force in the PT 
elements; a schematic of this is illustrated in Figure 8. The 
calculation of PT force losses due to HBE axial shortening 
then follows:

 

( )=Δ × +P SF L

A E

P L

A E
loss

PT

HBE HBE

HBE VBE

HBE HBE

1 ( ) 1

 
(6)

where
SF  = some scale factor (presented subsequently)

PPT  = force in the post-tension element (i.e., Ps1)

AHBE  = cross-section area of the HBE

EHBE  = modulus of elasticity of the HBE

All other terms have been previously defined. Next, solving 
Equation 6 for PPT leads to the following:

 
= −⎛

⎝⎜
⎞
⎠⎟

P Δ
SF

A E

L
P

1
PT

HBE HBE
loss HBE VBE

1
( )

 
(7)

Correspondingly, the net effective axial tension force in 
the post-tension elements is the elongation due to drift minus 
the axial shortening of the HBE that occurs along the length 
of the post-tension elements and is calculated as follows:
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Next, equating Equations  7 and 8, then solving for Δloss, 
leads to the amount of post-tension relaxation that should be 
considered for design and is calculated as:
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where the SF and the post-tension axial stiffness terms have 
been combined such that:
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and, from Figure 8, the scale factor can be approximated as:
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h  =  distance from the bottom of the VBE to the centroid 
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y  =  distance of the PT from the HBE centroid

d  =  depth of the HBE

Finally, the resulting equations for Ps, for the rightward 
drift condition shown in Figure  1c, which includes losses 
due to HBE axial shortening, is obtained by substituting 
Equation 9 into Equations 3 and 4, leading to:
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where, in Equations 12 and 13, kb1 and kb2 are the HBE axial 
stiffness along length L1 and L2, respectively.

Development of HBE Moments

The moment distribution to be used in the design of an HBE 
incorporating self-centering components can be determined 
from the free-body diagram of Figure 4. As indicated in that 
figure, five locations along the HBE are considered: the two 
segments of HBE where the infill web plate is cut out (thus 
not connected to the HBE flange), the two segments of the 
HBE between the infill web plate corner cutout and the post-
tension anchor point, and the segment of the HBE between 
the post-tension anchor points along the length of the HBE. 
These locations, for the purpose of presentation, are desig-
nated as zone 1, zone 2, zone 3, zone 4, and zone 5. The FBD 
for zone 1 is shown in Figure 9.

Furthermore, for illustration purposes, in Figure  9 the 
horizontal compression reaction at the HBE-to-VBE flange 
rocking point and vertical HBE end reaction (components 
shown in Figure 4) are combined into a single variable C 
and RA, respectively. The determination of the HBE flexural 
strength demand then follows by taking moment equilib-
rium at the HBE section cut 1; the moment relationship in 
terms of force resultants is:
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Substituting Equations  1 and 2, along with the equivalent 
force per unit length quantities for the resultant forces 
defined earlier, into Equation  14, the resulting moment 
relationship expressed in terms of the infill web plate yield 
forces per unit length along the HBE along zone 1 is:
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Similarly, by moment equilibrium at the remaining  
sections 2 through 5, the moment distribution along these 
zones is:

( ) ( )

= ⎛
⎝

⎞
⎠ − +⎛

⎝
⎞
⎠ + +⎛

⎝
⎞
⎠

+

+

ω −ω − −
⎛
⎝⎜

⎞
⎠⎟
+ ω +ω − −

⎛
⎝⎜

⎞
⎠⎟

ω − −⎛
⎝

⎞
⎠ +ω −⎛

⎝
⎞
⎠ +

⎛
⎝

⎞
⎠

M P
d

P
d

L
x

y

L
x P

y

L
x

d

L
x

L
x

x R dh d dR

dR

L
x

d
x

dR d
x

dR
V

d

2 2 2

2 2 2 4 4 2

2

2 2 2 2 4

s VBE s s

by by cx cx

bx bx i

2 s1( ) 1 2

1 2

2 2

1 2

2

1 2

 (16)

M P
d

P y
d

L
x

y

L
x P

y

L
x

d

L
x

L
x

x R dh d dR

dR

L
x

d
x

dR d
x

dR
V

d

2 2 2

2 2 2 4 4 2

2

2 2 2 2 4

s VBE s s

by by cx cx

bx bx i

3 1( ) 1 2

1 2

2 2

1 2

2

1 2

( ) ( )

= ⎛
⎝

⎞
⎠ + − −⎛

⎝
⎞
⎠ + +⎛

⎝
⎞
⎠

+ ω −ω − −
⎛
⎝⎜

⎞
⎠⎟
+ ω +ω − −

⎛
⎝⎜

⎞
⎠⎟

+ω − −⎛
⎝

⎞
⎠ + ω −⎛

⎝
⎞
⎠ +

⎛
⎝

⎞
⎠

 (17)

Ps1VBE
d/2

y

h

d

V
B

E

Ps1 Ps1

Ps1VBE

HBE

h 
- y

Ps1 - Ps1VBE

Fig. 8. Reduced post-tension force on HBE.

x
RA

1
d/2

V1
M1

P1

C
A

Fig. 9. Free-body diagram along zone 1.

117-136_EJQ316_2015-23R.indd   123 6/21/16   2:05 PM



124 / ENGINEERING JOURNAL / THIRD QUARTER / 2016

M P
d

P y
d

L
x

y

L
x P

y

L
x

d

L
x y

L
x

x R dh d dR

dR

L
x

d
x

dR d
x

dR
V

d

2 2 2

2 2 2 4 4 2

2

2 2 2 2 4

s VBE s s

by by cx cx

bx bx i

4 1 1 2

1 2

2 2

1 2

2

1 2

( ) ( )

= ⎛
⎝

⎞
⎠ + − −⎛

⎝
⎞
⎠ + + −⎛

⎝
⎞
⎠

+ ω −ω − −
⎛
⎝⎜

⎞
⎠⎟
+ ω +ω − −

⎛
⎝⎜

⎞
⎠⎟

+ω − −⎛
⎝

⎞
⎠ + ω −⎛

⎝
⎞
⎠ +

⎛
⎝

⎞
⎠

 (18)

 

M P
d

P y
d

L
x

y

L
x P

y

L
x

d

L
x y

L
Rx

L
x LR

dh d dR

dR

L
x dx

dL
dR

dL
dR V

d

2 2 2

2 2

4 4 2

2

2 2 4

s VBE s s

by by

cx cx

bx bx i

5 1( ) 1 2

1 2

2

1 2

2

1 2

( )

( )

= ⎛
⎝

⎞
⎠ + − −⎛

⎝
⎞
⎠ + + −⎛

⎝
⎞
⎠

+ ω −ω + − −
⎛
⎝⎜

⎞
⎠⎟

+ ω +ω − −
⎛
⎝⎜

⎞
⎠⎟

+ω − + −⎛
⎝

⎞
⎠ + ω −⎛

⎝
⎞
⎠ +

⎛
⎝

⎞
⎠

 (19)

Development of HBE Shear and Axial Forces

The shear distribution to be used in the design of an HBE 
can be determined using the same FBD and procedure as 
presented earlier, which then leads to:
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 V V V R x Ra by by2 3 4 1 2( )( )= = = − ω −ω −  
(21)

 V R L R2a by by5 1 2( )( )= − ω −ω −  
(22)

Similarly, for axial forces over each of the five zones:
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 P C x Rbx bx2 1 2( )( )= − ω −ω −  (24)

 P C x R P Pbx bx s s3 1 2 1 2( ) ( )( )= − ω −ω − − +  (25)

 P C x Rbx bx4 1 2( )( )= − ω −ω −  (26)

 P C L R2bx bx5 1 2( )( )= − ω −ω −  (27)

Note that the development of the HBE moment, shear, and 
axial force formulations presented are based on a capacity 

design approach where the web plates have fully yielded. 
Consideration of PT force losses due to HBE elastic axial 
shortening has been considered. However, some vertical 
deflection of the HBE will occur due to the vertical com-
ponent of the infill web plate tension forces pulling on the 
HBE. This results in HBE-to-VBE rotational components 
that will have an influence on the actual joint gap open-
ing/closing, thus affecting the axial elongation response 
of the PT elements. However, this contribution of joint 
gap response can be neglected, without significant loss in 
accuracy, as will be observed in the following section. But 
to precisely account for this effect, a nonlinear pushover 
analysis would be needed. Furthermore, the derivations of 
the closed-form equations presented for the HBE strength 
demands assume rigid VBEs. In particular, the contribu-
tion of the flexibility of the VBEs contributing to PT force 
losses is neglected. Consideration of VBE flexibility can be 
included in a nonlinear pushover analysis once the numeri-
cal model is established (for which the equations presented 
earlier can be used to facilitate the initial design). Finally, 
as shown in Figure 4, Equations 14 through 27 were derived 
with the assumption that the story force (i.e., Vi) is equally 
distributed on each side of the frame. For the condition when 
the story force is delivered to only one side of the frame, Fig-
ure 6 would be modified to show Vi acting at location A and 
Vi = 0 at location B in that figure (note that the value of the 
reaction R2 shown in that figure would remain unchanged). 
This would have the effect of increasing the HBE moment 
and axial force demand proportionally to Vi versus Vi/2.

NUMERICAL MODEL COMPARISON

The formulations describing the distribution of moment, 
shear and axial forces developed earlier were compared to 
results from nonlinear pushover analysis conducted using 
SAP2000 (CSI, 2009). Additionally, numerical modeling in 
OpenSees (Mazzoni et al., 2009) is also presented subse-
quently for reference. The example SPSW used for this pur-
pose consisted of a single-bay, single-story frame with a bay 
width of 20 feet and story height of 10 feet. The SPSW web 
plate consisted of a 16-gauge infill light-gauge plate. A total 
of eight 2-in.-diameter, Grade 270 ksi steel monostrands 
were provided at each end of the HBE with a distance of 
6 in. below the neutral axis of the HBE to the centroid of the 
tendons. An initial post-tensioning force of approximately 
20% of the yield strength of the PT was provided. The depth 
of the HBE was taken to be 18 in., corresponding to a W18 
beam.

Furthermore, a strip model was used for the infill web 
plate (Sabelli and Bruneau, 2007), as shown in Figure 10. 
Accordingly, because the hysteretic behavior of SPSWs 
relies on yielding of the infill web plate through diagonal 
tension field action, the infill web plate was conservatively 
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modeled by using a series of tension-only strips. Each of the 
strips was assigned an axial plastic hinge model to account 
for nonlinear hysteretic behavior. The PT boundary frame 
and post-tension elements were designed to remain elastic.

For the rocking connection in SAP2000, a rigid-beam ele-
ment was used as a link to model the post-tension anchor 
points to the HBE to capture the applied moment during 
rocking motion about the HBE centerline. Joint constraints 
in the translational vertical global degrees-of-freedom 
(DOF) and in-plane (HBE strong axis bending) rotational 
DOF were provided at key nodes. For the case of model-
ing in OpenSees, rigid-link beams are used in lieu of joint 
constraints (with the exception of modeling the HBE to VBE 
shear transfer). The connection models for use in SAP2000 
and OpenSees are shown in Figure 11.

For the current example, the designed SPSW is used to 

avoid abstract complexities in keeping the problem paramet-
ric. Additionally, the boundary frame members are assumed 
rigid here such that PT force losses due to HBE axial short-
ening can be ignored because this has a negligible impact on 
the results and keeps the conceptual illustration manageable. 
The formulations developed earlier are applicable regardless 
of whether PT force losses are considered. Only the Ps1 and 
Ps2 terms in the equations are affected and would need to 
include the PT force losses as presented in Equations 12 and 
13. Figure 12 provides comparisons of the moment, shear 
and axial force distributions along the length of the HBE 
using the formulations developed earlier to those with the 
numerical model of the SAP2000 analysis for a rightward 
3% drift condition. Note that because the SAP2000 model 
uses a finite number of strips to represent the infill web 
plate, the shear and axial force diagrams obtained from the 

Fig. 10. NZ-SC-SPSW model.
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SAP2000 analysis are stepped as compared to the continu-
ous force diagrams using the analytical formulations.

Furthermore, the analytical formulations are compared to 
two different SAP2000 curves labeled “actual” and “ideal-
ized,” where, for the condition of a rigid HBE, the ideal-
ized curve matches the analytical one almost perfectly for 
the moment and shear diagrams. The difference between the 
two different numerical models is that the idealized curves 
assume a pinned connection at the HBE-to-VBE flange con-
tact rocking point. This represents the idealized condition 
assumed in the development of the equations presented pre-
viously. The actual model uses the compression-only element 
shown in Figure 11, which models more accurately the real 
condition of the joint detail. To further clarify, the preceding 
derivations assume that the effects on the post-tension (i.e., 
terms Ps1 and Ps2) are exactly equal; which is essentially true 

for the rigid HBE condition if the HBE is pin connected to 
the VBEs. However, with the use of the compression-only 
element, some differences arise in response because now 
the compression force at the closing joint can be reduced 
(from the global effects captured by the numerical frame 
model that is not considered in the analytical formulations), 
leading to small differences in the kinematics governing the 
axial tension in the post-tension elements. It is also observed 
that on the SAP2000 moment and axial diagram curves, the 
post-tension force at the closing joint has not fully relaxed 
because there is a vertical step in the response curves. The 
results from the SAP2000 analysis and the corresponding 
analytical formulations compare reasonably along the full 
length of the HBE.

To provide some comparison of numerical results using 
SAP2000 versus OpenSees, a nonlinear cyclic pushover 
analysis was conducted for the one-third-scale, single-
bay, three-story NZ-SC-SPSW test frame investigated by 
Dowden and Bruneau (2014). The design parameters of the 
frame along with the corresponding numerical model are 
shown in Figure 13. Material properties consisted of ASTM 
A992, A416 and A1008 for the boundary frame, 2-in.-
diameter PT monostrands, and infill web plate members, 
respectively. The VBE column bases were detailed with a 
clevis-and-pin base to allow free rotation, and all anchor 
connections to the foundation were bolted. To model the 
nonlinear hysteretic response of the infill web plates, non-
linear axial hinge assignments were used in the numerical 
model based on results from coupon testing. Additionally, 
an initial post-tensioning force of approximately 20% of 
the PT yield strength was used. The comparison of the base 
shear versus roof drift response obtained using the programs 
SAP2000 and OpenSees is shown in Figure 14; the results 
are practically identical.

POST-TENSION FORCE EFFECTS ON  
GLOBAL FRAME RESPONSE

A general base shear versus roof displacement response for 
the NZ-SC-SPSW was presented in Figure 2, where the con-
tribution of the PT boundary frame response is observed to 
be bilinear elastic. To investigate the effects of various PT 
parameters on the response of the boundary frame, the vari-
ation in frame response when changing the initial PT force 
(To) and the quantity of PT strands (APT) is presented for the 
frame shown in Figure 13. In the following figures, response 
curves for the condition labeled 1xTo and 1xAPT correspond 
to the PT design parameters used in the test specimen (as 
a reference point). In this investigation, note that (1)  all 
other design parameters (i.e., member sections, distance of 
PT eccentricity to the rocking point, etc.) remain the same 
because changing those would require other design changes, 
and (2)  practical considerations of construction tolerances 
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are not considered because only the consequences of relative 
change in response are of interest here. Furthermore, this 
investigation is only made for the PT boundary frame, with 
the understanding that the total response is a superposition 
of the effects of the PT boundary frame and the infill web 
plate.

The variation in response due to To as the parametric 
variable is presented in Figure 15a, with APT held constant. 
Note that if significant PT yield occurs for a given To, no 
additional parametric curves are presented for that frame 
because only the elastic response of the boundary frame 
is of interest here (i.e., no yielding of PT elements, which 
would alter the frame response). It is observed that with 
To = 0 kips (i.e., 0xTo), the frame response moves along a 
single elastic curve; thus, the presence of an initial PT force 
is what defines the bilinear frame response. Of particular 
interest, the location of the transition point between the ini-
tial and secondary stiffnesses is defined by the magnitude 
of To (as shown in Figure 2). More specifically, increasing 
the initial applied PT force results in (1) a positive shift of 
that transition point along the horizontal axis, resulting in an 
increase of the initial stiffness range of response that has the 
largest stiffness along the bilinear response curve, and (2) a 
positive shift of that transition point along the vertical axis, 
contributing more strength to the hysteretic response of the 
entire system.

The variation in response due to APT is presented in Fig-
ure  15b, with To held constant. In doing so, the quantity 
of PT strands (or rods) affects the stiffness (i.e., slopes) of 
the response curves (as would be expected). Furthermore, 

as APT increases, the effects of the secondary PT bound-
ary frame stiffness (i.e., condition when To reduces to zero) 
become more dominant over the initial stiffness. This is 
due to a reduction in To in each corresponding PT strand 
(i.e., To remains constant; however, To per strand decreases 
proportional to the increase in APT). As a consequence, not 
only does increasing APT affect both initial and secondary 
stiffness of the PT boundary frame response curves, but 
increasing APT also shifts the transition point between the 
initial and secondary frame stiffness toward the axis origin 
(whereas increasing To shifts the transition point away). In 
comparison to Figure 15a, a significant increase in stiffness 
can be achieved without concern of yielding the PT ele-
ments for a target drift; however, it is at the expense of larger 
strength demands on the boundary frame than consideration 
of To alone.

INFILL WEB PLATE STRAINS EFFECTS  
DUE TO HBE-TO-VBE GAP OPENING

As presented earlier, radius corner cutouts are provided at 
the infill web plate corner locations. The primary purpose 
of this detail is to remove the portion of the infill web plate 
at the corner locations that would otherwise be subjected 
to excessive tensile strains during lateral frame drift due to 
the opening of the rocking joint (as schematically shown in 
Figure 16).

To determine the appropriate value of the radius corner 
cutout to use in design, a review of the kinematics of the joint 
detail under frame sway is necessary and is performed next, 
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based on small-angle theory. Figure 17 shows the geometry 
and parameters necessary to establish the kinematic rela-
tionships governing the infill web plate tensile strains when 
also including the HBE-to-VBE gap openings in the calcula-
tion of strains.

In Figure 17, R is the radius length of the corner cutout, 
L is the length of the adjacent infill web strip to the corner 
(shown idealized), α is the angle of inclination of the tension 
field to the vertical axis, ΔR are differential lengths depen-
dent on the value α, Δgap is the HBE-to-VBE gap opening, 
d is the depth of the HBE, and γ is the gap opening rotation. 
To determine the total cumulative axial tensile strain of the 
strip adjacent to the tip of the radius cutout, the following 
relationships are established from geometry. The length L is 
obtained from the initial condition geometry (triangle 1-2-3) 
as:

 
L

R R

sin
1=

+Δ
α  

(28)

Next, the axial tensile deformation of the infill web strip 
due to gap opening is (using the geometry of triangle 5-6-7):

 cos 90gap( ) ( )δ = Δ −α  
(29)
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The gap opening can then be calculated (using geometry of 
triangle 4-5-6) as:

 d R Rgap 2( )= γΔ Δ+ +  (30)

It is also observed that (using the geometry of triangle 1-2-3):

 

R R

R R
tan 1

2

( )
( )

α =
+ Δ
+ Δ  

(31)

Next, the differential term ΔR2 is established (for reasons 
to be made clear subsequently). To proceed, Figure 18 shows 
the additional information needed to determine this quantity.

It then follows, using triangle 1 in Figure 18 and the sine 
double-angle identity, that the parameter x1 is:

 x R R1 sin(90 ) cos= −α = α (32)

Furthermore, from the same triangle 1, the term y1 can be 
determined as follows:

 y R1 sin= α (33)

Next, from the geometry of triangle 2 in Figure 18, substitut-
ing Equation 32 for x1 and solving for y2 leads to:

 
y

R
2

cos
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α
α  

(34)

Furthermore, in Figure 18 it is observed that:

 R R y y1 22 + =Δ +  (35)

which, substituting Equations  33 and 34 for y1 and y2, 
respectively, in Equation 35 and solving for ΔR2, leads to:
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(36)

The resulting infill web plate tensile strain can then be 
expressed as:
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Substituting the terms for Δgap and (R + ΔR1) using Equa-
tions 30 and 31 into Equation 37, it then follows that:
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Next, substituting ΔR2 from Equation  36 and simplifying 
leads to:
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Finally, Equation 39 can be further simplified by the substi-
tution of the sine double-angle identity, which then results in 
the following expression:
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(40)

Equation 40 represents the total tensile strain on the infill 
web plate for HBE-to-VBE rocking connections at a dis-
tance R away from the HBE-to-VBE flange rocking point. 
To further clarify the effects of Equation 40, for the case of 
α = 45 degrees, Equation 40 results in the following:
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d
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1 2

2

4 2
Totalε = + =

γ
+
γ

 
(41)

where, in Equation  41, Component1 is the contribution of 
tensile strain from the gap opening and Component2 is the 
contribution from lateral frame drift (i.e., a rigid panel sway 
mechanism). To further illustrate, Figure  19a shows the 
axial strain demand for several different lateral drift condi-
tions. From the results shown, the closer the infill web plate 
is to the corner (corresponding to a smaller R), the larger the 
strain demands. In particular, if R = 0, the theoretical strain 
is infinite.

Furthermore, Figure  19b shows the total axial tensile 
strain, together with the strain corresponding to each com-
ponent, for a 2% drift condition. From the results shown, 
the concentration of strains in the infill web plate due to the 
use of a rocking connection is a localized phenomenon, with 
values approaching those for the rigid-panel sway mecha-
nism away from the rocking connection gap opening. Note 
that in the examples presented, the gap rotation was assumed 
to be equal to the drift rotation, which assumes rigid sway 
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Fig. 18. Infill web plate corner cutout dimensions.
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behavior as an approximation; a more exact joint rotation 
could be obtained from a rigorous frame analysis. Nonethe-
less, the preceding equations provide an approach to select 
the radius of the corner cutouts. As an example, SC-SPSW 
test specimens investigated by Dowden and Bruneau (2014) 
were detailed with an R/d ratio of approximately 1. For this 
condition shown in Figure 19a (i.e., α = 45 degrees), for the 
case of 2% roof drift, Equation 40 predicts a maximum the-
oretical infill web plate tensile strain of approximately 1.7%. 
In particular, from observations of the experimental results 
presented by Dowden and Bruneau (2014), infill web plate 
separation from the boundary frame started to develop at 
approximately 2% roof drift (a drift magnitude expected for 
a design level earthquake), propagating from the plate cor-
ners. This provides some indication that the R/d ratio of 1.0 
used in the HBE-to-VBE joint detail for the infill web plate 
corners performed reasonably well to delay the effects of 
initial web plate tearing from the boundary frame.

Finally, note that the preceding strain equations are 
applicable to any HBE-to-VBE joint rocking configura-
tion because only the distance from the rocking contact 
point to the HBE flange needs to be modified in the equa-
tions presented. For example, for a centerline-rocking 
frame (Dowden and Bruneau, 2014), d/2 (half-depth of the 
HBE) would be used in lieu of d in the equations, and for 
the NewZ-BREAKSS and flange-rocking (Clayton et al., 

2012; Dowden et al., 2012) connections, no changes to the 
equations presented are required because both connections 
follow the same kinematics at the opening joints when the 
HBE-to-VBE gap is present.

PT BOUNDARY FRAME EXPANSION:  
A DERIVATION OF UNRESTRAINED  

BEAM-GROWTH

A widespread concern with the practical implementation of 
self-centering frames with HBE-to-VBE rocking connec-
tions is the issue of “beam-growth” (i.e., frame beam elon-
gation or PT boundary frame expansion). This phenomenon 
occurs because the joint opening at each end of the beam 
(which is required in order to induce PT tensile strains for 
recentering) manifests itself as an apparent increase in hori-
zontal length of the beams (although physically the beam 
length remains essentially the same). This has the undesired 
effect of the beams pushing outward against the columns 
by the amount of the gap openings at the beam-to-column 
rocking joints. As a consequence, strength demands on the 
columns are increased (i.e., columns must flexurally deform 
to accommodate the beam growth) as well as strain compat-
ibility issues of the diaphragm connection to the beams arise 
(i.e., the diaphragm must slip/tear or deform to accommo-
date the beam growth).

Large-scale experimental investigation (Dowden and 
Bruneau, 2014; Dowden et al., 2016) of a single-bay, two-
story NZ-SC-SPSW showed that even though the NewZ-
BREAKSS rocking connection was proposed to eliminate 
beam-growth effects, a small but observable amount of 
beam growth does develop for the NewZ-BREAKSS rock-
ing connection, contrary to what was initially assumed 
(insignificant compared to connections rocking about their 
top and bottom HBE flanges but, nonetheless, required to 
be understood). As a result of this observation, closer scru-
tiny of the kinematics of this connection has lead to a better 
understanding of beam growth; equations that could be used 
to inform design and optional modifications to the NewZ-
BREAKSS detail to completely eliminate beam-growth 
effects are presented.

The analytical relationship for unrestrained beam growth 
can be obtained by reviewing the free-body diagram shown 
in Figure  20 and observing that, for the rightward drift 
shown in that figure, the rotation at the left and right VBE 
differ by an incremental amount Δθ as a result of beam 
growth, where the additional parameters in the figure are 
defined as follows:

θ   =  VBE rotation at a known drift level

h1  =  height from the VBE base to the 
bottom most rocking contact point 
of interest

LHBE  =  length of the HBE
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ΔL1  =  horizontal length due to drift 
rotation θ

ΔL2  =  horizontal length due to the drift 
gap opening θ at the opening joint

dVBE  =  depth of the VBE, which is shown 
in a position before and after 
rotation of the VBE

D1  =  flange rocking depth rotation lever 
arm

ΔV, ΔH1 and ΔH2  =  incremental dimensions dependent 
on the VBE base rotation at the 
VBE location effected by θ + Δθ

x   =  length parameter used to define 
θ + Δθ for subsequent derivation

From the parameters defined, the quantity ΔH2 is the key 
parameter needed to define the real relationship of unre-
strained beam growth (for the conditions noted later) and 
represents the change in length reduction in the bottom of 
the parallelogram (indicated in Figures 20 and 21) that takes 
into account the VBE base rotation θ + Δθ.

Note that the subsequent derivation is based on using a 
two-story frame with NewZ-BREAKSS rocking connections 

for illustration purposes. However, the formulations can be 
applied to a frame of any height and any rocking connec-
tion because (1) the height just above ground level controls 
the kinematic equations, and (2)  the parameter associated 
with the type of rocking connection affecting beam growth 
is only dependent on the depth of the rocking point rotation 
lever arm. Furthermore, in this analytical approach, the fol-
lowing simplifications and assumptions was made: (1) The 
boundary frame is taken as rigid members; (2) the rocking 
contact points are at the extreme edge of the HBE-to-VBE 
flange bearing point shown by the “Rocking Contact Point” 
indicated in Figure 20; (3)  local deformation effects at the 
rocking contact points are neglected; (4)  elevation of the 
HBEs remain unchanged for a given VBE rotation during 
drift; (5) the HBE-to-VBE joints are frictionless and no PT 
clamping force is present, allowing the joint to rotate and 
move freely; and (6) at each VBE location, the line created 
by joining the points of HBE flange rocking and VBE base 
rocking points are parallel to the longitudinal axis of the 
associated VBE.

The formulation of a relationship for unrestrained beam 
growth first requires the development of an equation for the 
incremental VBE rotation Δθ. This proceeds by first obtain-
ing all of the incremental dimensions at the base of the 
affected VBE shown in the close-up detail in Figure 20. It 
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Fig. 20. Frame beam-growth kinematics: free-body diagram 1.
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then follows, from geometry, that the vertical displacement 
at the VBE flange due to rotation is:

 V d sinVBE [ ]( )= θΔ Δ+ θ  
(42)

Next, the length of the horizontal projection of the base of 
the rotated VBE is found to be:

 L d cos( )VBE [ ]= θ Δ+ θ  (43)

The additional unknown parameter needed to completely 
define the kinematics at the base of the VBE is ΔH. Deriva-
tion of the expression for this term is done in three steps. 
First, ΔH is equal to the sum of ΔH1 and ΔH2 such that:

 H H H1 2= +Δ Δ Δ  (44)

Second, expanding Equation 44 into an expression in terms 
of tanθ shown directly in Figure 20 leads to:

 H V tan[ ]( ) ( )= θΔ ΔΔ + θ  (45)

Third, substituting Equation 42 into Equation 45 leads to:

 H d tan sinVBE [ ]( ) ( )= θΔ ΔΔ+ θ θ + θ  (46)

Toward derivation of an expression for Δθ, the horizontal 
projection of the base of the rotated VBE extending beyond 
the footprint of the VBE prior to rotation needs to be estab-
lished (i.e., ΔH2), which can be calculated as:

 

H H L d

d

2

tan sin cos 1

VBE

VBE [ ]
( )

( ) ( ) ( )
= +Δ Δ −

= θ Δ Δ Δ+ θ θ + θ + θ + θ −

 (47)

Additionally, the inside surface of the deformed frame dis-
placement can be bounded by a parallelogram from which 
the geometry θ + Δθ can be determined and from which 
Δθ can then be calculated for any known value of θ (i.e., 
typically by selecting a target drift). From the free-body dia-
gram of the parallelogram in Figure  21 for all remaining 
derivation steps, begin with defining the horizontal length 
due to frame drift as:

 L h1 1 tan( )= θΔ  (48)

The incremental horizontal length due to HBE-to-VBE gap 
opening is:

 L D2 1 tan( )= θΔ  (49)

Next, solving for tan(θ + Δθ), and substituting Equations 47, 
48 and 49 for ΔH2, ΔL1 and ΔL2, respectively, into Equa-
tion 50 leads to:

x

h

L L H

h

h D1 d

h1

tan
1

1 2 2

1

1 tan tan sin cos 1VBE[ ] [ ]

( )

( ) ( ) ( ) ( ) ( )
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=
+ +Δ Δ Δ

=
+ θ + θ+ θ θ θ ++ θ+ θ −ΔΔΔ

Δ Δ ΔL L L L H

h

1 2 2

1
HBE HBE( ) ( )

=
+ + − −

 (50)

Solving Equation 50 for tan(θ) leads to the following rela-
tionship defining unrestrained beam growth:

 
h d d

h D
tan

tan 1 sin 1 cos

1 1

VBE VBE{ }[ ] [ ]( )
( ) ( ) ( )

θ =
θ+ ΔΔΔθ − θ+ θ + − θ+ θ

+
 (51)

In this equation, all parameters have been defined previ-
ously and are known except for Δθ. One approach to solve 
Equation  51 consists of iterating on the value of Δθ until 
convergence. Once the parameter Δθ is known, the beam 
growth at each floor level can then be calculated.

Although the solution for Δθ will converge fairly quickly, 
an alternate simplified formulation can be used that provides 
an approximate solution without iteration. This is obtained 
by realizing that the reduction in length of the bottom of the 
parallelogram due to ΔH2 (from the VBE base rotation) is 
insignificant. The procedure then follows by letting ΔH2 = 0 
in the preceding derivation; thus, the expression for tan(θ + 
Δθ) simplifies to:

 

h D

h
tan

1 1

1
tan[ ]( ) ( )θ +Δθ ≅

+
θ

 
(52)
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Fig. 21. Frame beam-growth kinematics: free-body diagram 2.
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Given the insignificance of ΔH2, the approximate solu-
tion to obtain Δθ using Equation 52 will be within a per-
cent accuracy compared to that using the exact relationship 
shown in Equation  51 that requires more computational 
effort. Once Δθ is known, the calculation of beam-growth 
demand at each level can be obtained. To illustrate the calcu-
lation of beam growth and the distribution along the frame 
height, using the frame shown in Figure 20 as an example, 
the calculations are made with the following assumptions:

• The story heights at each level are equal to h.

• The rocking depth at HBE level 1 and 2, respectively, 
is D1 = D2 = D.

• The height to the bottom gap opening h1 is equal to h 
to keep calculations simple for illustration purposes. 
This will lead to an approximate solution because 
h1 at the ground level is actually h1 = h − D if story 
heights are equal.

The following calculations are then made:

Step 1 Calculate the gap adjustment δ = (Δθ)(h1) due 
to beam-growth at the level 1 HBE. Because the 
adjustment is required at the level 1 HBE, the 
bottom of flange gap opening is zero (i.e., in 
bearing contact with the VBE flange). The top of 
flange gap opening is equal to (D)(θ + Δθ).

Step 2 Calculate the gap openings at the roof HBE. The 
bottom of flange gap is equal to (Δθ)(2h); this 
represents the incremental gap opening required 
due to beam-growth. The top of flange gap is equal 
to (Δθ)(2h) + (θ + Δθ)(D); the first component 
represents the incremental gap opening required 
due to beam growth (also is the gap opening at the 
bottom of flange), and the latter component is the 
gap opening due to the joint rotation.

Note that if additional stories were present, beam-growth 
at each subsequent level would increase proportionally 
to the height of the bottom of flange level at that location 
only. For example, if there was an additional floor level in 
the example shown, the bottom of the flange gap would be 
equal to (Δθ)(3h) and the top of flange gap would be equal 
to (Δθ)(3h) + (θ + Δθ)(D). That is, the component due to 
the gap opening due to the joint rotation remains constant, 
and only the incremental gap opening due to beam growth 
increases with story height. Furthermore, to capture the 
beam-growth behavior about the top flange in the numeri-
cal model response, an alternate (but more complex) HBE-
to-VBE model presented by Dowden and Bruneau (2014) 
would be required.

Two alternative modifications to the original proposed 
NewZ-BREAKSS rocking flange detail (Dowden and Bru-
neau, 2011) are proposed to eliminate the effects due to 
beam growth observed in the referenced large-scale NZ-
SC-SPSW test. The first modification is to provide a semi-
spherical bearing bar plate at the end of the HBE flange 
and reinforcement plates, as shown in Figure 22a. The sec-
ond option is to provide both a semispherical bearing bar 
plate and additional PT elements near the bottom of the top 
flange, as shown in Figure  22b; these latter supplemental 
PT elements would be designed to always remain in tension. 
Although the first alternative should eliminate beam-growth 
effects, the latter option would further enhance the perfor-
mance of the NewZ-BREAKSS connection and would also 
provide some increase in the recentering potential of the PT 
boundary frame.

SUMMARY AND CONCLUSIONS

Self-centering steel plate shear walls having NewZ-
BREAKSS connections (i.e., NZ-SC-SPSW) are an alterna-
tive lateral-force-resisting system to conventional steel plate 

Semi-Spherical 
Bearing Plate

(Circular Bar Cut 
Longitudinally)

Typ.

Add'l PT  For
Clamping Force

)b()a(

Fig. 22. Modified NewZ-BREAKSS detail: (a) alternative 1; (b) alternative 2.
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shear walls for buildings located in regions of high seismic-
ity. In this paper, the fundamental kinematic behavior of the 
NZ-SC-SPSW has been established. Closed-form solutions 
equations were derived for (1) HBE strength demands along 
the HBE based on capacity design principles, (2) infill web 
plate strains for HBE-to-VBE rocking joints, and (3) unre-
strained beam growth with frames with rocking joints 
susceptible to beam-growth effects. Additionally, numeri-
cal models for the NewZ-BREAKSS connection using the 
programs SAP2000 and OpenSees were presented. Further-
more, nonlinear pushover analyses were conducted to vali-
date the derived HBE strength demand equations and to 
provide insight on the effects of the PT on base shear versus 
roof drift frame response. The equations and free-body dia-
grams presented not only provide insight on the behavior of 
the NZ-SC-SPSW system, but also inform design. Further-
more, a modified NewZ-BREAKSS connection is proposed 
to eliminate beam-growth effects observed from recent 
large-scale tests (Dowden and Bruneau, 2014; Dowden et 
al., 2016).
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INTRODUCTION

Compression member strength is controlled by the limit 
states of flexural buckling, torsional buckling and 

flexural-torsional buckling, as applicable (AISC, 2010). 
These compression members may buckle globally or locally, 
depending on the overall column slenderness and the local 
plate element slenderness for the plates that make up the 
shape. If any of the plate elements will buckle at a stress 
lower than that which would cause the column to buckle 
globally, the local buckling of the plate will control the over-
all column strength. When this occurs, the column is said to 
be composed of slender elements.

This paper briefly discusses past specification provisions 
for slender element compression members and introduces 
the new provisions in the 2016 AISC Specification. It will 
present a simplification that reduces the number of constants 
that must be used and will present the specification require-
ments in an alternate format. Because the 2016 requirements 
result in different strengths than the 2010 requirements, fig-
ures are provided to illustrate the overall impact of these 
changes on column strength.

HISTORICAL PERSPECTIVE

The AISC Specification approach for determining the ele-
ment slenderness at which local buckling begins to control 
column strength has evolved over the years. Prior to the 
1961 AISC Specification, a simple, maximum, width-to- 
thickness ratio was specified. For instance, in the 1949 Spec-
ification, the projecting elements of single-angle struts had 
a limiting width-to-thickness ratio of 12. In the 1961 Speci-
fication, the provisions were revised to include recognition 
that new materials with different yield strengths were being 
used and that yield strength of the material then played a role 
in determining at what stress level local buckling should be 
considered. The limit was changed to F2,400 y , where Fy 
was taken in pounds per square inch. In 1969, the limit was 
essentially unchanged but was presented as F76.0 y  with 
Fy now taken in kips per square inch. In order to convert the 
1993 LRFD Specification to metric units, the 1994 Metric 
LRFD Specification set the limit as a unitless equation by 
restoring the variable E in the limit. Thus, this same limit 
became E F0.45 y . Over that same period of time, several 
new elements were defined. For the 2010 Specification, 
there were nine cases defined in Table B4.1a for the limiting 
width-to-thickness ratios for compression elements in mem-
bers subject to axial compression. However, the actual limits 
were essentially the same as they had been since 1961.

During this same period, the approach to account for the 
influence of elements that exceeded these limitations also 
evolved. Prior to the 1969 Specification, the practice was to 
remove the width of the plate that exceeded the limitation. 
This approach required the section properties to be recal-
culated based on this new geometry, a cumbersome and 
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This paper will briefly discuss past specification provisions for slender element compression members and introduce the new provisions in the 
2016 AISC Specification. It will present a simplification that reduces the number of constants that must be used and will present the specifica-
tion requirements in an alternate format. Because the 2016 requirements result in different strengths than the 2010 requirements, figures are 
provided to illustrate the overall impact of these changes on column strength.

Key Words: compression members, plate buckling, slender elements, AISC Specification.
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uneconomical approach. With the 1969 Specification (AISC, 
1969), a new approach was introduced that followed the 
approach used in the 1969 AISI Specification for the Design 
of Cold-Formed Steel Structural Members (AISI,  1969). 
A reduction factor, Q, was defined as the ratio of the local 
buckling stress to the yield stress for members with slender 
elements. In the column strength equations, Fy was replaced 
by QFy. Two separate approaches were used for determining 
Q. One was for unstiffened elements, which were assumed 
to reach their limit state when the element reached its local 
buckling stress. The other was for stiffened elements, which 
made use of their post-buckling strength. For unstiffened 
elements, Q was directly determined through specifica-
tion equations based on material and geometric properties 
of the elements. For stiffened elements, an effective width 
was determined, and the ratio of the effective area to the 
gross area was used to establish Q. This approach was based 
on the actual stress in the member under the buckling load 
rather than the yield stress as was used for unstiffened ele-
ments. The provisions in the 2016 AISC Specification use 
the effective width approach for both stiffened and unstiff-
ened elements following the practice used by AISI for cold-
formed members since 2001 (AISI, 2001).

2016 SLENDERNESS PROVISIONS

To determine if one must even consider element slenderness 
in determining column strength, there needs to be some 
value against which the element width-to-thickness ratio can 
be compared. As has been the case since the 1961 Specifica-
tion, when Fy was introduced as part of the limiting ratio, 
the assumption used to determine that limit is that the mem-
ber can be uniformly stressed to the yield stress even though 
compression members are rarely stressed to this level. This 
limit, when exceeded, is used to direct the designer to Sec-
tion E7, “Members with Slender Elements,” of the Specifica-
tion (AISC, 2010). This assumption caused some designers 
difficulty when they subsequently determined, after fol-
lowing all the requirements of Section E7, that the section 
strength was not reduced due to element slenderness. This 
can be understood by recognizing that the member is not 
stressed to the yield stress, as originally assumed to direct 
the designer to these provisions, so the element is less likely 
to buckle. Although the limits shown in Section E7 for 
2016 now include the critical stress for the column deter-
mined without consideration of slender elements, it is still 
the width-to-thickness limit based on Fy from Specification 
Table B4.1a that tells the designer to consider the slender 
element provisions.

The 2016 provisions are written in a unified form for both 
stiffened and unstiffened elements using the effective width 
formulation for all but round HSS. This change is not so 

much the result of new research as it is a reinterpretation of 
the foundational work of von Kármán et al. (1932), Winter 
(1947), and Peköz (1987), as summarized in Ziemian (2010). 
The effective widths are used to determine the effective 
area, and that area is multiplied by the critical stress, deter-
mined without consideration of slender elements, to obtain 
the nominal compressive strength. The 2016 provisions, 
except for round HSS, are given as:

(a) When
 

F

F
r

y

cr
λ ≤ λ

 be = b (2016 Spec. Eq. E7-2)

(b) When
 

F

F
r

y

cr
λ > λ

 
b b c

F

F

F

F
1e

el

cr

el

cr
1= −

⎛
⎝⎜

⎞
⎠⎟   

 (2016 Spec. Eq. E7-3)

where b is the element width, be is the element effective 
width, and Fcr is the critical stress determined in accordance 
with Section E3 or E4 without consideration of slender 
elements.

The limiting slenderness, λr , is taken from Table B4.1a 
and, in all cases, is a function of E Fy . The width-to-
thickness ratio, λ, is, according to Table B4.1a, b/t, d/t or 
h/t, depending on the element being considered. Thus, the 
widths in Equations E7-2 and E7-3 will also be taken as b, d 
or h, depending on the element being considered.

The elastic local buckling stress, Fel, from classic plate 
buckling theory (Ziemian, 2010) is

 

F k
E

b

t
12 1

el

2

2
2

( )
=

π

− ν ⎛
⎝

⎞
⎠  

(1)

which is written in the 2016 Specification as

 
F c Fel

r
y2

2

=
λ
λ

⎛
⎝⎜

⎞
⎠⎟   

 (2016 Spec. Eq. E7-4)

The constant c1 is the empirical correction factor asso-
ciated with imperfection sensitivity and c2 is a constant 
determined by c1 alone and used only for convenience. The 
constants c1 and c2, given in 2016 Specification Table E7.1, 
are
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2016 SLENDERNESS PROVISIONS —SIMPLIFIED

Because these provisions require the use of the tabulated 
limiting slenderness ratio from Table B4.1a and the con-
stants c1 and c2 from Table E7.1 each time a particular type 
element is considered, it may be helpful for the user to com-
bine them all one time and then use this new equation. To 
accomplish this simplification, the limits from Table B4.1a 

are taken as c
k E

F
r

c

y
3λ = , so that the resulting equation can 

be used for all cases covered in that table except for 
round HSS. The variable kc is taken as 1.0 for all cases in 
Table B4.1a, except Case 2 (flanges of built-up I-shaped sec-
tions and plates or angles projecting from built-up I-shaped 
sections), where it can vary from 0.35 to 0.76 (no change 
from earlier Specifications). Thus, the limit on application 
of Equation E7-3 becomes
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Then determine Fel in terms of c3. Thus,
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Substituting Fel from Equation 3 into Equation E7-3 yields
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which simplifies to
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Combining the constants in Equation 5 yields
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(6)

where c4 = c2c3 and c5 = c1c2c3.
For all cases in Table B4.1a, except for round HSS for 

which the specification provisions are different and remain 
essentially unchanged from 2010, the constants are as tabu-
lated in Table 1.

Table E7.1 Effective Width Imperfection Adjustment Factor, c1 and c2 Factor

Case Slender Element c1 c2

(a) Stiffened elements except walls of square and rectangular HSS 0.18 1.31

(b) Walls of square and rectangular HSS 0.20 1.38

(c) All other elements 0.22 1.49

Table 1. Constants for Effective Width Equation

Table B4.1a 
Case

Table E7.1 
Case kc c1 c2 c3 c4 c5

Appendix A
Equation Number

1 (c) 1.0 0.22 1.49 0.56 0.834 0.184 A-3

2 (c) kc 0.22 1.49 0.64 0.954 0.210 A-5

3 (c) 1.0 0.22 1.49 0.45 0.671 0.148 A-9

4 (c) 1.0 0.22 1.49 0.75 1.12 0.246 A-7

5 (a) 1.0 0.18 1.31 1.49 1.95 0.351 A-11

6 (b) 1.0 0.20 1.38 1.40 1.93 0.386 A-15

7 (a) 1.0 0.18 1.31 1.40 1.83 0.330 A-13

8 (a) 1.0 0.18 1.31 1.49 1.95 0.351 A-11
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Thus, for webs of doubly symmetric rolled I-shaped sec-
tions—Case 5 in Table B4.1a and Case (a) in Table E7.1—
the following constants are determined:

c1 = 0.18
c2 = 1.31
c3 = 1.49
c4 = 1.95
c5 = 0.351

and Equation E7-3 becomes, from Equation 6,
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F b t
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e
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⎦⎥
⎥
 

(7)

This effective width equation is very close to Equation E7-17 
from the 2010 Specification, with the constants only slightly 
different. In addition, Fcr here is the same as ƒ in Equation 
E7-17. The 2016 provisions are rewritten using Equation 6 
and presented in full in this paper’s Appendix.

The same comparison to the 2010 Specification cannot be 
made for unstiffened elements because the effective width 
approach in the 2016 Specification is a new approach for 
those elements.

IMPACT OF 2016 PROVISIONS

It is the intent of these new 2016 provisions to reduce the 
complex nature of the previous slender element provisions 
and to present a unified approach for both stiffened and 
unstiffened elements. In some instances, the changes imple-
mented for 2016 will have little to no impact on the strength 
of slender element compression members, while in other 
instances, they may yield a significant increase in predicted 
strength. Where significant strength increase is seen with 
the 2016 provisions, the overly conservative nature of the 
previous provisions has been reduced.

Figures  1 through 6 illustrate the nominal strength for 
several slender element compression members, showing the 
results of the 2010 provisions and those of the 2016 provi-
sions. As an aid to understanding the overall significance of 
slender elements on reducing column strength, the nominal 
strength, with the reduction for slender elements ignored, is 
also shown. The shapes used for Figures 1 through 6 and 
their element slenderness values are tabulated in Table 2.

In each of the cases presented, the rolled shape was 
selected because it is the one with the most slender element 
for that shape. The built-up shape was selected as an extreme 
case to illustrate the significance of the new provisions for 

Table 2. Description of Shapes Used to Develop Figures

Figure Shape Fy, ksi
Element 

Slenderness
Limiting Slenderness for  

Local Buckling

1 W30×90 50
h
t

57.5
w

= E
F

1.49 35.9
y

=

2 HSS16×4×x 46
h
t

89=
E
F

1.40 35.2
y

=

3 WT15×45 50
d
t

31.5
w

= E
F

0.75 18.1
y

=

4 L5×3×14 36
d
t

20=
E
F

0.45 12.8
y

=

5
Built-up I-shape (slender flange) 
Flange: 24 in. × ½ in. 
Web: 24 in. × ¾ in.

50

b
t

h
t

2
24

32

r

f

w

=

=

E
F

E
F

0.56 13.5

1.49 35.9

y

y

=

=

6
Built-up I-shape (slender flange and web) 
Flange: 24 in. × ½ in. 
Web: 24 in. × ½ in.

50

b
t

h
t

2
24

48

r

f

w

=

=

E
F

E
F

0.56 13.5

1.49 35.9

y

y

=

=
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Fig. 1. Comparison of 2010 and 2016 slender element column strength, W30×90, Fy = 50 ksi.
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Fig. 2. Comparison of 2010 and 2016 slender element column strength, HSS16×4×x, Fy = 46 ksi.
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Fig. 3. Comparison of 2010 and 2016 slender element column strength, WT15×45, Fy = 50 ksi.
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Fig. 4. Comparison of 2010 and 2016 slender element column strength, L5×3×¼, Fy = 36 ksi.
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Fig. 5. Comparison of 2010 and 2016 slender element column strength, 24×24 built-up I-shape, Fy = 50 ksi.
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Fig. 6. Comparison of 2010 and 2016 slender element column strength,  
24×24 built-up I-shape, slender web and slender flange, Fy = 50 ksi.
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both slender flanges and slender webs. The shapes that show 
the most significant change are the built-up I-shape, WT and 
angle. These are all members with unstiffened slender ele-
ments. The W-shape and the HSS show less change, illus-
trating the relatively minor impact on columns with slender 
stiffened elements.

CONCLUSIONS

The 2016 Specification provisions for slender compression 
elements in compression members treats stiffened and uns-
tiffened elements in a similar fashion through the same gov-
erning equation. It also accounts for the fact that columns 
are not designed to be stressed to the yield stress, so limiting 
width-to-thickness ratios need not be based on a limit estab-
lished using the yield stress.

A comparison between the 2010 Specification and 2016 
Specification for six slender element members shows that 
the change in strength can be significant for members with 
slender unstiffened elements. Two alternate approaches have 
been presented that produce the same results as the new 
2016 Specification. Equation  6, with the constants given 
in Table  1, may be used for all slender element members 
except round HSS, or the expanded presentation given in the 
Appendix may be used.
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APPENDIX

This presentation reorganizes Section E7 of the 2016 AISC 
Specification with specific equations given for each case, 
similar to the 2010 Specification. The constants from Table 
E7.1 and Table 1 have been included in the equations. With 
the 2016 Specification, each time a particular shape is con-
sidered, the same constants will need to be used and the 
same equation will eventually result. Thus, writing out the 
equations once for each case, as done here, may be a simpli-
fication useful to the designer.

E7. MEMBERS WITH SLENDER ELEMENTS

This section applies to slender-element compression mem-
bers, as defined in Section B4.1 for elements in uniform 
compression.

The nominal compressive strength, Pn, shall be the lowest 
value based on the applicable limit states of flexural buck-
ling, torsional buckling, and flexural-torsional buckling.

 Pn = FcrAe (A-1)

where
Ae  =  summation of the effective areas of the cross-

section based on the reduced effective width, be or 
de, in.2 (mm2), or as given by Equations A-16 or 
A-17

Fcr =  critical stress determined in accordance with 
Section E3 or Section E4, ksi (MPa)

1. Slender Unstiffened Elements
 The effective width, be or de, for slender unstiffened ele-
ments is determined as follows:

(a)  For flanges, angles and plates projecting from rolled 
columns or other compression members:

(i) When
 

b

t

E

F
0.56

cr
≤

 be = b (A-2)

(ii) When
 

b

t

E

F
0.56

cr
>

 
b t

E

F b t

E

F
0.834 1

0.184
e

cr cr
= −

⎡

⎣
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⎤

⎦
⎥( )  

(A-3)

(b)  For flanges, angles and plates projecting from built-up 
I-shaped columns or other compression members:
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(i) When
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k E
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 be = b (A-4)
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(A-5)

where

k
h t

4
c

w
=  and shall not be taken less than 0.35 nor 

greater than 0.76 for calculation purposes

(c)  For stems of tees:

(i) When
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E

F
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cr
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 de = d (A-6)

(ii) When
 

d

t

E

F
0.75

cr
>

 
d t

E

F d t

E

F
1.12 1

0.246
e

cr cr
= −

⎡

⎣
⎢

⎤

⎦
⎥( )  

(A-7)

(d)  For single angles, double angles with separators, and 
all other unstiffened elements:

(i) When
 

b

t

E

F
0.45

cr
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 be = b (A-8)
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0.148
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⎦
⎥( )  

(A-9)

where
b  =  width of unstiffened compression element, as 

defined in Section B4.1, in. (mm)

d  =  depth of tee, as defined in Section B4.1, in. (mm)

t  =  thickness of element, as defined in Section B4.1, in. 
(mm)

2. Slender Stiffened Elements
 The effective width, be, for slender stiffened elements is 
determined as follows: 

(a)  For all shapes except cover plates, diaphragm plates, 
walls of square and rectangular HSS and round HSS:

(i) When
 

b
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E

F
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cr
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 be = b (A-10)
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(A-11)

(b)  For cover plates and diaphragm plates:

(i) When
 

b

t

E

F
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≤

 be = b (A-12)
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(A-13)

(c)   For walls of square and rectangular HSS:

(i) When
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t

E

F
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 be = b (A-14)
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137-146_EJQ316_2015-29.indd   145 6/21/16   2:01 PM



146 / ENGINEERING JOURNAL / THIRD QUARTER / 2016

(d)   For round HSS, the effective area is determined as 
follows:

(i) When
 

D

t

E

F

0.11

y
≤

 Ae = Ag (A-16)

(ii) When
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F
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⎣
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⎦
⎥
⎥  

(A-17)

where
D = outside diameter of round HSS, in. (mm)
t = thickness of wall, in. (mm)
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INTRODUCTION

When a plate is subjected to applied loads and significant 
out-of-plane deformation, the demand on the connec-

tion may exceed that derived from calculations due to the 
applied loads only. Where inelastic behavior is acceptable, 
the intent may be to ensure ductile behavior. For plates with 
fillet-welded edge connections, this can be accomplished by 
sizing the fillet welds to develop the strength of the plate.

One specific example of this arises when a brace in a 
special concentrically braced frame (SCBF) is subject to 
compression and buckles out-of-plane. Resulting weak-axis 
bending of the gusset plate may demand more of the gusset 
plate edge connection than the calculated forces that result 
on the gusset edge due to the brace force specified in Section 
F2.6c.2 of AISC 341-16 (AISC, 2016). If not accounted for 

in the weld size, the uncalculated weak-axis moment on the 
welds from out-of-plane bending of the gusset plate might 
cause rupture of the fillet welds to govern the behavior of 
the system.

Section F2.6c.4 of AISC 341-16—a new provision at 
the time of writing of this paper—provides a fairly simple 
approach that can be used to determine an appropriate fil-
let weld size to preclude this concern. It allows the required 
shear strength for the welds to be taken equal to 0.6RyFytp/αs  
(i.e., the expected shear strength of the plate), where these 
variables are defined in AISC 341-16. A user note is pro-
vided to further simplify this for common steel grades and 
double-sided fillet welds: A weld size of 0.62tp is sufficient 
for 36-ksi gusset plates and 70-ksi weld metal, and a weld 
size of 0.74tp is sufficient for 50-ksi gusset plates and 70-ksi 
weld metal.

An exception also is provided to recognize that a weak-
axis flexural hinge in the gusset plate edge can be used to 
protect the fillet welds. It recognizes that the forces pres-
ent from the brace consume a portion of the strength of the 
gusset plate edge. This paper explains how to calculate the 
portion consumed, the remainder of the gusset plate strength 
that must be developed, and the corresponding fillet weld 
size that will do so. It also shows that this approach will pro-
duce a smaller required fillet weld size than the other option 
provided in Section F2.6c.4 of AISC 341-16.
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INTERACTION ON THE GUSSET PLATE EDGE

A yield mechanism can be used in the gusset plate to deter-
mine the maximum weak-axis bending moment that can 
exist in the presence of the gusset plate edge forces that 
result from the force in the brace. Using the generalized 
interaction equation recommended by Dowswell (2015), the 
total utilization of the gusset plate in shear, compression, 
and strong- and weak-axis bending can be expressed as:
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where

Pu =  gusset edge compression force due to brace 
compression force specified in section F2.6c.2, 
kips

Vu =  gusset edge shear force due to brace compres-
sion force specified in Section F2.6c.2, kips

Mux =  gusset edge strong-axis moment due to 
brace compression force specified in Section 
F2.6c.2, kip-in.

Muy =  gusset edge weak-axis moment due to defor-
mations from brace buckling, kip-in.

ϕRyPy =  0.9RyFyLtp, the expected compression strength 
of the gusset place edge, kips

ϕRyVp =  1.0(0.6RyFyLtp), the expected shear strength of 
the gusset plate edge, kips
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Ry =  ratio of the expected yield stress to the speci-
fied minimum yield stress, Fy

Fy =  specified minimum yield stress, ksi
L =  length of fillet welds on gusset plate edge, in.
tp =  gusset plate thickness, in.

Because all variables in Equation 1 except Muy are known 
for a given gusset plate, it is convenient to rewrite it at the 
point of equivalency as follows:
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Equation  2 provides the maximum weak-axis moment, 
Muy max, that can be delivered to the welds by the gusset plate 
in the presence of Pu, Vu, and Mux.

In the preceding formulations, the expected yield 
strength, RyFy is used rather than the minimum specified 
yield strength, Fy. To not use Ry would reduce the denomina-
tor in these terms—and thereby also reduce the calculated 
value of the remaining weak-axis flexural demand, Muy max, 
that must be developed. RyFy also is used in the denomina-
tor of the weak-axis flexural strength ratio as provided in 
Section A3.2 in AISC 341-16 because all of these ratios are 
determined for the same element in the interaction equation.

DESIGN REQUIREMENTS FOR  
GUSSET PLATE EDGE FILLET WELDS

The four required strengths at the gusset plate edge (Pu, 
Vu, Mux and Muy max) can be used to design fillet welds that 
will fully develop the edge of the gusset plate and preclude 
weld rupture. All four effects produce shear on the effective 
throat of the fillet weld. The effects of Pu, Mux and Muy max 
all are oriented transverse to the fillet weld, while the effect 
of Vu is oriented parallel to the weld axis. Accordingly, the 
maximum weld force per unit length due to the combination 
of all four effects can be expressed as follows:
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w = weld size, in.
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The corresponding weld design strength per inch is:

 ( )ϕ = + θr D1.392 1.0 0.5sinn
1.5

 
(11)

where
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Here, D is the number of sixteenths in the weld size, and the 
basic weld strength of 1.392D is determined as explained in 
Part 8 of the AISC Steel Construction Manual (AISC, 2011). 
Because the quantity in Equation 11 must equal or exceed 
the quantity in Equation 6, the minimum weld size can be 
determined as:

 ( )=
+ θ
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f
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(13)

This weld size is sufficient to develop the gusset plate; there-
fore, it is unnecessary to also apply the “Richard” 1.25 weld 
ductility factor (AISC, 2011), which is used to address hot 
spots in cases where the welds do not develop the gusset 
plate.

Equation 10 is based on a moment arm equal to the dis-
tance between centroids of the effective throats of the fil-
let welds taken at 45 degrees in the welds (tp + 0.5w); see 

Figure 1. Although some references illustrate the use of the 
weld area centroids—a moment arm of tp  + 0.67w in this 
case—the calculations in this paper are made relative to the 
centroids of the effective throats, and the moment arm of 
tp + 0.5w is used for consistency.

This equation is directly useful when checking a design, 
as shown in Examples 1 and 2 at the end of this paper, but 
requires iteration when designing a connection. Iteration can 
be minimized by assuming a weld size; a reasonable start-
ing assumption is w = tp/2, in which case, tp + 0.5w = 1.25tp. 
Alternatively, the weld size can be ignored in design and 
the moment arm taken as tp if the resulting penalty is not 
objectionable.

COMPARISON TO TEST DATA

Table 1 shows the available testing (Johnson, 2005; Roeder, 
2015) by which the suitability of the foregoing method can 
be judged. Predicted and actual test results are shown as GY 
and BR for gusset yielding and brace rupture and WR for 
weld rupture. The former is the desired behavior; the latter 
is undesirable.

Note that weld tearing as testing progresses is not pre-
ventable and should not be confused with weld rupture. The 
geometric deformations of the specimens during testing 
will cause tearing starting at the ends of the welds. As long 
as the specimen remains viable and the brace continues to 
function through the testing until the brace fractures, it is an 
acceptable result. The key concept here is that the weld tear-
ing cannot be unstable and result in complete weld rupture. 
Rather, weld tearing must be stable so that gusset yielding 
can occur, and ultimately, brace rupture will limit the test.

Tests are available on both sides of the prediction point 
of the method, and as can be seen in Table 1, the predic-
tion of the method provided in this paper is correct for all 
tests shown. The testing by Roeder (2015) and the two edge 
connections in test HSS 01 (Johnson, 2005) are the most rel-
evant because they bound the prediction and all have a weld 
size within z in.—the smallest increment of weld size—of 
the prediction of the method.

Table  1 also shows a comparison to the use of the 
0.6RyFytp/αs provision from Section F2.6c.4 of AISC 341-
16, which is easier to use but requires a larger weld size than 
the method provided in this paper. Adjusting from weld size 
to weld volume to better reflect the impact on the cost of 
welding, the difference is from 125% to 300% in the cases 
shown in Table 1.

ASD DERIVATION

All of the foregoing information was presented using LRFD 
equations. Following are the similar equations for an ASD 
solution:Fig. 1. Moment arm for weak-axis bending.
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where
Pa =  gusset edge compression force due to brace 

compression force specified in Section F2.6c.2, 
kips

Va =  gusset edge shear force due to brace compres-
sion force specified in Section F2.6c.2, kips

Max =  gusset edge strong-axis moment due to brace 
compression force specified in Section F2.6c.2, 
kip-in.

May =  gusset edge weak-axis moment due to deforma-
tions from brace buckling, kin-in.
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CONCLUSIONS

The method provided in this paper is suitable to determine 
the minimum size of fillet welds necessary to prevent weld 
rupture as out-of-plane deformations occur. It can be used 
for fillet-welded gusset plate edges in special concentrically 
braced frames (SCBFs) to satisfy the exception provided in 
Section F2.6c.4 of AISC 341-16.
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Example 1. ASTM A36 Gusset Plate Using Theoretical Derivation

Consider the gusset plate-to-beam flange fillet welds for the upper gusset plate illustrated in Figure 2 [Figure 5-33 of the AISC 
Seismic Design Manual (AISC, 2012)] and the loads for Case 2 (a 444-kip brace force; see page 5-230). Determine if the a-in. 
fillet welds used are acceptable for the new criterion. (Note that this example in the 2nd Edition AISC Seismic Design Manual 
illustrates the requirements in the 2010 AISC Seismic Provisions, which did not contain a requirement like that in Section 
F2.6c.4 of AISC 341-16 and illustrated in this paper.)

From the example:
L = 25.75 in. tp = 0.75 in. Fy = 36 ksi Ry = 1.3 FEXX = 70 ksi
Vu = 216 kips Pu = 193 kips Mux = 0 kip-in.

The maximum weak-axis flexural moment that can exist in the presence of Vu, Pu, and Mux can be calculated as follows:
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The resultant weld force per inch can be calculated as follows:

( )

=

=

=

f
V

L2
216 kips

2 25.75 in.

4.19 kips/in.

uv
u

 

(7)

( )

=

=

=

f
P

L2
193 kips

2 25.75 in.

3.75 kips/in.

up
u

 

(8)

147-158_EJQ316_2015-31.indd   152 6/21/16   2:02 PM



ENGINEERING JOURNAL / THIRD QUARTER / 2016 / 153

Fig. 2. Replication of Figure 5-33 of the AISC Seismic Design Manual, 2nd Ed.
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The required fillet weld size can be calculated as follows:
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(13)

The a-in. fillet welds shown are adequate for the proposed criterion.

Now compare to the fillet weld size that would be required by the 0.6RyFytp/αs alternative provision given in Section F2.6c.4 of 
AISC 341-16:
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These 2-in. fillet welds, though easier to determine, would require 78% more weld metal volume.

147-158_EJQ316_2015-31.indd   154 6/21/16   2:02 PM



ENGINEERING JOURNAL / THIRD QUARTER / 2016 / 155

Fig. 3. Replication of Figure 6-1 of AISC Design Guide No. 29.

Example 2. ASTM A572 Grade 50 Gusset Plate Using Theoretical Derivation

Consider the gusset plate-to-beam flange fillet welds for the gusset plate illustrated in Figure 3 [Figure 6-1 of AISC Design 
Guide 29 (Muir and Thornton, 2014)] and the brace compression force of 783 kips (see page 296). Determine if the 2-in. fillet 
welds used are acceptable for the new criterion. (Note that this example in AISC Design Guide 29 illustrates the requirements 
in the 2010 AISC Seismic Provisions, which did not contain a requirement like that in Section F2.6c.4 of AISC 341-16 and illus-
trated in this paper.)

From the example:
L = 34.25 in. tp = 1 in. Fy = 50 ksi Ry = 1.1 FEXX = 70 ksi
Vu = 493 kips Pu = 161 kips Mux = 1,290 kip-in.

The maximum weak-axis flexural moment that can exist in the presence of Vu, Pu, and Mux can be calculated as follows:
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The resultant weld force per inch can be calculated as follows:
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The required fillet weld size can be calculated as follows:
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The 2-in. fillet welds shown are adequate for the proposed criterion.

Now compare to the fillet weld size that would be required by the 0.6RyFytp/αs alternative provision given in Section F2.6c.4 of 
AISC 341-16:
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These w-in. fillet welds, though easier to determine, would require 125% more weld metal volume.
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INTRODUCTION

When a bolted connection is made to the flange of a beam, 
material is invariably removed, which can require either 
reinforcing of the flange or a reduction in available strength 
of the beam. The issue of reduced strength or net sections 
in flexural members dates back as early as 1891 (Lilly and 
Carpenter, 1939). The issue was first encountered in the 
context of plate girders—before the acceptance of modern 
welding procedures, sections were invariably built up from 
plates and angles that were riveted together resulting in gird-
ers with numerous flange perforations. Before experimental 
data were available to indicate otherwise, strength calcula-
tions were based on the net-section properties of the girders, 
even though deflections were often computed using gross-
section properties.

The 1939 paper by Lilly and Carpenter includes discussion 
by W. R. Osgood, which refers to an experiment conducted 
by Friedrich Hartmann, wherein Hartmann concluded that 
“in the absence of considerations of fatigue, girders of sym-
metrical cross sections may be designed safely on the basis 
of gross moment of inertia.” Lilly and Carpenter used two 
experiments to investigate the elastic stiffness and flange 
stresses of flexural members built up from plates that were 
riveted together using angles. Based on the findings of their 
study, they suggested that the design of girders could be 

based on the gross-section girder properties but proposed an 
equation resulting in a slightly reduced “effective” moment 
of inertia. The two girders tested by Lilly and Carpenter, 
however, were not tested to failure. The extensive discussion 
that followed the publication of the paper is evidence of just 
how contentious the issue was. At least 18 different engi-
neers and scientists wrote to express their opinions of Lilly 
and Carpenter’s findings—most expressed their discomfort 
with the idea of using the gross-section properties for the 
design of girders, even when designs were limited by elastic 
allowable stresses.

Today, girders built up from plates and angles that are 
riveted together are a thing of past, but the idea of using 
effective section properties or imposing reductions to the 
available strength of beams and girders persists. One of the 
most direct applications on these provisions is in the design 
of bolted moment connections in lateral force resisting 
systems.

BACKGROUND

AISC General Provisions

The provisions in Section B10 of the 3rd  Edition LRFD 
Specification (AISC, 1999) covered the determination of 
flexural strength of rolled or built-up members with holes 
in their tension flanges. The provisions consisted of a design 
check, shown as Equation  1, wherein an engineer investi-
gated the ratio of the net-section-fracture strength to the 
gross-section-yielding strength, both evaluated using cor-
responding resistance factors. In cases where the available 
gross-section-yielding strength governed the behavior of the 
tension flange, the full plastic moment of the section was 
available and could be used. When the net-section-fracture 
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strength governed, however, a reduction in strength was 
required. This reduction was made by computing an effec-
tive area for the tension flange using Equation  2, which 
included the ratio of resistance factors of 0.75 to 0.90, or y. 
Using the effective flange area, modified flexural properties 
were computed and the moment capacity was based on the 
modified section modulus.

 F A F A0.75 0.90u fn y fg≥  (1)

 
A

F

F
A

5

6
fe

u

y
fn=

 
(2)

where
Fy  =  yield strength of beam material, ksi

Fu  =  ultimate strength of beam material, ksi

Afg =  gross tension flange area, in.2

Afn =  net tension flange area, in.2

Afe =  effective net tension flange area, in.2

An unfortunate reality of these provisions, however, was 
that almost none of the members tabulated in the AISC Steel 
Construction Manual (AISC, 2001) would pass the initial 
design check when two typically sized bolt holes are placed 
in the flange, as would be typical for a bolted beam-to- 
column connection. If A992 material is assumed for the 
beam and it is assumed that two d-in.-diameter bolts are 
placed in the beam flanges, not a single W-section in the 
manual would satisfy the criterion shown as Equation 1. As 
a result, using the 1999 provisions, it is impossible to design 
to a fully bolted moment connection capable of reaching the 
plastic moment of the beam without providing reinforce-
ment to the flanges.

The revised provisions appearing in Section F13 of AISC 
360-05 (AISC, 2005), which remain unchanged in AISC 
360-10 (AISC, 2010b) and AISC 360-16 (AISC, 2016b), are 
largely the same as those in AISC 1999 except for three sub-
tle, but important changes. The check of net-section-fracture 
strength versus gross-section-yielding strength now appears 
as shown in Equation 3. Like before, when this design check 
is satisfied, no reduction in moment capacity is needed, and 
the full plastic moment of the beam can be used. The first 
difference is that the resistance factors of 0.75 and 0.90 have 
been removed from the design check and from the reduction 
formula. The second difference is that a factor, YT, was added 
in the design check to guard against the detrimental effect 
of a high-yield-strength to ultimate-strength ratio. The last 
difference is in the way that the strength reduction is made 
for beams failing the design check. Previously, if a section 
failed the design check shown in Equation 3, an engineer had 
to recompute the section properties of the beam based on 

an effective flange area and then base the moment capacity 
on yielding at that location. This approach has been stream-
lined by using the ratio of Afn to Afg to modify the nominal 
elastic section modulus, Sx. This reduced modulus is then 
multiplied by the ultimate strength, as shown in Equation 4, 
to arrive at the moment capacity at the net section.

 F A Y F Au fn T y fg≥  (3)

 
M

F A

A
Sn

u fn

fg
x=
 

(4)

where
YT  = 1.0 when Fy/Fu ≤ 0.80

YT  = 1.1 when Fy/Fu > 0.80

Sx  = section modulus for the beam’s gross section, in.3

The basis for the changes from the 1999 provisions to 
the 2005 provisions is discussed by Geschwindner (2010). 
An important ramification of the changes is that a larger 
number of W-sections pass the design check, permitting 
them to be designed for their full plastic moment capacity 
without flange reinforcement. As before, if A992 material 
is assumed for the beam and it is assumed that two d-in.-
diameter bolts are placed in the beam flanges, more than 
two-thirds of the tabulated W-sections pass the AISC 360-
16 design check shown as Equation 3.

AASHTO Provisions

The American Association of State Highway Transporta-
tion Officials (AASHTO) specification (AASHTO, 2016) 
includes a provision to limit stress at net sections of girders. 
The provision, shown as Equation 5, limits the stress in the 
tension flange, fl, under strength limit loading and during 
construction. Rewriting the equation, it can be shown that 
the moment capacity of the member at the net section is lim-
ited by the smaller of the yield moment, FySx, or the moment 
corresponding to fracture, as shown in Equation 6. The value 
of 0.84 found in both equations is the ratio of the AASHTO 
resistance factor for fracture, 0.80, to the factor for yielding, 
0.95. It should be noted that a comparison of the 0.84 factor 
in Equation 6 to the factor of y in Equation 2 must include 
the understanding that the AASHTO specification is based 
on a different probabilistic model for loading than the AISC 
specifications, which refers to ASCE-7-10 (2010):
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Because the focus of this paper is beams and beam-to- 
column connections in buildings, wherein the sections, con-
nections, and splices are often proportioned differently than 
in bridges, the AASHTO provisions are included for sake of 
completeness but will not be discussed further.

AISC Seismic Provisions

When beam-to-column connections are designed for spe-
cial moment frames and intermediate moment frames, 
one option for satisfying the conformance demonstration 
required in the AISC Seismic Provisions (AISC, 2010a) is 
to select a connection prequalified by the AISC Connec-
tion Prequalification Review Panel (CPRP) (AISC, 2011). 
Two connections in the current AISC 358 specification, the 
bolted flange plate (BFP) and Kaiser bolted bracket (KBB) 
connections, and one more to appear in the next edition of 
the specification (AISC, 2016b), the double-tee (DT) con-
nection, employ connections whereby the beam is bolted 
through its flanges.

The design procedure for the BFP connection includes a 
check of the beam net section to make sure that the beam 
can reach its full plastic moment. The check is written such 
that the maximum bolt diameter is determined, assuming 
that standard holes are used in the beam flange. Although 
this check is expressed differently, it is algebraically the 
same as the provisions in Section F13 of AISC 360-16 as 
shown in Equation 3.

The KBB provisions make no mention of a check for the 
net section of the connected beam but do employ “clamp 
plates” on the inside faces of the beam flanges to limit dis-
tortion and strains at the net section due to local buckling 
and necking (AISC, 2011; Kasai and Bleiman, 1996). The 
commentary to the KBB provisions notes that in simi-
lar experiments performed with and without clamp plates, 
those without clamp plates failed by necking and then frac-
ture through the net section of beam flanges, whereas those 
experiments with the clamp plates failed via yielding and 
fracture through the gross section of the beam flange out-
side of the clamped region. The provisions also mention the 
reduced strength of the column resulting from drilling holes. 
In step 7 of the design procedure, a check of the column net 
section is performed that is consistent with Section F13 of 
AISC 360-16 shown in Equation 3. The commentary cites 
work by Masuda et al. (1998) that showed that removing as 
much as 30 to 40% of the column flange resulted in only a 
10% reduction in yield moment.

The 2016 AISC 358 specification (AISC, 2016a) will 
include double-tee standards that require the strength cor-
responding to fracture on the net plastic section to be greater 
than the plastic moment of the gross section. Written in 
terms of the expected strengths, RyFy and RtFu, this require-
ment can be written mathematically as shown in Equation 7. 

Restricting the discussion to A992 steel where Ry  = Rt, it 
can be shown that the full plastic moment capacity of the 
section is available provided that Zx,net/Zx is not less than  
Fy/Fu = 0.7692.

 Z R F Z R Fx net t u x y y, ≥  (7)

The introduction of Equation 7 was born from the idea 
that the provisions in AISC 360 were too conservative, as 
was evidenced by experimentation, and that the compari-
son of net fracture and gross yielding limit states should be 
made at the plastic moment as opposed to the yield moment. 
Because the context within which this equation is presented 
is that of a full-strength moment connection, no mention is 
made of a reduced moment capacity of the beam in the case 
that Equation 7 is not satisfied.

SUMMARY OF RECENTLY ADDED 
EXPERIMENTAL DATA

During an investigation of the moment capacity of T-stub 
connections at the Georgia Institute of Technology (Smal-
lidge, 1999; Swanson, 1999; Schrauben, 1999; Swanson 
and Leon, 2000), several fully bolted moment connections 
were able to develop moments in the beams that exceeded 
the plastic moment of the sections. Further, in studies on 
bolted flange plate connections at the University of Texas, 
University of Illinois, and the University of California–San 
Diego (Larson, 1996; Schneider and Teeraparbwong, 2002; 
Sato et al., 2007), several more moment connections with 
bolted flanges were also able to develop moments in the 
beams that exceeded the plastic moment of the sections. 
Finally, in experiments on steel girders with holes in the ten-
sion flanges conducted at the University of Minnesota (Alt-
stadt, 2004), three of four specimens were able to develop 
bending moments that exceeded the plastic moment of the 
sections. In all of these cases, the beams failed to satisfy 
the net-section-facture design check in Section B10 of the 
1999 provisions, and in several cases, the beams failed to 
satisfy the net-section-facture design check in Section F13 
of AISC 360-16.

The following sections summarize recent research data 
that are applicable to the current discussion. The first three 
programs—conducted at Georgia Tech, the University of 
Texas, and the University of Illinois—were completed as 
part of the SAC Steel Project in the aftermath of the 1994 
Northridge, California, earthquake; the fourth program, 
conducted at UC San Diego, focused on bolted flange plate 
connection performance in special moment frames; and the 
last program was conducted at the University of Minnesota 
in 2003 to investigate the rotational capacity of girders con-
structed from high-performance steel (50W and 70W). An 
additional test program, conducted in 2004 at the University 
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of Cincinnati to provide additional data to answer questions 
about the influence of fabrication methods on the strength 
and ductility of net sections (Yuan, 2005), is not included 
in this work because the experiments were of specimens 
loaded axially instead of flexurally.

Georgia Tech T-Stub Tests

As part of the SAC Steel Project conducted in the after-
math of the Northridge earthquake, a series of eight full-
scale beam-column subassemblies was tested at the Georgia 

Institute of Technology in 1998 (Schrauben, 1999; Smal-
lidge, 1999; Swanson 1999). These assemblies, summa-
rized in Table  1, consisted of cantilever beams connected 
to pinned-pinned columns using fully bolted T-stub connec-
tions to resist moment and a shear tab connections to resist 
shear. Values reported for Fy and Fu in Table 1 were mea-
sured during material testing performed at Georgia Tech. 
The critical section noted in the table is the net section in 
the beam at the row of bolts farthest from the face of the col-
umn. The connections were loaded by applying a displace-
ment to the ends of the cantilever beams.

Connections FS-01 and FS-02 were designed as partial-
strength top-and-seat angle connections and are not reported 
herein. Connection FS-03 failed when the stem of one of 
the T-stubs connecting the beam to the column sustained a 
net-section fracture after a limited amount of flange yield-
ing was noted in the beam. Testing of connection FS-04 was 
stopped after the beam developed a plastic hinge and the 
flanges sustained significant inelastic local buckling. Test-
ing of connections FS-05, FS-06 and FS-08 was stopped 
after the beam developed plastic hinges and the flanges and 
webs sustained significant inelastic local buckling. Con-
nection FS-07 failed by a net-section fracture of the beam 
flange, but only after significant yielding and localized 
flange buckling had occurred. The net-section beam-flange 
fracture began when the material between the bolt hole and 
the edge of flange fractured, as shown in Figure 1. The frac-
ture then progressed across the remainder of the flange and 
into the web, as shown in Figures 2 and 3, before the experi-
ment was stopped. Connection FS-09 failed when the bolts 
connecting the T-stub to the column flange fractured, though 
Schrauben (1999) reported that yielding was observed in 
the beam flanges and web prior to bolt failure. Testing of 

Fig. 1. Initial fracture in the beam  
flange of connection test FS-07.

Fig. 2. Beam from connection FS-07  
after disassembling the connection.

Fig. 3. Beam from connection FS-07. White-wash spalling 
indicates the formation of a plastic hinge.
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Table 1. Details of Georgia Tech Connection Tests

Test 
ID

Beam 
Section

Bolt 
Diameter

(in.)

Hole 
Diameter

(in.)
Beam 
Grade

Measured

Expected 
Failure

@ Column Face @ Crit Net Section

Fy

(ksi)
Fu

(ksi)
FyZx

(k-in.)
MFailure

(k-in.)
% 

Above
MFailure

(k-in.)
% 

Above

FS-03 W21×44 d 0.938 A572-50 58.0 71.0 5,533 T-stub NSF 5,773 4% 5,405 −2%

FS-04 W21×44 1 1.063 A572-50 58.0 71.0 5,533 Beam FLB 5,949 8% 5,526 0%

FS-05 W24×55 d 0.938 A572-50 61.0 76.0 8,235 
Beam WLB 
& FLB

9,363 14% 8,629 5%

FS-06 W24×55 1 1.063 A572-50 61.0 76.0 8,235 
Beam WLB 
& FLB

8,642 5% 8,028 −3%

FS-07 W24×55 d 0.938 A572-50 61.0 76.0 8,235 Beam NSF 9,205 12% 8,483 3%

FS-08 W24×55 1 1.063 A36 53.8 70.7 7,263 
Beam WLB 
& FLB

8,254 14% 7,527 4%

FS-09 W27×84 d 0.938 A572-50 59.1 78.3 14,420 
T-stub 
T-Bolts

17,794 23% 16,105 12%

FS-10 W27×84 1 1.063 A572-50 59.1 78.3 14,420 
Beam FLB/
Fixture

18,269 27% 16,660 16%

WLB - Web Local Buckling
FLB - Flange Local Buckling

NSF - Net Section Fracture Ave:
StDev:

13%
8%

Ave:
StDev:

4%
6%

connection FS-10 was discontinued when the connection at 
one end of the column failed. Schrauben reported yielding 
and local buckling in the beam flanges and web along with 
extensive yielding in the T-stubs prior to stopping the test.

In all cases—even FS-03, which was stopped after a 
T-stub failure—the maximum moment developed at the face 
of the column during the experiment exceeded the expected 
plastic moment1 of the beam. The experimental moment at 
the column was, on average, 13% higher than the expected 
plastic moment of the beam. Alternatively, the experimental 
moment at the critical beam section was, on average, 4.2% 
higher than the expected plastic moment of the beam.

University of Texas Tests

A series of five full-scale beam-column subassemblies was 
tested at the University of Texas at Austin in 1996 (Barba-
ran, 1996; Larson, 1996). These assemblies consisted of can-
tilever beams connected to pinned-pinned columns using 
a shear tab to resist shear and, in most cases, fully bolted 
T-stubs to resist moment. The first specimen was designed 
with a shear-only connection—with a shear tab but without 
T-stubs—so as to investigate the contribution of the shear 
tab and beam web to the moment strength of the connection.  

1 When the yield strength was measured, either through mill certification 
or independent testing, the expected plastic moment is defined as Mpe = 
Zx Fy,measured. In other cases, the expected plastic moment is defined as 
Mpe = Zx Ry Fy.

The second and third specimens were designed both with 
a shear tab and T-stubs, but the T-stubs were configured 
to provide only a partial-strength beam connection. The 
fourth and fifth specimens, indicated in Table  2 as DT04 
and DT05, were designed with both a shear tab and T-stubs, 
with the tees in DT-04 proportioned to transmit 100% of the 
beam plastic moment to the column and the tees in DT05 
proportioned to transmit approximately 125% of the beam’s 
plastic moment (Barbaran, 1996). Values reported for Fy and 
Fu in Table  2 were measured during material testing per-
formed at the University of Texas at Austin as reported in 
Larson (1996) for static loading of flat coupons cut from the 
beam flange parallel to the direction of rolling. The critical 
section noted in the table is the net section in the beam at 
the row of bolts farthest from the face of the column, though 
it should be noted that Larson and Barbaran indicated the 
presence of vacant holes farther from the column face in the 
beams of some specimens. The connections were loaded by 
applying a displacement to the ends of the cantilever beams.

Connection DT-04 failed when the bolts connecting the 
T-stubs to the column flange fractured. After disassem-
bling the connection, small fractures near the bolt holes in 
the flange of the beam were noted as is shown in Figure 4. 
Testing of connection DT-05 was stopped when a fracture of 
the beam flange, shown in Figure 4, was noticed. Compar-
ing the maximum moment observed at the critical section 
to the expected plastic moment of the section shows that the 
beams exceeded the expected plastic moment by margins of 
3% and 19%.
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University of Illinois Tests

Again, as part of the SAC Steel Project, a series of eight full-
scale beam-column subassemblies was tested at the Univer-
sity of Illinois (Schneider and Teeraparbwong, 2002). These 
assemblies, summarized in Table 3, consisted of cantilever 
beams connected to columns using bolted flange-plate con-
nections to resist moment and shear tab connections to resist 
shear. Six of the tests incorporated W24×68 beam sections, 
and two incorporated W30×99 beam sections. Column sec-
tions were W14×120, W14×145 or W14×211 sections. Val-
ues reported for Fy and Fu in Table 3 are those reported on 
manufacturer’s mill reports. The critical section noted in 
the table is the net section in the beam at the row of bolts 
farthest from the face of the column. The connections were 
loaded by applying a displacement to the free ends of the 
cantilever beams.

In one case (BFP-01), the failure was described as a heat-
affected-zone fracture of the weld connecting the flange 

plate to the column flange. In a second case (BFP-08), the 
failure was described as a net-section fracture of the flange 
plate connecting the beam flange to the column. In all six 
remaining cases, the failure was described as a net-section 
fracture of the beam section. Oversized holes were used in 
the beam flanges in specimens BFP-01 and BFP-06. In spec-
imens BFP-05 and BFP-07, “clamp plates” were included in 
the grip of the bolts at the critical section in an effort to push 
flange local buckling away from the net section of the beam 
and mitigate its effect on the net-section strength. Because 
these plates were not welded to the beam flange, they were 
not treated as flange reinforcement herein.

In all eight experiments—even BFP-01, which failed with 
a HAZ fracture, and BFP-08, which failed with a flange-
plate fracture—the moment developed at the column face 
exceeded the expected plastic moment of the beam. The 
experimental moment at the column face was, on aver-
age, 23% greater than the expected plastic moment of the 
beam. Alternatively, the experimental moment at the critical 

    

Fig. 4. Beam flange fractures in the University of Texas at Austin tests (Larson, 1996:) specimen DT-04 (left) and specimen DT-05 (right).

Table 2. Details of University of Texas at Austin Connection Tests

Test 
ID

Beam 
Section

Bolt 
Diameter

(in.)

Hole 
Diameter

(in.)
Beam 
Grade

Measured

Expected 
Failure

@ Column Face @ Crit Net Section

Fy

(ksi)
Fu

(ksi)
FyZx

(k-in.)
MFailure

(k-in.)
% 

Above
MFailure

(k-in.)
% 

Above

DT-04 W36×150 14 1.313 A36 37.7 57.2 21,904 
T-Bolts/
NSF

25,862 18% 22,533 3%

DT-05 W36×150 14 1.313 A36 37.7 57.2 21,904 Beam NSF 30,016 37% 26,152 19%

NSF - Net Section Fracture Ave:
StDev:

28%
13%

Ave:
StDev:

11%
12%
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section of the beam was, on average, 4.8% higher than the 
expected plastic moment of the beam.

University of California, San Diego Tests

A series of three full-scale bolted flange plate connec-
tions were tested at the University of California–San Diego 
to examine performance in special moment frames (Sato 
et al., 2007).2 These assemblies, summarized in Table  4, 
consisted of cantilever beams connected to columns using 
bolted flange-plate connections to resist moment and shear 

2 Experiments BFP-1, BFP-2 and BFP-3, as reported in Sato et al., have 
been renumbered herein as BFP-11, BFP-12 and BFP-13, respectively, 
for ease of reference and to avoid confusion with the Illinois tests.

tab connections to resist shear. Values reported for Fy and 
Fu were determined by coupon testing except for BFP-13, 
which are those reported on manufacturer’s mill reports. 
The critical section noted in the table is the net section in 
the beam at the row of bolts farthest from the face of the col-
umn. The connections were loaded by applying a displace-
ment to the free ends of the cantilever beams.

In BFP-11 and BFP-13, yielding and local buckling of the 
beam flanges and webs were noted prior to a fracture of the 
beam flange at the critical section. In both cases, some lat-
eral-torsional buckling of the beam was observed. In BFP-12, 
lateral-torsional buckling of the beam led to the discontinu-
ation of the experiment prior to failure of the beam, column 
or connection. In all three experiments—even BFP-12—the 

Table 3. Details of the University of Illinois Tests

Test ID
Beam 

Section

Bolt 
Diameter

(in.)

Hole 
Diameter

(in.)
Beam 
Grade

Mill Certified

Expected 
Failure

@ Column 
Face

@ Crit Net 
Section

Fy

(ksi)
Fu

(ksi)
FyZx

(k-in.)
MFailure

(k-in.)
% 

Above
MFailure

(k-in.)
% 

Above

BFP-01 W24×68 1 1.250 A572-50 56.0 74.0 9,912 HAZ Fracture 11,606 17% 9,377 −5%

BFP-02 W24×68 1 1.063 A572-50 56.0 74.0 9,912 Beam NSF 12,144 23% 10,868 10%

BFP-03 W30×99 1 1.063 A572-50 53.5 67.5 16,692 Beam NSF 21,362 28% 17,725 6%

BFP-04 W24×68 1 1.063 A572-50 56.0 74.0 9,912 Beam NSF 12,337 24% 10,505 6%

BFP-05 W30×99 1 1.063 A572-50 53.5 67.5 16,692 Beam NSF 21,390 28% 17,748 6%

BFP-06 W24×68 1 1.250 A572-50 56.0 74.0 9,912 Beam NSF 12,158 23% 10,616 7%

BFP-07 W24×68 1 1.063 A572-50 56.0 74.0 9,912 Beam NSF 12,379 25% 11,078 12%

BFP-08 W24×68 1 1.250 A572-50 56.0 74.0 9,912 FP Fracture 11,702 18% 9,582 −3%
HAZ - Heat Affected Zone
NSF - Net Section Fracture

FP - Flange Plate Ave:
StDev:

23%
4%

Ave:
StDev:

5%
6%

BFP-01: Oversize Holes, Slip Critical Design
BFP-06: Oversized Holes

BFP-05: Used Clamp Plates Under Last Two Rows of Bolts
BFP-07: Used Clamp Plates Under Last Two Rows of Bolts

Table 4. Details of the UC San Diego Tests

Test 
ID

Beam 
Section

Bolt 
Diameter

(in.)

Hole 
Diameter

(in.)
Beam 
Grade

Measured

Expected 
Failure

@ Column Face @ Crit Net Section

Fy

(ksi)
Fu

(ksi)
FyZx

(k-in.)
MFailure

(k-in.)
% 

Above
MFailure

(k-in.)
% 

Above

BFP-11 W30x108 1 1.063 A992 52.0 77.5 17,992 
Beam FLB 
& NSF

23,643 31% 20,985 17%

BFP-12 W30x148 1 1.063 A992 58.5 80.0 29,250 Beam LTB 40,381 38% 33,350 14%

BFP-13 W36x150 1 1.063 A992 58.0 75.0 33,698 
Beam FLB 
& NSF

47,375 41% 40,937 21%

FLB - Flange Local Buckling
NSF - Net Section Fracture

Fy and Fu for BFP-13 taken from Mill Certificates Ave:
StDev:

37%
5%

Ave:
StDev:

17%
4%
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moment developed at the column face exceeded the expected 
plastic moment of the beam. The experimental moment at the 
column face was, on average, 37% greater than the expected 
plastic moment of the beam. Alternatively, the experimental 
moment at the critical section of the beam was, on average, 
17% higher than the expected plastic moment of the beam.

University of Minnesota Tests

A series of eight experiments on high-performance steel 
plate girders was carried out at the University of Minne-
sota in an effort to quantify the rotational capacity of these 
sections (Altstadt, 2004). The girders were detailed with 
extremely thick top flanges to simulate the distribution of 
strain present in a fully composite bridge design. Specifi-
cally, the researchers were interested in determining if the 
newer high-performance steel possessed sufficient ductil-
ity—and thus, rotational capacity—to reach a full plastic 
moment, even under the severe strain distributions found in 
composite sections. The girders were tested by applying a 
point load at the mid-span of the girders. Four of these eight 
girders included a pair of bolted splices situated symmetri-
cally about the mid-span of the girders. All of the bolt holes 
for these splices were drilled. The girders were built up of 
8-in. × 32-in. top flanges, 29-in. × w-in. web plates and 
8-in. × w-in. bottom flanges. Additional details are provided 
in Table 5.

Three of the four girders failed with the development of 
a net-section fracture in the tension flange, with the fourth 
girder failing via lateral-torsional buckling prior to frac-
ture of the tension flange (necking of the tension flange 
was observed, however). In three of four cases, the moment 
developed at the critical section exceeded the expected plas-
tic moment of the section. The moment on the critical sec-
tion was, on average, 4.3% larger than the expected plastic 
moment.

DISCUSSION

Considering all of the experiments described in the previ-
ous sections, there are 25 relevant data points. Considering 
all 25 experiments, the strength of the beams at the critical 
net sections was, on average, 5.7% larger than the expected 
plastic moment.

Because the strength of connection FS03 was limited by 
a failure mode not associated with net fracture of the beam 
flange, that experimental data point represents a lower bound 
to the net-section fracture strength of the beam. The same 
argument can be made for connections BFP01, BFP08 and 
GIR-7. If these experiments are excluded, the strength of the 
remaining beams at their critical net sections was, on aver-
age, 7.0% larger than the expected plastic moment. Going a 
bit further, if the scope of this paper is limited to sections 

with proportions similar to those expected in moment 
frames, GIR-6, GIR-8 and GIR-10 could also be excluded. 
In that case, the strength of the 18 remaining beams was, on 
average, 8.7% larger than the expected plastic moment with 
a corresponding standard deviation of 6.7%. It can also be 
noted that in only one of the remaining cases, FS-06, was 
the maximum moment at the critical net section lower than 
the expected plastic moment of the beam.

The remaining 18 admissible data points are shown as 
bold diamonds in Figure 5,3 where the independent param-
eter is presented as the ratio of Afn to Afg and the dependent 
parameter is the measured moment capacity normalized by 
the expected plastic moment, or Mn/Mpe. A regression analy-
sis of these 18 data points, shown as a dashed black line in 
Figure 5, yields a slope of 1.136 with an R2 of 0.5448.

The cluster of gray data points in Figure 5 represents the 
normalized moment capacity of all tabulated W-shapes with 
ratios of Afn to Afg associated with two standard holes in 
each flange for bolts ranging from 2 in. to 12 in. diameter 
using the provisions in Section F13 of AISC 360-16 (data 
points where a reduction in strength was not required are not 
shown). The cluster of gray data points can be conveniently 
represented using a line with a slope of 1.139. Note that the 
experimental data lie well above the line representing the 
provisions in Section F13 of AISC 360-16. Further, note that 
the provisions include a discontinuity for the moment capac-
ity at the ratio of Afn/Afg = 0.7692, which corresponds to the 
ratio of YTFy/Fu for A992 steel, below which the provisions 
are particularly conservative. Finally, while the cluster of 
gray data points in Figure  5 represents all combinations 
of standard bolt holes in all possible beams without regard 
to workable gages or minimum edge distances, the author 
notes that fewer points would likely result if workable gages 
and minimum edge distances were taken into account.

Proposed Model 1

As was noted in the previous section, there is a disconti-
nuity in the AISC 360-16 provisions at Afn/Afg  = YTFy/Fu. 
For A992 steel, this discontinuity corresponds to an offset 
in the curve of Mn/Mpe = 1 − 0.8761 = 0.1239 when Afn/Afg ≤ 
YTFy/Fu. One potential improvement would be to remove the 
discontinuity from the provisions in Section F13 of AISC 
360-16 by simply shifting the sloped portion of the strength 
model shown in Figure 5 upward to provide a continuous, 
but not smooth, solution. This results in the solution shown 
as the lower of the two black lines in Figure 6, which will be 
referred to herein as proposed model 1a. The black diamonds 
in Figure 6 again represent the 18 pertinent data points.

3 Note that data points for BFP-03 and BFP-05 lie on top of each other, 
making it appear as though there are only 17 data points in the figure.
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Fig. 5. Solution space for W-shapes with A992 steel for provisions in AISC 360-16.
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Fig. 6. Solution space for W-shapes with A992 steel for proposed models 1a and 1b.
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When FuAfn < YTFy Afg, this strength model, model 1a, 
could be presented mathematically as:

 
M

F A

A
S F S

Z

S
Yn

u fn

fg
x y x

x

x
T= + −⎛

⎝⎜
⎞
⎠⎟  

(8)

If the discussion is restricted to W-shapes rolled from 
A992 steel, where Fu/Fy = 1.300, YT = 1.0, and it is observed 
that on average Zx/Sx = 1.147, then when FuAfn < YTFyAfg, 
model 1a could be presented mathematically as:

 
M F Z

A

A
F Z1.139 0.1132n y x

fn

fg
y x= +

⎛
⎝⎜

⎞
⎠⎟
≤

 
(9)

One shortcoming of model 1a, presented as Equation 9, is 
that it would still require a strength reduction for many beams 
that were shown experimentally to reach their expected plas-
tic moment. Nine of the 18 beams would require a reduction 
in strength, wherein only one of those nine failed to achieve 
its expected plastic moment. In a different context, if these 
nine excluded beams were employed in a BFP connection, 
they would either be deemed not conforming to the specifi-
cation or would require a reinforcement of the net section.

To address this issue, the constant in Equation 9 can be 
increased to shift the value of Afn/Afg that results in a need 
to reduce the moment strength of the beam. Using a con-
stant of 0.2 instead of 0.1132—as is shown in Equation 10 
and as shown as the upper black line in Figure 6, here after 
referred to as proposed model 1b—results in a reduced beam 
strength that matches very well with the regression analysis 
of the 18 experimental data points. This would correspond 
to the requirement of a strength reduction for beams with 
Afn/Afg less than 0.6850, which in turn corresponds to being 
able to employ the full plastic moment for all but one of the 
beams in the 18 data points.

 
M F Z

A

A
F Z1.139 0.2n y x
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⎞
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≤

 
(10)

Proposed Model 2

The provisions in the double-tee chapter of AISC 358-16 
address limits in the net section of the tension flange that 
will ensure that the plastic moment of the beam can be 
reached prior to a net-section fracture of the tension flange 
occurring. As a result, those provisions make no mention 
of a reduction in the flexural strength of a beam when the 
design check shown as Equation 7 is not satisfied. Still, a 
strength reduction can be inferred from Equation 7 if one 
assumes that the flexural strength would be equal to the 
lesser of the net-section moment at Fu and the gross-section 
plastic moment strength represented by the left-hand side 
and right-hand side, respectively, of the inequality in Equa-
tion 7. Doing so, and limiting the discussion to A992 steel, 
one can show that the moment strength when Zx,net/Zx is less 
than 0.7692 can be represented as shown in Equation 11 and 
as shown in Figure 7 where the independent parameter is 
presented as the ratio of Zx,net to Zx.

 M F Z F Z1.300n u x net y x net, ,= =  (11)

If the 18 admissible data points shown in Figures 5 and 
6 are also plotted on this chart, a regression analysis can be 
performed as is represented by Equation 12 and shown in 
Figure 7. The R2 value associated with this regression analy-
sis is 0.4219. This relationship can be extrapolated to provide 
a moment capacity as shown in Figure 7, hereafter referred 
to as proposed model 2.

 
M F Z

Z

Z
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Table 5. Details of the University of Minnesota Tests

Test ID
Beam 

Section

Bolt 
Diameter

(in.)
Tension 
Flange

Mill Certified

Expected 
Failure

@ Center Line @ Crit Net Section

Fy

(ksi)
Fu

(ksi)

Plastic 
Moment

(k-in.)
MFailure

(k-in.)
%  

Above
MFailure

(k-in.)
%  

Above

GIR-6* Built-Up 1 A709-70W 90.0 103.0 3,141 NSF 3,460 10% 3,007 −4% 

GIR-7 Built-Up d A709-70W 88.1 101.2 3,031 LTB 3,634 20% 3,091 2% 

GIR-8 Built-Up 1 A709-70W 88.1 101.2 3,031 NSF 3,566 18% 3,097 2% 

GIR-10** Built-Up d A572-50 55.0 71.5 2,381 NSF 3,215 35% 2,794 17%

*GIR-6 Incorporated Oversized Holes

** RyFy and RtFu Reported for GIR-10 
(Fy and Fu at nominal values)

NSF - Net Section Fracture
LTB - Lateral-Torsional Buckling

Ave:
StDev:

21%
10.4%

Ave:
StDev:

4.3%
9.2%
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Proposed Model 3

If one considers the strength provided by Equation  4 but 
adds to it the plastic moment provided by the web of the sec-
tions, the following equation results, which will be referred 
to as proposed model 3a.

 
M

F A

A
S F Z F Zn

u fn

fg
x u x web y x,= + ≤

 
(13)

The first term to the left of the inequality in Equation 13 
represents the strength of the flange at fracture, while the 
second term to the left of the inequality represents the 
strength of the web when the flange is at fracture. It is 
acknowledged that, because the first term includes Sx, it 
inherently includes some contribution from the web of the 
section. It is noted, however, that Sx is dominated by the area 
of the flange. If model 3 is applied to all tabulated W-shapes 
with ratios of Afn to Afg associated with two standard holes in 
each flange for bolts ranging from 2 in. to 12 in. diameter, 
then the cluster of gray data points shown in Figure 8 results 
(data points where a reduction in strength was not required 
are not shown). It can be seen that this leads to some scatter 
when plotted as a function of Afn/Afg, but the results provide 
a strong correlation to the experimental data.

Figure  9 shows the correlation that is obtained from 
model 3a when the model is applied to the 18 admissible con-
nections using measured material strengths and compared to 

the experimental results. In Figure 9, both axes have been 
normalized by the expected plastic moment. The correlation 
is shown as the dashed line, which has a slope of 1.116 (i.e., a 
professional factor) and an R2 = 0.7278. The regression anal-
ysis is performed on the 16 solid data points because experi-
ments FS-09 and DT04 both failed via bolt fracture. These 
two data points, represented as open diamonds in Figure 9, 
were not included in the regression. In addition to the strong 
correlation, model  3a also has the advantage of correctly 
indicating which 16 of the 18 beams successfully reached 
their expected plastic moment before failing.

The possibility of capturing the web strength using Fy 
instead of Fu, as shown in Equation 14 and referred to herein 
as proposed model  3b, was also considered. The profes-
sional factor that was found for model  3b was 1.030 with 
an R2 = 0.7609, both of which are better than for model 3a, 
but model 3b predicted that 6 of the 18 beams would fail via 
beam net fracture prior to reaching their expected plastic 
moment. While those six beams included the two that actu-
ally were not able to achieve their expected plastic moment, 
and because this paper is written with the bolted moment 
connection in mind, the author felt that this shortcoming was 
not offset by the superior professional factor. Thus, model 3b 
was not investigated further.
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Fig. 7. Solution space for W-shapes with A992 steel for proposed model 2.
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CONCLUSIONS

The experimental data summarized in this paper certainly 
show that beams with net sections that violate the design 
check in the 2016 AISC specification AISC 360-16 are, in 
many cases, able to reach the full plastic moment of their 
gross section before fracturing. Further, it is the opinion of 
the author that the provisions of Section F13 in AISC 360-16 
are not rational because the strength model includes a dis-
continuity when examined as a function of the independent 
parameter, Afn/Afg. It is the author’s opinion that the discon-
tinuity at Afn/Afg = YTFy/Fu is excessively penal and unwar-
ranted when compared to the experimental data.

Three models are proposed for the flexural strength of 
beams with holes in the tension flanges. Model 1 is based 
on a linear regression analysis of the experimental data 
with Afn/Afg as the independent parameter. Model 2 is also 
based on a linear regression of the experimental data but 
with Zx,net/Zx as the independent variable. In both cases, the 
plastic moment of the beam is imposed as an upper limit of 
flexural strength.

Model 1 has the advantage of familiarity in that it, like the 
model in AISC 360-16, is a function of Afn/Afg. Model 1 also 
has the advantage of a slightly higher correlation constant 
of R2 = 0.5448 compared to the R2 = 0.4219 for model 2. 
Model 2, however, enjoys the advantage that it, in the opin-
ion of the author, is more reflective of the mechanics associ-
ated with the failure mechanism that it is predicting because 
it is a function of Znet, which is a parameter associated with 
flexure, as opposed to Afn, which is a parameter associated 
with axial behavior. As such, model 2 inherently recognizes 
the contribution of the web in aiding the flanges in carry-
ing moment and resisting a net-section fracture, whereas 
model 1 does not.

Model 3a enjoys the advantages of (1) having a rational 
basis, (2) being familiar to practicing engineers, (3) a strong 
correlation with experimental data with a professional fac-
tor of 1.116 and R2 = 0.7278, and (4) being able to accurately 
predict which beam configurations will be able to reach their 
expected plastic moment. It is because of this that the author 
recommends model 3a for use in designing moment connec-
tions where components are bolted to the beam flanges.

It should be noted that all three proposals rely on extrapo-
lation well beyond the limits of the existing experimental 
data. Prudence would demand that additional experimenta-
tion be conducted on beams at lower levels of Afn/Afg or Zx,net/
Zx to verify the applicability of the models before they are 
implemented. At a minimum, limits of applicability should 
be applied to the models based on the available data set.
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