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introduction

The design of building structures has become a highly 
automated, computer-based process in which designers 

depend on the capabilities of commercial software for mem-
ber strength checks and determination of deflections, drifts 
and member/system weights. Currently available structural 
design software packages do not have the capabilities to 
estimate joist girder weight or section properties in an auto-
mated design process. For joist girders in moment frames, 
this is particularly critical because the stiffness of the joist 
girder affects the distribution of loads throughout the struc-
ture and the design of adjoining members, connections, etc. 
Consequently, selection of open-web steel joists and joist 
girders, as specified by the Steel Joist Institute (SJI), by com-
mercially available software is typically limited to tabulated 
load tables for simply supported beams; estimates of joist 
girder properties and weights are unavailable. In particular, 
for complex loading, whether unequal loads at unequal spac-
ing or lateral load-resisting frames with end moments and 
axial loads, the specifying professional has no automated 
tools for working with joist girders.

Joists and joist girders are custom designed for specific 

applications. Specific panel layouts and component sizes 
vary among manufacturers and may even vary among dif-
ferent plants or different design engineers for the same man-
ufacturer. For this reason, it would be virtually impossible 
to provide accurate estimates of material sizes, weights and 
section properties in advance of the final joist or joist girder 
design. It is much more feasible to create a table of approxi-
mate joist girder material sizes, weights and section proper-
ties that can be used with commercial software programs.

The current design practice used for the design of joist 
girder moment frames (JGMFs) is detailed in Technical 
Digest 11, Design of Lateral Load Resisting Frames Using 
Steel Joists and Joists Girders (SJI, 2007). Additional dis-
cussion of JGMFs is provided in Green et al. (2009). There 
are two modeling issues in the approach that can cause prob-
lems in the design process:

•	 Computer software programs require the design 
engineer to input approximate values for moment of 
inertia, Ieff, and area, A, based on estimated top and bot-
tom chord sizes and joist girder depth. The estimation 
process is somewhat tedious and time-consuming, and 
the estimated properties must be checked and updated 
with each design iteration. Because the design engi-
neer must estimate joist girder section properties 
without knowledge of the final joist girder design, the 
estimates for the moment of inertia used in the frame 
design may differ from the final joist girder design 
section property values by well over 20%, based on 
SJI anecdotal evidence.

•	 If the discrepancies between the properties determined 
from the final design by the joist engineer and those 
used in the analysis by the engineer of record (EOR) 
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ABSTRACT

The design of building structures has become a highly automated, computer-based process in which designers depend on the capabilities of 
commercial software for member strength checks and determination of deflections, drifts and member weights. Most commercial structural 
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girders that allow commercial software results to closely compare to joist manufacturers’ designs.
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are large enough, redesign of multiple structural ele-
ments may be necessary based on the joist girder sizes 
determined by the joist engineer.

Most commercial structural design software allows the 
user to build custom beam tables with custom section proper-
ties. Custom beam tables for selection of virtual joist girders 
were developed for use in the design software STAAD.Pro  
(Bentley, 2007). The properties in these custom tables do 
not represent any specific joist girder or the exact properties 
of the final girder design. The properties are intended to be 
approximations, based on typical available chord sizes and 
some typical ratios of weights. The tables could be used in 
a wide range of applied design loads, including lateral-load-
resisting moment frames. If an equivalent beam table for use 
in commercial software yields relatively close approxima-
tions of joist girder section properties and weights designed 
by the manufacturer, this tool would allow the EOR to easily 
include joist girders in their building design models in the 
same automated approach used for wide-flange beams.

The primary objective of this study was to validate a 
procedure to improve the ability of specifying engineers to 
accurately select joist girders for building design projects 
using commercially available design software. The research 
process was as follows:

•	 Testing and, where necessary, improvement of user 
input design tables that allow the EOR to select pre-
liminary joist girders with estimates of moment of 
inertia values and member weights that have low vari-
ance from those designed using the proprietary joist 
design software.

•	 Computation of estimates of Izz, shear area and mem-
ber weight used in equivalent beam models in analysis 
software that closely match those provided by the joist 
manufacturer’s software.

•	V alidation of the approach using realistic JGMF to 
show proof of concept.

Background

Standard Joist Girder Design Procedure

Current methods for estimating sizes of joist girders in 
JGMFs can be tedious. In gravity frames, a joist girder and 
its equivalent properties can be input into a computer model 
of a structure by inputting data selected from a joist manu-
facturer’s design catalog. While this method is not complex, 
it can become cumbersome with structures with a range 
of loading conditions or for in-progress projects that see 
changes to the load requirements being made as the struc-
ture is being designed.

The method for designing with joist girders in a moment-
resisting load frame becomes much more complex because 

the stiffness of the joist girder affects the required strength 
and stiffness of the adjoined columns in the structural sys-
tem. The method to accurately design a moment-resisting 
load frame with the use of joist girders is outlined in SJI 
Technical Digest 11 (SJI, 2007) as follows:

1.	D etermine the loading (dead, live, wind, seismic) for 
every unique frame combination.

2.	 Make a preliminary selection of a joist girder of appro-
priate depth using the vertical loading only.

3.	 Approximate the moment of inertia using the follow-
ing equation:

	 I P S deq npp jp= N0 027.  (LRFD)� (1a)

	 I NP S deq npp jp= 0 018.  (ASD)� (1b)

	 where
	 Ieq	 = equivalent moment of inertia, in.4

	 N	 = number of spaces between attached joists
	 Pnpp	= panel point load, kips
	 Sjg	 = joist girder span, ft
	 djg	 = effective joist girder depth, in.

4.	 Conduct a preliminary frame design to find the 
moments, shears and loadings in the frame, using 
the approximate joist girder moment of inertia. It is 
suggested to start with pinned base columns, with 
fixed rotation connections at the column–joist girder 
connection.

5.	U se the lateral shear (the greater of the wind or seis-
mic) per column value to calculate the maximum col-
umn moment, which is located at the bottom of the 
joist girder.

6.	 Select the load combinations that result in the worst 
loading, using the loads to select sufficient exterior 
and interior column sections.

7.	 Perform a computer analysis to determine forces, 
moments and deflections (both first- and second-order) 
for the load combinations prescribed by the applicable 
building code. The effects of leaning columns (if any) 
should be addressed in this analysis.

8.	U se the end moments output by the analysis to calcu-
late the maximum chord force in the joist girder. The 
chord force is the end moment divided by the depth of 
the girder, measured in between the centroids of the 
chords. It is assumed that the centroids of the chords 
are 1 in. from the top and bottom of the girder.
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9.	U se Table 2-1 in SJI Technical Digest 11 (SJI, 2007) to 
choose a chord angle combination for the top and bot-
tom of the joist girder. Calculate a new approximate 
joist girder moment of inertia, based on the chosen 
approximate chord angle section properties at the cho-
sen joist girder depth.

10.	Re-enter the new approximate moment of inertia into 
the model and re-analyze the model. If the new model 
fails to perform within the chosen drift and deflection 
parameters, the columns and chords must be approxi-
mated again.

Once a suitable design has been chosen for the columns 
and joist girders, the connections also need to be designed, 
and checks for local failures of the chords and webbing need 
to be completed. These last two steps would normally be the 
purview of the joist manufacturer unless special conditions 
need to be met.

As described, the method for joist girder design in moment 
frames is not automated, and the multistep process is itera-
tive. Use of equivalent beam user tables allows this tedious 
manual approach to be replaced by an automated system 
of approximation that would yield similar, and potentially 
improved, results. The user table in this method is created 
using the entire practical range of chord sizes and a large 
range of depths. The equivalent beam properties of the joist 
girder are approximated using the properties from the top 
and bottom chords along with the selected joist girder depth. 

Equivalent Beam Theory

Using equivalent beam theory (EBT), a complex flexural 
component such as a joist girder or other truss system is 
modeled as a single beam element with approximate equiva-
lent beam properties. The use of an EBT model dramati-
cally decreases the computational time of the software and 
the time required to input the joist girder into the structural 
model. As previously described, SJI provides the moment of 
inertia approximation given in Eq. 1 (SJI, 2007). As can be 
seen in Equations 1a and 1b, the approved EBT model is not 
applicable to joists or joist girders with uneven loading or 
unequally spaced loading.

Another method of utilizing equivalent beam theory 
explored by Giltner and Kassimali (2000) involves the direct 
modeling of a truss. The method involves designing a truss 
as one normally would for a structure. The loading and 
design configurations of the structure are considered, which 
are followed by a complete set of computer modeling under 
the applicable load cases. After the models are complete, the 
deflections of the truss are recorded. These deflections are 
then used to back-calculate the equivalent moment of inertia 
of a simple span beam with applied end moments. Once the 
equivalent moment of inertia is calculated, the equivalent 
beam can be used in the computer model for the entire struc-
ture wherever the comparative truss would have been placed. 
This method works well for a structure using custom trusses 
that are repeated often through a structure. The main benefit 
of using EBT is the reduction in processing time because the 
number of elements is reduced, as well as the time to enter 
the elements into the program. The method validates that the 
use of an equivalent beam model has the utility of decreas-
ing the complexity of structural models while maintaining a 
good approximation of their behavior.

Equivalent Beam PROPERTY TABLES

In order to implement equivalent beam theory in a design pro-
gram, a property table was developed for use in STAAD.Pro.  
Figure 1 presents a representation of the general configura-
tion of a joist girder. The top and bottom chords are com-
posed of two angles while the webbing can be either round 
or angle sections.

The properties included are typical of those required for 
user tables in commercial software, and the tables can be 
easily modified for use with other commercial software 
programs. Table 1 lists, in order, the properties included in 
the user table. A description of these properties and their 
approximations can be found in Appendix A.

Figure 2 displays a portion of the resultant virtual joist 
girder table. The file is simply a space-delineated text file. 
It is worth noting that in the virtual joist girder tables, the 
identifiers (e.g., 20GS1) call out the depth of the girders  
(e.g., the 20GS1 is 20 inches deep), but they otherwise do not 
have any significance other than to uniquely identify each 
data set.

Fig. 1.  Joist girder configuration.
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The two properties of the most interest to the EOR and 
the joist designer are the moment of inertia, Izz, and the 
weight, the latter being approximately proportional to the 
chords area, Ax. The moment of inertia of a virtual joist 
girder is calculated using only the chords of the joist girder 
in the classical fashion. This value is then divided by 1.15 to 
account for shear deformation in the webbing. The webbing 
does not contribute any significant flexural stiffness.

The weight is calculated by using the cross-sectional area 
of the top and bottom chords, but the calculation does not 
explicitly consider the size of the webbing due to the large 
variation in webbing members used by joist manufactur-
ers. The density of the virtual joist girder material is set to 
be the density of steel divided by 0.85 to account for the 
weight of the webbing. Joist girders with higher span-to-
depth ratios will have more weight attributed to the chords, 
while joist girders with lower span-to-depth ratios will have 

more webbing and will therefore have less weight attributed 
to the chords. However, the 0.85 multiplier provides a simple 
method that represents an approximate average case, where 
85% of the total joist girder weight is made up of the chord 
members.

STAAD.Pro calculates the member weight as a function 
of the member cross-sectional area and the material density.  
In order to correctly account for axial stresses in the  
STAAD.Pro code checks and material selections, it is essen-
tial to retain an accurate member cross-sectional area as the 
sum of the areas of the top and bottom chords. Therefore, 
the weight of the webs must be accounted for by adjust-
ing the material density. Properties associated with out-of-
plane limit states are not calculated in the tables but are set 
to unity. Lateral torsional buckling and weak-axis bending 
are not controlling limit states in joist girders due to indus-
try standards for bracing; in instances where the design 

Fig. 2.  Excerpt of user table file.
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requirements require out-of-plane limit states to be consid-
ered, this method is not recommended.

Validation Studies

A three-stage process was used to establish the validity of 
the equivalent beam user tables for commercial design use. 
First, simply supported isolated joist girder designs were 
considered, eliminating the effect of support conditions or 
adjoining members on the results, to establish if the user 
tables were effective in the most fundamental design case. 
Next, isolated fixed-end joist girders were considered to 
include the effect of end moment. Finally, simple frames 
were designed to establish proof of concept, including the 
effects of adjoining beam-columns and leaning columns.

Because final joist girder design is always performed by 
the joist manufacturer, the objective was to determine if the 
moment of inertia and weight of the design software selected 
virtual joist girders were within an acceptable range of error 
from the joist girders designed by the robust proprietary joist 
design software. The primary difference in the two design 
processes is that the general commercial design software 
chooses a single-member equivalent beam with approxi-
mate property values, whereas the proprietary design soft-
ware utilizes the actual joist girder truss configuration with 
multiple members.

Parameters for the isolated joist girder studies (simply 
supported and fixed) were chosen to represent a reasonably 
comprehensive, yet practical, range of design conditions. 
The intent was not to consider every possible permutation, 
but rather a representation of the practical values in design. 
The range of parameters was suggested by an advisory group 
consisting of members of the SJI Research Committee and 
Engineering Practice Committee based on their years of 
experience in joist and joist girder design. The ranges for 
the parameters considered in the single beam studies were 
as follows:

•	 Span: 20 ft to 80 ft at 10 ft intervals.

•	 Panel-point loads: 10 kips to 90 kips at 20-kip intervals.

•	 Panel-point spacing: 4, 5, 6 and 8 ft.

The joist depth was not an independent parameter, but was 
determined by design. Span-to-depth ratios were limited to 
between 12 and 24.

Based on the chosen parameters, there were 105 possible 
practical permutations of the span, spacing and loading. 
Combinations that cause overstressed members in the pro-
prietary design program were removed from consideration, 
as were panel point spacings that did not equally divide the 
joist length, and joist girders using chords with leg lengths 
greater than 6 in.

The user table created to provide STAAD.Pro with equiv-
alent beams includes a reasonably comprehensive selection 
of realistic combinations of chords and depths in joist gird-
ers. The two most relevant properties are computed based on 
SJI suggested values as follows:

	
I

I I A d
zz

chords chord chord= =
+∑

1 15 1 15

2

.

( )

. �
(2)

	
Material density

Density of steel=
0 85. �

(3)

where
Izz	 = �moment of inertia of the joist to be used in 

calculations
Ichords	= �moment of inertia calculated from the joist chords 

not considering web deformation
Ichord	 = moment of inertia of the chord members
Achord	= area of chord members
d	 = �distance from the centroid of the chord to the cen-

troid of the joist
The following procedure was used in the verification of 

the equivalent beam model:

1.	 Span, spacing and load configuration are chosen. The 
design is entered into STAAD.Pro, and the program 
is allowed to choose a joist girder with a depth that is 
within range of span-to-depth ratios from 12 to 24. 

2.	 The unique identifier, total weight, moment of inertia 

Table 1.  Equivalent Beam Properties

Ax Total area of the chords Sz Elastic section modulus about strong axis

D Girder depth Sy Elastic section modulus about weak axis

TD Web thickness Ay Shear area in y direction

B Flange width Az Shear area in z direction

TB Flange thickness Pz Plastic section modulus about strong axis

Izz Joist girder strong-axis moment of inertia Py Plastic section modulus about weak axis

Iyy Joist girder weak-axis moment of inertia HSS Warping constant

Ixx Torsional constant DEE Depth of web
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and end moments (if fixed ends) of the joist girder 
selected by STAAD.Pro are recorded. 

3.	 The depth of the selected joist girder, along with the 
same span and loading configuration, is entered into 
the proprietary joist girder design software.

4.	 The corresponding results are compared and the varia-
tion in results is calculated.

To provide a full set of test permutations, the same pro-
cedure was run for joist girders of the same span, spacing 
and loading configuration, except a depth was specified in 
STAAD.Pro. This produced values that might be encoun-
tered in situations where architectural constraints might 
affect allowable joist depth.

Simply Supported Joist Girders

The model used for the simply supported joist girder studies 
is shown in Figure 3. Here, Spp is equal to the panel point 
spacing; the other variables are defined in Equations 1a  
and 1b.

The first set of simply supported beam studies were run 
according to the previously described equivalent beam test-
ing procedure. At the end of the study, 76 cases produced 
designs with an angle leg of 6 in. or smaller; this limit was 
recommended by the SJI advisory group and imposed in 
these studies. The results are summarized in Table 2. Com-
plete results are reported in Knodel (2011). Results of a 
single beam test were deemed “acceptable” if the value of 

Equation 4 was within a designated variance from the pro-
prietary software values and given by:

	

STAAD_value P.Software_value

P.Software_value
100%

− ×
�

(4)

where

	 STAAD_value = moment of inertia or weight of joist 
girder selected by STAAD.Pro

	 P.Software_value = moment of inertia or weight of joist 
girder designed by SJI proprietary software

The initial set of simply supported beam studies pre-
sented a practical limitation of the virtual joist girder tables. 
After completing 102 tests on pinned-end joist girders, 76 
were included in the results. These did not exceed a 6-in. 
maximum chord leg, an upper limit suggested by SJI for this 
study. 

Initial examination of the results determined that a num-
ber of the joist girders were failing in STAAD.Pro due to 
lateral torsional buckling (LTB). The parametric study was 
then re-run with the bracing in STAAD.Pro changed from 
panel point bracing to continuous lateral support. While the 
equivalent beam theory works well for in-plane bending of 
joist girders, the equivalent beam section properties that con-
trol lateral torsional buckling—including CW, Iy and J—have 
not been well defined for steel joists and are consequently 
not correctly modeled in the user tables. Additionally, typi-
cal steel joists designs have adequate lateral bracing, so LTB 

Table 2.  Pinned-End Virtual Joist Girders with Partial Bracing

Acceptable variance (±) 10% 15% 20%

Number considered 76 76 76

I acceptable 76% 80% 84%

Weight acceptable 63% 72% 83%

Both acceptable 62% 71% 82%

Fig. 3.  Simply supported isolated joist girder.
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is typically not considered to be a limit state in joist girder 
design. Changing the lateral support condition changed the 
controlling limit state to in-plane bending; this represented 
the joist behavior and allowed for direct comparison with 
the proprietary joist girder design software results. 

Once tests were re-run with continuous lateral bracing, a 
significant improvement was noted in agreement between 
the designs of the two programs. With continuous lateral 
bracing, STAAD.Pro selected lighter joist girders in many 
instances, resulting in 78 joist girders within the 6-in. maxi-
mum chord size limit. These results are summarized in 
Table 3.

As can be seen in Table 3, the acceptability of the moment 
of inertia approximation for pinned-end virtual joist girders 
is close to complete acceptability at a ±10% acceptable vari-
ance. It can be seen that increasing the acceptability criteria 
to ±20% increased the weight approximations acceptabil-
ity by 25%. It is clearly demonstrated in the overall results 
that the decision to use a completely braced model results in 
a much more accurate approximation of actual joist girder 
behavior.

Fixed-End Joist Girders

The trials on fixed-end joist girders utilized the same virtual 
joist girder user table as the pinned-end, single beam trials. 
Out of the 105 joist girders designed, 82 of the designs were 
at or below the 6-in. maximum chord size limit. A summary 
of the results is given in Table 4.

As can be seen in Table 4, the acceptability of the moment 
of inertia approximation for fixed-end virtual joist girders 
is acceptable 91% of the time when considering ±10% vari-
ance. Increasing the acceptability criteria to ±15% increased 

the weight approximations acceptability from 71 to 91% and 
the moment of inertia approximation to complete accept-
ability (100%).

Trends in Variance of Isolated Joist Girder Designs

The results of the beam studies were examined to determine 
if improvements could be made to the approximate proper-
ties typically used by SJI to provide for better estimates in 
the virtual joist girder user table, particularly with respect 
to weight. Variance was plotted with respect to depth and 
length/depth ratios to establish any trends in error that could 
lead to better estimates for the properties. Figures 4 and 5 
show representative plots of the variance data for the fixed-
end joist girders comparing moment of inertia and weight to 
depth, respectively. 

As expected, a minor correlation was seen in the variance 
when considering weight versus span/depth ratio. On aver-
age, 85% of a joist girder’s weight is from the top and bottom 
chords. In a more shallow joist girder (span-to-depth ratio of 
24), 90% of the joist girder weight will typically come from 
the chords. In a deeper joist girder (span-to-depth ratio of 
12), typically only 80% of the total weight may come from 
the chords, and the equivalent beam will typically underes-
timate the weight of deep joist girders. Because the span-to-
depth ratio is not a known parameter prior to preliminary 
design, it was not considered a practical parameter for any 
possible adjustments to the weight approximation for use in 
the tables. 

Based on the scatter of the data, no significant correla-
tion was established that would provide a means to adjust 
the weight or moment of inertia approximation. The SJI rec-
ommended approach of increasing density by dividing the 

Table 3.  Pinned-End Virtual Joist Girders

Acceptable variance (±) 10% 15% 20%

Number considered 78 78 78

I acceptable 97% 99% 99%

Weight acceptable 72% 86% 97%

Both acceptable 72% 86% 97%

Table 4.  Fixed-End Virtual Joist Girders

Acceptable variance (±) 10% 15% 20%

Number considered 82 82 82

I acceptable 91% 100% 100%

Weight acceptable 71% 91% 99%

Both acceptable 70% 91% 99%
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value of steel by 0.85 was not changed for the remainder of 
the study nor was the moment of inertia approximation of 
Ichords /1.15. 

Moment Frame Study

To study the behavior of the virtual joist girder method in 
a system where the effects of adjoining members are con-
sidered, a series of frames were run in the same manner as 
the single beam studies. The parameters of the tests can be 
seen in Figure 6 and include bay width, L; frame height, H; 
and leaning column load, αP. Specifically, the value αP rep-
resents the destabilizing effect of leaning columns on the 
frame, where P is an equivalent one-bay load applied as a 
point load to the column and α is the number of columns 

“leaning” on the moment frame. The parameters were cho-
sen to represent a typical joist girder design. The parameters 
of the frame study resulted in 24 unique frames, each with 
three virtual joist girder spans. Frames with 40-ft spans were 
designed with a joist spacing of 8 ft. Frames with 50-ft spans 
were designed with a joist spacing of 5 ft. The frame studies 
followed the same procedure as the isolated joist girder stud-
ies, with one additional step. Once the proprietary software 
design was complete, the specific properties of that design 
were input in STAAD.Pro, and the resulting frame designed 
was analyzed. A comparison of the interaction value of the 
controlling limit state was made between the preliminary 
design and the proprietary design to determine the impact of 
the variation in joist girder properties on the beam-column 
designs.

-20.0%

-10.0%

0.0%

10.0%

20.0%
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10 30 50 70 90

I Variance

Depth (in)

Fig. 4.  Fixed-end condition moment of inertia variance versus joist girder depth.
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Fig. 5.  Fixed-end condition weight variance versus joist girder depth.
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Frame Study Results

The results from the frame study resulted in a total of 72 
tested virtual joist girders. The virtual joist girders selected 
by STAAD.Pro included no overstressed joists girders or 
designs with chord sizes with legs longer than 6 in. Table 
5 provides a summary of the variances. A summary of all 
results from the parametric studies is presented in Knodel 
(2011).

As in the fixed-beam study, the virtual joist girder study 
results show a high level of acceptability when considering 
the initial ±10% variance with 100% acceptable variance 
when considering a ±15% variance. Over the course of the 
frame study, the column stress ratios and story drifts were 
recorded. As reported in Knodel (2011), the story drift for 
all 24 frames never exceeded H/100, and 17 of the 24 frames 
did not exceed an H/200 story drift. It can also be seen that 
the stress ratios for columns never changed more than 5% 
between the first and second design iterations with the aver-
age difference being insignificant (0.2%).

Outlier Investigation

A review was performed of the individual cases in which 
the variance exceeded 10% in order to establish the specific 
reasons for the design variations. The review looked at five 
individual cases and resulted in four different design situa-
tions. The reader should note that the five cases examined 

were above 10% variance when comparing the proprietary 
software data to the STAAD.Pro data. The final results of 
the virtual joist girder study are reported using the propri-
etary software as the baseline.

The first two cases with the greatest variance examined 
showed that STAAD.Pro picked a virtual joist girder with 
larger chord sizes than the proprietary software. It was found 
that when STAAD.Pro picked an initial member size, there 
was a small overstress that resulted in STAAD.Pro choos-
ing a new, larger section size. Coincidently, the next larger 
size was a chord with a longer leg length, which dramati-
cally changed the properties. This relatively large change in 
size pushed the variance over the 10% limit. With further 
investigation, it was found that the initial small overstress in 
STAAD.Pro was caused by the approximately 2% increase in 
loading due to self-weight of the virtual joist girder. Because 
the self-weight is neglected in the proprietary joist design 
software settings, the extra stress was not detected and the 
chords were not upsized. It can be noted that the initial pick 
by STAAD.Pro—before self-weight calculation—was the 
same as the proprietary software. It was noticed after the 
project had been completed that this inconsistency in self-
weight inclusion had occurred. While introducing error into 
the overall results, that error renders the results an upper 
bound of variance between EOR and joist designer results.

The other three cases examined were very close to the 
10% variance limit. In all cases, the STAAD.Pro chord pick 

Fig. 6.  Moment frame configuration and parameters.

Table 5.  Fixed-End Virtual Joist Girders in Frames

Acceptable variance (±) 10% 12.5% 15%

Number considered 72 72 72

I acceptable 88% 96% 100%

Weight acceptable 90% 100% 100%
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was smaller than the pick from the proprietary joist design 
software. In two of the cases, clear reasons could be identi-
fied for the discrepancies in the designs, as follows:

•	 In the first case, the joist girder had a localized fail-
ure on the chord angle under the high 30-kip loading, 
which controlled the top chord selection in the propri-
etary software. If stiffeners were used to support the 
horizontal leg of the top chord, or some other means 
were used to minimize the localized bending stress 
effects, then the STAAD.Pro chord choice would be 
acceptable.

•	 The next case suffered in-plane buckling of the four 
panels nearest the mid-span, which controlled the 
design of the top chord in the proprietary software. If 
two panels were added to either side of the midspan, 
halving the effective panel length, the STAAD.Pro 
pick would be suitable.

Overall, it is concluded that the outlier conditions found in 
the study were no different than the typical variance found 
between the designs of different SJI member companies for 
the same loading and geometric configuration.

CONCLUSIONS AND RECOMMENDATIONS

Designing with steel joist girders is currently a labor-inten-
sive task, especially when considering design timetables that 
force early assumptions or designs with complex loadings. 
An automated design process utilizing a pseudo–joist girder 
section table allows for changing and complex projects to 
consider joist girders more readily. The virtual joist girder 
method provided designs within 10% of the joist girder 
manufacturer’s design approximately 90% of the time, 
when considering the design moment of inertia, and weight 
approximations were within 20% variance more than 90% 
of the time. The single beam studies provide a wide range 
of possible design configurations. The frame studies showed 
particularly good results with 100% of the frame designs 
falling within 15% variance levels; in addition, there was 
little to no effect on the column response to the variance in 
the joist girder selections.

Overall, this study suggests that the virtual joist girder 
user tables provide a straightforward and user-friendly 
approach for automated preliminary design of joist girders 
by the specifying engineer. The method for using the tables 
STAAD.Pro is included in Appendix B, although the tables 
are easily adaptable for other commercial design programs. 
Also, although no seismic load conditions were run in the 

frame studies, there appears to be no reason the approach 
could not be used for seismic designs utilizing equivalent 
static seismic loads; design examples with seismic loading 
will be developed as part of an upcoming SJI research proj-
ect to determine if any specific limitations are required.

The virtual joist girder tables are available as of this writ-
ing (2012) from SJI for use by design engineers, and may 
be downloaded by visiting http://steeljoist.org/virtual-joist-
girder-table. SJI is currently examining extension of the 
tables to include all open web joists (including K-, LH-, 
and DLH-series joists) to facilitate improved selection and 
weight estimation of joists by the EOR when using commer-
cially available structural design software.
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APPENDIX A

Virtual Joist Girder Properties

Ax	 Total area of top and bottom chords: Sum of top and 
bottom chord areas.

D	 Total joist girder depth.

TD	 Web thickness: Total depth/30; ensures that the 
section is treated as compact when considering web 
shear.

B	 Flange width: 2 × Chord angle leg + 1 in. chord gap.

TB	 Flange thickness: (Chord angle thickness/Chord angle 
leg) × B/2; this value results in the correct width-to-
thickness ratio when STAAD.Pro checks (B/2)/ TB.

Izz	 Joist girder strong-axis moment of inertia: Classically 
calculated moment of inertial then divided by 1.15 to 
reduce to obtain an effective I.

Iyy	 Joist girder weak-axis moment of inertia: 2 × Top 
chord moment of inertia; based on flange (chord) that 
would typically be in compression; not required in 
open web joist design. 

Sz	 Elastic section modulus about strong axis: 
Minimum chord area × Joist effective; reduces the 
overestimation of chord (flange) stresses. The method 
substitutes an effective section modulus based on a 
stress distribution used in classis truss theory of 
uniform stress distribution across the cross section of 
the member.

Sy	 Elastic section modulus about weak axis: Section 
modulus of top chord; a reasonable conservative 
value used when joist girder is used in out-of-plane 
bending.

Ay	 Shear area in y direction: Ax × 0.25; based on an 
approximation of the shear area used by SJI for chord 
shear checks.

Az	 Shear area in z direction: Ax × 0.25; based on an 
approximation of the shear area used by SJI for chord 
shear checks.

Pz	 Plastic section modulus about strong axis: Equals Sz; 
stress distribution is always uniform across the chord 
in classical truss analysis, whether in a plastic or 
elastic state.

Py	 Plastic section modulus about weak axis: Unity; not 
required in open web joist design.

HSS	 Warping constant: Unity; not required in open web 
joist design.

DEE	 Depth of web: Equals top chord angle leg length.

APPENDIX B

User Manual

The following instructions are applicable for the use of the 
virtual joist girder user table in STAAD.Pro.

Installing User Table File

1.	 Create directory (folder) for STAAD.Pro design files 
that will be using the virtual joist girder user table.

2.	 Place a copy of the user table file into the same 
directory.

3.	 Any design files saved in a directory without the user 
table file will not be able to access the user table data.

Activating User Table

1.	 In modeling mode select Tools.

2.	 Select Create User Table.

3.	 In the pop-up window select the New Table button.

4.	 Checkmark the External Table box and select the 
Browse button.

5.	 Select the user table file and click Open.

6.	 In the Select Section Type drop down menu, choose 
General and press OK.

7.	 The user table should automatically be given a num-
ber. Press Close.

Assigning User Table Data

1.	 In modeling mode, select the General tab.

2.	 In the Properties–Whole Structure window, select the 
User Table button.

3.	 Choose the previously assigned user table number.

4.	 Select a section and assign the appropriate material.

5.	 Select Add and close the window.

6.	 Assign virtual joist girder sections from the Proper-
ties–Whole Structure window in the same manner as 
with ordinary sections.
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Virtual Joist Girder Material Properties

Virtual joist girders use the same material properties as 
steel, except with a higher density. Then density modifica-
tion is required to accurately approximate the weight of a 
steel joist girder.

To create a new material in STAAD.Pro:

1.	 In modeling mode, select the General tab.

2.	 Select the Material tab.

3.	 Select the Create button in the pop-up window.

4.	N ame the new material and enter the following data:

	 Young’s modulus, E = 2.9e+007 lb/in.2

	 Poisson’s ratio, ν = 0.3

	D ensity = 0.333 lb/in.3

	 Thermal coefficient, α = 6e−006

	 Critical damping = 0.03

	 Shear modulus, G = 1.1154e+007 lb/in.2

Notes on Using the Virtual Joist Girder User Table

1.	 All virtual joist girders must be modeled as having an 
unbraced length of zero.

2.	V irtual joist girder designations shown in STAAD.Pro 
and in the .txt user table file do not correspond to spe-
cific joist girders. The virtual joist girders user table is 
for initial design approximation only.
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INTRODUCTION

C ross braces are used in concentrically braced steel 
frames to provide resistance against excessive sway 

caused by horizontal loads. They are also used in industrial 
buildings to resist crane surge and in roof trusses to account 
for load reversal under wind uplift (Kitipornchai and Finch, 
1986). 

Under a lateral load, one member of this cross-bracing 
system is often under tension, while the other is subjected 
to compression. However, in conventional design of cross-
bracing systems for wind load, a common yet conserva-
tive assumption is that only the tension diagonal resists the 
applied lateral load. The contribution of the compression 
diagonal to resist frame sway is neglected (El-Tayem and 
Goel, 1986). Although this assumption can simplify the 
design, the result is an overdesign of the bracing system. A 
somewhat less conservative approach is to design the com-
pression diagonal as a column supported at midspan by the 
tension diagonal. Timoshenko and Gere (1961) derived the 
relationship for the elastic buckling load of a column braced 
at mid-point. However, the nonlinear relationship is rather 
complicated and is therefore difficult to apply in a design 
situation. 

To achieve a more concise and practical method for design, 
Picard and Beaulieu (1987, 1988) carried out a series of ana-
lytical and experimental studies to establish the relationship 
between the ultimate strength of the bracing system and the 
internal forces in both diagonals. They recommended the 
use of an effective length factor K of 0.5 applied to the full 
length of the member in the design of the compression diag-
onal. Nevertheless, their research is limited to the condition 
in which no out-of-plane translational movement is experi-
enced by either diagonal at their intersection point. 

Stoman (1989) provided a set of effective length spectra 
for cross bracing within the elastic range. However, Sto-
man’s study did not provide any formula to quantify the 
lateral support to the compression diagonal by the ten-
sion diagonal. Moon et al. (2008) proposed values for the 
effective length factor K for use in an elastic design of the 
compression diagonal and checked the validity of the pro-
posed K factors with the AISC equation for the inelastic 
case. However, no direct mathematical relationship relating 
the inelastic ultimate strength of the compression diagonal 
with other system parameters is given. The objectives of 
this article are, therefore, to investigate the interaction effect 
between the compression and tension diagonals of a typi-
cal cross-bracing system under combined gravity and wind 
loads and to develop equations suitable for use in the design 
of such system.

If the compression and tension diagonals are connected at 
their intersection point and if all the connections are properly 
designed for strength and ductility (Sabelli and Hohbach, 
1999), the ultimate strength of the cross bracing is mostly 
controlled by the out-of-plane buckling capacity of the com-
pression diagonal. This out-of-plane buckling capacity can 
be more accurately determined if the tension diagonal is 

Stability Design of Cross-Bracing Systems for Frames
ERIC M. LUI and XIAORAN ZHANG

ABSTRACT

In this study, the inelastic load-carrying capacity of the compression diagonal of a typical cross-bracing system used in concentrically braced 
frames under gravity and wind loads is investigated, taking into consideration its interaction effect with the tension diagonal. Depending on 
the lateral stiffness of the tension diagonal, the compression diagonal can be fully or partially braced by the tension diagonal at their intersec-
tion point. An expression for the transition lateral stiffness, kst, that demarcates the fully and partially braced conditions is derived. When the 
compression diagonal is fully braced, its maximum load-carrying capacity is a function of its member slenderness, L/r, only. However, when 
the compression diagonal is partially braced, its load capacity is dependent upon both its member slenderness, L/r, and the lateral stiffness, 
ks, of the tension diagonal. Once the equations for the maximum load-carrying capacity of the compression diagonal are established, design 
guidelines are proposed and design examples are given to demonstrate how the proposed guidelines can be used for the design of cross-
bracing systems in steel frames. The consideration of the lateral bracing effect will result in a more economical and logical design for such 
bracing systems.
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taken into consideration in design. Even though the tension 
diagonal may not always have the necessary lateral stiffness 
to enable the compression diagonal to buckle in its second 
mode, it often provides sufficient out-of-plane restraint to 
the compression diagonal at the intersection point so that the 
ultimate strength of the compression diagonal will be higher 
than that predicted based on its first buckling mode (i.e., by 
ignoring the bracing effect provided by the tension diagonal 
altogether).

The amount of increase in the buckling capacity is a func-
tion of the slenderness ratios, L/r, boundary conditions and 
effective stiffness (stiffness accounting for the axial force 
effect) of both the compression and tension diagonals. In 
addition, geometrical imperfections and inelastic behavior 
of the cross-braced members will also have an effect on 
system stability. The objective of this study is to investigate 
the effects these factors have on the ultimate strength of a 
typical cross-bracing system. This study will focus on cross-
bracing systems primarily used for concentrically braced 
frames, that is, a symmetrical system in which the inter-
section point occurs at the braces’ half-lengths and that the 
connection provides full continuity (e.g., the use of welded 
or fully bolted connections) for both braces as shown in 
Figure 1. In the current analysis, it is assumed that system 

behavior is controlled by out-of-plane buckling of the braces 
as depicted in Figure 2. As will be discussed in more detail 
in a later section, the symmetric out-of-plane buckling mode 
corresponds to the partially braced condition and the anti-
symmetric out-of-plane buckling mode corresponds to the 
fully braced condition. Unless both diagonals are subjected 
to the same compressive force, one will provide lateral sup-
port to the other. Normally, the brace that is providing the 
lateral support is in tension, but even when both braces are 
in compression, the brace that is subjected to a lower com-
pressive force can still brace the one with a higher compres-
sive force, although the amount of lateral support that can be 
relied upon in this scenario will undoubtedly be lower.

CROSS-BRACING SYSTEM MODEL

In reference to a diagonal cross-bracing system shown in 
Figure  3, if the beam-column joints to which the ends of 
the cross-bracing system are connected are braced against 
out-of-plane deflections, the support conditions of the cross-
bracing system can conservatively be idealized as pinned. If 
we denote P as the compressive force acting on the compres-
sion diagonal with length L and flexural rigidity EI, and P as 
the tensile force acting on the tension diagonal with length L 

Fig. 1.  Steel frame with a cross-bracing system.

	 (a)	 (b)	 (c)

Fig. 2.  Buckling modes of a cross-bracing system: (a) in-plane; (b) symmetric out-of-plane; (c) anti-symmetric out-of-plane.
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and flexural rigidity EI, the differential equations that gov-
ern the out-of-plane instability behavior of the first half (i.e., 
0 2≤ ≤ /x L , 0 2≤ ≤ /x L ) of the compression and tension 
diagonals (Figures 4a and 4b) can be written, respectively, 
as (Chen and Lui, 1987)
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and with respect to the compression diagonal, the above 
equation can be written as
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is the lateral stiffness the tension diagonal is imparting to 
the compression diagonal when the system is experiencing 
out-of-plane instability. A plot of Equation 7 is shown in Fig-
ure 5 as a solid line. Also shown in the figure as a dashed 
line is the case when the “tension” diagonal is also under 
compression. This condition may occur when the superim-
posed dead and live gravity loads are high compared to the 
wind load. In this case, ks is given by

Compression diagonal – EI, L, P

EI, L, PTension diagonal –

Fig. 3.  Analytical model of a cross-bracing system.
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Fig. 4.  Free-body diagrams of (a) compression diagonal and (b) tension diagonal.
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Fig. 5.  Lateral bracing stiffness variation.
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In the preceding equations, 
48

3

EI

L
 is the lateral stiffness 

of the supporting brace when P = 0. If the force in the sup-
porting brace is tensile, the terms inside the brackets of 
Equation 7 represent the magnification effect of tension 
stiffening, whereas if the force in the supporting brace is 
compressive, the terms inside the brackets of Equation 8 
represent the reduction effect of compression softening. The 
first three terms of a Taylor series expansion of the bracketed 
terms are provided in Equations 7 and 8 as well. They are 
accurate to within 1.2% of the theoretical values in the range 
(0 ≤ kL ≤ 3) and should be used when kL = 0 because the 
theoretical expressions become indeterminate at kL = 0. If 
the axial compressive force in the bracing member exceeds 
0.4Py where Py is the yield load, the tangent modulus should 
be used in place of the elastic modulus in Equation 8.
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Equation 6, the equation can be expressed in a nondimen-
sional form (Timoshenko and Gere, 1961) as
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In the event that yielding has occurred in the compression 
diagonal, the concept of tangent modulus can be used, and 
for design purposes, the nominal compressive strength, Pn, 
can be used in place of Pe in Equation 9. Thus, we have
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where, according to the AISC 360-10,
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in which Fy is the yield stress, 
F

E

KL

r

e =
⎛
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⎞
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π2

2  with K = 1 for 

a pinned-pinned member, L is the full length of the com-
pression diagonal, r is the radius of gyration, P AFy y=  is 
the yield load, and A is the cross-sectional area. Because 
Pn as expressed in Equation 11 takes into consideration the 
member out-of-straightness effect, the effect of geometrical 
imperfections on member strength is implicitly accounted 
for. Because the compression diagonal is conservatively 
assumed to be pinned at both ends in this study, its effective 
length factor K is equal to 1. As a result, L will be used in 
place of KL in the discussion to follow.

It is important to note that as ks increases, there comes a 
point when the compression diagonal becomes fully braced 
(Winter, 1960; Yura, 1996) in that the compression diago-
nal will buckle in its second mode as shown in Figure 2c. 
When this happens, any further increase in ks will not bring 
about an increase in its buckling capacity. This represents 
a limiting condition for the cross-bracing system, and the 
value of ks that corresponds to this condition is referred to 
as the transition brace stiffness kst. The computation of this 
transition brace stiffness will be given in the next section. In 
the discussion to follow, the system is said to be fully braced 
when this limiting condition is attained, and it is said to be 
partially braced when this limiting condition has not been 
reached.

TRANSITION BRACE STIFFNESS

As mentioned in the preceding section, as the lateral brace 
stiffness increases, a limiting condition will be reached in 
which the capacity of the compression diagonal will remain 
stationary. The magnitude of P for this limiting state, 
denoted as Ppeak, can be obtained by evaluating Pn in Equa-
tion 11 using the unbraced length (i.e., L/2) of the compres-
sion diagonal. The transition brace stiffness, kst, can then be 
evaluated from Equation 10 by substituting Ppeak for P in the 
equation. If we denote Po as the capacity of the compression 
diagonal when the lateral brace stiffness, ks, is 0 (i.e., when 
Pn in Equation 11 is evaluated using the full length L of the 
compression diagonal), the following equation for kst can be 
derived:
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Fig. 6.  Transition bracing stiffness variation.
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where Ppeak/Po, obtained by taking the ratio of Pn evalu-
ated for the unbraced length L/2 to Pn evaluated for the full 
length L of the compression diagonal, is given by
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and Fy and Fe are as defined in Equation 11.
A plot of Equation 12 as a function of Fy/Fe, using the 

expressions for Ppeak/Po given in Equations 13a, 13b and 13c, 
is shown in Figure 6. It can be seen that the nondimensional 
transition brace stiffness, kstL/Po, varies as a function of  
Fy/Fe when Fy/Fe is less than or equal to 9, but becomes a 
constant when Fy/Fe exceeds 9. Because Fe is inversely 
proportional to the square of L/r, it can be concluded that  

kstL/Po increases with L/r until it reaches 3π E Fy/ , when 
kstL/Po becomes a constant.

CROSS-BRACING SYSTEM BEHAVIOR

Figure 7 shows how the load-carrying capacity, Pmax, of a 
typical compression diagonal varies with the lateral brace 
stiffness, ks, for several slenderness ratios L/r. With reference 
to this figure, the following observations can be made:

1.	 All the curves consist of an initial nonlinear portion, as 
described by Equation 10, before the transition brace 
stiffness is attained followed by a horizontal line that 
represents the limiting condition when the transition 
brace stiffness is reached. When the brace stiffness is 
less than its transition value, the compression diagonal 
buckles in a symmetric mode (Figure 2b). Once the brace 
stiffness is equal to or larger than its transition value, the 
buckling mode of the compression diagonal will become 
anti-symmetric (Figure 2c).

2.	 The load capacity of the compression diagonal is a func-
tion of L/r only if it is fully braced, but it is a function of 
both L/r and ks if it is partially braced.

3.	 When the slenderness ratio of the compression diagonal 
is large (e.g., L/r = 400), the member behaves elastically, 
and so the relationship between the load capacity and 
the lateral brace stiffness follows that of Equation 9 
with a limiting value for Pmax/Po = 4. As L/r decreases,  
Pmax/Po falls below 4. This is because compression 
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members with low slenderness ratios tend to fail in the 
inelastic range. In the extreme case when the compres-
sion diagonal is so short that cross section yielding 
becomes the limit state, Pmax/Po will approach 1, mean-
ing the bracing effect from the cross diagonal will be 
totally ineffective.

4.	 Although different slenderness ratios will lead to differ-
ent limiting values for Pmax/Po, the slenderness effect on 
Pmax/Po is not apparent when ks is less than kst—that is, 
the ascending (nonlinear) portion of the curves shows 
very little change regardless of L/r.

DESIGN RECOMMENDATIONS

In this section, design equations for a cross-bracing system 
when the compression diagonal is under fully or partial 
braced condition will be presented.

Fully Braced Condition

When a compression diagonal is fully braced (i.e., when ks ≥ 
kst), its capacity is a function of its slenderness ratio, L/r, only 
and is independent of the brace stiffness, ks. Under this con-
dition, the capacity denoted as Ppeak can be calculated from 
Equation 11 by replacing KL with l = L/2—that is,
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2
, and l = L/2 is the unbraced length (i.e., 

half the full length) of the compression diagonal.

Partially Braced Condition

When the fully braced condition has not been reached (i.e., 
when 0 ≤ ks < kst), the compression diagonal is said to be 
partially braced. For the partially braced condition, Pmax 
is a function of both L/r and ks. To simplify matters, it is 
assumed that Pmax/Pn of the compression diagonal varies 
linearly with ksL/Pn—that is, a linearized form of Equation 
10 will be used. This assumption will result in a conserva-
tive estimate for Pmax. The proposed linearization involves 
determining the intercept and slope of a straight line that can 
approximate the curve given by Equation 10 and plotted in 
Figure 7 for a given L/r.
Intercepts
Because the intercept represents the capacity of the com-
pression diagonal when ks = 0, its value can be obtained 
directly from Equation 11 by using the full-length L of the 
compression diagonal. Therefore, if we denote Po as the 
intercept, we have
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Fig. 7.  Plot of Pmax/Po versus ksL/Po.
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where Fy and Fe are as defined in Equation 11.

Slopes
Slopes represent the ratio of the increase in Pmax as ks 
increases in the range 0 ≤ ks < kst. If we denote So as the 
slopes, we have from Figure 7 (with Pn = Po at ks = 0),
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(16)

Upon substitution of Equation 12 and Equation 13 into Equa-
tion 16, So can be expressed as a function of Fy/Fe. A plot of 
So versus Fy/Fe is given in Figure 8. Because the variation 
(from 0.202 to 0.188) is not significant, it is recommended 
that a constant value of 0.188 be used for design. Note that 
this value can also be obtained by approximating the full 
length of the curved inclined line in Figure 7 by a straight 
line that shares the same end points as the curved line and 
taking its slope—that is, So = (4 − 1)/16 = 0.188.

Using the intercept and slope equations presented earlier, 
the load capacity of a partially braced compression diagonal 
can be written as

	 P S k L Pmax o s o= +× � (17)

In summary, the load carrying capacity of the compression 
diagonal of a cross-brace system is
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where So = 0.188; L is the full length of the compression 
diagonal; Ppeak and Po are to be computed from Equations 14 
and 15, respectively; and ks is calculated from Equation 7 or 
8, depending on whether the supporting brace is in tension 
or compression.

BRACE FORCE

The brace force, denoted as Q in Figure 4, is a function of 
ks and the amount of out-of-plane deformation of the cross-
bracing system when Pmax is reached. Based on a parametric 
study (Lui and Khanse, 2008) in which a series of pinned-
end compression members having different slenderness 
ratios, supported by a spring with different stiffness placed 
at different locations and considering inelasticity and initial 
geometric imperfections, were analyzed numerically, the 
upper- and lower-bound envelope curves for Q/Pmax plotted 
as a function of ksL/Pe are shown in Figure 9. From the fig-
ure, a conservative Q/Pmax value of 4% was recommended. 
This is different from the 1% value recommended in the 
AISC specification (2010) for a nodal bracing system. This is 
because the 1% value is applicable only if the lateral stiffness 
provided is twice that of the critical brace stiffness defined 
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Fig. 8.  Variation of So with Fy/Fe.
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as the stiffness needed to develop Pe = π2EI/l2, where l is the 
unbraced length (i.e., length between adjacent braced points) 
of the compression member. In the current context, this con-
dition cannot be guaranteed because the same size section 
has to be used for both the tension and compressional diag-
onals because wind direction can reverse. In other words, 
unlike a typical nodal bracing problem when the design of 
the brace can be separated from the design of the member it 
braces, the design of the tension and compression diagonals 
is dependent on each other.

DESIGN PROCEDURE

In this section, design guidelines that take into consideration 
the interaction effect of the two diagonals of a cross-brac-
ing system will be proposed. Design examples will then be 
given to demonstrate how the proposed procedure can be 
used for the design of cross-bracing systems for concentri-
cally braced frames. In some applications, the cross-bracing 
members can be prestrained or prestressed during installa-
tion to enhance their stiffness. The pretensioned stress is 
usually in the range of 1 to 5% of the material yield stress. 
If such prestress is present, it should be accounted for in the 
analysis in obtaining the internal axial forces in the cross 
diagonals. 

The following procedure is recommended for the design 
of a cross-bracing system:

1.	 Determine the required axial strength, Pu, for both 
diagonals.

2.	 Select a trial section based on the compression, Pu, and if 
both diagonals are in compression, select a trial section 
based on the larger of the two compressive, Pu. Because 
the load capacity of the compression diagonal, Pmax, is 
not a constant but varies with L/r for the fully braced 
condition, and with L/r and ks for the partially braced 
condition as shown in Figure 7, an assumed increase of 
the unbraced (i.e., first mode) capacity of the compres-
sion diagonal Po by a certain percentage should be used. 
In terms of design, this means a reduction in Pu can be 
used. In the example problems, a trial section is selected 
based on a reduced required compressive strength of 
Pu/1.25, but depending on the expected L/r and ks values, 
other reduction factor for Pu can be used as well.

3.	 Using the trial section properties, calculate L/r for the 
compression diagonal, and determine ks from Figure 5 
or, alternatively, from Equation 7 if the supporting diag-
onal is in tension and from Equation 8 if the supporting 
diagonal is in compression.

4.	 Calculate the transition brace stiffness, kst, from Equa-
tion 12.

Fig. 9.  Upper- and lower-bound curves for the braced force.

155-168_EJ3Q_2012-11R.indd   163 6/17/13   12:10 PM



164 / ENGINEERING JOURNAL / THIRD QUARTER / 2013

5.	 If ks ≥ kst, the compression diagonal is fully braced and 
so Pmax (= Ppeak) is to be computed from Equation 14. 
However, if ks < kst, the compression diagonal is only 
partially braced, so Pmax is to be computed from Equa-
tion 17. 

DESIGN EXAMPLES

Example 1

A square hollow structural section (HSS) is to be used for the cross braces of a diagonal bracing system of an industrial building 
to resist wind load. If the length of the members is 20 ft and the required axial strengths in the tension and compression diagonals 
are computed to be 10 and 35 kips, respectively, select an appropriate HSS. Assume the members are pinned at both ends and 
welded together at their intersection point. Use ASTM A500 Grade B steel.

Solution:

As a first trial, use a reduced required axial compressive strength of:

	
Pu reduced,

.
= ⎛
⎝⎜

⎞
⎠⎟
=35

1 25
28 kips

�

Using the AISC Compression Member Selection Tables with KL = (1)(20) = 20 ft, select HSS 4×4×1¼ as a trial section for the 
compression diagonal. Because the wind can blow in either direction, the same section is to be used for the tension diagonal.

Material properties: ASTM A500 Grade B steel: Fy = 46 ksi, E = 29,000 ksi.

Geometric properties: A = 3.37 in.2, I = 7.80 in.4, r = 1.52 in., Z = 4.69 in.3, L = 240 in.

Determine the lateral stiffness of the tension diagonal from Equation 7:
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Calculate the transition lateral stiffness from Equation 12.

Because Fy/Fe = 4.01, Ppeak/Po = 3.01 from Equation 13b and Po = 33.9 kips from Equation 15. Hence, using Equation 12 we have
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Because ks < kst, the compression diagonal is only partially braced.

6.	 Check the adequacy of both the compression and tension 
diagonals using the axial force–flexure interaction equa-
tion by subjecting the members to their respective Pu and 
to a lateral force equal to 4% of the compressive Pu. If 
the interaction equation is not satisfied, select a new trial 
section and repeat steps 3 through 6.
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Compute Pmax using Equation 17: 

	 P S k L Pmax s o= + =×0 78 3kips�

The design compressive strength is therefore

	 ϕc maxP = =( . )( . ) .0 90 78 3 70 5 kips�

Because the lateral interaction force, Fs, between the compression and tension diagonals is assumed to be 4% of Pu, 
Fs = =( . )( ) .0 04 35 1 4 kips.

Now, check the adequacy of the compression and tension diagonals for combined axial force and flexure.

The AISC interaction equation that needs to be checked is:
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For the compression diagonal,

	 Pr = 35 kips�  
	 P Pc c max= =ϕ 70 5. kips�  
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The compression diagonal is OK.

For the tension diagonal,

	 Pr = 10 kips�  
	 P Pc y= =ϕ 139 5. kips�  

	
M F Lr s= =1

4
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The tension diagonal is OK.

Therefore, use the HSS4×4×¼ section for both the compression and tension diagonals of the cross-bracing system.
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Example 2

A cross-bracing system is to be designed using a W-section and ASTM A992 steel for the frame shown in Figure 10. The frame 
is designed to support a dead load of 20 kips, a live (or roof live) load of 60 kips, and a wind load of 10 kips. All loads are to 
be applied to the top joints as concentrated loads as shown in the figure. The column and beam sections used for the frame are 
W8×31 and W6×20, respectively. They are oriented so that their webs are parallel to the plane of the frame. The two diagonals 
of the bracing system are assumed to be pin connected to the frame and are joined at their mid-points using a welded connec-
tion. The diagonals are 32 ft in length and are oriented in such a way that their webs are perpendicular to the plane of the frame. 

Solution:

Because the frame is statically indeterminate, the analysis results will depend on the relative sizes of the members. Assuming the 
members used for the cross-bracing system are both W4×13, the axial forces calculated for these members from two controlling 
load combinations are summarized here.

Load Combination Diagonal AC Diagonal BD

1.2D + 1.6L 15.6 kips (compression) 15.6 kips (compression)

1.2D + 1.6Lr + 0.5W 12.8 kips (compression) 19.2 kips (compression)

Note that there is no “tension” diagonal for this frame. However, for the gravity plus wind load case, because the two diagonals 
are not subjected to the same axial force, diagonal AC can still provide lateral bracing to diagonal BD.

For the W4×13 section,

Material properties: ASTM A992 steel: Fy = 50 ksi, E = 29,000 ksi.

Geometric properties: A = 3.83 in.2, Ix = 11.3 in.4, rx = 1.72 in., Iy = 3.86 in.4, ry = 1.00 in., L = 384 in.

For the gravity load case, both diagonals are subjected to the same axial force. As a result, neither diagonal can provide out-of-
plane lateral restraint to the other diagonal, so ks = 0 for both diagonals. However, they do provide in-plane translational restraint 
to each other as shown in Figure 2a.

Using Equation 11, and with (KL/r)x = (1)(384)/1.72 = 223 and (KL/r)y = (1)(192)/1.00 = 192, the design compressive strength is 
determined to be ϕcPn = (ϕcPn)x = 17.4 kips, which is larger than the required compressive strength of Pu = 15.6 kips.

For the gravity plus wind load case, the lateral stiffness that diagonal AC can provide to diagonal BD can be determined from 
Equation 8 as
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and because Fy/Fe = 8.68, Ppeak/Po ≈ 4 from Equation 13b, and Po = 19.3 kips from Equation 15. Hence, by using Equation 12,
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Because ks < kst, diagonal BD is only partially braced, so its capacity is to be calculated from Equation 17 as: 

	 P S k L Pmax o s o= × + = 27 7 kips�
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The design compressive strength is therefore

	 ϕc maxP = =( . )( . ) .0 90 27 7 24 9 kips�

The lateral interaction force, Fs, between the two diagonals is assumed to be 4% of Pu, so Fs = (0.04)(19.2) = 0.768 kips.

Now, check the adequacy of diagonal BD for the combined axial force and flexure under the gravity plus wind load case. Because 
Pr/Pc = Pu/ϕcPmax = 19.2/24.9 = 0.771, use Equation 19a with

	 Pr = 19 2. kips�  
	 P Pc c max= =ϕ 24 9. kips�  

	
M F Lr s= =1

4
73 7. kip-in.

�  
	 Mc b= =×ϕ AISC Eq. F2-2 kip-in.( ) 283 �

In calculating Mc, Cb is taken as 1.67, so ϕbMp controls, and
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The design is therefore is OK. Note that diagonal AC need not be checked because it has a lower Pu than diagonal BD.

Use W4×13 for the diagonals of the cross-bracing system. It should be noted that the W4×13 would have been considered inad-
equate for the gravity plus wind load case if the lateral bracing effect of the cross-bracing system had not been considered.

Fig. 10.  Example frame.
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SUMMARY AND CONCLUSIONS

In a conventional design of cross-bracing systems for braced 
frames, two relatively simple but somewhat unrealistic 
approaches are often used. One is a conservative approach 
in which only the tension diagonal is assumed to be active in 
controlling frame sway. The contribution of the compression 
diagonal is totally ignored. On the other extreme, the ten-
sion diagonal is assumed to have sufficient stiffness to brace 
the compression diagonal to allow it to attain a compres-
sive strength that corresponds to its second buckling mode. 
In reality, the behavior of the system often falls somewhere 
between these two extreme cases. In this study, the partially 
braced strength of a typical cross-bracing system is inves-
tigated and design guidelines are proposed. Examples are 
then given to demonstrate how the proposed procedure can 
be applied for the design of cross-bracing systems. Based on 
the current study, the following conclusions can be drawn:

1.	 The compression diagonal is fully braced and can 
develop a compressive strength corresponding to its 
second buckling mode only if the tension diagonal pos-
sesses sufficient stiffness referred to as the transition 
stiffness, kst, given by Equation 12.

2.	 The transition brace stiffness increases with Fy/Fe or 
L/r, and for large slenderness (when the compression 
diagonal remains elastic at incipient instability) becomes 
asymptotic at 16Po/L, where Po is the axially capacity of 
the compression diagonal when the lateral bracing stiff-
ness ks = 0, and L is the full length of the member.

3.	 If ks ≥ kst, the compression diagonal is said to be fully 
braced. The compressive strength of a fully braced com-
pression diagonal, given by Equation 14, is a function its 
slenderness ratio, L/r, only.

4.	 If ks < kst, the compression diagonal is said to be partially 
braced. The compressive strength of a partially braced 
diagonal, given by Equation 17, is a function of both its 
slenderness ratio, L/r, and the lateral bracing stiffness, ks.

5.	 In cases when both diagonals are in compression, the 
diagonal with the lower compressive force can still pro-
vide bracing to the diagonal with the higher compressive 
force (see Figure 5) as long as the axial forces in the 
diagonals are not the same.

6.	 The internal out-of-plane force developed at the inter-
section point of the two diagonals when instability 
occurs can be conservatively taken as 4% of the required 

compressive strength, Pu, of the compression diagonal. 
This force is assumed to act on both diagonals and their 
adequacy is checked using the AISC interaction equation 
for combined axial force and flexure.
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INTRODUCTION

L ateral bracing for columns and beams sufficient to per-
mit them to attain the buckling strength of the member 

as if braced by immovable supports is called stability brac-
ing. The stability bracing requirements found in Appendix 
6 of the AISC Specification for Structural Steel Buildings 
(AISC, 2010a) have remained essentially unchanged since 
they were first introduced in the 1999 LRFD Specification 
for Structural Steel Buildings (AISC, 2000). George Winter 
(1958) appears to have been the first to recognize that sta-
bility bracing must not only develop sufficient strength but 
must also have sufficient stiffness to provide the necessary 
stability bracing of columns and beams. This stability brac-
ing is equivalent in effectiveness to an immovable support 
and in this paper is also referred to as bracing.

Although the Specification requirements appear to be 
fairly straightforward, practicing engineers often ask about 
the difference between “nodal” and “relative” bracing. This 
paper will first look at the background of the provisions and 
then suggest how best to distinguish between these “nodal” 
and “relative” braces. It will also show that the approach 
taken by the Specification is safe and permits simple rules to 
be applied to a wide range of bracing problems.

Figure 1 shows four ways to provide lateral bracing for 
a column; three are identified as nodal bracing and one as 
relative bracing. Case (a) shows braces that are immovable 
supports. The column is divided into two segments with 
length Lb. Thus, the Euler buckling load (flexural buckling) 
for this column is Pe = π2EI/Lb

2. The column of case  (b) 
is braced at the midpoint with a spring. Thus, if the given 
spring has sufficient stiffness and strength, this column will 
also buckle at the load Pe as for case (a). Case (c) column is 
similar to case (b) except that the immovable support at the 
top has been replaced by a spring. If these springs have suf-
ficient stiffness and strength, this column will also buckle at 
the same load as in case (a). The last column to consider is 
that given as case (d). This structure shows a column that is 
braced by a series of diagonal braces, interconnected in such 
a way that the column on the right is sufficiently braced to 
permit it to buckle at the same load as the column of case (a).

COLUMNS WITH NODAL BRACES

Column Case (b)

Timoshenko (1936) used the basic theory of elastic stability 
to determine the ideal bracing stiffness for the column given 
as case  (b) and similar columns with numerous equally 
spaced braces. Winter (1958) recognized that it would not 
be necessary to determine the exact stiffness and strength 
requirement if a practical and simple method could be 
developed that would also account for initial imperfections 
of the column. The column shown in Figure  2 is the col-
umn addressed initially by Winter. The column is shown in 
its perfectly straight position as a solid line. The assumed 

Notes on the Nodal and Relative Lateral Stability 
Bracing Requirements of AISC 360
LOUIS F. GESCHWINDNER and ANDRES LEPAGE
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intended to permit properly braced columns and beams to attain the buckling strength of the member as if braced by immovable supports and 
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imperfect column is shown as a dashed line with an initial 
displacement at the point of the spring, δo. As a compressive 
load is applied to the column, it will deform as shown by the 
second dashed line with an additional displacement, δ. The 
corresponding force in the spring is F = βδ, where β is the 
spring stiffness at the brace point. If the spring stiffness is 
sufficient to permit buckling as defined in case (a), the stiff-
ness will be defined as βreq. The column will snap through 
to the two half-wave modes shown as a thin solid line in Fig-
ure 2, and the load will be equal to the Euler buckling load, 
Pe = π2EI/Lb

2. In this buckled shape, considering small dis-
placements, placing a hinge at the point of the spring causes 
little loss of accuracy because the moment at this point may 
be taken as zero. Taking moments about this hinge for either 
half of the column gives

	
M L P

req
b e o= − +( ) =β δ

δ δ
2

0
�

(1)

which leads to 

	
β δ

δreq
e

b

oP

L
= +⎛

⎝⎜
⎞
⎠⎟

2
1

�
(2)

For the perfect or ideal column, δo = 0, and the ideal stiff-
ness can be defined as

	
βideal e

b

P

L
= 2

�
(3)

The ideal stiffness given in Equation 3 is the minimum 
brace stiffness needed for the column to attain the Euler 
buckling load if the column were perfectly straight. For 
real braces, this brace stiffness will include the influence 
of all components that make up the brace between the col-
umn being braced and the immovable support. This would 

include connections and any other structure the brace might 
be connected to.

It will be shown later that providing the ideal stiffness 
leads to a very large spring force at buckling. However, given 
that a real column is not ideal, the required brace stiffness 
can be determined by combining Equations 2 and 3, thus

	
β β δ

δreq ideal
o= +⎛

⎝⎜
⎞
⎠⎟

1
�

(4)

and the brace force is given by 

	 F req ideal o= = +( )β δ β δ δ �
(5)

Winter (1958) proceeds to determine the ideal stiffness 
for columns similar to Figure 1b with two, three and four 
equally spaced springs while having an immovable sup-
port at the top of the column. These values are identical to 
those presented by Timoshenko (1936) and are given here in 
Table 1, where

	 βideal = η0Pe/Lb� (6)

A value of n = 1, which leads to η0 = 2.0, corresponds to the 
condition that led to Equation 3 as shown in Figure 2. The 
subscript of η refers to the lateral degree of freedom at the 
top of the column.

More recently, Zhang, Beliveau and Huston (1993) pub-
lished a single equation that provides the ideal stiffness for 
any number of springs. Their equation is

	
β π λideal

e

b

e

b

n

n

P

L

P

L
=

+
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =4

2 1
2sin

�
(7)

The coefficient λ in Equation 7 provides identical values to 
those given by Timoshenko (1936).

Lb

Lb

P

case (a)

P

case (b)
Nodal

P

case (c)

P

Lb

Lb

case (d)
Relative

Fig. 1.  Lateral bracing for column stability.

169-180_EJ3Q_2012-13.indd   170 6/17/13   12:11 PM



ENGINEERING JOURNAL / THIRD QUARTER / 2013 / 171

Column Case (c)

The column of case (c) behaves differently than the column 
of case (b) because, in addition to the intermediate braced 
points, the top of this column is permitted to displace lat-
erally. This column was treated by Timoshenko and Gere 
(1961) for the case of only one spring, which was located at 
the top of the column as shown in Figure 3. Taking Winter’s 
(1958) equilibrium approach and using the same definitions 
as previously, the moment about the column base is

	 M L Preq b e o= − +( ) =β δ δ δ 0� (8)

which gives the required stiffness as 

	
β δ

δreq
e

b

oP

L
= +⎛

⎝⎜
⎞
⎠⎟

1
�

(9)

For the ideal column with δo = 0, the ideal stiffness is 

	
βideal e

b

P

L
=

�
(10)

Although Timoshenko and Gere (1961) do not provide 
results for more than one spring in the arrangement of case 

(c), Zhang et al. (1993) provide an equation for the ideal 
spring stiffness for any number of springs as

	
β π ηideal

e

b

e

b

n

n

P

L

P

L
= −

+
⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ =4

2

2 1

2 1
2

1sin
�

(11)

The ideal stiffness given by Equation 11 is the minimum 
stiffness if the column were ideal. Note that multiplier η1 
(Table 2) starts at 1.0 for a single spring and increases to 4.0 
for an infinite number of springs. The multiplier η0 (Table 1) 
starts at 2.0 for a single spring and also increases to 4.0 for 
an infinite number of springs.

As was the situation with the column of case (b), a real 
column is not ideal, and the brace stiffness can be deter-
mined by combining Equations 9 and 10, thus

	
β β δ

δreq ideal
o= +⎛

⎝⎜
⎞
⎠⎟

1
�

(12)

and the brace force is given by

	 F req ideal o= = +( )β δ β δ δ � (13)

Equation 12 is identical to Equation 4. Thus, regardless of 

Table 1.  Coefficient, η0, for Determination of Ideal Spring Stiffness, Case (b) 
n = number of springs (Timoshenko, 1936)

n 1 2 3 4 5 6 10 infinite

η0 2.00 3.00 3.41 3.62 3.73 3.80 3.92 4.00

Pe

Lb

Lb

P

F =

F/2 = /2

F/2 = /2

o

Pe

Fig. 2.  Column buckling (Winter, 1958).

Table 2.  Coefficient, η1, for Determination of Ideal Spring Stiffness, Case (c),  
n = number of springs (Zhang et al., 1993)

n 1 2 3 4 5 6 10 infinite

η1 1.00 2.62 3.25 3.53 3.68 3.77 3.91 4.00

Lb

P

F =

o

T

Fig. 3.  Brace at top of column (Timoshenko and Gere, 1961).
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which spring arrangement is used, the relationship between 
the required stiffness and the ideal stiffness is the same and 
is a function of the relationship between the initial displace-
ment and the final displacement at buckling.

To investigate the relationship between spring stiffness 
and column buckling strength, the column of Figure 3 will 
again be used. Taking moments about the pin at the base of 
the column gives

	 P LT b T oδ β δ δ= −( )� (14)

Using the ideal stiffness from Equation 10 and rearranging 
yields

	

P

Pe ideal

T o

T ideal T o
=

−( )⎡

⎣
⎢

⎤

⎦
⎥ = −

⎡

⎣
⎢

⎤

⎦
⎥

β
β

δ δ
δ

β
β δ δ

1
1

�

(15)

From Equation 15 it can be seen that, for a brace with ideal 
stiffness, δT/δo must approach infinity in order for the col-
umn buckling load to approach Pe. This is illustrated in Fig-
ure 4 for the column with a spring of ideal stiffness through 
the curve labeled βideal. With the deflection approaching 
infinity, the brace force will also approach infinity. This, of 
course, is an untenable solution. However, if the spring stiff-
ness is taken as 1.5βideal, it can be shown that the column will 
attain the buckling load with a displacement of δ δT o = 3. 
If the spring stiffness is 2βideal, the column will attain the 
buckling load when δ δT o = 2, and when the spring stiff-
ness is 3βideal, the column will attain the buckling load when 
δ δT o = 1 5. . These curves are illustrated in Figure 4.

For a column to attain P = Pe, Equation 15 leads to a brace 
(spring) stiffness of

	
β

δ δ

δ δ
β=

−( )
T o

T o
ideal

1 �
(16)

Combining Equations 10 and 16, the brace force, F =  
β(δT − δo), simplifies to

	
F

L
PT

o

o

b
e=

⎛

⎝
⎜

⎞

⎠
⎟

δ

δ

δ

�
(17)

Both Equations 16 and 17 are plotted in Figure 5 as a 
function of δ δT o = 0. The figure shows that for δ δT o = 2, 
the combination of required brace stiffness and brace force 
is optimal for design.

The case of δ δT o = 2 means that the displacement at 
buckling will be equal to the initial deflection. Thus, δ = δo, 
for which Equation 12 is simplified to

	 β β βreq ideal ideal= +( ) =1 1 2 � (18)

Equations 5 and 13, which give the required brace force, 
are also identical for the two arrangements of bracing. Thus, 
regardless of arrangement of nodal braces, the required 
brace force is a function of the ideal stiffness and the dis-
placement at the brace point. To determine the brace force, it 
is not sufficient to establish the relationship between the ini-
tial imperfection and the final deflection; actual numerical 
values must be established. With the column length defined 
as in these cases, the permitted out-of-plumbness tolerance 
is usually taken as 0.002Lb, based on the AISC Code of 
Standard Practice (AISC, 2010b). For the assumption of δ = 
δo, the brace force is

	

F

L L L

ideal o

ideal b b b ideal

= +( )
= +( ) =
β δ δ

ββ β0 002 0 002 0 004. . . �

(19)

0

1

0 2 4 6 8 10
T / o

= o

P/Pe

= ideal

= 2 ideal

= 1.5 ideal

= 3 ideal

Fig. 4.  Influence of brace stiffness, β, on column buckling load, P.
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This coincides with the value obtained using Equation 17, 
with δ δT o = 2 and δo bL = 0 002. .

Specification Provisions for Nodal Braces

The required brace stiffness and force for column nodal 
braces are given in Appendix 6.2.2 of the Specification. 
Winter (1958) noted that “the small magnitudes of both 
rigidity and strength of bracing which are sufficient to pro-
vide extremely large effects…suggest that it is not necessary 
to compute these two characteristics with great accuracy.” 
The largest required brace stiffness occurs as the number of 
braces approaches infinity for the columns of cases (b) and 
(c). In both cases, the coefficient, η0 or η1, is equal to 4.0. 
Thus, the Specification adopted this condition as a simple 
and conservative requirement and from Equation 18, with 
βideal = 4Pe / Lb,

	
β β βreq ideal ideal

e

b

P

L
= +( ) = =1 1 2

8

�
(20)

In the elastic buckling region of column behavior, the nomi-
nal strength is given by Specification Equation E3-3. In 
terms of force this can be written as

	 P Pn e= 0 877. � (21)

Because the designer will be starting with the column 
required strength, Pr , it will be useful to establish a rela-
tionship between Pr and Pe. If the required strength of the 
column is exactly equal to the available strength, then

	 P P P Pr n e e= = ( ) =ϕ 0 9 0 877 0 789. . . � (22)

Solving Equation 22 for Pe and defining a resistance factor 

for design of bracing stiffness, ϕ = 0.789, yields

	
P

P P
e

r r= =
0 789. ϕ �

(23)

Substituting Equation 23 into Equation 20 gives

	
β

φ
req

r

b

P

L
= 8

�
(24)

Conservatively defining ϕ = 0.75 yields Specification 
Equation A-6-4 for LRFD. A similar substitution with Ω 
will give the ASD equation. The same requirements apply to 
columns controlled by inelastic buckling. The Specification 
Commentary provides a way to reduce the required stiff-
ness to account for the actual number of intermediate braces 
but does not distinguish between the columns of Figures 1b 
and 1c.

Although the Specification establishes the required brace 
stiffness based on an infinite number of equally spaced 
braces, the required brace force is based on the two-story 
column shown in Figure 2. Using Equation 19 and substitut-
ing the ideal stiffness for a single spring at mid-height, from 
Table 1, which is η0 = 2.0, yields

	
F L L

P

L
Pb ideal b

e

b
e= = ⎛

⎝
⎜

⎞
⎠
⎟ =0 004 0 004

2
0 008. . .β

�
(25)

Because the column will only be called upon to provide the 
required strength, Pr , this required strength will be directly 
substituted in place of Pe. Design for brace strength will uti-
lize the safety and resistance factors associated with design 
of the specific bracing members.

Winter (1958) assumed that the shape of the initial 

Fig. 5.  Required brace stiffness, β, and brace force, F, for column load P = Pe.
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imperfections followed the same sine wave as the buckled 
column. Plaut (1993) showed that Equation 25, based on 
Winter’s approach, can be unconservative for assumed dis-
placements with shapes other than that assumed by Winter. 
To account for this, Specification Equation A-6-3 for the 
required brace force uses the multiplier of 0.01 rather than 
0.008: 

	 P Prb r= 0 01. � (26)

COLUMNS WITH RELATIVE BRACES

Column Case (d)

The approach to development of the requirements for relative 
braces usually starts with the structure shown in Figure 6. 
A review of that structure shows that the diagonal bracing 
member connects the top of the column to an immovable 
support. Thus, this structure can be modeled like the struc-
ture in Figure 3. The only difference is that the stiffness and 
force requirements relate to the horizontal direction, and 
they must be converted for design to the longitudinal direc-
tion of the brace. Accepting that Figure 3 is a simplification 
of the structure in Figure 6, the required stiffness for the 
structure of Figure 6 is derived from equilibrium:

	
β δ

δreq
e

b

oP

L
= +⎛

⎝⎜
⎞
⎠⎟

1
�

(27)

which is identical to Equation 9. For the perfect or ideal col-
umn, δo = 0 and the ideal stiffness is 

	
β ρ
ideal

e

b

P

L
= 1

�
(28)

where ρ1 = 1.0. The required brace force is then given by

	 F ideal o= +( )β δ δ � (29)

The extension of the one-story structure of Figure 6 to 
a multistory structure similar to that in Figure 1d is rarely 
presented in the literature. It is that extension that causes 
difficulty in understanding exactly what a relative brace is 
because, clearly, the two cases just discussed could both be 
called nodal braces.

Zhang et al. (1993) presented a study of column brac-
ing stiffness that addressed both nodal and relative braces 
through an energy analysis. They first showed that for a 
single-degree-of-freedom system, as shown here in Figures 
3 and 6, the ideal stiffness is as given in Equation 28. They 
then proceed to address multi-degree-of-freedom systems 
and found, again through an energy analysis, that for sys-
tems similar to that shown in Figure 1d, ρ1 is always 1.0. 
In addition to the multi-degree-of-freedom system shown 
in Figure 1d, they also studied a system similar to that in 
Figure 1d but with an immovable support at the top of the 
structure. They found that the coefficient for this case, taken 
here as ρ0, was also always 1.0, regardless of the number of 
brace points. Thus, the ideal stiffness (case with δ0 = 0) for 
all these relative bracing systems is given as

	
β ρ
ideal

e

b

P

L
=

�
(30)

with ρ = ρ0 = ρ1 = 1.0.
The condensed stiffness matrix for the multistory nodal 

brace system in Figure 1c (with identical braces at each 
story) is the constant brace stiffness times the identity 
matrix. Thus, there is no interaction between the displace-
ment at one brace point and the displacement at any other 
brace point. The stiffness matrix for the relative brace sys-
tem shown in Figure 1d is the constant brace stiffness times 
a diagonal matrix with a bandwidth of 3. Thus, there is inter-
action between adjacent braced points. It is this interaction 
that separates a relative brace system from a nodal brace 
system.

Specification Provisions for Relative Braces

Using Equations 27, 28 and 29, the equations for relative 
braces found in the Specification can be developed. If the 
final deflection is again taken equal to the initial imperfec-
tion, as was done for nodal braces, δ = δo and from Equation 
27 the required brace stiffness is 

	
β βreq

e

b
ideal

P

L
= =2

2
�

(31)

Substituting for Pe, as was done earlier for nodal braces, 
yields the required brace stiffness as given by Specification 
Equation A-6-2:

o

T

P

Lb

Fig. 6.  Relative column brace.
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β

φ
req

r

b

P

L
= 2

�
(32)

As with the derivation of Equation 25 for nodal braces, if a 
tolerable value of displacement at buckling, δ, is assumed 
equal to the initial out-of-plumbness, δ = δo = 0.002Lb , and 
Pe is replaced by Pr , the required brace force becomes

	 P Prb ideal o r= +( ) =β δ δ 0 004. � (33)

which is Specification Equation A-6-1.

NUMERICAL EXAMPLES

A three-story column will be used to confirm that the ideal 
spring stiffness results in the column buckling at the Euler 
buckling load. Figure 7 shows four possibilities for bracing 
of the column, similar to the four columns shown in Fig-
ure 1. For the column, I = 18.3 in.4 (Iy for a W8×24) and Lb = 
10.0 ft, SAP2000 (CSI, 2011) is used to determine the buck-
ling load for each column considering only flexural defor-
mations of the column.

Case (a): Immovable Supports

The Euler buckling load for this column with a length of 
10.0 ft is

	

P
EI

L
e = =

( )⎡⎣ ⎤⎦
=π π2

2

2

2

29 000 18 3

10 12
363 7

( , )( . )
.  kips

�

With immovable supports, the buckling load for the 

three-story column, as determined by SAP2000, is Pcritical = 
363.8 kips.

Case (b): Two Intermediate Spring Supports, n = 2,  
η0 = 3.00

Again, with the Euler buckling load at 363.7 kips, the ideal 
stiffness is

	
β η
ideal

e

b

e

b

P

L

P

L
= = = ( ) =0 3 00 3 00 363 7

10 12
9 09

. . ( . )
.  kips/in.

�

The minimum spring stiffness for these two intermediate 
springs resulting in a buckling load of 363.7 kips, as deter-
mined by SAP2000, is β = 9.09 kips/in.

Case (c): Two Intermediate Spring Supports Plus Top 
Spring Support, n = 3, η1 = 3.25

Again, with the Euler buckling load at 363.7 kips, the ideal 
stiffness is

	
β η
ideal

e

b

e

b

P

L

P

L
= = = ( ) =1 3 25 3 25 363 7

10 12
9 85

. . ( . )
.  kips/in.

�

The minimum spring stiffness for these three springs result-
ing in a buckling load of 363.7 kips, as determined by 
SAP2000, is β = 9.84 kips/in.

Case (d): Three-Story Column with Truss Type 
Bracing, ρ = 1.0

For this structure, the horizontal and vertical members are 
assumed axially rigid. Thus, the bracing stiffness will all be 

case (d)
Relative

P

case (a)

10 ft

10 ft

10 ft

P

case (b)
Nodal

P

case (c)

P

10 ft

10 ft

10 ft

10 ft

Fig. 7.  Structures for lateral bracing for column stability examples.
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contributed by the diagonal braces. Again, with the Euler 
buckling load at 363.7 kips, the ideal stiffness is

	
β ρ
ideal

e

b

e

b

P

L

P

L
= = = ( ) =1 00 1 00 363 7

10 12
3 03

. . ( . )
.  kips/in.

�

The minimum spring stiffness for the three diagonals 
resulting in a buckling load of 363.7 kips, as determined by 
SAP2000, is β = 3.03 kips/in., which corresponds to a brace 
area of 0.0355 in.2

RECOMMENDED REVISIONS TO APPENDIX 6 
REQUIREMENTS FOR COLUMN BRACES

Based on the development presented here, there appear to be 
two inconsistencies in the Specification requirements. The 
first has to do with determination of the required brace force 
for nodal braces and the second the brace force for relative 
braces. 

The required brace stiffness given in Equation 24 (Equa-
tion A-6-4) is based on the assumption of an infinite num-
ber of nodal braces, η0 = 4.0, while the required brace force 
given in Equation 25 is based on a single intermediate nodal 
brace, η0 = 2.0. It would seem to be a more reasonable 
assumption to base both the required stiffness and strength 
on the same structure. Because the assumption of an infinite 
number of braces is conservative for all cases, use of that 
same assumption for required brace force would mean that 
Equation 25 should be 

	
F L L

P

L
Pb ideal b

e
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e= = ⎛

⎝
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⎠
⎟ =0 004 0 004

4
0 016. . .β

�
(34)

Using the increase for a variation in the shape of the ini-
tial imperfections based on the work of Plaut (1993) and how 
that work was used to get from Equation 25 to Equation 26 
(Equation A-6-3), the required brace force should be 

	 P Prb r= 0 02. � (35)

It is interesting to note that this recommended requirement 
is the same as what had been used historically (before 1999); 
brace force equals 2% of the force in the column. 

The Specification Commentary provides an approach to 
reduce the required brace stiffness to account for the actual 
number of braces. However, because the required brace force 
is already based on the presence of a single brace, there can 
be no reduction of the brace force to account for the actual 
number of braces.

Although no studies have been found to illustrate the 
impact of the variation in shape of the initial imperfections 
on the relative bracing system, it would seem logical that 
there is an influence and that it would be similar to that on a 

nodal brace system. That being the case, Equation 33 (Equa-
tion A-6-1) should be 

	 P Prb r= 0 005. � (36)

WHICH IS IT, NODAL OR RELATIVE?

The Specification makes the distinction between nodal and 
relative braces in order to provide simplified equations for 
design of braces. Using the definitions of nodal and relative 
braces found in the Specification Commentary, the brace of 
Figure 3 is a nodal brace, and the brace of Figure 6 is a 
relative brace. Yet, as was shown here, for the case of this 
one-story structure, the brace points are identical in how 
they behave and, thus, have the same theoretical strength 
and stiffness requirements. For a nodal bracing system, all 
braces are nodal. For a relative bracing system, all diagonal 
braces are relative braces, while all other members are axi-
ally rigid. There are many other ways to provide bracing for 
columns. However, based on the derivations illustrated here, 
the Specification requirements do not directly apply to those 
situations.

As the number of brace points increases, the ideal stiff-
ness coefficient for nodal braces approaches 4, while the 
ideal stiffness coefficient for relative braces remains at 
1. This difference is also reflected in the required brace 
strength. Thus, it is desirable to distinguish between the 
two types of bracing systems. A nodal brace connects a 
column to an immovable support. The condensed stiffness 
matrix for a multistory nodal brace system (Figures 1a, 1b 
and 1c) with identical braces at each story is the constant 
brace stiffness times the identity matrix. Thus, there is no 
interaction between the displacement at one brace point 
and the displacement at any other brace point. A relative 
brace system, however, braces a column in such a way that 
there is interaction between the displacements at each end 
of the column unbraced length. In this system (Figure 1d), 
the stiffness matrix is the constant brace stiffness times a 
diagonal matrix with a bandwidth of 3, showing the interac-
tion between adjacent brace points. It is this interaction that 
defines a relative brace system and distinguishes it from a 
nodal brace system. 

Another way to identify the type of bracing is by exam-
ining the braced member and assuming that it is hinged at 
the brace points. These hinges lead to a structural mech-
anism when any single brace point is considered laterally 
unsupported. If the mechanism accommodates a deflected 
shape involving the displacement of more than one brace 
point, then the bracing is relative. When investigating pos-
sible mechanisms, only diagonal braces or spring supports 
may be removed. This is consistent with the assumption that 
these members are the only source of axial deformations.

This can be illustrated by considering the column of 
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Figure  7d as if it were hinged at each brace point. The 
removal of the bottom diagonal brace triggers a mechanism 
where all three brace points above the base displace later-
ally as a rigid body. This is an indication that the bottom 
diagonal provides relative bracing. If the diagonal brace at 
the second level is removed, a mechanism is formed where 
the two brace points above this brace are displaced laterally. 
Thus, this too is a relative brace. If this same approach is 
applied to any of the examples of nodal braces, it will be 
seen that the only brace point to displace is the point actually 
braced, thus confirming it is a nodal brace.

Once the required force at the brace points is determined, 
it is generally sufficient to consider that this force acts non-
concurrently at each of the brace points. This is consistent 
with the assumption that the braced member acts as if it 
were hinged at brace points and that instability occurs with 
buckling of a single segment between hinges.

To simplify design, the Specification provisions for a 
nodal brace use the worst-case stiffness requirement of an 
infinite number of braces. This means that when using the 
requirements of Specification Appendix 6, the required 
stiffness of a nodal brace is 4 times that of a relative brace 
(comparing Equations 20 and 31) and, using the approach 
detailed here, the required strength of the nodal brace is 2.5 
times that of a relative brace (comparing Equations 26 and 
33). Because the option is available in the Specification, it is 
desirable to design braces like those of Figures 1d and 6 as 
relative braces. However, for any column bracing system, if 
there is a question as to how to classify the brace, a nodal 
bracing solution will generally be conservative. Because the 
required stiffness and strength are usually small in magni-
tude, this extra conservatism is not likely to be a burden on 
the design. 

The recommended revisions presented in the previous 
section make both the stiffness and strength requirements 
of nodal braces equal to four times that of relative braces.

Beams with Lateral Braces

Two types of lateral braces are defined for beams, nodal 
braces and relative braces as shown in Figure 8. The Speci-
fication provisions are derived from the same models previ-
ously discussed for columns. However, there are a number 
of factors that affect the requirements for beam braces that 
were not a part of the discussion for columns. These include 
the conversion of the beam moment to an equivalent axial 
force, the presence of load applied to the top flange of the 
beam and the possibility of double curvature bending. The 
Specification Commentary shows how these factors are 
incorporated as Equation C-A-6-5, based on the presenta-
tion by Yura (2001):
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ϕbr
i t b f d

b

N C C P C

L
=

( )2

�
(37)

In this equation, the 2 represents the relationship between 
the required and ideal brace stiffness as shown for col-
umns by Equations 18 and 31; Ni is equivalent to η0 given 
in Table 1 for nodal braces of columns and is given in the 
Specification Commentary by the approximate equation, 
Ni = (4 − 2/n); Ct accounts for top flange loading and is taken 
as 1.0 when the beam is loaded at its centroid and 1 + (1.2/n) 
otherwise; and Cd accounts for reverse curvature bending. 
The term CbPf uses the flexural moment gradient factor, Cb, 
Specification Equation F1-1, to increase the possible flange 
force, P EI Lf yc b= π2 2, due to a moment diagram less severe 
than uniform moment, where Iyc = tf  b

3
f /12, the out-of-plane 

moment of inertia of the compression flange.
For the Specification requirements, the term CbPf in 

Equation 37 is replaced by an equivalent flange force, Mr/ho, 
where Mr is the maximum required flexural strength of the 
beam as if it were under a uniform moment and ho is the dis-
tance between beam flange centroids. For nodal braces, Ni 
varies from 2 to 4 based on the number of braces. The upper 
limit of 4 was selected for columns. However, for beams, Ct 
also varies with the number of braces. Therefore it is helpful 
to look at the range of the product of these terms. Table 3 
shows the multipliers η0, Ni, Ct and NiCt. 

Recognizing that the range of the product NiCt is from 
4.00 to 4.80 and remembering Winter’s original goal was to 
find a simple yet conservative approach, for the Specifica-
tion requirement this product is conservatively taken as 5. 

Lb

Lb

Lb

Lb

Nodal Relative

A

BB

A

Fig. 8.  Plan view of beam AB with  
compression flange lateral brace.
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With these two substitutions, Equation 37 for nodal beam 
braces becomes Specification Equation A-6-8:
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For a column relative brace, it was shown in Equation 30 
that βideal = ρPe/Lb and ρ = 1.0. Thus, for a relative beam 
brace, Ni will be taken as 1.0. From Table 3 it is seen that 
the maximum value of Ct is 2.2 for a single brace with top 
flange loading. For simplicity, Ct is taken as 2.0 for relative 
bracing according to Yura (2001), so Equation 37 becomes, 
for a relative beam brace, Specification Equation A-6-6:
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A similar approach can be followed to obtain the Specifica-
tion equations for ASD.

The brace force requirements are the same as they were 
for columns, with the addition of the influence of location 
of load on the cross section and reverse curvature bending, 
if applicable. From Equations 38 and 39, recognizing that 
βbr = 2βideal and using δ = δo = 0.002Lb as was done for 
columns, the required nodal brace force is obtained using 
F = βideal (δo + δ), which gives Specification Equation A-6-7:

	 P M C hrb r d o= 0 02. / � (40)

For a relative brace, Specification Equation A-6-5 is

	 P M C hrb r d o= 0 008. / � (41)

In each of these required stiffness and strength equations, 
according to the Specification, Cd = 2 for the brace closest to 
the inflection point and Cd = 1 for all other braces on a beam 
in double curvature and for all braces of a beam in single 
curvature. As was the case for column bracing design, the 
resistance and safety factors, ϕ and Ω, will be applied in the 
brace strength design. 

The distinction between nodal braces and relative braces 
for beams is the same as it was for columns. If there is an 

interaction between braced points, then the braces can be 
treated as relative braces. However, treating all cases of 
bracing as nodal will always be conservative and, as was 
the case for columns, will not be a burdensome requirement. 

It is important to note that for beams loaded at their cen-
troid, Ct = 1 and the stiffness and strength requirements of 
nodal beam braces would be equal to four times that of rela-
tive beam braces.

CONCLUSIONS

The intent of the lateral stability bracing requirements of 
Specification Appendix 6 is to provide a simple yet con-
servative approach for sizing braces. This paper has shown 
how these requirements were developed, has described 
the distinction between nodal and relative braces, and has 
pointed out two apparent inconsistencies. Recommendations 
have been offered for changes in two of the Specification 
equations. It was recommended that Specification Equation 
A-6-3 be changed to

	 P Prb r= 0 02. � (35)

and Specification Equation A-6-1 be changed to

	 P Prb r= 0 005. � (36)

One additional requirement should be discussed. If the 
bracing is included in a second-order analysis that incorpo-
rates the initial out-of-straightness of the member, the results 
of that analysis may be used in lieu of the lateral stability 
bracing requirements of Specification Appendix 6. Because 
Specification Chapter C requires that a second-order analy-
sis, including initial out-of-straightness, be carried out for 
the lateral-load-resisting system and because column brac-
ing will be included in that analysis, application of the 
requirements of Specification Appendix 6 for column brac-
ing can often be avoided. 

Because beam bracing is normally not included in a 
second-order analysis, the beam bracing provisions usually 
cannot be avoided. In addition to the lateral bracing require-
ments for beams discussed in this paper, Specification 
Appendix 6 includes provisions for torsional bracing.

Table 3.  Coefficients for Nodal Beam Braces 
n = number of springs (Yura, 2001)

n 1 2 3 4 5 6 10 infinite

η0 2.00 3.00 3.41 3.62 3.73 3.80 3.92 4.00

Ni 2.00 3.00 3.33 3.50 3.60 3.67 3.80 4.00

Ct 2.20 1.60 1.40 1.30 1.24 1.20 1.12 1.00

NiCt 4.40 4.80 4.67 4.55 4.46 4.40 4.26 4.00

169-180_EJ3Q_2012-13.indd   178 6/17/13   12:11 PM



ENGINEERING JOURNAL / THIRD QUARTER / 2013 / 179

SYMBOLS

Cb	 Lateral-torsional buckling modification factor for 
nonuniform moment diagrams

Cd	 Coefficient accounting for increased required 
bracing stiffness at inflection point

Ct	 Coefficient to account for load location relative to 
centroidal axis

E	 Modulus of elasticity of steel

F	 Force in brace or spring representing brace

I	 Moment of inertia for axis about which buckling is 
considered

Lb	 Unbraced length for flexural buckling

M	 Moment of forces about a point

Mr	 Required moment strength

Ni	 Coefficient to account for number of nodal braces or 
presence of relative braces

P	 Axial force on a column

Pe	 Column elastic buckling strength known as the Euler 
buckling strength

Pf	 Beam compressive flange force

Pn	 Nominal compressive strength

Pr	 Required compressive strength

Prb	 Required brace strength

n	 Number of springs or braces

β	 Spring or brace stiffness

βbr	 Brace stiffness

βideal	 Ideal brace stiffness

βreq	 Required brace stiffness

δ	 Additional deflection at buckling

δo	 Initial displacement due to imperfection

δT	 Total deflection at buckling

η0	 Coefficient for determination of ideal spring stiffness 
with only intermediate nodal braces

η1	 Coefficient for determination of ideal spring stiffness 
with intermediate and column end nodal braces

λ	 Coefficient for determination of ideal spring stiffness 
based on Zhang et al. (1993)

ρ	 Coefficient for determination of ideal spring stiffness 
for relative braces

ρ0	 Coefficient for determination of ideal spring stiffness 
with only intermediate relative braces

ρ1	 Coefficient for determination of ideal spring stiffness 
with intermediate and column end relative braces

ϕ	 Resistance factor
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INTRODUCTION

Continuity plates are commonly used in moment connec-
tions of steel moment frames to increase the local strength 
and stiffness of the column flange and web (see Figure 1). 
These transverse plates are attached to the column. They 
are utilized in both gravity and lateral load applications. 
The basic design requirements for continuity plates have 
been provided in the AISC Specification for Structural 
Steel Buildings (AISC 2005a, 2010a), hereafter referred to 
as AISC Specification. For seismic applications, additional 
requirements are provided in the AISC Seismic Provisions 
for Structural Steel Buildings (AISC 2005b, 2010b) and the 
AISC Prequalified Connections for Special and Intermedi-
ate Steel Moment Frames for Seismic Applications (AISC 
2005c, 2010c), hereafter referred to as AISC Seismic Provi-
sions and AISC 358, respectively.

Current seismic design provisions take a conservative 
approach for sizing and attaching continuity plates to the col-
umn due to the lack of a rational procedure to apportion the 
beam flange force to the continuity plate welded joints and 
limitations in tested geometries. For seismic design appli-
cations, this leads to continuity plates that maybe thicker 
than necessary and require complete-joint-penetration (CJP) 

welds to the column flanges, detailing that adds cost to fab-
rication and quality control. Thus, there is a need for the 
development of a rational design methodology such that a 
more economical continuity plate and weld design can be 
achieved.

BACKGROUND

Section J10 of the AISC Specification provides requirements 
for continuity plate design for gravity, wind, and low seismic 
load applications. AISC Seismic Provisions and AISC 358 
provide additional requirements for seismic load applica-
tions. The application of these design requirements are well 
documented in AISC Design Guide 13, Stiffening of Wide-
Flange Columns at Moment Connections: Wind and Seis-
mic Applications (Carter, 1999). These documents contain 
equations to compute the force demand and column limit 
state capacities that determine whether continuity plates are 
required. If required, these documents also provide require-
ments to size and detail continuity plates. A review of these 
equations and requirements are presented in the following 
sections.

Concentrated Beam Flange Force

Figure 2 shows concentrated beam flange forces acting on 
a column. Consider cases (a) and (b) where beams frame 
into the column from both sides. Assuming Puf,1 = Puf,2 = Puf 
under the gravity load case, the flow of stress from beam 1 to 
beam 2 is relatively direct and uniform (see Figure 3a). The 
continuity plate welded joint to the column flange (defined 
hereafter as “flange weld”) is required to transmit part of the 
tensile force, Puf ; however, there is a negligible force trans-
ferred from continuity plate to the column web. In Figure 3b, 
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a different flow of stress is shown under a lateral load case. 
Because one loaded edge of the continuity plate is in tension 
while the other edge is in compression, shear forces exist 
along the web edge. To satisfy equilibrium, two additional 
shear forces along the loaded column flange edges also 
result. These transverse shear forces, which are not trivial in 
magnitude, are not numerically addressed in current design.

According to AISC Design Guide 13 (Carter, 1999), the 
concentrated beam flange force, Puf , is calculated as shown 
in Equation 1:

	
P

M

d
uf

u

m
=

�
(1)

where Mu = beam end moment and dm = moment arm 
between the flange centroids (db − tbf ). Note that Equation 1  
assumes the entire beam moment is transferred to the 

column through the beam flanges. While this assumption 
may be reasonable for the more flexible, bolted beam web 
connection, it may be too conservative for moment connec-
tions where the beam web is welded directly to the column 
flange. This issue will be discussed later. The demand from 
the beam flange force is checked against a series of limit 
states to determine the need for continuity plates.

Limit States and Design Strengths

In continuity plate design for a lateral load case, the following 
two limit states need to be checked per AISC Specification.

(1)  Flange Local Bending (FLB) of Column

When an unstiffened column flange is pulled out-of-plane 
by the tensile beam flange force, Puf , stress concentrations 
in the beam flange weld will occur due to the differential 

  
	 (a)	 (b)

Fig. 1.  RBS moment connection: (a) with continuity plates; (b) without continuity plates.

	 (a)	 (b)

Fig. 2.  Moment connection flange forces: (a) gravity load case; (b) lateral load case (adapted from Carter, 1999).
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stiffness across the column flange width (see Figure 4a). To 
minimize the effect of stress concentration, AISC Specifica-
tion specifies the following design strength for FLB beyond 
which continuity plates are required:

	 ϕ ϕR t Fn cf yc= 6 25 2. � (2)

where ϕ = 0.9, tcf = column flange thickness and Fyc = speci-
fied minimum yield stress of the column.

To prevent weld fracture due to stress concentrations, 
Equation 2 was derived based on a limit state defined by 

a 4-in. relative deformation between two opposing column 
flanges. A recent study by Hajjar et al. (2003) observed that 
this equation is conservative for design.

(2)  Web Local Yielding (WLY) of Column

AISC Specification assumes the concentrated beam flange 
force, Puf , is transmitted to the web of an unstiffened col-
umn as shown in Figure 5. The associated design strength is 

	 ϕ ϕR k N F tn yc cw= +( )5 � (3)

where ϕ = 1.00, k = distance from the outer face of the col-
umn flange to the web toe of the fillet, N = beam flange 
thickness and tcw = column web thickness.

Required Strength for Continuity Plates and Welds

When the concentrated beam flange force, Puf, exceeds either 
the FLB or WLY limit state strengths, a pair of continuity 
plates is needed to strengthen and stiffen the column. Here, 
ϕRn(min) is denoted as the lesser of the design strengths for 
FLB and WLY limit states. The AISC Specification speci-
fies the required strength for a pair of continuity plates as 

	 R P Ru st uf n min( ) ( )= − φ � (4)

AISC Design Guide 13 notes that Equation 4 is a sim-
plified approach, whereby only the force in excess of the 
governing limit state strength is assumed to be transmit-
ted to the continuity plates. In an exact solution, the design 
guide also noted that “…this force would be apportioned 
between the web and transverse stiffeners on the basis of 
relative stiffness and effective area” (Carter, 1999). It will be 
shown in subsequent sections that the simplified approach 
can lead to a large difference between the required design 
strength, Ru(st), and the actual force transmitted to the con-
tinuity plates.

Each full-depth continuity plate is welded to the column 
on three sides, with two flange welds and one web weld. It 
is critical to evaluate the required strength of these welds 

(a)

(b)

Fig. 3.  Stress flow in continuity plates:  
(a) gravity load case; (b) lateral load case.

 

Fig. 4.  Beam flange stress distribution: (a) unstiffened  
column flange; (b) stiffened column flange. Fig. 5.  Local force transfer for WLY limit state (Carter, 1999).
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properly because a conservative estimate can lead to expen-
sive welds (e.g., CJP groove welds). The past and current 
procedures for welding of continuity plates detailed in the 
AISC Specification is summarized later.

Section K1 of the AISC LRFD Specification (AISC, 
1999) specifies a conservative approach to design continuity 
plate flange welds that require them to develop the welded 
portion of the stiffener. This conservatism is unavoidable 
when using this simplified approach because the actual 
force transmitted to the continuity plates is not calculated 
by a method that considers the relative stiffness. Section K1 
of the AISC LFRD Specification requires the web weld to 
transmit the unbalanced force in the stiffener to the web.

The requirement for flange weld design is relaxed in the 
AISC Specification (2005a, 2010a) for nonseismic appli-
cations, which stipulates in Section J10 that the required 
strength is the difference between the beam flange force 
and available strength (i.e., Equation 4). Thus, the required 
design strengths for both continuity plates and flange welds 
are the same; flange welds, therefore, do not have to develop 
the flange welded portion of the continuity plates.

Seismic Design Provisions for Continuity Plates

For seismic applications, additional provisions are presented 
in the AISC Seismic Provisions. For pre-Northridge-type 
moment connections that feature welded beam flanges and 
a bolted web, the 1992 AISC Seismic Provisions assume the 
maximum beam moment developed at the face of the col-
umn is 1.3 times the nominal plastic moment of the beam. 
The 1.3 factor is used to account for the effect of material 
overstrength and cyclic hardening. Furthermore, it assumes 
that the flexible, bolted beam web is ineffective in trans-
ferring moment to the column. Assuming the flange-only 
plastic sectional modulus, Z b t df bf bf b≈( ) , is approximately 
70% of the beam plastic sectional modulus, Zx, the concen-
trated tensile beam flange force is thus computed as
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To check FLB, the 1992 AISC Seismic Provisions use 
Equation 5 as the required strength, Puf , and Equation 2 as 
the available strength, but with ϕ = 1.00. Therefore, continu-
ity plates are not required for the FLB limit state if the fol-
lowing condition is satisfied:

	 6 25 1 82. .t F b t Fcf yc bf bf yb≥ � (6a)

or
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Because of the damage of moment connections observed 
after the 1994 Northridge, California, earthquake, the 1997 
and 2002 AISC Seismic Provisions simply stated, “[C]
ontinuity plates shall be provided to match the tested speci-
mens.” Based on a study conducted after the Northridge 
earthquake by the SAC Joint Venture (a project headed by 
SEAOC, ATC, and CUREE), FEMA-350 (2000a) recom-
mends that Equation 7, which is a slightly modified form 
of Equation 6b to account for the difference between nomi-
nal and expected yield stresses, be used for special moment 
frame (SMF) design:

	
t

b t R F

R F
cf

bf bf yb yb

yc yc
≥ 0 4

1 8
.

.

�
(7)

where Ryb and Ryc are the ratio of the expected yield stress 
to specified minimum yield stress for the beam and column, 
respectively. That is, Equation 7 implies a beam flange force 
as in Equation 5 except that Fyb is replaced by RybFyb. It is 
interesting to note that FEMA-355D (FEMA, 2000c) com-
mented that Equation 7 is “…not a precise indicator of the 
need for continuity plates or of connection performance. 
There is room for considerable improvement in the con-
tinuity plate design requirements.” In the SAC study on 
continuity plates, one welded unreinforced flange-welded 
(WUF-W) web moment connection tested by Ricles et al. 
(2000) provided satisfactory performance, although Equa-
tion 7 was not satisfied.

Equation 7 is the same as Equation 6b if the same grade 
of steel (e.g., ASTM A992 steel) is used for both the beams 
and columns. Both equations are based on a conservative 
assumption that the beam web is ineffective in transferring 
moment, and the beam flanges transfer 1.3 times the nomi-
nal plastic moment at the face of the column. For application 
to prequalified SMF moment connections (AISC, 2010c) 
where the web is fully welded to the column flange [e.g., 
reduced beam section (RBS) and WUF-W connections], the 
implied concentrated beam flange force used to determine 
the need for continuity plates may be too high. It is also 
noted that FEMA 350 (2000a) recommends another require-
ment based on the research of Ricles et al. (2000):

	
t

b
cf

bf≥
6 �

(8)

For SMF design, the required force for continuity plate 
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design is not quantified as in Equation 4. Instead, a pre-
scriptive procedure is used to determine the thickness of the 
continuity plates. When required, FEMA 350 (2000a) rec-
ommends that the thickness of continuity plates satisfy the 
following requirements:

•	 For one-sided (exterior) connections, continuity plate 
thickness should be at least one-half of the thickness of 
the two beam flanges.

•	 For two-sided (interior) connections, the continuity 
plates should be equal in thickness to the thicker of the 
two beam flanges on either side of the column.

The recommended design procedure outlined in FEMA 350 
(2000a) has been adopted by the 2005 and 2010 AISC 358 
and is promulgated in the 2010 AISC Seismic Provisions for 
SMF design.

AISC 358 takes a conservative approach for weld design, 
requiring that the welds develop the strength of the continu-
ity plates. The requirements are as follows:

•	 Continuity plates, if provided, shall be welded to column 
flanges using CJP groove welds.

•	 Continuity plates shall be welded to column webs using 
groove welds or fillet welds. The required strength of the 
sum of the welded joints of the continuity plates to the 
column web shall be the smallest of the following:

°	 The sum of the design strengths in tension of the 
contact areas of the continuity plates to the column 
flanges that have attached beam flanges.

°	 The design strength in shear of the contact area of the 
plate with the column web.

The current continuity plate and weld design requirements 
indicate that the design procedure may be more conservative 
than necessary. Thus, a rational approach that considers the 
relative stiffness to apportion the concentrated beam flange 
force to the continuity plates such that the welded joint can 
be properly and economically designed is desirable.

Experimental Evidence

A significant number of full-scale moment connections have 
been tested as a result of the 1994 Northridge, California, 
earthquake. A comprehensive summary of moment connec-
tion testing programs (pre- and post-Northridge) that feature 
either fillet or CJP welded continuity plates are provided by 
Hajjar et al. (2003). Recommendations from these studies 
suggest that fillet-welded continuity plates may provide ade-
quate performance for seismic and nonseismic applications. 
In addition, a testing program conducted by Lee et al. (2005) 
featured two out of a total of eight full-scale RBS specimens 
with continuity plates that were fillet welded to the column 
(see Figure 6). Both specimens achieved an interstory drift 
angle of 0.04 radian with no observed failure in the continu-
ity plate welds. Therefore, it is not always necessary to use 
CJP welds to connect the continuity plates to the column. 

FORCE DEMAND ON CONTINUITY PLATES:  
A PARAMETRIC STUDY

To identify significant factors affecting the force demand on 
continuity plates, parametric nonlinear, finite element anal-
yses (FEAs) were performed for an interior (two-sided) and 
exterior (one-sided) WUF-W moment connection (Uang, 
Tran and Hassett, 2011). The nonlinear FEA software 

 
	 (a)	 (b)

Fig. 6.  RBS moment connection with fillet-welded continuity plates: (a) connection details (in milimeters);  
(b) yielding pattern and deformed configuration (Lee et al., 2005).

181-200_EJ3Q_2012-16R.indd   185 6/17/13   12:11 PM



186 / ENGINEERING JOURNAL / THIRD QUARTER / 2013

ABAQUS was used (ABAQUS, 2005). Two base mod-
els were first established, then an additional nine interior 
connection cases and seven exterior connection cases were 
created (see Table 1) in which the continuity plate, column 
flange or column web were varied in thickness. For these 
analysis cases, four-node, thick-shell brick elements were 
used with mesh size ranging from 0.5 in. in the connection 
region to about 2 in. in the outer regions. A piecewise linear 
material model from FEMA (2000b) was used with a yield 
stress, Fyn = 50 ksi (see Figure 7).

A WUF-W specimen tested by Ricles et al. (2000) was 
used for the interior base model. The test specimen featured 
W36×150 beams along with a W14×398 column, all of 
A572 Grade 50 steel. The specimen simulated an interior 
connection in a SMF with a bay width of 29.5 ft and a story 
height of 13 ft. Column reinforcement included two w-in.-
thick doubler plates and 1-in.-thick continuity plates. Fig-
ure 8 shows the finite element mesh (FEM) of the specimen, 
and Figure 9 shows the mesh at the connection. Assuming 
inflection points at the midspan of the beams and mid-height 
of the column, the free end of the beams were supported by 
simulated horizontal rollers. The base of the column was 
pin supported, and the top end of the column was loaded by 
a horizontal actuator to impose a monotonic displacement 
load. Lateral bracing of the beams was provided 10 ft from 
the column centerline.

The exterior WUF-W base model was designed in accor-
dance with the AISC Seismic Provisions. A W33×130 beam 
was selected with a span of 14.75 ft (equal to half of the 
29.5-ft bay width). A 13-ft-long W24×192 deep column was 
chosen to investigate the effects of thinner flanges. The con-
nection features a pair of 4-in.-thick doubler plates along 
with d-in.-thick continuity plates to satisfy the FLB limit 
state. The column was pin-supported at both ends, and a 
load was applied to the end of the beam. The beam included 

lateral bracing of the flanges 10 ft from the column cen-
terline. ASTM A992 steel was specified for the beam and 
column.

For each of the 16 parametric cases, the beam flange force, 
Puf, at the face of the column is computed by integrating the 
tensile stresses of the bottom beam flange (beam 1 for inte-
rior connections) across its width. The forces acting on the 
flange weld edge of the continuity plates are also computed 
in a similar manner. The percentage of the beam flange 
force allocated to a pair of continuity plates are computed at 
0.5 and 3% interstory drift to compare elastic and inelastic 
force distribution, respectively (inelastic force demand at 4% 
interstory drift tends to be lower for the beams used in this 
parametric study and thus were not used).

Effect of Continuity Plate Thickness

The continuity plate thickness for the interior base model 
was 1 in. Two additional cases corresponding to 33 and 67% 
of the base model thickness were considered. The continuity 
plate thickness for the exterior base model was d in. Three 
additional exterior cases were analyzed with a continuity 
plate thickness equal to 50, 75 and 125% of the exterior base 
model.

Figure 10 shows the percentage of the concentrated beam 
flange force that is transmitted to the continuity plates for 
the interior and exterior cases. It is observed that the percent-
age of the normal force acting on the flange weld increases 
with an increase continuity plate thickness; that is, thicker 
continuity plates attract more force from the beam flange.

Effect of Column Flange Thickness

The thickness of the column flange was 2.85 and 1.46 in. 
for the interior and exterior base models, respectively. Three 

Fig. 7.  Assumed steel stress-strain relationship.
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additional cases were considered for each base model with a 
column flange thickness equal to 125, 75 and 50% of the base 
model thickness. It is recognized that according to AISC 
Seismic Provisions, reducing the column flange thickness 
may violate some requirements (e.g., strong column–weak 
beam condition), and increasing the column flange thick-
ness may result in a condition where continuity plates are 
no longer required. However, the purpose of this parametric 
study was primarily to evaluate the effect of column flange 
thickness on the force demand in continuity plates.

Figure 11 shows the percentage of the beam flange force 
that is transmitted to the continuity plates for the interior 
and exterior cases. The results show that an increase in col-
umn flange thickness decreases the force demand to conti-
nuity plates. It is also observed that at 3% interstory drift, 
the forces apportioned into the continuity plate varied from 

35 to 87% of the beam flange force for the interior case and 
from 71 to 88% for the exterior case. 

Effect of Column Web Thickness

The thickness of the column web was 1.77 in. for the interior 
base model. Three additional cases were considered with a 
column web thickness of 125, 75 and 50% of the interior 
base model web thickness. The results are shown in Figure 
12. As expected from Equation 3 for the WLY limit state, a 
thicker column web will reduce the force demand on conti-
nuity plates. The percentage of force to the continuity plate, 
however, is shown to not be sensitive to variance in the 
column web thickness at the elastic level (0.5% interstory 
drift) and only marginally sensitive at inelastic levels (3% 
interstory drift). Thus, no similar parametric study was con-
ducted for the exterior base model.

Table 1. Cases for Parametric Study

(a) Interior WUF-W Moment Connections

Continuity Plate 
Thickness

Column Flange 
Thickness

Column Web 
Thickness

Strong Column–
Weak Beam

Panel Zone 
Strength

Case (in.) (%) (in.) (%) (in.) (%) M Mpc pb
* *∑ ∑ ϕRn/Ru

I-1† 1.00 100 2.85 100 1.77 100 1.08 0.96

I-2 0.67 66.7 2.85 100 1.77 100 1.08 0.96

I-3 0.33 33.3 2.85 100 1.77 100 1.08 0.96

I-4 1.00 100 3.56 125 1.77 100 1.32 0.96

I-5 1.00 100 2.14 75 1.77 100 0.85 0.96

I-6 1.00 100 1.43 50 1.77 100 0.62 0.96

I-7 1.00 100 2.85 100 2.21 125 1.11 1.10

I-8 1.00 100 2.85 100 1.33 75 1.06 0.83

I-9 1.00 100 2.85 100 0.89 50 1.04 0.69

(b) Exterior WUF-W Moment Connections

Continuity Plate 
Thickness

Column Flange 
Thickness

Column Web 
Thickness

Strong Column–
Weak Beam

Panel Zone 
Strength

Case (in.) (%) (in.) (%) (in.) (%) M Mpc pb
* *∑ ∑ ϕRn/Ru

E-1† 0.88 100 1.46 100 0.81 100 1.68 1.37

E-2 1.09 125 1.46 100 0.81 100 1.68 1.37

E-3 0.66 75 1.46 100 0.81 100 1.68 1.37

E-4 0.44 50 1.46 100 0.81 100 1.68 1.37

E-5 0.88 100 1.83 125 0.81 100 2.02 1.37

E-6 0.88 100 1.10 75 0.81 100 1.35 1.37

E-7 0.88 100 0.73 50 0.81 100 1.02 1.37
	 † Refers to base model.
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STRESS DISTRIBUTION ON  
FLANGE AND WEB WELDS

Figure 13a shows the normal stress distribution along the 
flange weld at 3% drift for the interior base model (case 
I-1). The figure shows that the normal stress is the highest 
near the column flange tip. Because the stress distribution is 
not uniform, to compute the maximum tensile stress, fmax, 
occurring near the column flange tip, it is necessary to ideal-
ize the distribution. A trapezoidal distribution varying from 
0.25fmax at the web to fmax at the column flange tip is pro-
posed (see Figure 13a). This idealized stress distribution has 
a resultant force located at 0.6b from the column web. For 
an exterior case, the stress is more uniform, varying from 
0.40fmax near the web to fmax at the column flange tip (Uang 
et al., 2011). For the proposed design procedure that follows, 

it is conservative to set the location of the resultant force at 
0.6b from the column web for both the interior and exterior 
cases. Figure 13b shows the stress distributions along the 
web weld for the interior control case. The shear stress is 
high but relatively uniform along this edge.

REVISED BEAM FLANGE FORCE DEMAND

It was shown in the presentation of Equation 7 that the cur-
rent seismic codes (AISC 2005c, 2010c) assume all moment 
in the beam is transferred to the column by the beam flanges 
only. While this may be more consistent with the pre-North-
ridge-type connections that feature a bolted beam web and 
welded beam flanges, post-Northridge SMF connections 
with a welded beam web have been shown to reduce force 
demand on the beam flanges. Nonlinear FEA also dem-
onstrated that welded beam webs of RBS and WUF-W 

Fig. 8.  Two-sided WUF-W model. Fig. 9.  Finite element mesh in the connection region.
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Fig. 10.  Continuity plate thickness effect on continuity plate normal force demand: (a) interior connection; (b) exterior connection.
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connections can transfer a significant portion (up to 15 to 
20%) of the beam moment at the column face.

Therefore, in lieu of using a factor of 1.8 in Equation 5 to 
compute the beam flange force, a reduced value can be used 
for moment connections with a welded beam web. The fol-
lowing is proposed to replace Equation 5:

	 P C R F b tuf pf y yb bf bf= � (9)

where Cpf is the beam flange force adjustment factor. Note 
that Cpf is different from Cpr used in AISC 358. The former 
is used to compute the expected beam flange force, while the 

latter is for computing the expected plastic hinge moment. A 
derivation of the Cpf factor for both the RBS and WUF-W 
connections is presented later.

RBS Moment Connection

Based on AISC 358, the beam moment at the column face 
is limited to

	 M R F Zf y yb x= � (10)

where Zx is the plastic section modulus of the beam. Based 

(a) interior connection 

(b) exterior connection 
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Fig. 11.  Column flange thickness effect on continuity plate normal force demand: (a) interior connection; (b) exterior connection.
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on previously conducted FEA, it is conservative to assume 
that the beam web resists only 15% of Mf (i.e., the beam 
flange resists 85% of Mf). Thus, the beam flange force is
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Multiply both the numerator and denominator of Equation 
11 by the beam flange area:
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where Zf [= (db − tbf)bbf tbf] is the plastic section modulus of 
the beam flanges. 

AISC 358-10 prequalifies the RBS moment connection 
with the following limitations for the beam size and weight:

1.	 Beam depth is limited to W36 for rolled shapes.

2.	 Beam weight is limited to 300 lb/ft.
3.	 Beam flange thickness is limited to 1w in.

Figure 14a shows the values of the Zx/Zf ratio for all seis-
mically compact rolled shapes of W12 or deeper that sat-
isfy the preceding beam size limitations. If an upper-bound 
value of Zx/Zf  taken as 1.47, only 10 out of the 127 shapes 
in the figure exceed this value; 6 shapes exceed the upper-
bound value of 1.47 by less than 3%, and 4 shapes (W21×44, 
W21×50, W24×55 and W24×62) exceed this upper-bound 
value by a range of 5 to 11%. With this upper-bound value, 
Equation 12 can be taken as follows:
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This represents a 30% reduction in beam flange force as 
compared to that implicitly assumed in Equation 7. That is, 
using Equation 7 as a criterion to determine the need for 
continuity plates is very conservative because it does not 
recognize the significant reduction of beam flange force by 
introducing the reduced section in the beam.

WUF-W Moment Connection

Based on AISC 358, the beam moment at the column face is

	 M R F Zf y yb x= 1 4. � (14)

Assuming that the beam flanges resist 85% of Mf, the beam 
flange force is
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AISC 358-10 prequalifies the WUF-W moment connec-
tion with the following limitations for the beam size and 
weight:

1.	 Beam depth is limited to W36 for rolled shapes.

2.	 Beam weight is limited to 150 lb/ft.

3.	 Beam flange thickness is limited to 1 in.

Figure 14b shows the values of the Zx/Zf  ratio for all 
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Fig. 12.  Column web thickness effect on continuity plate normal force demand (interior connection).
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(a) normal stress along flange weld; (b) shear stress along web weld.
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seismically compact rolled shapes of W12 or deeper that sat-
isfy the preceding beam size limitations. Again, with 1.47 as 
the upper-bound value for Zx/Zf , Equation 15 can be conser-
vatively taken as follows:

	

P R F b t

R F b t

uf y yb bf bf

y yb bf bf

= ( ) ( )
= ( )
1 19 1 47

1 75

. .

. �

(16)

Because the beam section is not reduced, the preceding 
beam flange force is about 40% higher than that in Equation 
13. This beam flange force is also similar to that implicitly 
assumed in Equation 7.

To summarize, the beam flange force can be expressed as 
Equation 9, where the beam flange force adjustment factor, 
Cpf , is

For RBS connection:	 Cpf = 1.25� (17)

For WUF-W connection:	 Cpf = 1.75� (18)

RELATIVE FLEXIBILITY OF COLUMN  
FLANGES AND CONTINUITY PLATES

Results from the parametric studies indicate that the seis-
mic force demands on continuity plates depend not only 
on the beam flange force, but also on the relative flexibil-
ity (or stiffness) between the continuity plate and column 
flange. This section describes the formulation of an analysis 
procedure for computing the amount of beam flange force 
allocated to continuity plates by considering the relative 
flexibility between the column flange and the continuity 
plate. The flexibility coefficients for both components are 
established from analytical studies, including FEA of indi-
vidual components.

Figure 15 depicts the force flow from the beam flange to 
the column web for an exterior connection with continuity 

plates. A portion of the beam flange force in line with the 
column web is transferred directly into the column web. The 
remaining force is distributed between the continuity plates 
and column flange based on their relative flexibility. Force 
allocated to the column flange is transferred to the column 
web mainly through out-of-plane bending of the column 
flange, while force allocated to the continuity plates is trans-
ferred to the column web mainly through shear. Equation 
19 computes the force allocated to one continuity plate, Pcp , 
from the beam flange force, Puf ,

	

P
P b t t
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B B
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uf bf pz cf

bf
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cf cp
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2

�

(19)

where bbf is the beam flange width, tpz is the panel zone 
thickness and tcf is the column flange thicknesses.

The term in the first parentheses accounts for the por-
tion of the beam flange force, which is in line and trans-
ferred directly through to the column panel zone; it includes 
a 45-degree projection through the column flange thickness. 
The term in the second parentheses accounts for the flexibil-
ity of the continuity plate (Bcp) relative to the total flexibility 
(Bcf + Bcp) of the column flange and continuity plate, where 
Bcf is the flexibility of the column flange. The 2 term rep-
resents one of the two continuity plates at each beam flange 
level. The formulation of the column flange and continuity 
plate flexibility coefficients follows. 

Flexibility Coefficient of Column Flange

When continuity plates are used, it is reasonable to assume 
the beam flange applies a uniform line load across its width 
and causes the column flange to deform out-of-plane (see 
Figure 16). Each column flange can be treated as a long, can-
tilever plate with a support along the column web. Consider-
ing symmetry, only half of the width of the column flange 
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Fig. 14.  Zx/ Zf ratios for seismically compact sections: (a) RBS beam sections; (b) WUF-W beam sections.
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needs to be considered in the analysis with a fixed support. 
The line load acts on the cantilever plate transversely with 
a loaded length of b, as defined in Figure 16. The flexibil-
ity of the column flange is defined as the out-of-plane dis-
placement at the mid-width of the dimension b produced by 
a total line load of unity. Using the analogy of two springs in 
series, the column flange flexibility coefficient is

	 B f fcf cf b cf s= +, , � (20)

where fcf,b and fcf ,s are the flexibility coefficients due to 
bending and shear deformations, respectively.

(1) Flexibility Coefficient Due to Bending

Based on elastic plate theory (Timoshenko and Woinowsky-
Krieger, 1959), the flexibility coefficient due to flexure can 
be expressed in the following form:

	
f C

b

Et
cf b

cf
, = 1

2

3
�

(21)

To establish the constant C1, the flexibility of long plates 
with varying thickness (tcf) and width (b) was analyzed using 
FEA. Figure 17a shows the correlation of Equation 21 with 
C1 = 0.26. Equation 21 correlates well for slender plates with 
a larger b/tcf ratio, but for stockier plates, the effect of shear 
becomes significant and must be accounted for.

(2) Flexibility Coefficient Due to Shear

The flexibility coefficient due to shear can be expressed as

	
f

C

Gt
cf s

cf
, = 2

�
(22)

where C2 is a constant. 
Curve fitting shows that the following expression for C2 

produces good correlation with FEA results:
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Figure 17b shows the correlation of Equation 20 with FEA 
results. Equation 20, which accounts for both bending and 

tcf

tpz bbf

Fig. 15.  Flow of beam flange force to column.
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Fig. 16.  Definition of column flange flexibility.
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Fig. 17.  Correlation of column flange flexibility:  
(a) flexural component only; (b) flexural and shear components.

181-200_EJ3Q_2012-16R.indd   193 6/17/13   12:11 PM



194 / ENGINEERING JOURNAL / THIRD QUARTER / 2013

shear deformations, provides good correlation for both 
stocky and slender column flanges.

Flexibility Coefficient of Continuity Plate

Finite element analysis shows that the normal force dis-
tribution varies almost linearly along the flange weld of a 
continuity plate (see Figure 13a). A simplification is made 
by assuming that the normal force is uniform, and the flex-
ibility, Bcp, is defined as the deflection at the mid-width of 
the continuity plate due to a total edge load of unity. A con-
tinuity plate under the assumed edge load can be treated as 
a deep beam cantilevered from the column web (see Figure 
18). For the purpose of computing the flexibility coefficient, 
the width of the continuity plate is taken to be equal to the 
length of the line load, b, as defined in Figure 16.

The applied unit load produces both shear and flexural 
deformations (shear being the dominant component), which 
are the shear ( fcp,s) and flexural ( fcp,b) flexibilities, respec-
tively. Figure 19a shows the combined deformation from 
shear and flexure. Note that because the continuity plate has 
been idealized as a cantilever plate, the edge opposite the 
load also deforms by an amount, fcp,r . In reality, the continu-
ity plate is bounded by both column flanges. FEA shows that 
the rigidity of the nonloaded column flange restrains the 

opposite edge from deforming (see Figure 19c). A deforma-
tion pattern accounting for the restraint from the free flange 
is defined as having a magnitude fcp,r in the opposite direc-
tion, as shown in Figure 19b.

The superposition of the deformed shapes shown in Fig-
ures 19a and 19b results in a deformation pattern shown in 
Figure 19c. Therefore, the total flexibility coefficient of one 
continuity plate is:

	 B f f fcp cp s cp b cp r= + −, , , � (24)

(1) Flexibility Coefficient Due to Shear

Applying the beam theory to the cantilever plate in Figure 
18, the shear flexibility is

	
f C

b

Gdt
cp s = 3

�
(25)

However, for very small aspect ratios, the shear force does 
not transfer to the full depth (d) of the plate, but instead to 
an effective depth proportional to dimension b. Substitution 
of d with an effective depth proportional to b results in the 
following expression:

	
f C

Gt
cp s, = 4

1

�
(26)

The value of constant C4 is determined by correlating with 
the FEA data. With C4 = 0.42, Figure 20a shows that Equa-
tion 26 provides a good correlation for aspect ratios (b/d) less 
than 0.4. Above this value, however, the FEA data diverges 
from Equation 26 due to flexural deformation, which is con-
sidered next.

(2) Flexibility Coefficient Due to Bending

Applying the beam theory, the flexibility due to a unit total 
load is

Control Point 

d

(thickness  = t) 

b

b/2 

Column Web 

Fig. 18.  Definition of continuity plate flexibility.

 (a) shear and bending flexibility (b) subtract restraint (c) total flexibility 

fcp,r

fcp,s+ fcp,b 

fcp,r
fcp,s+ fcp,b - fcp,r

 	 (a)	 (b)	 (c) 

Fig. 19.  Superposition of flexibility components for continuity plate:  
(a) shear and bending flexibility; (b) subtract restraint; (c) total flexibility.
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f C

b

Ed t
cp b, = 5

3

3
	

(27)

FEA data is again used to determine the constant C5. In the 
curve-fitting process, the bending flexibility is computed as 
the difference between the total flexibility determined from 
FEA and the shear flexibility from Equation 26. By includ-
ing the bending flexibility term with C5 = 1.0, a satisfac-
tory correlation of continuity plate flexibility is achieved 
with results from FEA over a wider range of aspect ratios, as 
shown in Figure 20b.

(3) Flexibility Coefficient Due to Restraining Effect

For an exterior connection, resistance by the opposite col-
umn flange decreases the flexibility by fcp,r (see Figure 19). 
The empirical Equations 28a and 28b are correlated with 
results from FEA:

	
f
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cp r, =

�
(28a)

where
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d
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− ≥0 6 0 14 0. .

�
(28b)

Equation 28b implies that the opposite edge does not deform 
when the aspect ratio is less than 0.23; that is, the effect of 
shear is negligible for low-aspect ratios.

(4) Total Flexibility

Combining Equations 26, 27, and 28a, the total flexibility of 
the continuity plate is

	

B f f f

C

Gt

b

Ed t

cp cp s cp b cp r= + −

= − +

, , ,

.0 42 3

3
�

(29)

where C = 0 for interior connections, and C is defined in 
Equation 28b for exterior connections.

PROPOSED DESIGN PROCEDURE

The proposed design procedure incorporates requirements 
of AISC 358 with some modifications to determine the need 
for continuity plates. If required, an iterative process is used 
to ensure that the design strength of the continuity plates 
is sufficient to transfer load from the beam flange to col-
umn web; the force apportioned to the continuity plates is 
determined based on the relative flexibility of the column 
flange and continuity plate. Welds connecting the continuity 
plates to the column are also sized according to the expected 
force calculated from this flexibility-based procedure. The 

proposed design procedure is suitable for moment connec-
tions where the beam web and flange are fully welded to the 
column flange. These include RBS and WUF-W moment 
connections. 

Step 1.  Continuity plates need not be provided if

	
t

C b t R F

R F
cf
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yc yc
≥ 0 4.

�
(30)

	
t

b
cf

bf≥
6 �

(31)

where the beam flange force adjustment factor, Cpf, is

For RBS connection:	 Cpf = 1.25� (32)

For WUF-W connection:	 Cpf = 1.75� (33)
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Fig. 20.  Correlation of continuity plate flexibility: (a) shear 
component only; (b) flexural and shear components.
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Note: Equation 30 is derived based on the following beam 
flange force:

	 P C R b t Fuf pf yb bf bf yb= � (34)

It was previously demonstrated that the upper-bound Cpf 
values can be conservatively used for all seismically com-
pact rolled shapes satisfying the AISC 358 size and weight 
limitations, except for four sections (W21×44, W21×50, 
W24×55 and W24×62).

Step 2.  If continuity plates are needed, perform prelimi-
nary sizing based on the following:

	 R P Ru st uf n( ) = − ϕ � (35) 

where ϕRn is the design strength of the governing limit state 
(e.g., FLB or WLY). The required continuity plate cross-
sectional area is:

	
A

R

F
cp req d

u st

ycp
( ’ )

( )=
�

(36)
 

where and Fycp is the specified minimum yield stress of the 
continuity plate.

The width-thickness ratio also needs to satisfy the follow-
ing requirement:

	

b

t

E

F
cp

ycp
≤ 0 75.

�
(37)

where bcp and t are the actual (not effective) continuity plate 
width and thickness, respectively.

Note: AISC 358 requires the continuity plate thickness 
to be at least equal to one-half of the beam flange thick-
ness for exterior connections and full beam flange thickness 
for interior connections. In this design procedure, it is sug-
gested that the continuity plate thickness be at least equal to 
one-half of the beam flange thickness for both exterior and 
interior connections.

The limiting width-thickness ratio in Equation 37 is the 
same as that in Section B4 of 2005 AISC Specification for 
the stem of a tee in uniform compression because one edge 
of the continuity plate is free. Use of this limiting ratio for a 
continuity plate check is judged to be conservative.

The width of the continuity plate should be selected to 
extend at least to the end of the beam flange. It may be nec-
essary to extend the continuity plate beyond the beam flange 
width to increase contact area with the column flange and 
account for the loss of contact area due to clipped corners 
to clear the k-area. Clipping of corners should be detailed 
in accordance with Section 3.6 of AISC 358. The net con-
tact width used to calculate the net contact area should 
not extend a distance one column flange thickness beyond 
the end of the beam flange (see Figure 21). The width of 

the column flange may also limit the maximum net con-
tact width. Equation 38, which is used to compute the net 
width of the continuity plate, takes into account cases where 
either the beam flange or column flange width is the limit-
ing dimension.

	

b

b t
b t

b t
b

n

bf pz
clip cf

cf pz
clip

=

−
− +

−
−

⎧

⎨
⎪⎪

⎩
⎪
⎪

min 2

2 �

(38)

where tpz = thickness of panel zone and bclip = continuity 
plate clipped corner dimension parallel to column flange.

Equation 38 assumes that doubler plates, if used, extend 
beyond the continuity plates. In the case where doubler 
plates are detailed to stop at the continuity plates, set tpz to 
the width of the column web.

Step 3.  Design continuity plates.

1.	 Calculate the column flange out-of-plane flexibility 
coefficient, Bcf.
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2.	 Calculate the continuity plate in-plane flexibility coef-
ficient, Bcp.
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	 where C = 0 for interior connection, and for exterior 
connection:
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(41)

	 In Equations 39, 40 and 41, b = bn + bclip, and d and t 
are defined as the depth and thickness of the continuity 
plate, respectively.

3.	 Apportion the beam flange force to one continuity plate:
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4.	 Check if FLB and WLY limit states are satisfied with the 
addition of continuity plates:
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	 ϕR P Pn uf cp≥ −2 � (43)

	 where ϕRn is the design strength of the governing limit 
state (e.g., FLB or WLY). Resize the continuity plates if 
the preceding condition is not satisfied.

	 Note: The continuity plates are initially sized for the 
required force Ru(st) in Equation 35. When continuity 
plates are added, the force transferred into a pair of 
continuity plates is 2Pcp. Equation 43 ensures that FLB 
and WLY limit states of the column are satisfied with 
a reduce beam flange force demand due to the alterna-
tive load transfer mechanism provided by the continuity 
plates.

Step 4.  Design continuity plate flange welds.

Refer to Figure 22 for the free-body diagrams of the con-
tinuity plate for the interior and exterior connection 
configurations.

1.	 Calculate the required shear force in the flange weld:

	
V

b

d
Pcp cp= ⎛
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0 6. Σ
�

(44)

	 Note: Based on an idealized trapezoidal normal stress 
distribution shown in Figure 13a, the resultant normal 
force, Pcp, is located at a distance 0.6b from the column 
web. To satisfy moment equilibrium, in-plane shear 
forces are present in the flange welds.

2.	 Either fillet, partial joint penetration (PJP), or a combi-
nation of PJP with reinforcing fillet welds can be used to 
connect the continuity plates to the column flanges if the 
following condition is satisfied:
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(45)

	 Otherwise, CJP welds are required.

	 Note: The continuity plates may yield, similar to the por-
tion of the beam flanges that are CJP welded to the col-
umn. Unlike the beam flange, however, continuity plate 
is not subjected to shear through its thickness, which 
causes additional stress. It is proposed in this design pro-
cedure that CJP welds still be used if continuity plates 
are likely to experience significant yielding similar to the 
beam flanges. Otherwise, PJP, fillet welds, or a combina-
tion thereof can be used. Equation 45 is based on the von 
Mises yield criterion for plane stress and is used to check 
the net cross section strength of the continuity plate.

3.	 When either fillet or PJP welds are used, welds are to be 
designed to satisfy the following:

	 a. � Design the flange weld for the required resultant 
force, Rcp:

	 ϕn n cpR R≥ � (46)

	 where

	 R P Vcp cp cp= +2 2
� (47)
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Fig. 21.  Net bearing width of continuity plate.
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Fig. 22.  Free-body diagram of a continuity plate:  
(a) interior connection; (b) exterior connection.
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The design strength for two-sided flange fillet welds is

	
ϕ ϕ θn n n e n EXXR t b F= ( )( ) +( )2 0 6 1 0 0 5 1 5. . . .sin

�
(48)

	 where te is the effective throat of one fillet weld, FEXX is 
the minimum specified ultimate strength of the weld and 
ϕn is 0.9 per AISC 358. The angle of the resultant force, 
Rcp, measured from the weld longitudinal axis is

	
θ = −tan 1 P

V
cp

cp �
(49)

	 b. � Check the flange weld at the location of maximum 
tensile stress, qmax (kips/in):

	
q
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b
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cp

n
=

1 6.

�
(50)

		�  Note: The maximum stress is based on the assumed 
trapezoidal normal stress distribution in Figure 13a. 
If two-sided fillet welds are used, the value of qmax 
cannot exceed the unit-length design strength, which 
can be computed by using Equation 48 and setting  
bn = 1.0 in.

		�  If fillet welds are used, the design weld strength can 
be based on θ = 90°.

	 c. � Check maximum shear stress in the flange weld, τmax 

(kips/in):

	
τmax

cp

n

V

b
=

2

�
(51)

		  Note: Use θ = 0° to compute the weld design strength.

Step 5.  Design continuity plate web weld.

Design the web weld for a required shear force equal to the 
summation of force allocated to the continuity plate, ΣPcp, as 
shown in Figure 22. For exterior moment connections (Fig-
ure 22b), the required shear force is simply Pcp.

	 ϕn n cpR P≥ Σ � (52)

If two-sided fillet welds are used, the design strength is 
computed as

	 ϕ ϕn n e w EXXR t l F= ( )( )2 0 6. � (53)

where ϕn = 0.9, te = effective throat of one fillet weld and  
lw = length of the web weld.

The column panel zone base metal shear strength should 
also be checked to ensure it has the capacity to develop the 

force demand allocated to a pair of continuity plates (on 
each side of the column web).

Figures 23 and 24 show a comparison of two designs for 
an RBS moment connection with a W14 column. A similar 
comparison is presented in Figure 24 when a deep column 
(W33) is used. See Uang et. al (2011) for step-by-step cal-
culations. Compared with the current seismic code require-
ments, these two design examples show that the proposed 
flexibility-based design approach often leads to thinner con-
tinuity plates and smaller welds. In addition, the option to 
use fillet, PJP, or PJP with reinforcing fillet flange welds 
versus CJP flange welds reduces the cost of fabrication and 
inspection. Also, the significantly reduced beam flange 
force demand for RBS connections will lead to cases where 
continuity plates that are required based on the current 
design code are not needed.

CONCLUSIONS

A historical review of code developments and past full-scale 
testing programs have suggested that conservatisms exist 
in the sizing and weld criteria of continuity plates in SMF 
moment connections. The two main areas of conservatism 
identified were (1) the beam flange force demand and (2) the 
force allocation into continuity plates.

Nonlinear FEA suggests that for moment connections 
with the beam web welded to the column flange—for exam-
ple, RBS and WUF-W connections—the web transfers a 
noticeable portion of the moment, thus reducing the beam 
flange force to the column face. A revised beam flange force 
demand is introduced (see Equations 32, 33 and 34).

Results of parametric studies demonstrated a reduction of 
demand force to the continuity plates with increased column 
flange thickness. Likewise, an increased continuity plate 
thickness reduced the demand on the column flange. As 
a result, flexibility coefficients for the column flange and 
continuity plates were corroborated with FEA to introduce 
a means by which the beam flange force into the continuity 
plates can be apportioned.

A design procedure is proposed that provides a rational 
approach to (1) determine the need for continuity plates, (2) 
size the thickness of continuity plates and (3) size the flange 
and web welds to attach the continuity plates. Like other 
welded moment connection details, however, verification by 
full-scale testing is needed before the proposed procedure 
can be adopted for practical design.
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	 (a)	 (b)

Fig. 23.  Comparison of continuity plate and weld design of an RBS moment connection with a W14 column:  
(a) current design practice; (b) proposed design procedure.

	 (a)	 (b)

Fig. 24.  Comparison of continuity plate and weld design of an RBS moment connection with a deep column:  
(a) current design practice; (b) proposed design procedure.

181-200_EJ3Q_2012-16R.indd   199 6/17/13   12:11 PM



200 / ENGINEERING JOURNAL / THIRD QUARTER / 2013

REFERENCES

ABAQUS (2005), ABAQUS Standard Users Manual, Ver-
sion 6.7, ABAQUS Inc., Providence, RI.

AISC (1999), Load and Resistance Factor Design Specifi-
cation for Structural Steel Buildings, American Institute 
of Steel Construction, Chicago, IL.

AISC (2005a), Specification for Structural Steel Buildings, 
ANSI/AISC 360-05, American Institute of Steel Con-
struction, Chicago, Illinois.

AISC (2005b), Seismic Provisions for Structural Steel 
Buildings, ANSI/AISC 341-05, American Institute of 
Steel Construction, Chicago, IL.

AISC (2010a), Specification for Structural Steel Buildings, 
ANSI/AISC 360-10, American Institute of Steel Con-
struction, Chicago, Illinois.

AISC (2010b), Seismic Provisions for Structural Steel 
Buildings, ANSI/AISC 341-10, American Institute of 
Steel Construction, Chicago, IL.

AISC (2005c), Prequalified Connections for Special and 
Intermediate Steel Moment Frames for Seismic Applica-
tions, ANSI/AISC 358-05, American Institute of Steel 
Construction, Chicago, IL.

AISC (2010c), Prequalified Connections for Special and 
Intermediate Steel Moment Frames for Seismic Appli-
cations, ANSI/AISC 358-10, American Institute of Steel 
Construction, Chicago, IL.

Carter, C.J. (1999), Stiffening of Wide-Flange Columns at 
Moment Connections: Wind and Seismic Applications, 
Design Guide 13, AISC, Chicago, IL.

FEMA (2000a), “Recommended Seismic Design Criteria 
for New Steel Moment-Frame Buildings,” Report No. 
FEMA-350, Federal Emergency Management Agency, 
Washington, DC.

FEMA (2000b), “State of the Art Report on Base Metals 
and Fracture,” Report No. FEMA-355A, Federal Emer-
gency Management Agency, Washington, DC.

FEMA (2000c), “State of the Art Report on Connection Per-
formance,” Report No. FEMA-355D, Federal Emergency 
Management Agency, Washington, DC.

Hajjar, J.F., Dexter, R.J., Ojard, S.D., Ye, Y. and Cotton, S.C. 
(2003), “Continuity Plate Detailing for Steel Moment-
Resisting Connections,” Engineering Journal, AISC, Vol. 
40, No. 4, pp. 189–211.

Lee, C.H., Jeon, S.W., Kim, J.H. and Uang, C.M. (2005), 
“Effects of Panel Zone Strength and Beam Web Con-
nection Method on Seismic Performance of Reduced 
Beam Section Steel Moment Connections,” Journal of 
Structural Engineering, ASCE, Vol. 131, No. 12, pp. 
1854–1865.

Ricles, J., Mao, C., Lu, L. and Fisher, J.W. (2000), “Devel-
opment and Evaluation of Improved Details for Ductile 
Welded Unreinforced Flange Connections,” Report No. 
SAC/BD-00/24, SAC Joint Venture, Bethlehem, PA.

Timoshenko, S. and Woinowsky-Krieger, S. (1959), Theory 
of Plates and Shells, McGraw-Hill, New York, NY.

Uang, C.M., Tran, A. and Hassett, P. (2011), “Design of 
Continuity Plate Welds in Special Moment Frames,” Steel 
Tips, Structural Steel Education Council, Moraga, CA.

181-200_EJ3Q_2012-16R.indd   200 6/17/13   12:11 PM



ENGINEERING JOURNAL / THIRD QUARTER / 2013 / 201

After this paper had gone to press, it was determined that 
four specimens were accidentally included twice in the data-
bases for push-out tests without shear tabs. These duplicate 
specimens have been removed, and two other specimens 
that were inadvertently excluded have been added. Addition-
ally, for four of the specimens, the measured tube thickness 
has been included in place of the nominal tube thickness that 
was reported in the original paper. Tables 1 and 2 have been 
revised to reflect these corrections.

These corrections result in minor changes to the empirical 
bond stress formulas, Equations 3, 4, 7, 8, 13c, and 14c, as 
well as Figure 4, have been revised to reflect the corrections:

	

F H t Rin = × ( ) =−
1 15 10 0 69 (3)6 2 90 2. .

.

F t H Rin = ( ) =12800 0.622 2

F D t Rin = ( ) =−
27900 0.32

1 59 2.

F t D Rin = ( ) =30900 0.502 2

F t Hin = ( ) ≤12 8 0 12. .

F t Din = ( ) ≤30.9 0.22

(4)

(7)

(8)

(13c)

(14c)

The corrections to the database also result in minor 
changes to the proposed resistance and safety factors. Table 
9 has been updated to reflect the corrections; values of  
ϕ = 0.50 and Ω = 3.00 are recommended for both CCFT and 
RCFT.

The data and formulas were used elsewhere in the paper; 
however, the resulting changes are slight and do not affect 
the conclusions. Specifically:

•	 Equation 8 was used in the computation of the last 
three columns of Table 6. The original and corrected 
numbers differ by less than 1%.

•	 Equations 13c and 14c were used in the mechanistic 
analysis to determine the minimum transfer lengths 
presented in Tables 7 and 8. Table 7 has been revised 
to reflect the corrections. In Table 8, the original and 
corrected numbers differ by less than 1%. The result-
ing recommendation for Cin has not changed.

•	 Equation 8 was used to compute the bond stress and 
the load applied at the connection for the analysis 
presented in Figure 7. The original and corrected num-
bers differ by less than 1%. The observations from the 
analyses have not changed.
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Bond Behavior of Concrete-Filled  
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Table 1.  RCFT Push-Out Tests without Shear Tabs

Reference
Number of 
Specimens

L (in.) H, B (in.) t (in.) H/t, B/t Fy (ksi) f′c (ksi) Fin (psi)

Shakir-Khalil, 1993a 10 8–24 3.1–5.9 0.20 16–30 43.0 5.6–5.9 48–193

Shakir-Khalil, 1993b 3 16 5.9 0.20 30 43.0 5.2–5.7 29–61

Parsley et al., 2000 4 48–60 8.0–10.0 0.23 35–43 48.0 5.9–6.5 25–42

Table 2.  CCFT Push-Out Tests without Shear Tabs

Reference
Number of 
Specimens

L (in.) D (in.) t (in.) D/t Fy (ksi) f′c (ksi) Fin (psi)

Virdi and 
Dowling, 1975

82 6–18 5.8–12.0 0.22–0.40 15–32 mild steel 3.2–6.7 75–431

Shakir-Khalil, 
1993a

6 8–24 6.6 0.20 34 43.0 6.1 95–135

Shakir-Khalil, 
1993b

3 16 6.6 0.20 34 43.0 5.6–5.7 63–135

Roeder et al., 
1999

18 30–76 10.8–24.0 0.22–0.53 20–109 not given 4.0–6.9 1.5–114

Xu et al.,  
2009

3 20 6.1–6.3 0.11–0.18 35–57 not given 6.8 87–97

Aly et al.,  
2010

14 16 4.5 0.13 36 50.8 5.9–13.2 51–181

Table 7.  RCFT Minimum Transfer Lengths from Mechanistic Analysis

Case
H  

(in.)
B  

(in.)
t  

(in.)
H/t

Fy  
(ksi)

f′c  
(ksi)

Ltransfer 
(in.)

Ltransfer 

/H

S
q

ua
re

 C
FT

Load on steel, column 
extends both sides

4.00 4.00 0.067 59.5 36.0 3.0 45.78 11.45

Load on steel, column 
extends below only

4.00 4.00 0.125 32.0 36.0 3.0 15.80 3.95

Load on concrete 4.00 4.00 0.125 32.0 36.0 3.0 15.80 3.95

R
C

FT

Load on steel, column 
extends both sides

4.00 4.00 0.067 59.5 36.0 3.0 45.78 11.45

Load on steel, column 
extends below only

8.00 4.00 0.667 12.0 36.0 3.0 23.12 2.79

Load on concrete 8.00 4.00 0.667 12.0 36.0 3.0 23.12 2.79

Table 9.  Computation of Resistance and Safety Factors

Type
Number of 

Experiments
Rm/Rn VR

RCFT 17 0.94 0.39 0.50 3.02

CCFT 126 1.27 0.50 0.56 2.70
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(a) Bond stress of RCFT as a function of H/t (b) Bond stress of RCFT as a function of t/H2

(c) Bond stress of CCFT as a function of D/t (d) Bond stress of CCFT as a function of t/D2

Fig. 4.  Bond stress for CFT as a function of tube slenderness.
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The second to last sentence of the first column on page 81 
should read:

	 Therefore, the spacing effect can be neglected if the 
distance between adjacent wheel loads is more than the 
flange width.
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