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BACKGROUND

During the design of a building, the structural engineer is 
typically concerned with both strength and serviceabil-

ity limit states. Design and detailing requirements for the 
strength limit states such as yielding, fracture and buckling 
are prescribed in the applicable building codes. However, 
the same building codes do not provide prescriptive require-
ments for the serviceability limit states. This is largely due 
to the noncatastrophic nature of serviceability failures, as 
well as the fact that serviceability issues are generally spe-
cific to a project and thus require participation from the 
project owner and other design team members.

Instead of providing serviceability requirements, the 
codes take a performance-based approach wherein only the 
expectations of a successful design are provided. The AISC 
Specification (AISC, 2010) defines serviceability as “a state 
in which the function of a building, its appearance, mainte-
nance, durability and comfort of its occupants are preserved 
under normal usage.” On the topic of drift, the specifica-
tion states that drift “shall be evaluated under service loads 
to provide for serviceability of the structure, including 
the integrity of interior partitions and exterior cladding.” 
ASCE 7-10 (ASCE, 2010) contains similar language, stating 
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that “sufficient stiffness must be provided such that deflec-
tion, drift, and vibrations are limited to an acceptable level.”

The lack of wind serviceability design standards has led 
to a wide variation in design practices across the United 
States. To assess the state of the practice, ASCE created the 
Task Committee on Drift Control of Steel Building Struc-
tures in 1984. The committee surveyed structural engineer-
ing firms and released its results in 1988 (ASCE, 1988). In 
general, the results from the survey showed that there was 
little consistency in terms of the selection of service-level 
wind loads, the development of mathematical models of the 
structural system, the selection of appropriate drift mea-
sures and the establishment of drift limits. A more recent 
survey, conducted in 2006 by the ASCE/SEI Committee 
on the Design of Steel Building Structures, found similar 
results (Charney and Berding, 2007). When asked to list the 
primary motivation for limiting drift, the respondents to the 
most recent survey reported, in the following order: to pre-
vent structural damage (most common response), to prevent 
nonstructural damage, to control second-order (P-∆) effects, 
and to limit lateral accelerations. With the possible excep-
tion of P-∆ effects (which contribute to drift), these motiva-
tions are all serviceability considerations.

One approach to improving wind drift serviceability 
design would be to borrow from the concepts of perfor-
mance-based earthquake engineering, commonly referred 
to as PBEE, that are already in use for existing buildings 
through the provisions of ASCE 41-13 (ASCE, 2013) and 
that have been recommended for tall buildings (PEERC, 
2010). The PBEE concept is built around quantifying hazard 
intensity measures, engineering demand parameters, dam-
age measures and decision variables (repair cost, repair time 
or casualties) at multiple limit states. In order to account for 
inherent uncertainties in the process, the PBEE methodology 
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is supported by a probabilistic framework (Moehle and 
Deierlein, 2004). Various government supported efforts to 
develop a comprehensive PBEE procedure recently cumu-
lated with the publication of the FEMA P-58 report (FEMA, 
2013a) and related materials, including a performance 
assessment calculation tool.

The development and advancement of performance based 
wind engineering (PBWE) would logically follow closely 
that of PBEE. However, there are significant differences 
related to the wind and seismic hazards, the limit states that 
need to be considered and the necessity (in seismic design) 
to explicitly include inelastic behavior associated with life-
safety and collapse-prevention limit states. Paulotto, Ciam-
poli and Augusti (2004), Ciampoli, Petrine and Augusti 
(2011), and Griffis et al. (2012) proposed the adaptation of 
the PBEE framework to wind. Paulotto et al. and Ciampoli 
et al. provide probabilistic frameworks that incorporate the 
concepts of fragility. Fragility is also central to the FEMA 
P-58 PBEE procedure, as well as the procedure recom-
mended in this paper. Griffis et al. propose multiple wind-
related performance levels, dynamic nonlinear analysis of 
structures under wind loading and the concept of allowing 
inelastic behavior at more severe wind limit states. Despite 
the various proposals, without a coordinated government-
supported effort to develop PBWE, it has not gained, nor is 
it likely to achieve, the same level of usage as PBEE.

The purpose of this paper is to describe a damage-based 
method for the evaluation and design of steel structures sub-
jected to serviceability-level wind loads. While the proposed 
method falls short of PBWE as envisioned by the authors 
cited earlier, it does address three key issues: selection of 
appropriate wind loads, accurate definition and calcula-
tion of the damage measure and selection of rational dam-
age limits. Unlike other methodologies that rely on a single 
wind return period or a set of established drift limits, the 
procedure described in the remainder of this paper follows 
the basic principles on serviceability that were published in 
1986 (Committee on Serviceability, 1986), which states:

Serviceability guidelines need to be flexible and adapt-
able to different occupancies, use requirements and 
techniques for integrating nonstructural components. 
The guidelines ought to be negotiable, within limits, 
between the engineer, architect and building owner.

OVERVIEW OF PROCEDURE

The procedure is based on the computation and limitation of 
shear deformations in nonstructural components. Features 
of the procedure, described in much more detail later, are 
as follows:

1. The procedure is developed explicitly for the service-
ability assessment of tier-type structures (a structure 

in which levels are stacked on one another or built in 
tiers). This limitation is applicable because such build-
ings have numerous interior architectural partitions 
and exterior finishes that need to be protected from 
damage.

2. A broad wind-hazard basis is used, wherein a range of 
mean recurrence intervals are considered.

3. The deformation that is controlled is shear strain in 
nonstructural components.

4. A three-dimensional mathematical model of the build-
ing is used to perform the structural analysis and is 
calibrated to provide the best possible estimate of the 
damaging shear strain deformations in the nonstruc-
tural components. A different model would likely be 
used to address strength limit states.

5. The limiting shear strain is based on the concept of 
structural fragility and the use of fragility curves. Such 
curves are based on laboratory testing of nonstructural 
components and provide the probability of exceeding 
a given damage state (e.g., minor cracking of drywall 
partitions) given the computed shear strain.

6. The results of the serviceability analysis provide a 
broad basis for making decisions about controlling 
damage in nonstructural components but fall short 
of providing quantitative information on the conse-
quences of accepting some damage.

While the procedure could be expanded to consider other 
wind-related serviceability limit states—such as perception 
of motion—and to include structural damage, the current 
focus is on the control of damage in nonstructural compo-
nents, such as interior walls and exterior walls and finishes. 
Damage under seismic loads could also be controlled using 
the same general procedure.

WIND LOADS

Current Wind Load Design Provisions

Buildings in the United States are designed for wind loads 
according to the provisions of ASCE 7. The current edi-
tion, ASCE 7-10 (ASCE, 2010), provides three methods for 
determining wind loads for the main wind-force resisting 
system of a building: the directional procedure, the envelope 
procedure and the wind tunnel procedure. The wind tunnel 
procedure is generally the most accurate but also the most 
time-consuming and expensive. For the serviceability-level 
wind loads, any of the allowed procedures are suitable, pro-
vided that an appropriate mean recurrence interval (MRI) 
is selected.
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Mean Recurrence Interval (MRI)

The mean recurrence interval is the return period for a wind 
event. A 10-year MRI refers to a wind event that occurs, on 
average, once every 10 years. A shorter MRI corresponds to 
lower-intensity wind loads, while a longer MRI corresponds 
to higher-intensity wind loads. For risk category II build-
ings designed according to the provisions of ASCE 7-10, the 
MRI is 700 years. Risk category I and III–IV buildings are 
designed using 300- and 1700-year MRIs, respectively. Each 
of these risk-related MRIs represents ultimate strength-level 
loading, and as such, the load factor on wind loads is 1.0. 
Service-level wind speeds (as used in previous editions of 
ASCE 7) are generally in the range of 50 to 100 years. The 
wind loads based on these service-level wind speeds must 
be factored up to strength level for the design of the main 
lateral load-resisting system. Similarly, the service-level 
wind speeds are generally factored down for serviceability 
considerations. It is important to note that “service”-level 
wind speeds and “serviceability” are not synonymous. It 
was never the intent in ASCE 7 to use service-level loads for 
serviceability.

Various authors have recognized that the service-level 
and, particularly, the ultimate-level wind loads are overly 
conservative for serviceability considerations when tradi-
tional drift limits (in the range of H/500, where H is the 
story height) are used. For this reason, Tallin and Elling-
wood (1984), Charney (1990b), and Griffis (1993) proposed 
serviceability MRIs of 8 to 10 years. This particular MRI 
range is approximately the length of the average tenancy in 
the United States and the United Kingdom (Ellingwood and 
Culver, 1977). Additionally, AISC Design Guide 3 (West, 
Fisher and Griffis, 2003) recommends a 10-year wind event 
for interstory drift checks.

Although many sources have suggested a 10-year MRI, it 
is recommended that a designer select a wind serviceability 
MRI based on the specific needs of the owner or other stake-
holders relative to the use (risk category) of the building and 
the probability of and potential consequences of exceeding a 
particular damage limit state. Another factor in determining 
the appropriate MRI is the range and resolution of test data 
have has been used to establish damage limits. This impor-
tant concept is discussed later in the paper in association 
with the use of component fragility as a damage indicator. 

Recognizing the need to use a lower MRI for serviceabil-
ity considerations, the commentary to Appendix C of ASCE 
7-10 provides wind speed maps for 10-, 25-, 50- and 100-
year MRIs. Using the 10-, 25-, 50- and 100-year wind speed 
maps, a designer can select the appropriate wind speed and 
use the provisions of ASCE 7 to determine the serviceabil-
ity wind loads. When a building site is located such that 
it is difficult to manually determine the wind speed with 
the ASCE 7 maps, an online tool developed by the Applied 
Technology Council (ATC, 2013) can be used. This tool, 

using the same data that was used to generate the ASCE 7 
maps, will provide wind speeds for various MRIs given a 
physical address or latitude and longitude.

Wind and Seismic Hazard Curves

A hazard curve is a plot showing the relationship between 
a hazard measure (such as wind speed or wind pressure) 
and likelihood of occurrence. Figure 1 shows wind hazard 
curves for select cities across the United States. The vertical 
axis shows the velocity pressure (qz in ASCE 7-10), assum-
ing that the wind directionality factor (Kd), the velocity pres-
sure exposure coefficient (Kz) and the topographic factor 
(Kzt) are each equal to 1.0. The likelihood of occurrence is 
represented by MRI on the horizontal axis.

The wind hazard curves contain valuable information 
relating to service and ultimate level wind loads. For the 
10-year MRI, the wind pressures are similar for the six cit-
ies shown, varying between 13.3 and 16.0 psf. Examining 
the wind pressures for one particular MRI, however, can 
be misleading. For example, in the cities of Charleston and 
Memphis, the wind pressures due to the 10-year MRI are 
equal (14.8 psf). This is not the case, however, for higher 
MRIs. For the 700-year MRI (ultimate-level wind loads), 
the wind pressure in Charleston significantly diverges from 
the wind pressure in Memphis. The difference is due to the 
fact that Charleston is located in the hurricane region of the 
United States. It should also be noted that due to the loca-
tion of Charleston, New Orleans, and Boston along the hur-
ricane-prone coast, where the mapped wind speed contours 
are tightly spaced, seemingly small changes in latitude or 
longitude between locations can lead to significant differ-
ences in speeds and wind pressures.

It is of some interest to compare the wind and seismic 
hazards, as well as to discuss the MRIs typically used for 
seismic serviceability. Figure 2 presents seismic hazard 
curves for the same six U.S. cities shown in Figure 1. These 
curves show 5% damped, site class B–C boundary, 1-s spec-
tral acceleration, plotted against MRI.

While the shapes of the wind hazard curves are similar for 
the cities indicated, the shapes of the seismic hazard curves 
are quite different. The difference is most noticeable when 
one distinguishes between Pacific west coast and the central 
and eastern U.S. locations. For example, in Charleston, the 
50-year spectral acceleration is only 4.5% of the 500-year 
value, while in San Francisco, the 50-year acceleration value 
is much higher at 28% of the 500-year spectral acceleration. 
A general conclusion from the wind and the seismic haz-
ard curves is that seismic serviceability is not likely to be 
a controlling issue in the central and eastern United States 
and that wind serviceability is probably not a controlling 
issue along the Pacific west coast (except for tall buildings, 
where perception of motion can become a controlling design 
consideration).
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In performance-based earthquake engineering,  
serviceability-level drifts are determined for events with an 
MRI in the range of 43 years (PEERC, 2010) to 72 years 
(ICC, 2012). The data to assess seismic hazard at MRIs 
shorter than 43 years is generally not available. It is also 
important to note that nonstructural and some degree of 
structural damage (including minor yielding of steel) is 

  
 (a) (b) 

Fig. 2. Seismic hazard curves for select U.S. cities: (a) return periods  
between 0 and 700 years; (b) return periods between 0 and 100 years.

  
 (a) (b)

Fig. 1. Wind hazard curves for select U.S. cities: (a) return periods between 0 and 700 years; (b) return periods between 0 and 100 years. 

expected under the 43- to 72-year shaking in the western 
United States. For example, the Pacific Earthquake Engi-
neering Research Center (PEERC) Tall Building Guidelines 
limit interstory drift to 0.5% of the story height (H/200) 
when the structure is subjected to the 43-year MRI. Other 
seismic serviceability drift limits are summarized by Dymi-
otis-Wellington and Vlachaki (2004).
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For wind-based serviceability, MRIs in the range of 10 
to 50 years are appropriate because it is in this range of 
wind loads that nonstructural components will first expe-
rience damage. As described later, it is recommended that 
a 25-year MRI be used as the basic wind speed for wind 
damage serviceability because it is in this range of loading 
that the test-based fragility data are likely to be most reli-
able. Deformation demands for different wind MRIs can 
be estimated from those determined by the 25-year MRI as 
follows:

 
δ δMx M

Mx Mx

M M

V G

V G
= 25

2

25
2

25  
(1)

where δMx is the deformation demand under an x-year MRI 
wind, δM25 is the same deformation demand under the 
25-year MRI wind, V is the basic wind velocity and G is the 
gust factor for the indicated MRIs. The gust factors are com-
puted in accordance with Section 26.9 of ASCE 7-10. Tor-
sional effects are calculated by applying the ASCE 7 design 
wind loads cases, which require 75% of the load be applied 
at an eccentricity of 15% of the width of the building.

PREDICTING DAMAGE IN STRUCTURES

Drift as a Damage Measure

Given that the purpose of the serviceability analysis is to 
prevent or control damage, the response quantity used to 
predict damage and the associated damage limits must be 
consistent with the physical mechanism that causes damage. 
Borrowing from the field of performance-based earthquake 
engineering, the following terms are used in this paper:

• Engineering demand parameter (EDP) is the com-
puted quantity that is used as a predictor of damage. 
Traditional serviceability analysis uses interstory drift 
as the EDP. The procedure presented herein uses shear 
strain as the EDP.

• Damage state (DS) is a physical description of the 
expected damage. An example is first observation of 
cracking in a brick masonry veneer.

• Damage measure (DM) is the value of the EDP at 
which a certain damage is expected to occur. Tradi-
tional serviceability analysis used an interstory drift 
limit as the DM. The procedure outlined in this paper 
does not provide a specific limit and, instead, uses fra-
gility curves to estimate the probability of exceeding a 
given damage state.

The concept of the EDP is discussed in this section of the 
paper. The damage measure and damage states are dis-
cussed in later sections.

Traditional EDPs include total drift, roof drift, and inter-
story drift (and, for other applications, floor acceleration 
and plastic hinge rotations are also used). Total drift is the 
lateral displacement of a frame at a given level with respect 
to a chosen datum (typically the ground). Roof drift is sim-
ply the total drift measured at the roof level. Interstory drift 
is the relative lateral displacement between two adjacent 
levels. Note that throughout this paper the term interstory 
drift is used, although the term story drift would also be 
appropriate. The drift index is the total, roof or interstory 
drift divided by the height over which the drift applies. For 
example, the interstory drift index (IDI) is the interstory 
drift divided by the height of the story. This same quantity is 
also referred to as the interstory drift ratio. Based on the sur-
veys cited earlier, most engineers attempt to control drift by 
providing limiting values on the computed interstory drift or 
the interstory drift ratio.

The interstory drift and the interstory drift ratio are not, 
however, accurate measures of damage in a nonstructural 
component and are, therefore, not the most suitable EDPs 
if the purpose of the analysis is to limit damage in the non-
structural components. This is because interstory drift tracks 
only lateral displacement (not necessarily equal to deforma-
tion) and does not account for vertical racking or rigid-body 
rotation. A true damage measure for nonstructural compo-
nents, accounting for both horizontal and vertical racking 
but excluding rigid-body rotation, would be mathematically 
equivalent to the in-plane shear strain in the component.

Another reason for using shear strain as the EDP is that it 
is the best quantity to correlate with laboratory tests on non-
structural components. These tests are typically performed 
by loading the specimens in pure shear and then correlating 
the damage, as it occurs, to the shear strain imposed on the 
specimen at the time the damage is observed. As described 
later in this paper, the same laboratory tests may produce 
sufficient information to establish the fragility of the tested 
component. The use of fragility in wind damage serviceabil-
ity analysis allows the engineer not only to establish dam-
age limits, but also to determine the probability that damage 
will occur if the imposed limits are reached or exceeded.

Using Shear Strain as the Engineering  
Demand Parameter

To alleviate the shortcoming of interstory drift as a dam-
age measure, Charney (1990b) developed a revised damage 
measure, called the drift damage index, which in this paper 
is renamed the deformation damage index (DDI) to elimi-
nate the reliance on horizontal drift as a damage measure. 
In accordance with the terminology adopted in the previous 
section, the DDI can be used as the EDP for the proposed 
method. The DDI is mathematically equal to the shear strain 
in a vertical rectangular panel of the structure, called a drift 
damageable zone, here renamed a deformation damageable 
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zone (DDZ). A DDZ spans between floors in the vertical 
direction and between column lines (real or imaginary) in 
the horizontal direction. For two-dimensional analysis, 
only the horizontal and vertical displacements are needed 
at the four corners (nodes) of the DDZ. For three-dimen-
sional analysis, the two horizontal displacement components 
would need to be transformed into the plane of the DDZ. As 
shown later, this procedure can be automated by the use of 
special finite elements, called damage gages.

Conceptually, the DDZ can represent interior, nonstruc-
tural partitions (such as a gypsum wall), exterior walls or 
any other damageable element in a building model. When 
a building model is created and loaded with the appropriate 
wind loads, each DDZ will have an associated DDI, defined 
by the following equation:

DDI
X X
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X X

H

Y Y
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Y Y

L
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+
−

+
−
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0 5.
 

(2)

where XN is the lateral deflection at node N, YN is the verti-
cal deflection at node N, H is the story height and L is the 
width of the DDZ (usually the bay width). These variables 
are shown in Figure 3. Note that the terms in Equation  2 
containing X-direction lateral deflection values represent 
the interstory drift index. If the terms representing vertical 

  
 (a) (b)

Fig. 3. Deformation damageable zone: (a) location in frame; (b) details for calculation.

deflection were set to zero, the DDI would be equal to  
the IDI.

Damage Gages

Computation of the deformation damage index can be cum-
bersome, particularly for three-dimensional analysis. When 
using a finite element analysis program, the DDI can easily 
be computed by placing membrane or shell elements in the 
desired location. For example, the DDZ shown in Figure 3a 
can be represented by a four-node element. When specifying 
the properties of this element, it is necessary to use a very 
low thickness and/or modulus of elasticity such that the ele-
ment does not significantly contribute to the stiffness of the 
structure. If a shear modulus of 1.0 is used, then the reported 
shear stress is identical to the shear strain, and thus the DDI 
is automatically determined. In general, it is preferable to 
average the shear strains at the four corners of the element 
to obtain the best estimate of the DDI. It is noted that when 
finite elements are used to represent the DDZ, the elements 
can be placed in any orientation, are not restricted to vertical 
planes and need not be rectangular in shape.

An example of the analysis of a 10-story X-braced planar 
frame is provided to clarify the concepts of computing DDIs 
using damage gages. This example will also be used later in 
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the paper to demonstrate the use of fragility in wind damage 
analysis. A more detailed analysis of a 12-story building is 
provided in Appendix A.

The example frame has three 30-ft-wide bays, and the 
story height is constant at 12.5 ft. The building is located 
in Dallas, Texas, and is designed for the ultimate-level wind 
speeds for that location. The column sections are W14s, 
and the beams range from W24s to W30s. The lateral force 
resisting system is an X-braced frame in the center bays 
in which the members are W12s. For this example, a ser-
vice-level wind loading corresponding to a 25-year MRI is 
applied to the structure. The 25-year MRI was selected due 
to the hypothetical owner’s preference that the serviceability 
design be based on a 25-year time period.

The structure is modeled in SAP2000 (Computers and 
Structures Inc., 2009). All connections and column bases 
are modeled as pinned. To calculate the DDI, a damage gage 
(DG) shell element is inserted into each bay, representing 
an interior partition wall. The elements are connected to the 
frame only at the four corners of each bay. The shear modu-
lus of the DG element is assigned a unit value so that the 
calculated shear stress in the element is numerically equal to 
the shear strain. After the shear strains have been calculated 
for the elements, the DDI will be equal to the average of the 
shear strain values at the four corners of the element.

The analysis is run for the applied loads, and the nodal 
displacements and DDIs in the elements are determined. 
Table 1 contains the displacements and shear strains for the 
top left bay of the structure. The DDI, average shear strain 
and conventional interstory drift index are calculated based 
on the values at the nodes. Figure  4 shows the 10-story 
braced frame with the applied loading. The shear strain 
contours are plotted on each element, with the DDI labeled 
at the center of the element and the conventional interstory 
drift index labeled in parentheses. Equation 2 can also be 
used to calculate the DDI given the calculated nodal dis-
placements. However, for the example, the DDI for each bay 
is calculated by averaging the values of the shear strain at 
the corners of the element.

Table 1. DDI Calculations for Top Left Bay in Example 1

Node Lateral Displacement (ft) Vertical Displacement (ft) Shear Strain

A 0.1920 0.0000 0.00315

B 0.1911 0.0270 0.00236

C 0.1686 0.0000 0.00315

D 0.1679 0.0267 0.00235

DDI = 0.00275

Average shear strain = 0.00275

Conventional interstory drift index = 0.00186

Some important observations can be made based on the 
results shown in Figure 4. The first is that the DDIs in the 
outer bays are very different than the DDIs in the inner bay, 
even for the same story. For example, the DDI in the top left 
bay is equal to 0.00275, while the DDI in the adjacent braced 
bay is 0.000071 (only 2.6% of the value for the unbraced 
bay), despite having nearly equal conventional interstory 
drift indices. This difference is present, but less pronounced, 
at lower levels as well. A second observation is that the DDIs 
are significantly different from the conventional interstory 
drift indices (which only account for horizontal racking). 
For the top left bay, the conventional interstory drift index 
is 0.00186, which is 68% of the DDI. In the adjacent braced 
bay, the conventional interstory drift index is 26 times the 
DDI. This wide discrepancy is due to the fact that the con-
ventional interstory drift index does not include vertical 
racking and does not remove the influence of rigid-body 
rotation. For this example, the nodes comprising the inner 
braced bays experience significant vertical deflections, par-
ticularly in the upper stories.

STRUCTURAL MODELING

Accurate computation of the EDP requires a mathematical 
model that can account for any source of deformation that 
contributes to the EDP. Thus, any part of the building-foun-
dation system that is stressed under the wind load should, 
theoretically, be included in the mathematical model. This 
includes components of the main lateral load-resisting 
system, components of the gravity load-resisting system, 
architectural components, diaphragms, the soil-foundation 
system and all connections. Additionally, second-order 
(P-∆) effects should be included. For example, for steel 
moment frames, the modeling of the columns and (possibly 
composite) beams should allow for unrestricted axial, flex-
ural, shear and torsional deformation. Additionally, defor-
mations in the panel-zone of the beam-column joints should 
be considered.

The importance of including all appropriate deformation 
sources in the structural components was illustrated in a 
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study performed by Charney (1990a), which quantified the 
relative influence of the various deformation sources on the 
overall lateral deflection of a frame. Using the principle of 
virtual work and the concept of displacement participation 
factors (Charney, 1991; Charney, 1993), 45 different steel 
structures were analyzed, ranging from 10 to 50 stories. It 
was found that flexural deformations are very influential in 
shorter, stockier structures and that axial deformations are 
influential in taller slender structures. Shear deformations 
contributed, on average, 15.6% to the overall lateral deflec-
tion. Panel zone deformations were found to constitute an 
average of 30.5% of the drift in a structure. A study by Berd-
ing (2006) found similar results, with panel zone deforma-
tions comprising as much as 39% of the total deformation. 
Based on the results of these studies, it is recommended that 
any structural model used to calculate deformation include 
the effects of axial, flexural, shear and panel zone deforma-
tions. The exclusion of any of these effects could result in the 
underestimation of component deformations.

Fig. 4. Shear strains and (interstory drift indices) in a 10-story braced frame under serviceability-level wind loads.

Given that most commercial programs are designed to 
develop 3D models of building structures, it is recommended 
that a 3D model be used for all wind damage serviceabil-
ity analyses. There are several advantages to utilizing a 3D 
building model, such as modeling the interaction of orthogo-
nal building frames, and the automatic inclusion of inherent 
torsional response. Torsion can increase the computed shear 
strain in some parts of a building, while decreasing the shear 
strain in others. The torsional response is difficult, if not 
impossible, to model in 2D.

Additional modeling considerations are briefly provided 
in the following sections. More detailed recommendations 
can be found in Berding (2006).

Panel Zone Deformations

As previously discussed, panel zone deformations can con-
stitute a significant contribution to the overall drift of a steel 
moment-resisting frame. There are several methods to model 
panel zone deformations, including the clearspan model, the 
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centerline model, and more sophisticated mechanical joint 
models, such as the Krawinkler joint (KJ) and scissors joint 
(SJ) models (Charney and Marshall, 2006). The clearspan 
model unconservatively assumes the panel zone is infinitely 
rigid and should never be used. The centerline model uses 
center-to-center dimensions and will tend to overestimate 
flexural deformations and underestimate shear deformations 
within the beam-column joint. These effects partially offset 
each other, leading the centerline model to be sufficiently 
accurate in most situations (as long as there is no yielding in 
the panel zone). The KJ and SJ models are the most accu-
rate and incorporate rigid links and rotational springs and 
explicitly represent both shear and flexural deformation 
within the beam-column joint. However, these models are 
somewhat difficult to implement. It is recommended that the 
centerline model be used when the mechanical joint models 
are not feasible (Charney and Pathak, 2008).

Floor and Roof Diaphragms

In most circumstances the floor and roof diaphragms may 
be modeled as rigid in their own plane and flexible out of 
plane. However, for certain structures, the out-of-plane stiff-
ness of the diaphragms may act to couple the lateral load-
resisting elements, thereby having a significant influence on 
lateral displacements and damage prediction.

Composite Beams

For serviceability analysis, it is generally acceptable to 
include some contribution from slabs, even if the beams 
are not designed as fully composite. The main concerns are 
related to the effective width of slabs to use in analysis and 

to the effectiveness of the slab if it is likely to be cracked in 
tension under serviceability wind loads. The slab can gener-
ally be broken into four moment regions under lateral loads 
(Schaffhausen and Wegmuller, 1977): (1) positive bending 
moment region—slab is located away from the column; 
(2) positive bending moment region—slab is adjacent to a 
column; (3) negative bending moment—slab is adjacent to 
interior column and may have compression reinforcement; 
and (4) negative bending moment region—slab is adjacent to 
exterior column and is not likely to have compression rein-
forcement. In general, for regions 1 and 2, the full effective 
slab width should be used. In a strict sense, the effective slab 
width should reduce to the width of the column for region 2. 
For regions 3 and 4, the girder properties alone should be 
used. In the determination of the composite moment of 
inertia for regions 1 and 2, the compressive strength of the 
concrete and the composite percentage based on the number 
of shear connectors should be considered. For a discussion 
on effective width, the reader is directed to Vallenilla and 
Bjorhovde (1985).

Gravity System

In some cases it may be worthwhile to include the additional 
lateral stiffness of the gravity system in the structural model. 
To do so, the engineer must estimate realistic moment-
rotation relationships for the connections. Design Guide 8 
(Leon, Hoffman and Staeger, 1996) provides guidance on 
the calculation of the connection’s rotational stiffness, as 
does the ASCE Standard 41-13 (ASCE, 2013). An example 
of the possible influence of the stiffness and strength of the 
gravity connections is shown in Figure 5, which is taken 

Fig. 5. Nonlinear static pushover curves for a four-story frame.
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from analyses of a four-story steel moment frame (Flores 
and Charney, 2013). The different curves from nonlinear 
static pushover analysis represent different assumptions 
regarding the effective strength and stiffness of the con-
nections from the beams to the columns. The curve marked 
“4Story+PDelta” represents the lateral system only, and the 
curve marked “4Story+35GS” assumes that the gravity con-
nections have 35% of the stiffness of the full beam section. 
As may be seen, there is a considerable increase in system 
stiffness and strength when the gravity system is considered.

While it is recommended that the gravity system be 
included in the wind serviceability analysis, it is recognized 
that neglecting the gravity system will be conservative.

Architectural Components

The influence of architectural components on the response 
of a building under serviceability wind loads depends on the 
number of components, the location and orientation of the 
components, the basic in-plane unit stiffness of the compo-
nent, the method of attachment and the total contributing 
stiffness of components relative to the overall stiffness of the 
lateral load-resisting system. In this sense, an infill masonry 
wall in a three-story building would significantly influence 
the computed response, but drywall partitions in a 30-story 
office building would likely provide negligible stiffness. 
Due to uncertainties in establishing component location and 

Fig. 6. Foundation modeling concerns.

to estimating the component stiffness, it is recommended 
that architectural components not be included in wind drift 
serviceability analysis.

Second-Order (P-∆) Effects

Second-order effects typically increase lateral deflection 
and should always be included in the model. When modeling 
second-order effects, a decision must be made concerning 
gravity loads. Actual live load values are typically much less 
than design values (Ellingwood and Culver, 1977), making 
it unreasonable to use design live loads in a serviceability-
based P-∆ analysis. It is recommended that unfactored dead 
loads be used with the mean expected live loads, taken from 
live load surveys. Table C4-2 of ASCE 7 (2010) contains sur-
vey loads for office buildings, residences, hotels and schools. 

Foundation

The significance of the flexibility of the foundation on non-
structural deformations depends on several factors, includ-
ing the composition of the soil and the characteristics of the 
foundation itself. Consider, for example, the simple struc-
ture shown in Figure 6. Here, slight rotation of the mat 
foundation under the X-braced frame would contribute to 
the vertical racking in the adjacent bays, as would the axial 
elongation in the basement columns. Additionally, the P-∆ 
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effects would be more significant if the foundation and sub-
grade structure were included in the model. Thus, the shear 
strains, when used as the EDP, could be significantly under-
estimated if the mat rotation and the basement columns were 
not included in the mathematical model.

DAMAGE MEASURES

As already discussed in this paper, the engineering demand 
parameter (EDP) that is recommended for controlling dam-
age in nonstructural components is shear strain. Such strains 
develop from the three-dimensional displacements that 
occur at the attachment points between the structure and 
the nonstructural component. Given a structural model, the 
shear strains can be computed with relative ease, either man-
ually or by use of the damage gages described previously.

To control damage, the damage measure (DM) must be 
compatible with the EDP. Thus, it is logical that those levels 
of shear strain that cause some level of observable damage 
in nonstructural components be used as the limiting damage 
measure. As already mentioned, interstory drift or interstory 
drift ratios are not suitable as damage measures because they 
include rigid-body rotations (which do not cause damage) 
and exclude vertical racking (which does cause damage). 

Conventional Drift Limits

Interstory drift limits have historically been based on rules-
of-thumb, and ASCE (1988) reported structural engineers 
to be employing drift limits ranging from H/600 to H/200, 
where H is the story height. A review of the literature reveals 
a commonly suggested interstory drift limit of H/500, which 
is also recommended in Design Guide 3 (West et al., 2003). 
However, it should be noted that these limits are generally 
invariant across material type. Galambos and Ellingwood 
(1986) provide a broad set of interstory drift limits that 
are tied to specific serviceability problems that can arise. 
These limits range from H/1000 (cracking of brickwork) to 
H/100 (damage to lightweight partitions, impaired operation 

Table 2. Selected Recommended Shear Strain Limits (Griffis, 1993)

Building Element
Supporting Structural 

Element
Deformation  

Type
Recommended 

Limit

Brick veneer Wind frame Shear strain H/400

Concrete masonry unreinforced 
(exterior)

Wind frame (1 story) Shear strain H/600

Wind frame (2 story) Shear strain H/400

Concrete masonry reinforced 
(exterior)

Wind frame (1 story) Shear strain H/200

Wind frame (2 story) Shear strain H/400

Gypsum drywall, plaster Wind frame Shear strain H/400

Brick (interior partition) Wind frame Shear strain H/1250

of windows and doors, etc.). Within this range, the limit of 
H/500 is associated with the cracking of partition walls. The 
limits provided by Galambos and Ellingwood, however, are 
not connected to any specific structural or nonstructural 
material.

The preceding discussion illustrates the wide range of 
applied interstory drift limits in historical use. However, 
these limits are typically not modified by engineers to 
account for specific structural or nonstructural materials, 
as limits on shear strain would be. Rather, a designer may 
indiscriminately employ the same interstory drift limit for 
each bay in the building, or even for two or more buildings 
with different owner preferences, functions, and material 
makeup. For a more accurate measure of component dam-
age, rational shear strain limits intended to control damage 
to a particular material should be defined on the basis of the 
material’s properties. For example, if the goal is to prevent 
damage to interior gypsum wall partitions, then the dam-
age limit should be defined based on test data of gypsum 
wallboard. Using rational damage limits will likely lead to 
a separate shear strain damage limit for each damageable 
material in a building.

Griffis (1993) recognized this problem and recommended 
limiting shear strains in a variety of nonstructural com-
ponents. Selected values are repeated in Table 2. The rec-
ommended limits are those that are expected to be at the 
threshold of causing observable damage in the given build-
ing element and are recommended for use in association 
with a 10-year MRI. The use of limiting strains as shown 
in Table 2 is a step in the right direction, but there is no 
information provided as to the type of damage that could be 
expected, nor is any information provided as to the likeli-
hood that the damage would occur if the recommended drift 
limit were to be achieved under the designated wind load.

Fragility

A more rational approach for damage control is based on the 
concept of fragility, specifically, fragility curves. A fragility 
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curve is a mathematical relationship between an engineer-
ing demand parameter (e.g., shear strain in nonstructural 
components) and the probability of attaining some observ-
able damage measure. The curves are based on laboratory 
test data, usually from a number of sources. Appendix B 
contains additional information on fragility curve theory. 
Figure 7 contains three sample fragility curves for gypsum 
wallboard, obtained from the Performance Assessment Cal-
culation Tool (PACT) developed by the Applied Technology 
Council (FEMA, 2013b) as a part of FEMA P-58 (FEMA, 
2013a). The horizontal axis shows the EDP of deformation 
damage index (or shear strain), and the vertical axis contains 
the probability of exceeding one of the three damage states 
shown. Note that many of the fragilities found in PACT use 
interstory drift ratio as the EDP. As long as racking tests 
were performed on the individual component to develop the 
fragilities, the interstory drift ratio will be equal to shear 
strain, and therefore, those fragilities can be used in this 
procedure where the EDP is shear strain. The blue curve in 
Figure 7 represents damage state 1 (DS1), which is screws 
popping out and minor cracking. The orange curve (DS2) 
is DS1 plus moderate cracking or gypsum crushing, and 
the maroon curve (DS3) is DS2 plus significant cracking or 
crushing. From Figure 7, it may be seen that for a defor-
mation damage index of 0.005 (1/ 200) corresponding to a 
hypothetical 10-year MRI, there is a 7.0% probability of no 
damage occurring, a 71% probability of the gypsum drywall 

Fig. 7. Gypsum wallboard fragility curves (PACT).

experiencing DS1, a 19% probability of DS2, and a 2.6% 
probability of DS3.

One of the advantages of the fragility approach is that a 
design space of information is provided instead of informa-
tion on just one specific damage limit or wind speed. In this 
sense, the entire plot represents the design space, and the 
DDIs that could occur under several MRIs can be exam-
ined. In addition to the 10-year MRI previously discussed, 
Figure 7 also contains vertical lines representing the DDIs 
under the loads corresponding to the 25- and 50-year wind 
loads. Note that the location of the wind speed MRI lines 
will shift laterally on the plot when different geographic 
locations are chosen. Using this design space, the engineer 
can gather probabilistic information for a range of MRIs.

Example of 10-Story Frame, Continued

The example of the 10-story frame is now continued to 
illustrate the use of fragility in the context of engineering 
demand parameters, damage measures and damage states.

After the MRI is selected, the wind loads are determined, 
the building is modeled and the DDIs are calculated (see 
Figure 4), the next step is to select damage limits and then 
compare the DDIs to these limits. For this example, the 
deformation damageable zones represent interior gypsum 
wall partitions with metal studs. It is the owner’s preference 
that there is no greater than a 30% chance of minor dam-
age (DS1) to each partition under the 25-year wind loads. 
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Using the fragility information from Table 5 of Appendix B 
(median demand = 0.0021, dispersion = 0.6), it is deter-
mined that a DDI of 0.00153 corresponds to a probability of 
exceedance of DS1 of 30%. (See Appendix C for details on 
computing such probabilities.) Based on the DDIs shown in 
Figure 4, the outside bays in the top eight levels exceed the 
limit, while none of the interior (braced) bays do so.

An alternative to comparing the maximum DDI to some 
limit from the fragility curve is to look at the range of the 
DDIs in all of the bays of interest. Figure 8 shows the fra-
gility curve for DS1 for gypsum drywall. The middle 50% 
range of DDIs is shown on the figure, along with the mean 
of the DDIs for the 10-, 25-, and 50-year wind loads. This 
figure provides information concerning multiple MRIs. For 
the 10-year wind loads, the average DDI corresponds to a 
10.5% probability of exceeding DS1; for the 25-year MRI, 
this probability is 18.7%; for the 50-year MRI, it is 26.2%. 
This constitutes a design space with which the engineer can 
make a decision based on performance at multiple MRIs.

PERFORMANCE ASSESSMENT  
AND DECISION MAKING

One of the most challenging aspects of the recommended 
methodology is making design decisions based on the results 
of the damage assessment. After the damage assessment has 
been conducted, the designer must come to a decision con-
cerning the acceptability of the design (either it is adequate 
or it is not). The decision space (probabilities of damage 
relative to deformation levels due to various MRIs) aids in 
this decision-making process, but it is the responsibility of 

Fig. 8. Middle range of DDIs for the 10-story building.

the engineer to set acceptability thresholds (e.g., no more 
than a 30% probability of exceedance due to the 25-year 
MRI) in coordination with the architect, building owner and 
other stakeholders. As discussed later, it will likely be help-
ful to connect the probability of damage to cost of repair or 
replacement, thus providing a decision variable in terms of 
cost, which is typically more useful to a building owner than 
shear strain or damage probabilities.

OPTIONS FOR REDESIGN IF  
PERFORMANCE TARGETS ARE NOT MET

In many cases, the designer will find that the structure does 
not meet the required serviceability requirements and that 
the system must be re-proportioned to meet such require-
ments. Unfortunately, it may be difficult to determine 
which members of the main lateral load-resisting system to 
modify (make stiffer or more flexible). Virtual work-based 
procedures (Velivasakas and DeScenza, 1983; Baker, 1990, 
Charney, 1991, 1993) have been developed to simplify this 
task and are included in some commercial analysis pro-
grams such as SAP2000 (Computers and Structures, 2009), 
and RAM Frame (Bentley, 2013). These procedures can 
provide information as to which elements to modify and, 
even further, to recommend which section properties within 
these elements (axial area, shear area, moment of inertia) 
to modify. These simple virtual work methods are the basis 
of much more complex automated optimization procedures 
that have been used in tall building design (Chan, Huang 
and Kwok, 2010).
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APPLICATION TO THE FEMA  
P-58 METHODOLOGY

While the FEMA P-58 (FEMA, 2013a) methodology was 
developed for seismic response of structures, the procedure 
and its four goals could easily be adapted to the wind ser-
viceability procedure discussed previously. The FEMA P-58 
methodology provides a PBEE framework with four major 
goals: (1) to include the behavior of nonstructural compo-
nents; (2) to investigate response at a global level; (3) to 
relate damages to more meaningful consequences, such as 
repair time, repair costs, casualties and injuries and poten-
tial for unsafe placards; and (4) to account for uncertainties 
and variations within structural analysis. 

The first goal, to include the effects of nonstructural com-
ponents, is already a crucial part of the wind serviceability 
procedure presented in this paper, as well as the P-58 pro-
cedure. However, the other three P-58 goals could be added 
to the previous procedure to provide more robust results. 
The P-58 process gives its final results in terms of the global 
consequences, using the idea of a building performance 
model. This model is a collection of information about the 
structure needed to determine the consequences of a struc-
ture under loading. This information includes, among other 
things, a list of all the structural and nonstructural compo-
nents in the structure and their potential damage states and 
consequences. Each individual component will have a set 
of fragility curves developed for a discrete number of dam-
age states, as discussed previously in this paper. For each 
of these damage states, the time and cost needed to repair 
that component under the particular level of damage will be 
estimated as well. 

The wind serviceability procedure developed earlier 
describes how to relate structural response to component 
damage through the use of fragility. The FEMA P-58 meth-
odology can be used to take this process one step further and 
relate the component damages to the global consequences. 
The P-58 methodology includes hundreds of fragilities for 
both structural and nonstructural components, as well as 
their corresponding consequences. By using these fragilities 
along with their corresponding consequences, the end result 
will describe the global response and be significantly more 
meaningful to decision makers because the results will be in 
terms of repair cost and repair time (time that the structure 
must be vacated to allow for repair). 

This seismic-based methodology could be applied to the 
wind serviceability procedure because the main input is 
building information and response. The building informa-
tion (i.e., shear strains) will be the same regardless of what 
loads are applied to it, and instead of using the structural 
response from ground motions, the user could input struc-
tural response from wind loads. Traditionally, the P-58 pro-
cedure finds the building response under a suite of ground 
motions and then expands the data using a determined 

level of dispersion and Monte Carlo simulation (in order to 
account for variability in seismic analyses). For the wind 
serviceability procedure, this process could be applied to 
account for uncertainty in selecting an appropriate service-
ability MRI, as discussed earlier. A number of MRIs could 
be analyzed (e.g., from 10 to 50 years), and a range of possi-
ble behaviors could be determined. This range of responses 
would be converted into potential damages, which will be 
converted into a distribution of probable consequences.

The P-58 procedure will also be useful if initial targets are 
not met, as an alternative option to the virtual work methods 
described in the previous section. When the results are dis-
played in the corresponding software—the PACT program 
(FEMA, 2013b)—the consequences are broken down by 
component. The program determines which components are 
causing the most problems and have the highest influence on 
repair cost and time. Along with the global consequences, 
this methodology could provide valuable information for the 
engineer to decide which components should be the focus of 
the redesign.

SUMMARY AND CONCLUSIONS

In this paper, a rational method for the wind serviceability 
design of steel structures is described. The process includes 
the calculation of appropriate service loads, accurately mod-
eling all significant sources of deformation and stiffness 
and the determination of rational shear strain limits based 
on material test data and fragility curves.

The use of fragility curves combined with an accurate 
structural model allows the structural engineer more con-
fidence with respect to the building’s performance under 
serviceability level wind loads. Using the recommended 
procedure, the engineer can estimate probabilities of dam-
age and potentially link these probabilities to cost and repair 
time, which are meaningful decision variables for owners 
and decision makers.

The following is a summary of the steps in the procedure 
recommended in this paper. The proposed method is general 
and can be adapted for different applications.

1. Select an appropriate mean recurrence interval.
Various MRIs have been suggested, typically ranging 
between 10 and 50 years. While the length of the MRI 
could be adjusted after collaboration with the build-
ing owner or decision maker, it is recommended that a 
basic 25-year wind speed be used as a standard so that 
the DDIs calculated are generally in the range of the 
test data used to develop fragility curves for common 
nonstructural components. Different MRIs may be 
used for different levels of nonstructural component 
protection, as appropriate.

2. Determine wind speed and loading. The wind speed 
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corresponding to selected MRIs can be found in ASCE 
7-10. Alternatively, there are equations available in the 
literature to convert between wind speeds associated 
with a 50-year MRI and wind speeds associated with 
other MRIs (Peterka and Shahid, 1998). The service 
wind loads can be determined using the applicable 
building code.

3. Accurately model the structure. The structural model 
should include all significant sources of deformation 
and lateral stiffness. The deformation source should 
include axial, shear, flexural and panel zone defor-
mations, when appropriate. Engineering judgment 
should be used to determine sources of lateral stiff-
ness to include with the bare frame stiffness. Possible 
additional lateral stiffness sources include connection 
flexibility, diaphragm stiffness and gravity frame stiff-
ness. Direct modeling of the soil–foundation interface 
should also be considered.

4. Calculate the deformation damage index. The dam-
age measure for nonstructural components should 
include vertical racking deformation as well as hori-
zontal racking. For this reason, the DDI should be 
used instead of the conventional interstory drift index 
(measuring only horizontal racking). The use of dam-
age gages is recommended because they are easily 
implemented in most commercial software.

5. Select rational damage limits. The deformation dam-
age index should be compared to damage limits that 
are determined on a rational and consistent basis. In 
this paper, fragility curves are recommended as the 
source of information regarding damage to nonstruc-
tural components due to shear strain (DDI).

6. Compare the DDIs with the damage limits. The cal-
culated DDIs for each bay should be compared with 
the damage limits determined with fragility curves. 
Stiffness can be added or subtracted from the structure 
at locations determined by the engineer.

7. Repeat steps 1–6 until an economical design is 
achieved or other loading cases control.
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SYMBOLS

G Shear modulus

GM25 Wind gust factor under 25-year MRI

GMx Wind gust factor under x-year MRI

H Interstory height

L Width of deformation damage zone

Kd Wind directionality factor (ASCE 7)

Kz Velocity pressure exposure factor (ASCE 7)

Kzt Topographic factor (ASCE 7)

M Number of specimens in a set of test data

P(Z > z) Probability of exceedance during time period, T

T Time period if interest for computing probability 
of exceedence

VM25 Wind speed under 25-year MRI

VMx Wind speed under x-year MRI

Xi
 X-coordinate of node i = A, B, C or D of drift 

damage zone

Yi
 Y-coordinate of node i = A, B, C or D of drift 

damage zone

i Rank of sorted set of test data

pi Probability of exceedance associated with data 
point i

qz Wind velocity pressure (ASCE 7)

δM25 Deformation parameter under 25-year MRI

δMx Deformation parameter under x-year MRI

λ Mean of the natural log of the data set

ξ Standard deviation of the natural log of the data 
set (dispersion)
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APPENDIX A

Example of a 12-Story Perimeter  
Moment Resisting Frame

In this example, a 12-story, unsymmetrical, steel-framed 
office building located in Charleston, South Carolina, is 
analyzed. This building, with slightly different properties, 
is also used in the Analysis chapter of FEMA P-751 (2012). 
The first story is 18 ft tall, and the remaining stories are 
12.5 ft. The building contains setbacks at levels 5 and 9. At 
the lower levels of the building, there are seven bays spaced 
at 30 ft in the east–west direction and seven bays spaced at 
25 ft in the north–south direction. The lateral system is com-
posed of perimeter steel moment-resisting frames.

The wind loads are calculated using the ASCE 7 direc-
tional procedure (2010). After consultation with the owner 
of the building, it was determined that a 10-year wind event 
would be the basis for the serviceability design due to the 
fact that this is approximately the length of the average ten-
ancy. For completeness, however, results for a 25-year MRI 
are also provided at the owner’s request. The design wind 
speed of 146 mph and the 10-year MRI serviceability wind 
speed of 76 mph are determined with the aid of the Applied 
Technology Council’s wind speed calculator. The structure 
is modeled in SAP2000, and the loads are applied at the 
nodes. Damage gage elements were added to the exterior 
corners of the building to represent glazing (glass curtain 
wall) or drywall and around the interior core (elevator and 
stairs) to represent ordinary masonry walls or drywall. 
While the use of drywall on the exterior is not likely for any 
building, the DDIs computed for these damage gages could 
be used to represent drywall in unknown or arbitrary loca-
tions. Figure A.1 shows two views of the structural model. 
The vertical shaded elements represent the damage gages 
located at the perimeter and in the interior of the structure.

Figure A.2 shows the building model with the perim-
eter DDIs labeled on each damage gage. As expected, the 
highest DDIs (0.00276, or 1/362) are found in the first story. 
Figure A.3a shows the drywall fragilities for DS1 and DS2, 
together with the maximum DDIs for the 10- and 25-year 
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 (a) (b)

Fig. A.1. Model of 12-story building: (a) from south to west; (b) from north to east.

Fig. A.2. Computed DDIs on perimeter of building.
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 (a)  (b)

Fig. A.3. Decision spaces for exterior drywall and for exterior curtain wall: (a) drywall; (b) curtain wall for 10-year MRI.

Fig. A.4. Computed 10-year DDIs in core of building.

MRIs. There is approximately a 65% probability of exceed-
ing DSI, given the 10-year maximum DDI of 0.00276. Fig-
ure A.3b shows the DS1 fragility curve for the glass curtain 
wall, along with a vertical line at the maximum DDI, com-
puted using the 10-year MRI. The curve illustrates the fact 

that a DDI of 0.00276 is not an issue for the glass curtain wall 
because the probability of exceedance of DS1 is negligible.

The interior core masonry walls present a greater issue 
than the exterior curtain wall. Figure A.4 shows a cross- 
section of the model under the 10-year wind load with the 
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 (a)  (b) 

Fig. A.5. Decision spaces for interior drywall and for interior curtain wall: (a) drywall; (b) masonry wall.

DDIs for the interior core labeled. The maximum DDI 
of 0.00274 occurs at the first story, and the minimum of 
0.000478 occurs at the top story. Figure A.5a shows two 
fragility curves for drywall. The minimum, mean, maxi-
mum and full range of computed DDI values are illustrated 
in the figure for the 10-year and 25-year wind loads. Fig-
ure A.5b shows the DS1 and DS2 fragility curves for ordi-
nary masonry walls as well as the DDI ranges. The 25-year 
DDIs were calculated with Equation 1 for a wind speed of 
89 mph. The hypothetical building owner has indicated that 
the average wall in the core (gypsum wallboard or masonry) 
should have no more than a 30% chance of minor damage 
(DS1) under the 10-year wind loads and no more than a 
70% chance of minor damage under the 25-year wind loads. 
From Figures A.5a and b, the designer can see that the aver-
age DDI (0.00171) under the 10-year wind loads has a prob-
ability of exceedance for DS1 greater than 30%, thus failing 
the owner’s requirement. However, the average DDI under 
the 25-year wind loads is approximately 60%, thus meeting 
the owner’s requirement that it be less than 70%. The DDIs 
corresponding to other MRIs (such as 50- or 100-year) could 
also be determined with Equation 1 and incorporated into 
the decision-making process, provided that the owner has 
selected an allowable probability of damage corresponding 
to those MRIs.

A final issue to consider is torsional wind loading. It is pru-
dent to examine the effects of torsional loads, although due 
to the nature of the lateral load-resisting system (perimeter 
moment frame) in this building, torsional loading require-
ments are not likely to control. For this building, torsion 
was examined according to the provisions of ASCE 7-10, 

which requires that 75% of the lateral wind load be applied 
in combination with a torsional moment corresponding to 
15% eccentricity. Figure A.6 shows the structure under the 
10-year torsional load specified in ASCE 7-10. From Figure 
A.6, it can be seen that the torsional loading case does not 
control; the calculated DDIs are lower for this case than for 
the case in which 100% of the load is applied at no eccentric-
ity (see Figure A.2).

APPENDIX B

Fragility Curve Theory

There are many different methods used to develop fragil-
ity curves (FEMA, 2013a; Porter, Kennedy and Bachman, 
2007). If the objective of the fragility curve is to obtain 
rational damage measures, the most useful method is experi-
mental testing. A typical test might involve fixing the base 
of the component (e.g., a sheet of gypsum wallboard) and 
applying an in-plane load in order to induce a shear strain. 
In the ideal testing procedure, there will be no vertical rack-
ing and no rigid-body rotation; thus, the shear strain and 
the interstory drift ratio in the component will be equal. As 
the test progresses, the load is incrementally increased until 
a particular damage state is observed (e.g., screws popping 
out, cracking or crushing). The shear strain at which the 
damage state occurs is noted, and the test is repeated on a 
new specimen.

Table B.1 shows data obtained from tests performed on 
gypsum wall partitions (Miranda and Mosqueda, 2013). The 
data are collected from six different sources, dating between 
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Figure A.6. Computed DDIs on perimeter of building for torsional loading.

Table B.1. Gypsum Partition Wall Data Set (Miranda and Mosqueda, 2013)

Source DS1 Source DS1 Source DS1 Source DS1

JAB

0.0026

NEESR

0.0040

Rihal

0.0039

AMB

0.0030

0.0026 0.0020 0.0039 0.0030

0.0026 0.0040 0.0026 0.0005

0.0052 0.0020 0.0046 0.0005

0.0026 0.0040 0.0052 0.0030

0.0052 0.0020 0.0046 0.0030

0.0026 0.0020 0.0039 0.0050

0.0026 0.0040 0.0033 0.0050

0.0007 0.0040 0.0039 0.0010

0.0026 0.0040 0.0039 0.0010

0.0013 0.0040 0.0039 0.0010

0.0026 0.0040
Lang

0.0025 0.0010

Japan 0.0020 0.0040 0.0028 0.0010

0.0010

001-026_EJ1Q15_2013-14.indd   21 12/17/14   11:06 AM



22 / ENGINEERING JOURNAL / FIRST QUARTER / 2015

Table B.2. Reduced Fragility Data

(1)  
Data Point

(2)  
Sorted Value

(3)  
Ln(Sorted Value)

(4)  
Probability

1  0.0005  –7.6  0.0094

2  0.0005  –7.6  0.0283

3  0.0007  –7.264  0.0471

4  0.001  –6.908  0.066

5  0.001  –6.908  0.0948

… … … …

51  0.0052  –5.259  0.9527

52  0.0052  –5.259  0.9716

53  0.0052  –5.259  0.9905

Mean  0.00297  –5.950 = ξ —

Standard deviation  0.00132  0.602 = λ —

Fig. B.1. Fragility curve construction.

1966 and 2010. The values represent the shear strain (in 
this case, equivalent to the interstory drift ratio due to the 
absence of vertical deformation) at which damage state 1 
(minor damage such as cracking of drywall or warping of 
tape) was first observed.

The “raw” fragility data are plotted as solid symbols in 
Figure B.1. Such a plot is created by first sorting the fragility 
data in ascending order and then assigning a probability to 
each data point as follows:

 
p

i

M
i =

− 0 5.

 
(B.1)

where M is the number of sample points and i is the rank of 
the sorted data point.

Table B.2 shows some of the data from Table B.1 that are 
used to plot the symbols in Figure B.1, where column (2) of 
the table provides the X-axis values, and column (4) of the 
table provides the Y-axis values.
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Table B.3. Fragility Information for Gypsum Drywall Building Elements (PACT)

Building Element1,2,3 Damage State Mean Demand λ Dispersion (ξ)

Fixed below, fixed above
DS1  0.0021 –6.166 0.60

DS2  0.0071 –4.948 0.45

Fixed below, slip track above with returns
DS1  0.002 –6.215 0.70

DS2  0.0050 –5.298 0.40

Fixed below, slip track above without returns
DS1  0.0035 –5.655 0.70

DS2  0.0093 –4.678 0.45

Notes:
1. DS1 is screw pop-out, minor cracking of wallboard, warping or cracking of tape. DS2 corresponds to moderate cracking or crushing.
2. Full height wall with gypsum on metal studs.
3. These fragilities also apply to gypsum plus wallpaper, gypsum plus ceramic tile and high-end marble or wood panel, provided that the fixities (below and 

above) are equivalent. See PACT for more information.

Table B.4. Fragility Information for Exterior Enclosure Building Elements (PACT)

Building Element Damage State Mean Demand λ Dispersion (ξ)

Glass curtain wall (monolithic)1
DS1  0.0338 –3.387 0.40

DS2  0.0383 –3.262 0.40

Glass curtain wall (insulating glass units)1
DS1  0.021 –3.863 0.45

DS2  0.024 –3.730 0.45

Generic storefront (monolithic)2
DS1  0.029 –3.540 0.50

DS2  0.0473 –3.051 0.25

Generic storefront (insulating glass units)2
DS1  0.059 –2.830 0.25

DS2  0.0665 –2.711 0.35
Notes:
1. Generic midrise stick-built curtain wall. Aspect ratio = 6:5. DS1 corresponds to glass cracking. DS2 corresponds to glass falling from frame. For fragility 

information relating to other glass types, aspect ratios and installation details, see PACT.
2. Aspect ratio 6:5. DS1 corresponds to a gasket seal failure. DS2 corresponds to glass cracking.

The mathematical fragility curve is simply the integral of 
a probability distribution function (PDF). In most cases, a 
lognormal PDF is used, as follows:

 

f x
x

x
X ( ) =

( )
− −⎛

⎝
⎜

⎞

⎠
⎟

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1

2

1

2

2

ζ π
λ

ζ
exp

ln

 

x ≥ 0  (B.2)

where λ is the mean of the natural log of the set (ln x) and 
ξ is the standard deviation of the natural log of the data set. 
For example, for the gypsum partition wall data shown in 
Table B.1, λ = –5.95 and ξ = 0.602. These values are com-
puted as shown in column (3) of Table B.2.

The smooth mathematical fragility function is given by:

 
P x x dxX

x

≤( ) = ( )∫
0

fX

 

(B.3)

The fitted curve in Figure B.1 represents the mathemati-
cal fragility function given by Equation B.3.

Note that before using a curve developed from test data 
for design purposes, a goodness-of-fit test should also be 
performed (Porter et al., 2007). Additional caution should 
be exercised when using shear strains that correspond to 
sections of a fragility curve where there is little data resolu-
tion. To avoid this problem, it may be appropriate to select 
an MRI such that the corresponding shear strains from the 
fragility curve fall within a segment of the curve with a high 
resolution of tested data points.

Tables B.3 through B.6 contain λ values (mean of the 
natural log of the data), dispersion ξ values (standard devia-
tion of the natural log of the data) and the descriptions of 
the associated damage states for a variety of nonstructural 
and structural components. The values in the tables were 
taken from the Performance Assessment Calculation Tool 
(FEMA, 2013b), which contains the same type of infor-
mation for hundreds of structural and nonstructural com-
ponents. PACT also contains useful data on the cost of 
repairing or replacing the building elements. When the cost 
data are combined with the probability of damage occurring, 
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Table B.6. Fragility Information for Structural Steel Building Elements (PACT)

Building Element Damage State Mean Demand λ Dispersion (ξ)

Braced frame (no seismic detailing)1 DS1  0.0042 –5.473 0.25

Ordinary steel concentric braced frame2 DS1  0.00159 –6.444 0.70

DS2  0.010 –4.605 0.30

Special steel concentric braced frame3 DS1  0.0035 –5.655 0.46

DS2  0.0058 –5.150 0.65

Notes:
1. Design for factored loads, no additional seismic detailing. DS1 corresponds to the fracture of brace or gusset plate, gusset buckling and significant 

decrease in lateral stiffness.
2. DS1 is minor damage, including some buckling of the brace and initial yielding of the gusset. DS2 is moderate damage, including additional brace 

buckling, gusset yielding and yielding of members.
3. WF braces, balanced design criteria. DS1 corresponds to initial brace buckling, yielding of the gusset and slight residual drift. DS2 is moderate damage, 

significant buckling of brace, initiation of yielding and out-of-plane deformation of the gusset, initiation of cracking of welds of gusset and yielding of 
members.

Table B.5. Fragility Information for Concrete and Masonry Building Elements (PACT)

Building Element Damage State Mean Demand λ Dispersion (ξ)

Reinforced concrete wall (low aspect ratio)1
DS1  0.0055 –5.203 0.36

DS2  0.0109 –4.519 0.30

Low-rise reinforced concrete wall2
DS1  0.0076 –4.880 0.35

DS2  0.0134 –4.313 0.45

Slender concrete wall3
DS1  0.0076 –4.880 0.35

DS2  0.0134 –4.313 0.45

Ordinary reinforced masonry walls4 DS1  0.002 –6.215 0.86

DS2  0.0033 –5.714 0.77

Special reinforced masonry walls5 DS1  0.0036 –5.627 0.59

DS2  0.0059 –5.133 0.51

Notes:
1. DS1 corresponds to cracks of width between 0.04 and 0.12 in. DS2 represents crushed concrete core, localized concrete cracking (width > 0.12 in.) and 

buckling of vertical rebar.
2. Wall with return flanges. DS1 is crushed concrete core, localized concrete cracking (widths > 0.12 in.) and buckling of vertical rebar. DS2 is sliding of the 

wall resulting in distributed cracking.
3. DS1 corresponds to spalling of cover and vertical cracks. DS2 is exposed longitudinal reinforcing and buckling of vertical rebar. DS2 is sliding of the wall 

resulting in distributed cracking.
4. Partially grouted cells, shear dominated. DS1 is first occurrence of major diagonal cracks. DS2 is wide diagonal cracks in each direction, crushing or 

spalling at wall toes.
5. Fully grouted cells, shear dominated. DS1 is first occurrence of major diagonal cracks. DS2 is wide diagonal cracks in each direction, crushing or spalling 

at wall toes.

the engineer can estimate an expected repair cost over the 
time period in question. This aspect of the serviceability 
design is discussed later with regard to the potential adapta-
tion and application of PACT to PBWE. More information 
on component testing and fragility development for specific 
components can be found in Miranda and Mosqueda (2013), 
Lee et al. (2006), O’Brien et al. (2012), and Algan (1982). 
Additionally, if the fragility parameters for a particular com-
ponent cannot be found, fragility curves can be developed 
by the engineer, using the FEMA P-58 Appendix H proce-
dures (FEMA, 2013a). If actual test data are available, the 

engineer should use the mean and dispersion (appropriately 
adjusted for testing procedures) to create a fragility curve. 
In the absence of test data, other procedures may be used, 
including Monte Carlo simulation, “expert opinion” and 
the “single calculation” procedure, which consists of deter-
mining a best estimate for the average capacity (Q) of the 
component and setting the mean value equal to 0.92Q, with 
a dispersion equal to 0.40. This procedure can be applied 
when damage state means are known, but dispersions are 
unknown or difficult to quantify.
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APPENDIX C

Creating Fragility Curves with Software Programs

Although the Performance Assessment Calculation Tool 
(PACT) can be used to create and view fragility curves, the 
engineer may wish to create and manipulate the curves with 
the use of commercial software such as Microsoft Excel, 
Mathcad, or some other program. Many software programs 
contain built-in functions capable of producing fragility 
curves through the use of lognormal distribution functions.

In Microsoft Excel (Microsoft Corporation, 2013) the fra-
gility curve can be plotted using the lognorm.dist function. 
This function takes the following form: lognorm.dist(x, 
mean, dispersion, cumulative), where x is the engineering 
demand parameter at which the probability of exceedance 
is to be evaluated, mean is λ, dispersion is ξ and cumula-
tive is true or false (if true, the cumulative distribution func-
tion is returned; if false, the probability density function is 
returned). Referring to the 10-story example, it was deter-
mined that a DDI of 0.00153 represents a 30% probability 
of exceedance of DS1 (mean demand = 0.0021, dispersion = 
0.6). This can be calculated using lognorm.dist(0.00153, 
ln(0.0021), 0.6, TRUE) = 0.30.

In Mathcad (Parametric Technology Corporation, 2007) 
the fragility curve is created with the plnorm function, of 
the form plnorm(x, mean, dispersion), where the required 
inputs are defined in the same manner as the Excel function.

ABBREVIATIONS

DDI deformation damage index

DDZ deformation damageable zone

DG damage gage

DM damage measure

DS damage state

EDP engineering demand parameter

IDI interstory drift index

MRI mean recurrence interval

PACT performance Assessment Calculation Tool

PBEE performance-based earthquake engineering

PBWE performance-based wind engineering
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INTRODUCTION

The Kaiser bolted bracket (KBB) moment connection is 
a proprietary connection prequalified by AISC 358-10 

(AISC, 2010a) for applications in seismic regions. In a KBB 
moment connection, a cast high-strength steel bracket is fas-
tened to each beam flange and bolted to the column flange; 
a pair of brackets is placed symmetrically on both the top 
and bottom flanges of the beam. The bracket attachment to 
the beam flange can be either welded (W-series brackets) or 
bolted (B-series brackets). Figure 1 shows one example of a 
bolted KBB connection, and Figure 2 shows one of the two 
bolted brackets prequalified by AISC. The prequalification 
is mainly based on full-scale tests (Kasai, Hogdon and Blei-
man, 1998, Gross et al., 1999, Newell and Uang 2006); see 
Adan and Gibb (2009) for a summary of the development of 
this connection.

Note that AISC 358-10 is intended for new construction, 
not seismic rehabilitation. When bolted KBB connections 

are used, one major advantage is to eliminate field weld-
ing. This is desirable, especially for seismic rehabilitation 
of existing steel moment frame buildings. The bracket con-
figuration is proportioned to develop the probable maximum 
moment strength of the connected beam. According to AISC 
358-10, yielding and plastic hinge formation are intended to 
occur primarily in the beam at the end of the bracket away 
from the column face. Limited yielding in the column panel 
zone may occur, and the panel zone shear strength per AISC 
341-10 (AISC, 2010b) needs to be satisfied. The beam size is 
limited to W33×130.

The KBB connections were recently proposed for the 
seismic rehabilitation of a pre-Northridge steel moment 
frame building (Blaney et al., 2010). Qualification tests 
were conducted for this project because of the following 
challenges. First, AISC 358-10 requires that the KBBs be 
symmetrically placed above and below the beam. For seis-
mic rehabilitation, it is not architecturally desirable to place 
a KBB above the beam because it may extrude beyond the 
floor slab. It has been shown, however, that the bottom-only 
bracket configuration cannot prevent fracture of the beam 
top flange complete-joint-penetration (CJP) groove weld in a 
pre-Northridge moment connection (Gross et al., 1999). Sec-
ond, the beam flanges are not welded to the column flange 
in the AISC prequalified KBB moment connections, while 
this is not the case for the rehabilitated moment connections. 
Such a difference may alter the force transfer mechanism in 
the connection. Third, both the beam size and the required 
KBB size (type B1.0C) exceed those permitted by AISC 
358-10. Finally, because steel moment frames designed and 

Panel Zone Deformation Capacity as Affected by Weld 
Fracture at Column Kinking Location
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ABSTRACT

Three full-scale specimens were tested to evaluate the cyclic performance of rehabilitated pre-Northridge steel beam-to-column moment 
connections. A Kaiser bolted bracket (KBB) was used on the beam bottom flange for all specimens, but different rehabilitation schemes 
(another KBB, a notch-tough beam flange replacement weld, or a double-tee welded bracket) were used to strengthen the top flange. All 
specimens were able to sustain an interstory drift angle of 0.04 radian, with large inelastic deformations in the panel zone. Two specimens 
experienced fracture at the replacement complete-joint-penetration (CJP) welds, mainly due to the large shear deformation in the panel zone. 
Because it may not be economically feasible to mitigate weak panel zones in seismic rehabilitation, an analytical model was developed to 
predict the panel zone deformation capacity and the associated strength. In this model, it was postulated that the ultimate panel zone defor-
mation capacity corresponded to that when each column flange was fully yielded and excessive kinking would cause fracture of the beam 
flange CJP welds. This postulation was verified by the test data of two specimens that experienced weld fracture due to excessive panel zone 
deformation. It was shown that the deformation capacity is a function of db/tcf (beam depth-to-column flange thickness ratio). The effect of 
column axial load was also studied.
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constructed prior to the 1994 Northridge earthquake could 
have very weak panel zones, where the demand-capacity 
ratio for shear yielding in the panel zone is much higher 
than that of flexural hinging of the connected beams, and 
because it is not practical to rehabilitate existing moment 
connections to achieve the intended performance of AISC 
358-10 (i.e., beam plastic hinging with limited or no panel 
zone yielding), full-scale testing was needed to verify the 
proposed connection rehabilitation scheme with a weak 
panel zone.

TEST PROGRAM

Test Specimens
A total of three nominally identical, full-scale pre-North-
ridge moment connections with a W36×150 beam and a 
W14×193 column were rehabilitated and tested. Table 1 
shows that the beam and column sections satisfied the AISC 
341-10 compactness requirement as highly ductile mem-
bers. The pre-Northridge style, welded flange-bolted web 
moment connections were first fabricated and constructed 
following the pre-Northridge practice. Beam flange-to-col-
umn flange CJP groove welds were made with an E70T-4 
electrode. Steel backing, runoff tabs, and weld dams were 
also used in a manner consistent with the pre-Northridge 
practice. Stiffeners inside the panel zone and one stiffener in 
the beam web were included to simulate an existing condi-
tion in the building.

For rehabilitation, runoff tabs and weld dams were 
removed while the steel backing remained. Then a B-series 
bracket (B.1.0C) was installed on the beam bottom flange of 
all three specimens. Table 2 summarizes the bracket details. 
To attach the bracket to the column and beam flanges, z- 
and Q-in. oversized holes were made using a magnetic-base 
drill to the column and beam flanges, respectively. The high-
strength bolts were fully tensioned with a calibrated hydrau-
lic torque wrench. The treatment of the beam top flange was 
different for all three specimens, as described below.

For specimen 1, the same bracket was also added to 
strengthen the top flange (see Figure 3), a configura-
tion required by AISC 358-10 for new construction. For 

Fig. 1. KBB connection (figures reprinted from AISC, 2010a).

Table 1. Width-to-Thickness Ratios

Member Size bf/2tf h/tw

Beam W36×150 6.37 51.9

Column W14×193 5.45 12.8

Note: hd yEλ F= =0.30 7.22 for flange; hd yEλ F= =2 45 59.  for web (Pu = 0). 

Fig. 2. KBB type B1.0 (figures reprinted from AISC, 2010a).
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Fig. 3. Specimen 1 connection details.
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Table 2. Kaiser Bolted Bracket B1.0.C

Proportions

Bracket Length, 
Lbb (in.)

Bracket Height, 
hbb (in.)

Bracket Width, 
bbb (in.)

Number of 
Column Bolts, ncb

Column Bolt 
Gage, g, (in.)

Column Bolt 
Diameter (in.)

28¾ 12 10 6 6½ 1s

Design Proportions

Column Bolt 
Edge Distance, 

de (in.)
Column Bolt 
Pitch, pb (in.)

Bracket Stiffener 
Thickness, ts (in.)

Bracket Stiffener 
Radius, rv  (in.)

Number of Beam 
Bolts, nbb

Beam Bolt 
Diameter (in.)

2 3½ 2 32 14 1¼
See Figure 9.5 in AISC 358 for bracket parameter definition.

Table 3. Steel Member Sizes and Mechanical Properties of Specimens 1, 2 and 3

Member Yield Stress (ksi) Tensile Strength (ksi) Elongation* (%)

Beam flange (W36×150) 61.6 75.9  33

Column flange (W14×193) 62.1 80.5  31.5

*Elongation is based on a 2-in. gage length.

specimen 2, the existing beam top flange weld was gouged 
out and then replaced by a notch-tough CJP weld made 
with an E71T-8 electrode; the minimum required Charpy 
V-Notch impact test values were 20 ft-lb at 20  ºF and 40 
ft-lb at 70 ºF. The steel backing remained but was reinforced 
with a c-in. fillet weld. The existing weld access hole was 
not modified.

After testing of specimen 2, it was decided to not only 
replace the existing beam top flange CJP weld as in speci-
men 2 (see Figure 4), but to also strengthen the new weld 
with a welded double-tee bracket for specimen 3 (see Fig-
ure 5). The height of the welded bracket (5 in.) was selected 
to be flush with the surface of the existing concrete slab. 
The cross-section of the double-tee bracket was selected 
such that the beam top-flange stress at the column face 
was about 50% of the yield stress; the top-flange stress was 
calculated based on the elastic beam theory and a beam 
moment extrapolated from the probable maximum moment 
(Mpr) defined in AISC 358-10.

As noted earlier, the beam flanges were not connected to 
the column in the AISC 358-10 prequalified KBB connec-
tions. But CJP welds did exist in the rehabilitated moment 
connections. The bolted KBB brackets used had a notch to 
clear the existing CJP weld in the top flange and steel back-
ing in the bottom flange.

Material Properties

ASTM A572 Grade 50 steel was specified for the beams, 
columns, continuity plates and the double-tee bracket. A36 
steel was specified for all other plates. Table 3 shows the 

mechanical properties of the materials obtained from ten-
sile coupon tests. The material for the KBB high-strength 
castings was ASTM A958 Grade SC8620, class 90 /60. 
This material has a specified minimum yield and tensile 
strengths of 60 and 90 ksi, respectively. ASTM A354 Grade 
BD 1s-in.-diameter, high-strength bolts were specified for 
the KBB-to-column fasteners, and ASTM A490 14-in.-
diameter, high-strength bolts were specified for the KBB-
to-beam fasteners.

Design Parameters

Based on AISC 341-10 and AISC 358-10, the design param-
eters (column-beam moment ratio and panel zone demand-
capacity ratio) were calculated as provided in Table 4. Based 
on both nominal yield stresses (Fy) and actual yield stresses 
from the tensile coupon test results, the design parameters 
were computed for both the existing and rehabilitated con-
ditions. To compute the column-beam moment ratio, the 
beam moment (M*

pb) was determined by extrapolating the 
expected beam plastic moment to the centerline of the col-
umn, and the column moment strength (M*

pc) was calculated 
by extrapolating the nominal flexural strength (includ-
ing haunches where used) above and below the joint to the 
centerline of the beam. The column-beam moment ratios, 

M Mpc pb
* *Σ Σ  , were greater than 1.0 in all cases, indicat-

ing a strong-column weak-beam (SC/WB) configuration. 
The same table also shows that the panel zone demand-
capacity ratios (Vpz/Vn) were much larger than 1.0 for all 
cases, implying very weak panel zones in these rehabilitated 
specimens.
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Fig. 4. Specimen 2 connection details.
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Fig. 5. Specimen 3 connection details.

027-046_EJ1Q15_2013-17R.indd   32 12/17/14   11:06 AM



ENGINEERING JOURNAL / FIRST QUARTER / 2015 / 33

Table 4. Column-Beam Moment Ratio and Panel Zone Demand-Capacity Ratio

Specimen No.
Design 

Parameters
Before Rehabilitation After Rehabilitation

Nominal Fy Actual Fy Nominal Fy Actual Fy

Specimen 1
M* M*pc pbΣ Σ 1.03 1.14 1.15 1.27

Vpz/Vn 1.96 1.76 1.47 1.33

Specimen 2
M* M*pc pbΣ Σ 1.03 1.14 1.05 1.16

Vpz/Vn 1.96 1.76 1.75 1.58

Specimen 3
M* M*pc pbΣ Σ 1.03 1.14 1.09 1.20

Vpz/Vn 1.96 1.76 1.53 1.38

Test Setup and Loading Sequence

Figure 6 shows the test setup. A corbel was bolted to the end 
of the beam and attached to two 220-kip hydraulic actuators. 

With some minor modification, the loading sequence 
specified in Section K2 of AISC 341-10 for beam-to-column 
moment connection test was used. A performance-based 
seismic rehabilitation study established a target story drift 
ratio of 3.5% (Liu et al., 2009). Therefore, the AISC load-
ing protocol was modified to include two additional cycles 

at 3.5% story drift. The loading began with six cycles each 
at 0.375, 0.5, and 0.75% drift. The next four cycles in the 
loading sequence were at 1% drift, followed by two cycles 
each at 1.5, 2, 3, 3.5, and 4%. Beyond that, the specimens 
were cycled to 4.5% until failure due to the limitation of the 
actuator stroke. Testing was conducted in a displacement-
controlled mode, and the cyclic displacement was applied at 
the end of the beam.

(W14x193)

(W36x150)

Corbel

Two 220-kip 
Hydraulic
Actuators

Bracing
Location A

Bracing
Location B

7'-87
8" 4'

Column

14'-6"

7'-6"

7'-6"

Beam

Fig. 6. Test setup (specimen 3).
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TEST RESULTS

Figure 7 summarizes the damage pattern in three test speci-
mens. The cyclic responses are presented in Figure 8. Sig-
nificant shear yielding in the panel zone was observed in 
all three specimens. Also, the KBBs remained intact and 
showed no sign of yielding or damage. For specimen 1, the 
double KBBs forced beam plastic hinging in the form of 

flange and web local buckling as well as lateral-torsional 
buckling near the tip of the KBBs. The testing was stopped 
after completing two cycles at 4.5% story drift due to sig-
nificant lateral-torsional buckling of the beam. Note that 
one lateral brace was provided at location A in specimen 1 
(see Figure 6). This corresponded to an unbraced length of 
92.9 in., which was less than that (123.2 in.) permitted by 
AISC 341-10. Because significant lateral-torsional buckling 

 (a)

 (b)

 (c)

Fig. 7. Damage patterns: (a) specimen 1 panel zone yielding and beam lateral buckling; (b) specimen 2 panel zone yielding and  
top flange weld fracture; (c) specimen 3 panel zone yielding and top flange bracket weld fracture.
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of the beam occurred in specimen 1, it was decided to add 
another lateral bracing at location B for specimens 2 and 3. 
The additional bracing was used to brace the top flange only 
to simulate the restraint provided by the concrete slab in the 
real building.

Specimen 2 experienced significant yielding in the panel 
zone, but the extent of beam plastic hinging was very limited 
with no sign of buckling. After completing one cycle at 4% 
story drift, fracture of the beam top flange at the replace-
ment weld occurred during the second cycle (see Figure 7b).

The behavior of specimen 3 was similar to that of speci-
men 2—that is, inelastic action occurred mainly in the panel 
zone. The CJP weld connecting the horizontal plate of the 
double-tee bracket to the column flange started to fracture at 
4% story drift. The specimen was then cycled at 4.5% story 
drift repeatedly until failure; see Figure 8c for the cyclic 
response. Brittle fracture occurred during the fifth negative 
cycle (see Figure 7c).
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Fig. 8. Load versus beam tip displacement: (a) specimen 1; (b) specimen 2; (c) specimen 3.
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PANEL ZONE BEHAVIOR

Effective Depth of Extended Panel Zone
With the addition of KBBs above and below the beam, the 

panel zone is extended in depth. AISC 358-10 (AISC, 2010a) 
defines the effective depth, deff , of the extended panel zone 
as the centroidal distance between column bolt groups in 
the upper and lower KBBs (see Figure 9a). Generalizing the 
AISC definition to specimens 2 and 3 with only one KBB 
used, the definition of deff is also shown in the figure.

The average shear deformations of the original and 

extended panel zones can be computed from test data based 
on Equations 1 and 2:

 
γ δ δpz

a d

ad
= + +( )

2 2

1 2
2  
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Fig. 9. Effective depth of extended panel zone: (a) specimen 1; (b) specimen 2; (c) specimen 3.
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where the instrumentation for the panel zone deformations 
is shown in Figure 10. Figure 11 compares the shear defor-
mations of the panel zones for all test specimens. It shows 
that the shear deformation was mainly concentrated in the 
original panel zone.

Based on a pair of diagonal measurements in the extended 
panel zone, the average shear deformation can be computed. 
The shear in the extended panel zone can also be computed 
by using the effective depth:

 
V

M

d
V

f

eff
c= −

0 95.  
(3)

where Mf is the moment at the face of column and Vc is the 
shear in the column. The cyclic responses of the extended 
panel zones for specimens 2 and 3 are presented in Figure 12.
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Fig. 10. Panel zone deformation measurements: (a) original panel zone before rehabilitation;  
(b) extended panel zone after rehabilitation (specimen 1).
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Fig. 11. Comparison of panel zone shear deformation.
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Normalized Shear Deformation, γ/γy
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Fig. 12. Cyclic response of extended panel zone: (a) specimen 2; (b) specimen 3.

  

 (a) (b)

Fig. 13. Yielding pattern at column back side (specimen 3): (a) at top continuity plate level; (b) at bottom continuity plate level.

Column-Flange Kinking and CJP Weld Fracture

Large panel zone deformation caused the column flange 
to kink at four corners of the panel zone. Figure 13 shows 
localized yielding of the flange on the backside of the col-
umn. On the front side, the location of the rehabilitated 
notch-tough CJP welded joint also coincided with one panel 
zone kinking location in specimens 2 and 3 (see Figure 9). 
Although these connections performed adequately to satisfy 
AISC 341-10 for special moment frames, repeated loading 
eventually caused fracture of the notch-tough CJP welds at 
the kinking locations. The relationship between CJP weld 
fracture and panel zone deformation is presented next.

WELD FRACTURE AND PANEL ZONE 
DEFORMATION CAPACITY

The panel zone behavior was extensively researched (e.g., 
Krawinkler, Bertero and Popov, 1971; Krawinkler, 1978; 
Kato, Chen and Nakao, 1988; Schneider and Amidi, 1998; 
El-Tawil et al., 1999; Lee et al., 2005). As will be shown, 
past research was mainly focused on the strength, not defor-
mation capacity, of the panel zone, and the nominal shear 
strength of the panel zone in AISC 360 corresponds to a 
deformation at four times the yield shear strain. In this sec-
tion, the relationship between CJP weld fracture and panel 
zone deformation is studied. Also, in performance-based 
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Fig. 14. Forces on column: (a) column free-body diagram;  
(b) moment diagram; (c) shear diagram.

seismic analysis and design of tall buildings, PEER/ATC 
72-1 (PEERC/ATC, 2010) suggested that a panel zone defor-
mation capacity of 0.08 radian be used when panel zone 
shear distortion does not contribute to the incident of frac-
tures at the beam-to-column connection. This deformation 
capacity is consistent with that accepted for link elements in 
eccentrically braced frames in AISC 341-10 (AISC, 2010b). 
Otherwise, a deformation capacity of 0.02 radian should be 
used when column-flange kinking would cause weld frac-
ture at the beam-column connection. But no guidance is 
provided to determine when column-flange kinking is detri-
mental to weld fracture.

Krawinkler Model

Figure 14 shows the moment and shear diagrams of a col-
umn produced by seismic loading. The panel zone is in high 
shear with a reverse curvature (see Figure 15a). In the panel 
zone, the column web (together with doubler plates, if used) 
panel zone is bounded by two column flanges. Krawinkler 
(1978) used the superposition of column web and column 
flange in modeling the panel zone behavior. The column web 
was subjected to shear (see Figure 16a), where the web area 
was assumed to be 0.95dctcw, with dc equal to the column 
depth and tcw equal to the panel zone thickness and where 
the shear yield stress, τy, was Fy 3 (equal to 0.577Fy). The 
panel zone depth was also assumed to be 0.95db, where db 
is the beam depth. A conservative assumption was made by 
ignoring strain hardening after yielding. 

Although the bounding column flanges deform in reverse 

curvature, Krawinkler modeled theses flanges as rigid 
members and, instead, used rotational springs at four cor-
ners (i.e., kinking locations) of the panel zone to model the 
contribution from column flanges (see Figure 15b). It was 
assumed that column flanges contributed to both the stiff-
ness and strength of the panel zone only when γ ≥ γy, where 
γy = τy/G and G is the shear modulus. That is, the contribu-
tion from column flanges was ignored when γ < γy. Based 
on finite element analysis, Krawinkler et al. (1971) proposed 
the following rotational stiffness, Ks, at each corner:
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where bcf is the column-flange width and tcf is the column-
flange thickness. Considering four rotational springs and 
the work equation 0.95db(ΔV)(Δγ) = 4Mθ) with θ = Δγ, the 
proposed post-elastic stiffness, Kp, of the joint due to the 
column flanges (see Figure 16) was 
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Furthermore, the panel zone shear strength was defined at 
4γy. From the superposition shown in Figure 16, the follow-
ing panel zone shear strength at 4γy was developed by Kra-
winkler (1978):
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AISC Design Strength 

The AISC Specification (AISC, 2010c) uses 0.6Fy instead 
of 0.577Fy as τy. Furthermore, the web shear area is taken 
as dctcw instead of 0.95dctcw. The slightly modified form of 
Equation 6 is used in the AISC Specification:
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(7)

Alternate Panel Zone Model

It was shown in Figure 12 that a panel zone could deform 
to a deformation level much higher than 4γy. But excessive 
deformation could cause fracture in the beam flange-to-
column flange CJP weld. In this paper, an alternate model 
is presented to compute the ultimate deformation capacity 
and the associated strength of the panel zone. This deforma-
tion capacity uses the fracture of a notch-tough CJP weld at 
the column kinking location as the limit state. As will be 
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shown, the deformation capacity can be significantly higher 
than the 4γy value assumed in AISC 360-10. This model also 
shows that a panel zone’s deformation can be less than 4γy 
in some situations.

The panel zone behavior is again established by super-
imposing the responses of the column web and flanges (see 
Figure 17). The web area is taken as 0.95dctcw. Therefore, 
the shear yield strength of the column web is

 V F d tcw,y y c cw. .= ( )0 6 0 95  (8)

With γy = 0.6Fy/G, the elastic shear stiffness of the column 
web is

 
K

V
d t Gcw

cw,y

y
c cw= = .

γ
0 95

 
(9)

The Krawinkler’s model ignores strain hardening after 
yielding. But, because strain hardening generally exists 
for the steel grades (Fy ≤ 50 ksi) permitted in AISC 341-
10, a strain hardening ratio of 0.03 is adopted as shown in 
Figure 17a. The strain hardening ratio of 0.03 is based on 

 (a) (b)

Fig. 15. Krawinkler’s model of panel zone: (a) panel zone deformed shape;  
(b) mathematical model (figures reprinted from Krawinkler, 1978).
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Fig. 16. Superposition of shear strength components per Krawinkler’s model:  
(a) column web component; (b) column flange component; (c) superposition.

monotonic torsional coupon test results conducted by Slutter 
(1981).

Because each column flange in the panel zone region 
would bend about its weak axis in reverse curvature (see 
Figure 15a), the model in Figure 18a is used to consider 
the contribution from column flanges. It is idealized that 
each column flange will deform elastically until the plastic 
moment of the column flange is reached:

 

M
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2

4
 

(10)

where Fyc is the column-flange yield stress. The associated 
deformation, which is the chord angle in Figure 18b, cor-
responds to γpz in Figure 17. It is postulated that γpz can be 
defined as the plastic deformation capacity of the panel zone 
beyond which the notch-tough CJP weld at the kinking loca-
tions is prone to fracture. This postulation is to be verified 
by test data in the following.

Consider one fix-ended column-flange flexural member 
with a span of 0.95db and a depth of tcf. The shearing effect 
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Fig. 17. Superposition of proposed shear strength components: (a) column  
web panel zone response; (b) response of two column flanges; (c) superposition.
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Fig. 18. Panel zone model: (a) panel zone deformation; (b) mathematical model.

of this flexural member can be significant when the span is 
small (smaller db) and the column flange, tcf, is thick. Apply-
ing elastic beam theory, the midspan deflection when the 
fixed-end moment reaches Mp,cf is
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In Equation 11, the coefficient α is the span-depth ratio of 
the column-flange flexural member:

 α = d tb cf  (12)

The first term on the right-hand side in Equation 11 is 
the flexural component, and the second term is the shear-
ing component, where Icf = bcftcf

3/12 and As,cf = 5bcf tcf/6 
are the moment of inertia and shear area of one column 
flange, respectively. Dividing ∆ by 0.95db/2 and simplifying 
gives the shear deformation capacity of the panel zone (see 
Figure 18):
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The elastic stiffness of one column flange is
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The total elastic stiffness for both column flanges is 2Kcf, as 
shown in Figure 17b. Therefore, the total panel zone shear 
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strength in the elastic range is

 V K Kpz cw cf= +( )2 γ when 0 ≤ ≤γ γ y (15)

When γ γ γy pz< ≤ , the component of panel zone shear 
strength due to column web is (see Figure 17a)

 V V Kcw cw y cw y= + −( ), .0 03 γ γ  (16)

The component of panel zone shear strength due to two col-
umn flanges is 

 V Kcf cf= 2 γ (17)

Therefore, the total panel zone shear strength is

 V VVpz cw cf= +      when γ γ γy pz< ≤  (18)
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Fig. 19. Comparison of panel zone responses: (a) specimen 2; (b) specimen 3.
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Fig. 20. Relationship between panel zone shear deformation and α.

Based on Equations 15 and 18, and replacing db with deff, 
the predicted panel zone responses for specimens 2 and 3 
up to γpz are shown in Figure 19. Specimen 1 was not used 
in this correlation because replacement CJP welds were not 
used and existing CJP weld locations did not coincide with 
the column kinking locations. The ratios between the pre-
dicted and experimental panel zone ultimate deformations 
are 1.02 and 0.94 for specimens 2 and 3, respectively.

Normalizing the panel zone deformation capacity, γpz, in 
Equation 13 by γy = 0.6Fy/G gives the following:
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(19)

Figure 20 shows the variation of the normalized panel zone 
shear deformation with respect to α = db/tcf. It is shown that 
the AISC assumed panel zone deformation capacity, 4γy, 
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can be very conservative for a high db/tcf ratio. When the 
db/tcf ratio is low (i.e., a shallow beam connected to a thick 
column flange), the panel zone deformation can be lower 
than 4γy. Therefore, column flanges at kinking locations 
would yield early when db/tcf is low, which makes the beam 
flange-to-column flange CJP welds more prone to fracture 
at a low panel zone deformation (≤ 4γy). This observation is 
valid for either rehabilitated or newly constructed moment 
connections.

Effect of Column Axial Force

With the presence of an axial load, Krawinkler et al. (1971) 
reported that column flanges carry all the axial load after 
the panel zone web has completely yielded. This is also the 
basis of the panel zone design shear strength with high axial 
load in AISC 360-10.

A column-flange cross-section and the stress distribution 
for the plastic moment condition are shown in Figure 21. The 
total stress distribution can be separated into the contribu-
tions of the axial force and bending moment. Because each 
column flange takes half of the column axial load, P, the 
axial stress equilibrium of one column flange is

 

P
y t b Fp cf cf yc

2
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(20)

The axial demand-capacity ratio of one column flange is
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where Py,cf = AfFyc = bcftcfFye is the axial yield strength of 
one column flange and yp designates the plastic neutral axis 
location. Therefore, the plastic neutral axis location is
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The reduced moment capacity of one column flange can 
be derived from Figure 21 as
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The corresponding shear of one column-flange flexural 
member in Figure 18 is
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Following the similar procedure described in Equations 
11 and 13, the reduced plastic shear deformation can be 
derived by replacing Mp,cf and Vp,cf with M′p,cf and V′p,cf:
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(25)

Figure 22 shows the effect of column axial load on the panel 
zone deformation capacity.

The associated panel zone shear strength at γ ′pz is estab-
lished as follows. The component of panel zone shear 
strength due to column web from Equation 16 can be 
approximated as

 
′ = + ′ −( )V V Kcw cw y cw pz y, .0 03 γ γ

 
(26)

From Equation 24, the component of the panel zone shear 
strength due to two column flanges is

 

′ = ′ = −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

V V V
P

P
cf p cf p cf

y cf
2 2 1

2

2

, ,
,

 

(27)

= +
yp

tcf - yp

tcf - yp

2yp - tcf

Fyc

Fyc

bcf

tcf /2
tcf /2 PNA

Fyc
Fyc

Fyc

(a) (b) (c)

 (a) (b) (c)

Fig. 21. Stress distribution of one column flange cross-section: (a) stress  
distribution in one column flange; (b) axial component; (c) flexural component.
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Therefore, the total panel zone shear strength is

 ′ = ′ + ′V V Vpz cw cf  (28)

Figure 23 shows example plots of the panel zone axial 
load–shear strength interaction curves. A W36×150 beam 
with three different W14 column sections in Figure 23a and 
W36 column sections in Figure 23b are considered. It is 
observed that axial load has a more significant effect on the 
panel zone deformation capacity than on the shear strength. 
Because the interaction between axial load and panel zone 
shear strength is relatively weak, the axial load effect can be 
ignored for simplicity when P/2Py,cf < 0.6 (or P/Py,cf < 1.2).

SUMMARY AND CONCLUSIONS

Three full-scale specimens were tested to evaluate the cyclic 
performance of rehabilitated pre-Northridge steel beam-to-
column moment connections. The rehabilitation included 
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Fig. 22. Effect of column axial load on panel zone shear deformation capacity (ASTM A992 steel).
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Fig. 23. Interaction of shear and axial force: (a) W14 columns; (b) W36 columns.

a Kaiser bolted bracket (KBB) on the beam bottom flange 
for all specimens, but different rehabilitation schemes were 
used to strengthen the beam top flange, which included the 
use of another KBB (specimen 1), a notch-tough complete-
joint-penetration (CJP) beam flange replacement weld 
(specimen 2) or a welded double-tee bracket together with a 
replacement weld (specimen 3).

Test results showed that the proposed rehabilitation 
schemes adequately protected the existing pre-Northridge 
moment connections to the acceptable interstory drift angle. 
Large panel zone deformation with significant yielding 
occurred in all specimens; only specimen 1 also experi-
enced beam buckling. Significant column kinking due to 
large panel zone deformation caused brittle fracture of the 
notch-tough CJP welds in specimens 2 and 3; panel zone 
deformation reached 0.029 rad and 0.036 rad in these speci-
mens, respectively. Because these fractured welds were 
located at the column kinking locations, the test results pro-
vided useful information to verify the proposed panel zone 
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ultimate deformation capacity model, which used the frac-
ture of notch-tough CJP welds at the kinking location as the 
limit state; the effect of column axial load was also included 
in the model formulation. The conclusions are summarized 
as follows.

1. The panel zone shear strength specified in AISC 360 
corresponds to a shear deformation of 4γy. But test 
results showed that the panel zone can deform more 
than 8γy, although column kinking due to excessive 
panel zone deformation eventually caused weld frac-
ture. Because it may not be economical and practical 
in seismic rehabilitation to avoid weak panel zones, a 
model (Figure 18) was proposed to predict the defor-
mation capacity of the panel zone. It was postulated 
that the notch-tough beam flange CJP weld would 
fracture when the column flange was fully yielded at 
the kinking location. This limit state was used to define 
the ultimate deformation capacity of the panel zone. 
This postulation was calibrated with specimens 2 and 
3, which experienced weld fracture. (For specimen 1, 
no CJP welds were located at the kinking locations.) 
The proposed model (see Equations 13 or 19) showed 
that the deformation capacity is a function of db/tcf, 
where db = beam depth and tcf = column flange thick-
ness. The panel zone deformation capacity is small 
when the db/tcf ratio is low (i.e., when a shallow beam 
is connected to a thick column flange), which results 
in earlier yielding of the column flanges at the kinking 
locations and makes the CJP welds more vulnerable to 
fracture.

2. The associated panel zone shear strength at the pro-
posed deformation capacity level was also derived. In 
addition, the effect of column axial load on both the 
panel zone shear strength and deformation was also 
considered in the formulation. Its effect on the shear 
deformation capacity can be significant (see Equation 
25). But the effect on shear strength is relatively insig-
nificant (see Figure 23) and can be ignored when the 
column axial load is less than 1.2 times the yield force 
of one column flange.

The proposed model is also applicable to other moment 
connection types where the notch-tough CJP welds, not the 
pre-Northridge E70T-4 welds, are located at the column 
kinking locations. The test data available for calibrating the 
proposed model are scarce; only two specimens from this 
test program were available. Additional testing of moment 
connections that subject the panel zone to large deformation 
to induce beam flange weld fracture is needed to confirm 
the proposed model and to verify that the db/tcf ratio is a key 
factor in determining the panel zone ultimate deformation.
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INTRODUCTION

For design, connections are divided into elements and 
modeled as structural members with well-documented 

and predictable behavior. Many connection elements can be 
modeled as rectangular members under various combina-
tions of shear, flexural, torsional and axial loads. Tradition-
ally, loads have been combined using beam equations with 
a first-yield criterion; however, a plastic strength approach 
is more appropriate for connections designed to the AISC 
Specification (AISC, 2010), which is based on a strength 
design philosophy.

The purpose of this paper is to determine the strength of 
rectangular connection elements subjected to various loads 
acting simultaneously. An interaction equation is devel-
oped for strength design of rectangular connection elements 
under any possible loading combination. Due to the exten-
sive research available on the plastic interaction of rectangu-
lar members, a review of existing equations forms the basis 
of this paper. In cases where existing research is unavailable, 
new derivations are provided.

Rectangular Connection Elements

Figure 1a shows a moment connection, where the flange 
plates are modeled as rectangular members under axial ten-
sion and compression loads. Although other loads—such 
as a portion of the beam shear—will transfer through the 
flange plates, inelastic material behavior will allow load 
redistribution in ductile connection elements. This redistri-
bution of loads allows the flange plates to be designed based 
on the simplified assumption of axial load only.

Figure 1b shows a single-plate connection, which is sub-
jected to a constant shear load and a maximum moment at 
the face of the column. In some cases, such as for drag strut 
connections, these connections must also carry a substan-
tial axial load. Because the moment, shear and axial loads 
occur at the same location on the connection element, the 
load interaction must be accounted for. Although typically 
neglected in design, twisting deformations in tests by Moore 
and Owens (1992), Sherman and Ghorbanpoor (2002) and 
Goodrich (2005) have shown that torsional stresses are also 
present.

The bracket, gusset and hanger connections in Figures 1c 
through 1e are additional examples of rectangular connec-
tion elements subjected to strong-axis bending in addition to 
shear and/or axial loads. Figure 1f shows the prying action 
of a flange, which is a rectangular connection element in 
weak-axis bending. In this case, the effect of the shear force 
is usually small and is neglected in practice.

Von Mises Criterion

Several theories have been proposed to predict the behavior 
of materials under multiaxial states of stress. Von Mises’ 
criterion is considered the most accurate for predicting the 
initiation of yield in ductile metals when loaded by various 
combinations of normal and shear stresses. For plane stress, 
von Mises’ equation reduces to

 σ σ σ σ σ τe x z x z= + − +2 2 23  (1)

where
σe = effective stress, ksi
σx = normal stress in the x-direction, ksi
σz = normal stress in the z-direction, ksi
τ  = shear stress, ksi
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 (a) (b)

  
 (c) (d)

  
 (e) (f)

Fig. 1. Rectangular connection elements: (a) moment connection; (b) single-plate connection;  
(c) bracket; (d) gusset plate; (e) hanger plate; (f) prying at flange.
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For elastic conditions, σe is limited to the tension yield 
strength of the steel, σy.

The Need for Plastic Interaction Equations

Historically, rectangular connection elements have been 
designed using beam theory. The normal and shear stresses 
are calculated with Equations 2 and 3, respectively:

 
σ = ±P

A
Mc

I  
(2)

 
τ = VQ

It  
(3)

where
A = cross-sectional area, in.2

M = bending moment, in.-kips
P = axial force, kips
Q = first moment of area, in.3

V = shear force, kips
I = moment of inertia, in.4

c = distance to outermost fiber, in.
t = thickness of the member, in.

Because the maximum normal and shear stresses occur at 
different locations on the cross-section, combining these 
stresses is not required. 

To predict the true first yield load in a member, the resid-
ual stresses must be estimated. Connection elements are sub-
jected to a wide variety of operations during manufacture, 
fabrication and erection. The edges have traditionally been 
rolled (bars and UM plates), saw-cut, sheared or thermally 
cut with an oxy-fuel torch. All of these operations produce 

different residual stress patterns. Adding to the complexity, 
the residual stress patterns produced by newer technolo-
gies—such as plasma cutting and water-jet cutting—are also 
different. Many of the cut edges are smoothed with an angle 
grinder, which can alter the residual stress pattern, causing 
a residual tension stress in most cases. A general assessment 
of residual stresses that accounts for all of these factors is 
impractical. However, because residual stresses have no 
effect on the plastic strength of an element, knowledge of 
the residual stresses are not required for strength design.

It is well known that beam theory is inaccurate at low 
span-to-depth ratios. Research by Karr (1956), Shawki and 
Hendry (1961) and Barry and Ainso (1983) generally agreed 
that beam theory is accurate only for simple beams with 
span-to-depth ratios of at least 1.5. Ahmed, Idris and Uddin 
(1996) showed that fixed-end beams require a span-to-depth 
ratio of at least 3 to get accurate results with beam theory. 
Tests on gusset plates by Wyss (1923), Rust (1938), Perna 
(1941), Sandel (1950), Whitmore (1952), Sheridan (1953), 
Irvan (1957), Hardin (1958), Lavis (1967) and Vasarhelyi 
(1971) showed that measured shear and normal stresses 
deviated significantly from the theoretical stresses calcu-
lated with beam equations. This was confirmed by the finite 
element models of Struik (1972) and White et al. (2013).

Beam theory leads to erroneous results for some plate 
geometries. In Figure 2a, a simple hanger connection is 
shown where, if a = b, the gusset plate is subjected to a uni-
form tension stress. Figure 2b shows a plot of the normalized 
strength versus the b/a ratio. The normalized strength is

 

P

atF
n

y2  

(4)

   
 (a) (b)

Fig. 2. Hanger connection with axial load and moment: (a) connection geometry; (b) normalized strength versus b/a ratio.

047-066_EJ1Q15_2013-21.indd   49 12/17/14   11:07 AM



50 / ENGINEERING JOURNAL / FIRST QUARTER / 2015

where
Pn = nominal axial strength, kips
a = plate dimension as shown in Figure 2a, in.
	 = half plate width for concentrically loaded case
Fy = specified minimum yield strength, ksi

If a remains constant and b increases, it is intuitive that 
that the strength of the gusset plate will increase; however, 
the dashed line in Figure 2b shows that beam theory pre-
dicts a decrease in strength in the range 1 < b/a < 5. For 
the case where b = 2a, the plate is 50% wider than if b = a, 
but beam theory predicts only 75% of the strength. Plastic 
interaction, shown in Figure 2b by the solid line, conforms 
to the expected result—the strength increases as the plate 
width increases.

Strength design is now used for steel members and con-
nections; therefore, the traditional method of combining 
loads using beam theory needs to be updated to comply with 
strength design philosophy. With difficulties in predict-
ing the elastic stresses, the presence of discontinuities and 
uncertainty concerning residual stresses, plastic interaction 
equations are required to accurately predict the strength of 
connection elements.

BENDING

Due to a shape factor of 1.5, the benefit of using the plas-
tic flexural strength of rectangular members is substantial. 
For this strength to be realized, the element must have suf-
ficient rotational capacity to allow the stresses to redistrib-
ute without rupture or buckling. Schreiner (1935) and Jensen 
and Crispen (1938) tested cantilever plates in strong-axis 
bending, welded to a fixed support. They determined that 
the plates, which had maximum depth-to-thickness ratios of 
10, can reach their plastic bending strength. More recently, 
tests on single-plate connections by Patrick, Thomas and 
Bennetts (1986) and Metzger (2006) revealed that the plastic 
moment capacity of the plate can be used in design.

Assuming no residual stresses, the flexural stiffness is lin-
ear up to the yield moment, My, and then the curve becomes 
nonlinear up to a maximum value of M = Mp = 1.5My, as 
shown in Figure 3. The inelastic part of the curve, defined by 
Equation 5, was derived by Nadai (1950) using linear elas-
tic–perfectly plastic material behavior:

 
= −

θ
θ

⎛
⎝⎜

⎞
⎠⎟

M

M
1

1

3p

y
2

 
(5)

where
Mp = plastic bending moment, in.-kips
θ = flexural rotation
θy = yield rotation

To develop 96% of the plastic strength, a rotation of three 

times the yield rotation is required. At four times the yield 
rotation M = 0.98Mp.

Based on 14 splice plates tested in bending, Mohr and 
Murray (2008) determined that the flexural strength can be 
calculated based on the gross plastic modulus if deforma-
tion of the connection plates is not a consideration. The tests 
showed that the location of the initial nonlinear part of the 
moment-rotation curve can be accurately predicted using the 
first yield moment

 My = σyS (6)

where
S = gross section modulus, in.3

σy = tension yield stress, ksi

The nominal plastic moment about the strong and weak 
axes are calculated with Equations 7a and 7b, respectively:

 Mpx = FyZx (7a)

 Mpz = FyZz (7b)

The plastic moduli about the strong and weak axes are given 
by Equations 8a and 8b, respectively:

 
=Z

td

4
x

2

 (8a)

 
=Z

dt

4
z

2

 (8b)

where
d = depth of the member, in.

Fig. 3. Normalized moment versus normalized angle of rotation.
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AXIAL

It is generally accepted that the compression yield strength is 
the same as the tension yield strength for ductile steels. This 
was verified by Seely and Putnam (1919), who showed that 
the compression yield strengths for mild and medium steels 
are about 5% greater than the tension yield strengths. The 
nominal axial yield force for tension or compression loads is

 Py = FyA (9)

SHEAR

Using the von Mises criterion, the shear yield stress is

 

σ
τ =

= σ
3

0.577

y
y

y 

(10)

Seely and Putnam (1919) tested 21 solid circular speci-
mens in torsion to determine the tension yield-to-shear yield 
ratios. The specimens, between 2 in. and w in. in diameter, 
showed that the shear yield strength for mild and medium 
steels varied from 0.628 to 0.738 times the tension yield 
strengths. Therefore, the von Mises criterion appears to be 
conservative.

Based on three chevron gusset plate tests, Astaneh (1992) 
recommended that the plastic stress distribution be used to 
calculate the shear strength of gusset plates. Tests on full-
scale truss bridge gusset plates by Ocel (2013) and finite 
element models by White et al. (2013) confirmed Astaneh’s 
recommendation. The shear strength, based on a plastic 
stress distribution, is

 Vp = τyA (11)

AISC Specification (AISC, 2010) Section J4.2 rounds the 
0.577 factor up to 0.60, which results in a nominal shear 
force of

 Vp = 0.60FyA (12)

TORSION

The elastic solution for a uniform member with constant 
torque was solved by Saint Venant. Saint Venant torsion, 
also known as uniform torsion, assumes the applied torque is 
resisted by shear stresses distributed over the cross-section. 
This section addresses uniform torsion only and neglects the 
effects of warping and the Wagner effect, which causes sec-
ond-order axial stresses resulting in an increased torsional 
stiffness (Gregory, 1960). 

The rate of twist of an elastic member under uniform tor-
sion is (Cook and Young, 1985)

 

β =
θ

=

x
T

GJ

d

d

  

(13)

For uniform members with constant torque along the length 
of the member, the angle of twist is the rate of twist times 
the member length.

 

θ = β

=

L

TL

GJ  

(14)

where
G = shear modulus of elasticity = 11,200 ksi
J = torsional constant, in.4

L = length of the member, in.
T = torsional moment, in.-kips
x = distance along the length of the member, in.
θ = angle of twist

Generally, the torsional constant for a rectangular member is

 J = αdt3 (15)

According to Seaburg and Carter (1997), α = 3 − 0.2t/d 
for d/t < 10 and α = 3 for d/t ≥ 10. The results using these 
simple equations are almost identical to the slightly more 
complicated equations developed by Balaz and Kolekova 
(2002). The torsional first yield moment is 

 
=
τ

T
J

t
y

y

 
(16)

For d/t ≥ 10, which satisfies the geometry for most connec-
tion elements,

 
=
τ

T
dt

3
y

y
2

 
(17)

When loaded beyond the yield point, the behavior of rect-
angular members in uniform torsion is similar to inelastic 
flexural behavior. Smith and Sidebottom (1965) derived the 
mathematical description of the inelastic part of the torsion-
twist curve:

 ( )
( )= − η −

− η

θ θ
+ η

θ
θ

⎛

⎝
⎜

⎞

⎠
⎟

T

T

3

2
1

1

2y y y
2

 

(18)
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where
η = strain hardening modulus for pure shear 
θy = yield rotation

The accuracy of Equation 18 has been verified by the 
inelastic finite element models of Shunsuke and Kajita 
(1982) and May and Al-Shaarbaf (1989). The yield rotation 
can be determined by substituting Equation 16 into Equa-
tion 14:

 
θ =

τ L

Gt
y

y

 
(19)

Due to the torsional flexibility of rectangular members, it 
is unlikely that they will strain beyond the yield plateau of 
mild steel. Therefore, η = 0 in the range of serviceable rota-
tions, which gives the equation for linear elastic–perfectly 
plastic material behavior:

 
= −

θ
θ

⎛
⎝⎜

⎞
⎠⎟

T

T
1.5 0.5

y

y
2

 
(20)

The torsional stiffness is linear up to the yield moment, Ty, 
and then the curve becomes nonlinear up to a maximum 
value of T = Tp = 1.5Ty, as shown in Figure 4. Substituting 
Tp = 1.5Ty into Equation 20 results in Equation 21, which was 
derived independently by Billinghurst et al. (1992):

 
= −

θ
θ

⎛
⎝⎜

⎞
⎠⎟

T

T
1

1

3p

y
2

 
(21)

where
Tp = plastic torsional moment, in.-kips

Equation 21 has the identical form of Equation 5, which 
was derived for flexural rotation. To develop 96% of the 

plastic strength, a rotation of three times the yield rotation is 
required. At four times the yield rotation T = 0.98Tp.

The plastic torsion strength can also be derived using the 
stress function. For any stress condition, the torsion strength 
is twice the volume under the stress function, ϕ (Smith and 
Sidebottom, 1965). Therefore, the plastic strength can be 
determined with Equation 22:

 ∫∫= ϕT 2 dxdzp
 

(22)

where
x, z = cross-sectional coordinates

The absolute value of the slope of ϕ everywhere on the 
cross-section is τy for fully plastic conditions. At the bound-
aries of the cross-section, ϕ must be zero, and the value of ϕ 
at any point on the cross-section is τy times the perpendicu-
lar distance to the boundary. This stress condition, known as 
the sand heap analogy, is illustrated in Figure 5.

For rectangular members with high aspect (d/t) ratios, 
the boundary effects parallel to the longest cross-sectional 
dimension can be neglected. In this case, the stress function 
is two-dimensional and the plastic strength is

 

∫

∫

= τ

= τ

=
τ

−

−

T d x

d x

dt

2 dx

4 dx

2

p y
t

t

y
t

y

2

2

2

0

2

 

(23)

By comparing Equation 17 to Equation 23, it can be seen 
that Tp = 1.5Ty. The nominal torsion strength is

 Tp = 0.3Fydt2 (24)

INTERACTION

A review of the existing research indicated that plastic inter-
action equations for several loading combinations have been 
available for decades. This section of the paper documents 
the available research, compares the different interaction 
equations, develops new equations where existing research 

Fig. 4. Normalized torsion versus normalized angle of twist. Fig. 5. Stress distribution for plastic torsional strength.
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is unavailable and compares the equations to test data where 
available.

The derivations are based on assumed stress distribu-
tions, which complies with the lower-bound theorem of limit 
analysis. According to the lower-bound theorem, a load cal-
culated with an assumed distribution that satisfies equilib-
rium, with stresses nowhere exceeding the yield stress, will 
be less than or equal to the true limit load. Where more than 
one solution is available, the solution that gives the highest 
strength is closest to the true strength. All interaction equa-
tions discussed in this paper assume perfectly plastic mate-
rial behavior under plane stress conditions.

Moment-Axial Interaction

Because axial and flexural loads both cause normal stresses 
in the member, engineers may simply replace the section 
modulus with the plastic modulus in the beam equation, 
which results in a linear interaction. This is a conservative 
assumption because the stresses can be combined using the 
lower-bound theorem, which allows the axial stresses to be 
placed at a location that is least detrimental to the flexural 
strength.

Freudenthal (1950) derived the plastic interaction equation 
for combined axial and flexural loads. Also see Seely and 
Smith (1952), Vrouwenvelder (2003), Chen and Han (2007) 
and Galambos and Surovek (2008) for similar approaches to 
the derivation with identical results. The derivation is based 
on the assumed stress blocks in Figure 6, which locates the 
resistance to axial load at the center of the cross-section 
because the outer stress blocks are most efficient for flex-
ural resistance.

The reduced axial strength in the presence of an applied 
moment is defined by the area of the shaded part of Figure 6:

 P = htσy (25)

where
h = depth of the central region of the cross-section resist-

ing the axial force, in.

The reduced flexural strength in the presence of an applied 
axial load is defined by the nonshaded part of Figure 6:

 
= σ − σM

td th

4 4
y y

2 2

 
(26)

The axial strength ratio is

 

=
σ
σ

=

P

P

ht

dt

h

d

y
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(27)

The flexural strength ratio is

 

=
σ − σ

σ

= − ⎛
⎝

⎞
⎠

M
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(28)

Combining Equations 27 and 28 results in Equation 29:

 
+
⎛

⎝
⎜

⎞

⎠
⎟ =

M

M

P

P
1.0

p y

2

 

(29)

 

Equation 29 is plotted in Figure 7 along with the interaction 
according to beam theory. For comparison, the interaction 

Fig. 6. Stress blocks for moment-axial interaction.
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curves of AISC Specification Sections H1 and H2 are also 
plotted in the figure.

The plastic interaction equations were verified by the 
experiments of Sidebottom and Clark (1958), who tested 
nine identical, mild steel rectangular members. The speci-
mens had a yield stress of 30 ksi and a modulus of elas-
ticity of 30,000 ksi. The cross-sectional dimensions were  
0.900 in. × 1.15 in. An axial compression load was applied 
with an eccentricity of 0.345 in. causing strong-axis moment. 
Using Equation 29, the test-to-predicted ratio ranged from 
0.926 to 1.12, with an average of 0.990.

Moment-Shear Interaction

Because the maximum shear and normal stresses act at the 
same location on the cross-section, the flexural strength can 
be reduced in the presence of shear loading. In contrast to 
moment-axial interaction, which has a unique solution, sev-
eral solutions are available for moment-shear interaction. 
Derivations and assumed stress distributions are provided 
only where they relate to later parts of this paper.

An elliptical interaction equation can be derived, based 
on von Mises’ criterion with a constant shear stress assumed 
over the cross-section. For normal stress in one direction 
combined with shear, von Mises’ criterion reduces to

 σ = σ + τ3y
2 2

 (30)

where
σ = normal stress, ksi

The moment and shear loads acting on the cross-section are 
given by Equations 31 and 32, respectively:

 
=
σ

M
td

4

2

 
(31)

 V = τtd (32)

The plastic flexural strength with no shear is

 
= σM

td

4
p y

2

 
(33)

The plastic shear strength with no moment is

 
=
σ

V td
3

p
y

 
(34)

 

Solving Equations 31 and 32 for σ and τ, respectively, 
substituting into Equation 30 and combining with Equations 
33 and 34 results in Equation 35:
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(35)

Paltchevskiy (1948) (see translation in Mrazik, Skaloud 
and Tochacek, 1987) assumed rectangular stress blocks for 
shear and flexural stresses as shown in Figure 8a. Based on 
this, the flexural strength is

 
= − ⎛⎝
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(36)

where
h = depth of the central region of the cross-section resist-

ing the shear force, in.

The shear strength is

 
= ⎛

⎝
⎞
⎠V V

h

d
p

 
(37)

Solving Equation 37 for h/d and substituting into Equa-
tion 36 results in Equation 38:

 
+
⎛
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M

V

V
1.0

p p

2

 
(38)

By considering equilibrium of the shear and flexural 
loads in the plastic zone of a rectangular beam, Horne (1951) 
derived Equation 39, which is valid for V/Vp ≤ 0.792. The 
shear yield strength was based on the Tresca criterion, which 
results in a shear yield stress of σy/2:Fig. 7. Interaction of flexural and axial loads.
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+

⎛

⎝
⎜

⎞

⎠
⎟ =

M

M

V

V
0.444 1.0

p p

2

 

(39)

Substituting a shear yield stress of 0.6αy changes the con-
stant to 0.592 and the range of validity to V/Vp ≤ 0.686:
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(40)

Broude (1953) (see translation in Mrazik et al., 1987) 
developed a solution, based on the differential equations of 
equilibrium, that he solved for several discrete values. He 
determined a close curve fit to the discrete values, which is 
almost identical to the elliptical equation derived from the 
von Mises’ criterion:
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(41)

Based on equilibrium of rectangular and triangular blocks 
for flexural stresses and a parabolic block for shear stresses, 
Neal (1963) (also see Chakrabarty, 2006) derived Equation 
44. The assumed cross-sectional stresses are shown in Fig-
ure 8b. Based on equilibrium of the stress blocks, the flex-
ural and shear strengths are given by Equations 42 and 43, 
respectively:
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Solving Equation 43 for y, substituting into Equation 42 and 
combining with Equations 33 and 34 results in Equation 44:
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Because h ≤ d, Equation 44 is valid for the range V/Vp ≤ q.
Drucker (1956) derived upper- and lower-bound solutions 

based on limit analysis theorems. Equation 45 was proposed 
as an approximation that “nearly coincides with a lower 
bound and is not too far from possible upper bounds”:
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(45)

Johnson, Chitkara and Ranshi (1974) derived the plastic 
collapse strength using slip line fields. Their derivation was 
based on plane stress conditions using the von Mises yield 
criterion. Due to the complicated nature of the solution, it 
cannot be expressed as an interaction equation. Figure  9 
shows the available solutions for moment-shear interac-
tion. Because the curve defined by the slip line solution of 
Johnson et al. (1974) is the least conservative, it is closest to 
the true solution. Observation of the interaction equations 
reveals that the elliptical interaction defined by Equation 35 
is more accurate at low values of M/Mp and Equation  45, 
developed by Drucker (1956), is more accurate at high val-
ues of M/Mp. Equations 35 and 45 are equal at M/Mp = 0.618 
and V/Vp = 0.786. The solid data points are from tests on 
full-size gusset plates by Ocel (2013) and the hollow data 
points are from inelastic finite element models by White et 
al. (2013).

 
 (a) (b)

Fig. 8. Assumed stress blocks for moment-shear interaction: (a) Paltchevskiy (1948); (b) Neal (1963).
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Moment-Shear-Axial Interaction

Neal (1961) derived upper- and lower-bound solutions for 
rectangular beams subjected to combined moment, shear 
and axial loads based on limit analysis theorems. Equation 
46 was proposed as a “good approximation to the lower-
bound interaction relation.” He noted that the equation is 
exact for V/Vp = 0 and the discrepancy from the lower-bound 
solution never exceeds 5% for the full range of values:
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(46)

Astaneh (1998) summarized the previous research and rel-
evant code provisions for the seismic design of gusset plates. 
He removed second-order interaction on the shear term of 
Equation 46 and recommended Equation 47 for design:
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Biaxial Bending

Using the lower-bound theorem of limit analysis, Harrison 
(1963) derived Equations 48a and b, which define a two-part 
interaction curve for biaxial bending.

When Mx/Mpx ≥ q and Mz/Mpz < q,
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(48a)

When Mx/Mpx < q and Mz/Mpz ≥ q,
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(48b)

where
Mpx = plastic bending moment about the x-axis, in.-kips
Mpz = plastic bending moment about the z-axis, in.-kips
Mx = bending moment about the x-axis, in.-kips
Mz = bending moment about the z-axis, in.-kips

Harrison (1963) tested six mild steel rectangular members 
in biaxial bending. The cross-sectional dimensions were 
0.300 in. × 0.500 in., and the yield strength was 36.6 ksi. The 

Fig. 9. Moment-shear interaction curves.
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span was 18 in. with concentrated loads at 3 points, loading 
each principal axis. The ends were fixed against rotation in 
both directions. The interaction curve is in good agreement 
with the experimental results, with the greatest discrepancy 
being 4%. Figure 10 shows the experimental results plotted 
with the interaction curve defined by Equations 48a and b.

Axial Load Combined with Biaxial Bending

Santathadaporn and Chen (1970) (also see Chen and Atsuta, 
1977) extended Equations 48a and b to include the effect of 
axial load. They presented the solution as a three-part inter-
action curve, defined by Equations 49a, b and c:

When Mx/Mpx ≥ (q)(1 − P/Py) and Mz/Mpz < (q)(1 − P/Py)
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(49a)

When Mx/Mpx < (q)(1 − P/Py) and Mz/Mpz ≥ (q)(1 − P/Py)
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(49b)

When Mx/Mpx ≥ (q)(1 − P/Py) and Mz/Mpz ≥ (q)(1 − P/Py)
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 (49c)

Because these equations are cumbersome for design use, 
a single interaction equation can be developed as a best fit to 
the three-part curve. The continuous interaction curve devel-
oped by Duan and Chen (1989) for wide flange members is
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(50)

Because the exponent, α, is not necessarily accurate for 
rectangular members, a new equation was developed by 
curve fitting the three-part curve. A numerical value of α 
was determined for each increment of P/Py, which gave the 
best fit for that value of P/Py. Equation 51 was determined 
by curve fitting all values of α:
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(51)

The family of curves defined by Equations 50 and 51 are 
shown in Figure 11a. To simplify the equations, it may be 
beneficial to use a constant value of α. Figure 11b shows 
the family of curves defined by Equation 50 with α = 1.7. 
This solution appears to be adequate for design use, with 
the greatest discrepancies being conservative, at high  
P/Py ratios.

Torsion-Shear Interaction

The interaction between torsion and shear loads is analo-
gous to moment-axial interaction. The stresses in the central 
region of the cross-section are assigned to resist the shear 
force, and the torsional moment is resisted by the areas on 
the cross-section farthest from the shear center. The reduced 
shear strength in the presence of an applied torsional moment 
is defined by the area of the shaded part of Figure 12a:

 V = bdτy (52)

where
b = width of the central region of the cross-section resist-

ing the shear force, in.
The reduced torsional strength in the presence of an 

applied shear load is defined by the nonshaded part of Fig-
ure 12a. From the diagram in Figure 12b,

Fig. 10. Interaction curve for biaxial bending.
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The shear strength ratio is
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The torsional strength ratio is
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(55)

Combining Equations 54 and 55 results in Equation 56.
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Equation 56 is plotted in Figure 13 along with the interaction 
according to elastic theory.

Moment-Axial-Torsion Interaction

Hill and Siebel (1953) (also see Chakrabarty, 2006) derived 
a lower-bound approximation for the interaction of axial, 
flexure and torsional loads:
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(57)

Calladine (1969) (also see Mrazik et al., 1987) recom-
mended the following lower-bound interaction equations for 
use with all cross-sectional shapes. Calladine (1969) noted 
that with information on the cross-sectional shape, the equa-
tions could be refined and become less conservative:

  
 Solid lines defined by Equations 1 Solid lines defined by Equations 1 
 Dashed lines defined by Equations 49 and 50 Dashed defined by Equation 49 with α = 1.7
 (a) (b)

Fig. 11. Interaction curves for axial load and biaxial bending: (a) variable α; (b) constant α.
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Equation 58 is equal to Equation 57 when M = 0, and Equa-
tion 59 is equal to Equation 57 when P = 0. Steele (1954) 
used the finite difference method to verify the accuracy 
of Equation  59. The equation was shown to give accurate 
lower-bound estimates of the interaction. Gill and Boucher 
(1964) tested 18 square and rectangular specimens in com-
bined bending and torsion. The specimens were s-in. × 
s-in. and a-in. × s-in. cross-sections with a 12w-in. span. 
The results are shown in Figure 14 along with Equation 59, 
which is clearly a lower bound to the test data.

Morris and Fenves (1969) derived a lower-bound solution 
for rectangular members under axial load, biaxial bending 
and torsion. The von Mises yield criterion was used to show 
that the reduced effective yield strength is

 F′y = ρFy (60)

The yield strength reduction factor is
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As a general rule, interaction equations can be developed 
by multiplying any resisting load that produces a normal 
stress on the cross-section by ρ. For moment-axial-torsion 
interaction, this gives
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(62)

If each side of the equation is multiplied by 1 − (T/Tp)
2, it 

can be seen that Equation 62 is identical to Equation 57; 
therefore, the equations by Hill and Siebel (1952), Calladine 
(1969) and Morris and Fenves (1969) give identical results. 
Using the theory of Morris and Fenves, the interaction equa-
tion can be expanded to cover biaxial moments:
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DESIGN

To develop a single interaction equation that accounts for 
all loading possibilities, Equation 63 can be combined with 
Equation 45. This will account for all load interactions 
except torsion-shear. The reduction in shear strength due to 
torsional loading can be determined by rearranging Equa-
tion 56, which results in Equation 64:
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Combining Equations 63, 45 and 64 results in Equation 65.
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(65)

where
Mrx = required x-axis bending moment, in.-kips
Mrz = required z-axis bending moment, in.-kips
Pr = required axial force, kips
Tr = required torsional moment, in.-kips
Vr = required shear force, kips

  
 (a) (b)

Fig. 12. Torsion-shear interaction:  
(a) cross-section; (b) torsion diagram.
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For biaxial shear, the transverse forces are combined vecto-
rially, according to Equation 66:

 = +V V Vr rx rz
2 2

 (66)

where
Vrx = required x-axis shear force, in.-kips
Vrz = required z-axis shear force, in.-kips

Because the torsion strength can be greatly underesti-
mated by neglecting the effects of warping and the Wagner 
effect, the detrimental effect of the second-order shear-tor-
sion interaction term and the beneficial effect of the second-
order moment-torsion interaction term can be neglected. 
Because the shear interaction term is conservative, based 
on the true limit load defined by Johnson et al. (1974), the 
second-order shear-axial interaction term can be neglected. 
Substituting a constant value of 1.7 for α and neglecting the 
second-order interaction terms for each independent load 
ratio results in Equation 67, which is proposed for design:
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 (67)

CONCLUSIONS

In design, many connection elements are modeled as rect-
angular members under various combinations of shear, 
flexural, torsional and axial loads. This paper shows that 
beam theory, and other design models using a first-yield cri-
terion, severely underestimates the strength of rectangular 
connection elements. Existing research and new derivations 
were used to develop a plastic interaction equation, which 
has been proposed for design of rectangular elements sub-
jected to any possible combination of loads. Experimental 
results are available for four load interaction cases: axial-
flexure, shear-flexure, torsion-flexure and biaxial flexure. 
For these cases, the proposed interaction equation compares 
well with the experimental results. However, future test-
ing may be needed to validate the equation for other load 
interaction cases.

Fig. 13. Interaction of torsion and shear loads. Fig. 14. Combined bending and torsion.
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DESIGN EXAMPLE

In the vertical brace connection shown in Figure 15, the gusset yielding strength at the gusset-to-beam interface will be checked 
against the following loads, which were calculated with the uniform force method. The plate is w in. thick and the material 
is ASTM A36.

LRFD ASD

 Hb = 562 kips
 Vb = 64.0 kips

Mb = 4,590 kip-in.

 Hb = 375 kips
 Vb = 42.7 kips

Mb = 3,060 kip-in.

Because only shear, moment and axial loads are present, Equation 67 reduces to
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For design, the interaction equations are
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The flexural strength is calculated with AISC Specification Equation F11-1:

( )( )
=Z

0.75 in. 47 in.

4

= 414 in.

2

3

( )( )
=

=

M F Z

36 ksi 414 in.

= 14,900 kip-in.

n y

3

Fig. 15. Vertical brace connection.
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LRFD ASD

( )( )ϕ =P 0.9 14,900 kip-in.

= 13,400 kip-in.
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The tension yielding strength per AISC Specification Equation J4-1 is
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Using the interaction equations,
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Therefore, the gusset-to-beam interface is adequate for the limit state of gusset plate yielding.
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SYMBOLS

A = cross-sectional area, in.2

Fy = specified minimum yield strength, ksi

G  = shear modulus of elasticity = 11,200 ksi

I  = moment of inertia, in.4

J  = torsional constant, in4

L  = length of the member, in.

M  = bending moment, in.-kips

Mp  = plastic bending moment, in.-kips

Mpx = plastic bending moment about the x-axis, in.-kips

Mpz = plastic bending moment about the z-axis, in.-kips

Mrx = required x-axis bending moment, in.-kips

Mrz = required z-axis bending moment, in.-kips

Mx = bending moment about the x-axis, in.-kips

Mz = bending moment about the z-axis, in.-kips

P  = axial force, kips

Pn  = nominal axial strength, kips

Pr  = required axial force, kips

Q  = first moment of area, in.3

S  = gross section modulus, in.3

T  = torsional moment, in-kips

Tp  = plastic torsional moment, in.-kips

Tr  = required torsional moment, in.-kips

V  = shear force, kips

Vr  = required shear force, kips

Vrx = required x-axis shear force, in.-kips

Vrz = required z-axis shear force, in.-kips

a = plate dimension as shown in Figure 2a, in.

b  =  width of the central region of the cross-section 
resisting the shear force, in.

c  = distance to outermost fiber, in.

d  = depth of the member, in.

h  =  depth of the central region of the cross-section 
resisting the shear force, in.

h  =  depth of the central region of the cross-section 
resisting the axial force, in.

t  = thickness of the member, in.

x  = distance along the length of the member, in.

η = strain hardening modulus for pure shear

τ  = shear stress, ksi

θ  = angle of twist

θ  = flexural rotation

θy  = yield rotation

σ  = normal stress, ksi

σe  = effective stress, ksi

σx  = normal stress in the x-direction, ksi

σy  = tension yield stress, ksi

σz  = normal stress in the z-direction, ksi
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INTRODUCTION

Composite steel plate girder bridge superstructures have 
experienced various degrees of damage during recent 

earthquakes. This damage has occurred in plate girders, 
reinforced concrete decks, stud connectors, bearings, cross 
frames and their connections. In 1992, a series of three 
earthquakes with a maximum magnitude of 7.0 occurred 
near the town of Petrolia in northern California (Caltrans, 
1992). Some notable damage was reported to the Van 
Duzen River Bridge, which has a steel plate girder super-
structure. The support cross frames and the lateral bracing 
of the southbound bridge experienced buckling and yield-
ing. In addition, the reinforced concrete deck experienced 
damage to the stud connectors at one of the abutments. This 
damage showed that the stud connectors, used to achieve 

a composite action between the steel plate girders and the 
concrete deck, were subjected to seismic forces for which 
they were not designed.

Earthquake loading in the lateral direction of the bridge 
causes transverse bending of the superstructure, resulting in 
seismic reactions at abutments and piers. The majority of the 
seismic inertia loads in steel plate girder bridges are gen-
erated in the reinforced concrete deck because it accounts 
for almost 80% of the superstructure weight. Carden, Itani 
and Buckle (2005) showed that the stud connectors between 
the deck and girders are among the critical components 
in the seismic transverse load path. However, very limited 
research is available on the response and the resistance of 
these connectors in transferring these seismic forces. With 
the absence of such critical information, it is commonly 
assumed that the stud connectors, designed for strength and 
fatigue, are adequate for seismic forces. The observed dam-
age, however, raised concerns about the adequacy of these 
connectors in transferring the seismic forces to the supports 
and showed the need to better understand their response 
under seismic loading.

Most of the research conducted on stud connectors was 
to investigate the composite action between steel girders 
and reinforced concrete deck. Ollgaard, Slutter and Fisher 
(1971), Oehlers and Johnson (1987), Lloyd and Wright 
(1990) and Oehlers (1995) have studied the shear resistance 
of connectors in composite beams. Hawkins and Mitchell 
(1984), Gattesco and Giuriani (1996), and Seracino, Oehlers 
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and Yeo (2003) reported strength and stiffness degradation 
in the concrete around the connectors due to unidirectional 
cyclic loadings. McMullin and Astaneh-Asl (1994) recom-
mended a cone be placed around connectors to create ductile 
response and to avoid brittle fracture. Mouras et al. (2008) 
investigated the axial resistance of the stud connector under 
static and dynamic loading. They showed experimentally 
that the limiting factor in transferring the in-plane moment 
capacity of a reinforced concrete deck is the axial resis-
tance of connectors. They have also shown that the standard 
haunch detail in steel plate girders lowers the tensile resis-
tance of stud connector and offers limited ductility because 
that zone is not adequately reinforced.

SEISMIC DEMAND ON STUD CONNECTORS  
IN A COMPOSITE-PLATE GIRDER BRIDGE

A 3D finite element model of a steel plate girder superstruc-
ture was developed to determine the forces on stud connectors 
under seismic loading. The geometry of this superstructure 
was taken from a bridge designed by Caltrans engineers and 
used in their Bridge Design Practice for training purposes 
(Caltrans, 2007). The composite steel plate girder bridge 
consists of three continuous spans. The total length of the 
bridge is 385 ft, with span lengths of 110, 165 and 110 ft. The 
total width of the bridge is 58 ft, which consists of five steel 
plate girders spaced at 12 ft. The reinforced concrete deck 
is 98 in. thick. All intermediate cross frames are spaced at 
27.5 ft and consist of chevron-bracing members with single 
L4×4×c sections connected to the bottom chord of double 
L6×6×2. The support cross frames have an X-pattern using 
single L4×4×2 sections that are interconnected at their mid-
length where the diagonals cross. Stud connectors were used 
throughout the length of the bridge. These connectors were 
designed for strength and fatigue according to the AASHTO 
LRFD Bridge Design Specifications (AASHTO, 2008). At 
the positive moment regions, three d-in.-diameter, single-
headed stud connectors spaced at 15 in. were used on top 
of each girder. In the negative moment region, the connec-
tors were spaced at 24 in. The transverse spacing between 
the connectors is 3 in. Elastomeric bearings with transverse 
shear keys were used at the abutment and at the piers.

The SAP2000 computer program was used in the analyti-
cal investigation (CSI, 2010). The steel girders, stiffeners and 
decks were modeled using shell elements, while the interme-
diate and support cross frames were modeled using frame 
elements. The support cross frames were modeled using 
nonlinear link elements with multilinear plastic Takeda hys-
teretic properties. Vertical and rotational springs were used 
at the supports to model the vertical and rotational stiffness 
of the elastomeric bearings. The elastomeric bearing stiff-
ness properties that were included in the analytical model 
are shown in Table 1. The stud connectors were modeled 

using linear link elements. Their stiffnesses were calculated 
based on the equations proposed by Carden et al. (2005). 
For each stud connector, the lateral and axial stiffnesses are 
equal to 500 kip/in. and 1000 kip/in., respectively. The over-
all view of the SAP2000 model is shown in Figure 1. It is 
assumed in the model that the substructure is rigid because 
the purpose of this analysis is to determine the distribution 
of seismic forces among the shear connectors. Although the 
substructure flexibility affects the global seismic response, 
it does not affect the lateral load path in the superstructure.

The total seismic weight of the superstructure is 3407 kips. 
Dead load analysis showed that each abutments carries 
331 kips, while the intermediate supports carry 1372 kips 
each. Table 2 shows the periods and modal participating 
mass ratios of the first nine modes from modal. The longi-
tudinal and transverse directions correspond to the global 
x- and global y-direction in the model.

The seismic demands on the reinforced concrete deck and 
the stud connectors were determined using nonlinear push-
over analysis.

The pushover analysis was performed using a mode 5 
load pattern because it was the dominant transverse mode, 
with 79% mass participation in that direction, as shown in 
Table 2. The deformed shape of the girders is shown in Fig-
ure 2. Figure 3 shows the vertical deformation contours of 
the reinforced concrete deck, which clearly indicates a tor-
sional rotation of the superstructure about its longitudinal 
axis. This implies that the stud connectors are subjected to 
axial forces in addition to shear forces in order to maintain 
deformation compatibility between the reinforced concrete 
deck and the steel plate girders.

Figure 4 shows the schematic view of the stud connectors 
on the top flange of the plate girders. Connector 2 is the 
middle connector and is located along the plane of girder 
web while connectors 1 and 3 are the exterior connectors. 
The seismic force demands on the stud connectors from the 
nonlinear response history analysis are shown in Figure 5. 
In this figure, P represents axial force in the connectors, 
VL is the shear force in longitudinal direction and VT is the 
shear force in transverse direction. The numbers that follow 
the aforementioned letters refer to the connector number. 
Figure 5a shows the axial force distribution in each of the 
connectors on girder 1 along the length of the bridge super-
structure at 5% drift (drift is ratio of relative girder displace-
ment to the girder height). This plot shows that the transverse 
seismic force creates large axial force demands on the con-
nectors directly over the supports (abutments and bents). 
The middle connector shows minimal axial force while the 
connectors on either side are subject to equal and opposing 
axial forces. Figure 5b shows the longitudinal shear force 
distribution in the connectors in girder 1. The distribution 
indicates force transfer between the reinforced concrete 
deck and steel girders as the composite section resists the 
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Table 1. Elastomeric Bearing Properties

Location
Vertical Stiffness

(kips/in.)
Rotational Stiffness

(kips-in./rad)

Abutments 3,284 64,650

Piers 6,829 225,000

Table 2. Modal Periods and Mass Participation Ratios

Mode No. Period (sec)
Mass Participating Ratio

UX (%) UY (%)

1 4.176 100 0

2 0.384 0 0

3 0.380 0 0

4 0.208 0 0

5 0.202 0 79

6 0.186 0 3

7 0.143 0 0

8 0.113 0 15

9 0.084 0 0

Fig. 1. Finite element model of three-span five-girder bridge (deck is not shown for clarity).
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Fig. 2. Deformed shape of the superstructure (deck not shown for clarity).

Fig. 3. Contour of deck vertical deformation during the pushover analysis.
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 (a) (b)

Fig. 4. (a) Schematic view of stud connectors; (b) location of girders.

transverse seismic forces through bending in the plane of the 
deck. Figure 5c shows the transverse shear force distribution 
in the connectors in girder 1. This distribution is the result of 
combined transverse shear force transfer between the rein-
forced concrete deck and steel girders and torsional moment 
on the superstructure. The torsional moment causes out-of-
plane bending in deck. The bending moment results in equal 
and opposite transverse shear forces in the connectors on 
either side of the girder. These opposing forces cancel out 
once all the forces in a row of connectors are summed up, 
as shown in Figure 5d. The high peaks near the supports 
indicate significant force transfer between the reinforced 
concrete deck and steel girders. The other small peaks seen 
in this plot are at the location of intermediate cross frames. 
This shows that the intermediate cross frames attract only a 
small amount of the transverse seismic forces.

The significant observation from this analysis is that 
the stud connectors in a composite steel plate girder super-
structure not only resist shear in the longitudinal direction, 
but also experience significant axial and transverse shear 
forces during a seismic event. With peaks occurring near 
the supports, the connection of the reinforced concrete deck 
via a stud connector to the top flange of the girder may be 
vulnerable in these regions and should be designed for the 
seismic forces. The large peaks in the plots for the connec-
tor forces clearly surpass the elastic range for these connec-
tors, which indicate damage to the connection between the 

reinforced concrete deck and the steel plate top flange. Any 
nonlinearity in the connectors near the supports will lead to 
redistribution of the forces in the connectors in their vicin-
ity, which in turn will translate into a damaged zone (over a 
certain distance) near the supports. Failure of the stud con-
nectors at and near the supports will alter the lateral load 
path. The deck seismic forces will be transmitted to the stud 
connectors that are located at some distance from the sup-
port, which are then transferred to the girders and then to 
the bearings and substructure. The girders, in this situation, 
are subjected to bending about their weak axis, which could 
damage the girders.

The seismic force demands on the connectors at support 
locations is illustrated in Figure 6a. The axial tensile force 
in the connector is transferred from the reinforced concrete 
deck through a cone, as illustrated in Figure 6b. Based on 
these observations, experimental investigation was per-
formed to better understand and verify the response of stud 
connectors under this complex loading.

EXPERIMENTAL INVESTIGATION

Two half-scale test specimens representing the subassembly 
system of reinforced concrete deck, top and bottom chords 
and steel girders were constructed and subjected to cyclic 
lateral loading. The test specimens used in the experimen-
tal program represented a 3-ft-long slice of a three-girder 
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Fig. 5. Stud connector force distribution in girder 1 at 5% superstructure drift.
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 (a) (b)

Fig. 6. (a) Seismic demands on stud connectors at supports; (b) concrete pull-out zone on the connector.

F ig. 7. Elevation and dimensions of test setup of specimen F0A.

bridge superstructure over an intermediate bent. The overall 
dimensions of the specimens were scaled down to 50% from 
the prototype bridge cross-section discussed in the analyti-
cal program.

The test specimens represented two different configura-
tions of transferring the deck seismic forces to the bearings 
and the substructures. Neither specimen had any diagonal 
cross frames to limit the lateral resistance to the framing 
action provided by the reinforced concrete deck, girders 
and chord members of the cross frames. Specimen F0A had 
the reinforced concrete deck connected to the top flanges 
of steel girders through headed stud connectors. Specimen 
F0B had the R/C deck connected to the top chord through   
headed stud connectors. These are the details recommended 
by the AASHTO Specifications to transfer the deck seismic 
forces to the bearings and substructures.

Test Setup

Figure 7 shows the elevation of the test setup that was 
designed to allow specimens to undergo lateral cyclic 

deformations. A hydraulic push–pull displacement-con-
trolled actuator attached to the deck was used to apply the 
horizontal displacement. Both specimens were supported on 
ideal steel pins that allowed in-plane rotation and prevented 
any uplift.

Figure 8 is a photo of the test setup with specimen F0A 
where the test specimen, load cells, lateral support frames, 
actuator and the reaction blocks are shown. Lateral support 
frames were constructed around the specimens to prevent 
out-of-plane movement. Figure 9 shows the kinematic of 
the test setup for specimen F0A. As shown in this figure, 
the lateral displacement on the specimen produces double-
curvature behavior in the top and bottom chords as well as 
rotational displacement demand at the studded joints over 
the girders top flanges.

Test Specimens

The width of the subassembly was 3 ft. The girders were 
spaced at 6 ft on centers, and the deck overhangs were 2.5 ft. 
The reinforced concrete deck was 4.5 in. thick with a haunch 
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Fig. 8. Test setup inside the laboratory.

Fig. 9. Kinematics of the test setup for specimen F0A.
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Fig. 10. Details of specimen F0A.

of 1.06 in. The deck longitudinal reinforcements were #3 at 
8  in. and the transverse reinforcements were #3 at 5.5 in. 
The measured concrete strength was 4.0 ksi. The plate gird-
ers were built-up sections of 1-in.-thick by 9-in. flange plates 
and c-in.-thick by 39-in. web plates. The bearing stiffener 
plates were d in. thick and 5s in. wide. The north, middle, 
and south girders of specimens and their corresponding 
reactions in the subassembly specimens are called girder 1, 
girder 2, and girder 3, respectively.

Specimen F0A

Figure 10 shows the dimensions and details of specimen 
F0A. The required number of stud connectors was calculated 
based on the AASHTO LRFD Bridge Design Specifications 
(AASHTO, 2008) using the shear capacity equations. The 
connectors used in the specimen were single-headed studs 
with a diameter of a in. and a total length of 3b in. The 
measured ultimate strength of the connectors was 80 ksi. 
The shear capacity of each connector was 6.6 kips, based 
on the AASHTO Specifications, using the actual strength 
of concrete and stud connectors. On each girder flange, 
over the bearing stiffeners or along the specimen centerline, 
three connectors spaced at 2w in. were provided. There were 
three connectors each row, and the spacing between each 
connector was 22 in. Additional rows of connectors were 
also provided at a distance 12 in. from the specimen center-
line. Thus, the total shear resistance of the stud connectors 
was equal to 297 kips.

Specimen F0B

Figure 11 shows the details and dimensions of specimen 
F0B. As shown in Figure 11, the reinforced concrete deck 
dropped to the elevation of the top chords. The thickness 
of the deck in this region was 7b in. with a width of 12 in. 
The longitudinal reinforcements in this region were #3 bars 
spaced at 8 in., while the transverse reinforcements were #3 
spaced at 5.5 in. In this specimen, no stud connectors were 
provided on the top flanges near the specimen centerline. 
The connectors were placed on the double-angle top chord, 
as shown in Figure 11. On each angle, 7 connectors spaced at 
6 in. were provided; thus a total of 14 connectors connect the 
top chord to the reinforced concrete deck. Additional rows 
of connectors were also provided on the girder top flange at 
a distance 12 in. from the specimen centerline. Thus, the lat-
eral resistance of the stud connectors was equal to 304 kips, 
based on the AASHTO Specifications and using the actual 
strength of concrete and connectors.

Loading Sequence

A displacement-controlled loading sequence was used for 
all experiments. This loading was adapted from the load-
ing history for qualifying cyclic tests of buckling restrained 
braces as specified in Appendix T of the AISC Seismic Pro-
visions (AISC, 2005). The specimen was subjected to two 
cycles at every specified drift level, as shown in Figure 12. 
The drift level was calculated based on the differential lat-
eral displacement between the top and bottom flanges of the 
steel plate girders. Because the actuator force was applied at 
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the deck level, the displacements that were measured from 
one of the diagonal displacement transducers were used to 
calculate the drift levels and fed into the actuator control 
program.

Cyclic Response of Specimen F0A

Figure 13 shows the lateral cyclic load-displacement 
response of the specimen in terms of total force versus the 
differential transverse displacement between the top and 
bottom flanges of the plate girders. The test showed that the 
ultimate, lateral load-carrying capacity of the specimen was 
30 kips, and the lateral drift capacity was 6%. The elastic lat-
eral stiffness of the specimens was 74 kips/in. The hysteresis 

loops show good energy dissipation capability. This is the 
result of the formation of plastic moment hinges at the ends 
of the top and bottom chords, which in turn was due to the 
framing action among the girders, reinforced concrete deck 
and chord members.

Experimental Observations

Flexural transverse cracks were developed across the deck 
near the girders at 1.5% drift. At 2% drift, a diagonal 
crack developed across the thickness of the concrete over  
girder 2, and the deck started to lift off from the top of the 
flange in this region. Further examination of the specimen 
after the test indicated that the concrete had failed in tension 

Fig. 11. Details of specimen F0B.
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Fig. 12. Displacement-controlled loading sequence.
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before the ultimate tensile strength of the stud connectors 
was reached. None of the connectors ruptured, but there was 
permanent axial deformation due to their yielding.

At 3% drift, diagonal cracks and uplift of the deck 
occurred over the flange of girder 1, while only slight deck 
separation was observed over girder 3. This indicated that 
at this drift level, the deck-girder joint connections over 
girders 1 and 2 had reached their ultimate capacity, while 
the full connection capacity was not yet developed over  
girder 3. This is evident in Figure 14, where the deformation 
and damage in Specimen F0A at 5% drift is shown.

Figure 15 shows the middle girder before and after the 
test. In addition to the diagonal cracks at the deck-girder 
joint connection, there was significant plastic deformation 
at the connections of the top and bottom chords to the gusset 
plates. The concrete breakout cones around the connector 
groups were visible during the deck demolition. At the end 
of the experiment, fractures were observed on the bottom 
chord at the first bolt-hole connection to the gusset plate. 
This is attributed to the low cycle fatigue due to high plastic 
strains in the angles near the connections.

Sequence of Yielding and Failure Modes

Figure 16 shows the envelope of base shear versus girder 
differential displacement. Examination of the strain gage 
data indicate that the ends of the chord members started to 
yield early on into the experiment at about 0.5% drift. The 

strains in the chords started to plateau between 1% to 1.5% 
drift. At this instance, the deck started to resist the lateral 
force through bending due to framing action with the gird-
ers, which led to the formation of visible flexural cracks in 
the deck. The strains in the chord increased at 1.5% to 2% 
drift as the connection between the deck and girder 2 fails. 
This caused redistribution of forces to girders 1 and 3.

Figure 17 shows the base shear plotted against the peak 
rotation of the deck-girder joints. This shows that the joint 
over girder 3 remained elastic up to 2% drift and experi-
enced little nonlinearity before overall failure of the speci-
men occurred. The figure also shows that concrete joint 
over girders 1 and 2 underwent large rotations (0.05 rad.) 
before failure. Despite the failure of the concrete joint over  
girder 2 and its inability to transfer bending moments, the 
deck remained attached to the top flange of the girder  2 
through the continuous bottom rebar mesh.

Cyclic Response of Specimen F0B

Figure 18 shows the lateral cyclic load-displacement 
response of specimen F0B in terms of total force versus the 
differential transverse displacement between the top and 
bottom flanges of the plate girders. The test showed that the 
ultimate, lateral load-carrying capacity of the specimen was 
65 kips, the lateral drift capacity was 7% and the initial lat-
eral stiffness of the specimens was 255 kips/in.
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Fig. 13. Specimen F0A: actuator force versus girder differential displacement.
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Fig. 14. Specimen F0A: deformation and damage at 5% drift.

Fig. 15. Specimen F0A: comparison of deformed and undeformed shape of middle girder (girder 2).
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Fig. 18. Specimen F0B: actuator force versus girder differential displacement.

Experimental Observations

Up to 0.75% drift, transverse cracks were developed across 
the deck. These cracks were due to flexural deformation of 
the deck. At 1% drift, cracks running north–south (i.e., in 
the direction of girder 1 to girder 3) on the deck surface were 
observed. At 1.5% drift, the ends of the chords showed sepa-
ration from the concrete deck, indicating yielding of stud 
connectors in this area. At 2% drift, the deck-girder joint 
started to fail, and the deck started to separate (lift up) from 
the flanges of girders 2 and 3.

At 3% drift, the stud connectors close to the ends of the 
top chords ruptured due to high tension forces. Also, at this 
drift level, concrete breakout mode of failure started to 
occur in the deck-girder joint. High plastic rotation occurred 
at the ends of the chord members.

Figure 19 shows the deformation of specimen F0B at 
6% drift. Vertical gaps (separations) and horizontal offsets 
between the underside of the deck and top flanges of the 
steel girders can be observed. Several factors contributed to 
this separation of the concrete deck and steel girder. This 
is attributed to the failure of stud connectors over girder 2, 
which caused the entire deck to bend in a single curvature 
between girders 1 and 3.

Due to the relatively large flexural stiffness of the thick-
ened reinforced concrete deck at the connection with the 
top chord, large rotations that were concentrated on the top 

chord occurred near the ends of this connection. Figure 20 
shows the separation between the deck and top chord. This 
separation caused high axial forces in the exterior stud con-
nectors (i.e., connectors that were close to the ends of the 
deck–top chord connection). As these connectors fail, the 
connectors next in line and closer to the middle of the chords 
started to pick up the unbalanced force. At the end of the 
test, all the stud connectors over the top chords were rup-
tured, and significant plastic deformation in the top chords 
was visible. Additionally, the top chords were ruptured at 
the location of the last bolt hole due to high plastic strain 
concentration and low cycle fatigue.

Sequence of Yielding and Failure Modes

Figure 21 shows the envelope of base shear force versus 
girder differential displacement. The specimen exhib-
ited larger elastic stiffness and yield strength compared 
with specimen F0A. Examination of the strain gages indi-
cated that the ends of the chord members started yielding 
at 0.5% drift. As the transverse displacement is increased, 
the strains in the chords also increased, with corresponding 
increase in lateral force. The lateral stiffness and strength 
of the specimen dropped significantly when the top chords 
started yielding. The significant drop in strength shown in 
Figure 21 was due to fracture of the chord members near 
the connection to the gusset plate and failure of the stud 

067-086_EJ1Q15_2013-28.indd   80 12/17/14   11:07 AM



ENGINEERING JOURNAL / FIRST QUARTER / 2015 / 81

Fig. 19. Specimen F0B: deformed shape at 6% drift.

Fig. 20. Specimen F0B: rupture of stud connectors near the end of the top chord.
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Fig. 21. Specimen F0B: base shear force-displacement plot.

connectors. Although the specimen was able to resist higher 
lateral force and maintain higher lateral drift capacity, the 
deck experienced some damage.

LIMIT STATES OF TEST SPECIMENS

Based on these experiments, it was clear that stud connec-
tors were subjected to combined shear and tension forces. 
Therefore, the interaction equation in Appendix D of ACI 
318-08 (ACI, 2008) was used to better estimate their resis-
tance under this combined loading. The strength of headed 
stud connector is given by:
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where Nu is the seismic axial force demand per connector, 
Qu is the seismic shear force demand per connector, Nr is the 
factored tensile capacity of a single connector and Qr is the 
factored shear capacity of a connector. The tensile capacity 
is determined based on the lesser of stud connector ultimate 
axial capacity or concrete breakout capacity. The concrete 
breakout typically governs the design when the haunch is 
unreinforced. This can be improved by providing reinforce-
ment around the stud connectors. This is evident in speci-
men F0B, where failure was due to stud fracture instead of 

concrete breakout. The ACI equations were used to deter-
mine the lateral strength of both specimens.

Specimen F0A

The lateral resistance of specimen F0A can be evaluated by 
dividing the subassembly into two framing systems: (1) the 
framing system formed by the deck and the girder and (2) 
the framing system formed by the chord members and the 
girders. The capacity in the first framing system is governed 
by the deck-girder joint connection capacity while, in the 
second, it is governed by moment capacities of the chord 
members.

A schematic diagram of lateral deformation of speci-
men 0A is shown in Figure 22. Based on the rotation of the 
deck-girder joint shown in Figure 22b, it can be assumed 
that one line of stud connectors is under compression while 
the other two lines are under tension. These sets of forces 
can, therefore, be used to calculate the moment in the con-
nection. Using the ACI equations, the breakout strength of 
the group of connectors under tension is 38.9 kips. Because 
there are 10 connectors in this group, breakout strength of 
each connector is 3.9 kips. The tensile capacity of each con-
nector is 8.8 kips. Therefore, the limit state of these con-
nectors is based on concrete breakout, which is similar to 
the observed failure in the experiment. Based on 2.5-in. 
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transverse spacing between the connectors, the moment 
capacity of each deck-girder connection is equal to 145.9 
kip-in. Because these moments act at the top of each girder, 
the lateral capacity provided by each connection can be cal-
culated by dividing the moment capacity by the height from 
the top of girder to the centerline of the bearings, which is 
48 in. The lateral capacity per girder is equal to 3.0 kips, and 
for the subassembly, it is equal to 9.0 kips.

The chord plastic moment capacity is 68 kip-in. based on 
a plastic section modulus of 1.27 in3. and a measured yield 
strength of 54 ksi. The plastic hinges occur near the connec-
tion of the chord members to the gusset plates. The calcu-
lated lateral capacity due to the plastic moments is equal to 
21.6 kips.

Therefore, the total lateral capacity of the subassembly 
based on combined capacity due to deck-girder frame action 
(9.0 kips) and chord-girder frame action (21.6 kips) is 30.6 
kips. This calculated capacity closely match the experimen-
tal results of 30 kips as shown in Figure 16.

Specimen F0B

A schematic diagram of lateral deformation of specimen 
F0B is shown in Figure 23. The lateral force transfer mecha-
nism in this model was mainly through the stud connectors 
connecting the deck to the top chord. The contribution of 
the deck-girder frame to the lateral capacity was considered 

negligible due to the small number of stud connectors on 
the girder top flange and because these connectors were 
placed 12 in. away from the centerline of subassembly as 
discussed previously. The degradation of the deck–top chord 
connection was due to high axial loads developed in the stud 
connectors, particularly at the ends of the connection, as 
illustrated in Figure 23b. In the experiment, it was observed 
that the limit state of the stud connectors at this location 
was fracture. This is because the connectors were subjected 
to large axial forces and deformations as the top chords 
deforms in flexure (Figure 23b).

The deck–top chord connection created a flexurally stiff 
composite section, which made specimen F0B stiffer than 
specimen F0A. It was shown in the experiment that the lat-
eral stiffness of specimen F0B is more than three times the 
stiffness of specimen F0A.

Unlike in specimen F0A, a simplified model is not suf-
ficient to evaluate the lateral capacity of specimen F0B due 
to distributed nonlinearity in the deck–top chord connection 
and flexural flexibility of the composite section of the top 
chord and deck. Therefore, a finite element model was devel-
oped to capture its response. Figure 24 shows the analytical 
model developed in SAP2000 (CSI, 2010). The deck, girders, 
stiffeners and gusset plates were modeled as shell elements 
while the stud connectors and chord members were mod-
eled using frame elements. The connectors were modeled 

(a) 
(b) 

 (a) (b)

Fig. 22. Specimen F0A: (a) deformed shape of subassembly; (b) rotation at deck-girder joint.

Fig. 23. Specimen F0B: (a) deformed shape of subassembly; (b) close-up of deformation at deck–top chord connection.
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based on the truss analogy method developed by Bahrami, 
Itani and Buckle (2009). Plastic hinges were assigned to the 
chord elements near the connections. Figure 25 shows the 
pushover curve of the model compared with the envelope of 
base shear values at peak displacement cycles. The figure 
shows good correlation between the curves. The difference 
is attributed to the degradation of stiffness and strength in 
the deck–top chord connection.

SEISMIC DESIGN OF STEEL PLATE  
GIRDER SUPERSTRUCTURE

The findings of the preceding experiment, previous experi-
mental and analytical investigations by other researchers and 
damage observed from earthquakes were used to develop 
a set of guidelines and specifications for seismic design of 
steel plate girder bridges (Itani, Grubb and Monzon, 2010). 
These have been adopted in the 2012 AASHTO LRFD 
Bridge Design Specifications (AASHTO, 2012) under the 
new Article 6.16, “Provisions for Seismic Design.” These 
specifications concentrate on the seismic design and detail-
ing of steel plate girder bridge superstructures. The common 
thread among these investigations was that these types of 
superstructures are vulnerable during earthquakes if they 
are not designed and detailed to resist the resulting seismic 
forces. A continuous and clearly defined load path is neces-
sary for the transmission of the superstructure inertia forces 
to the substructure. The new specifications cover the design 
and detailing of reinforced concrete deck, stud connectors 
and cross frames and their connections.

SUMMARY AND CONCLUSIONS

Analytical investigations performed on steel plate girder 
superstructures showed that stud connectors are subjected 
to combined axial tensile and shear forces during seismic 
events. These forces are particularly large at the support 
locations, where the superstructure seismic forces are trans-
ferred to the substructure. As such, these connectors, if not 
designed properly, may fail prematurely during large earth-
quakes, altering the load path and subjecting other bridge 
components—such as intermediate cross frames—to forces 
for which they were designed. To verify this observation, 
two half-scale models of subassembly representing the deck, 
girder and chord members at the supports were constructed 
and subjected to cyclic testing. The test specimens repre-
sented two different configurations of transferring the deck 
seismic forces to the bearings and substructures: (1) the deck 
is connected to the girder top flange, and (2) the deck is 
connected to the top chords of the cross frames. Based on 
this study, the following observations and conclusions can 
be made:

• Stud connectors at support locations are essential in 
transferring the seismic forces to the cross frames.

• Seismic forces subject the stud connectors at support 
locations to combined axial tension and shear forces.

• Connecting the deck to the top chord at the supports 
increased the lateral stiffness and lateral strength of 
steel plate girder superstructure.

Fig. 24. Finite element model of specimen F0B.
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Fig. 25. Comparison of specimen F0B analytical model pushover result and experiment.

• Interaction equation for stud connector resistance 
adopted in the new Article 6.16, “Provisions for Seis-
mic Design,” of the 2012 AASHTO LRFD Bridge 
Design Specifications must be used in seismic design 
of the connection between the reinforced concrete 
deck and the steel plate girder superstructure.

These observations and conclusions apply only to steel 
girder bridges with a drop cap. For steel girder bridges with 
an integral pier cap connection, design of stud connectors 
at the support is not required. The deck seismic forces are 
transferred directly from the deck to the concrete diaphragm 
and then to the substructure.
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