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Mathematical-Mechanical Model of  
WUF-B Connection Under Monotonic Load
HYUN CHANG YIM and TED KRAUTHAMMER

Abstract

Connections in a steel frame are complex configurations composed of members and elements that contain different geometries, shapes and 
material properties. Therefore, one needs to take into account the contributions of such individual components to the overall connection behavior 
characteristics. This study presents a comprehensive mathematical-mechanical model to determine the welded unreinforced flange-bolted web 
(WUF-B) connection behavior. The model was developed considering nonlinear characteristics and coupling of individual component properties. 
The parameters in the mathematical expressions were derived based on collected data from numerical simulations, combined with modified 
and newly developed mechanical component equations. The models were evaluated by comparing them with finite element analysis results of 
nonlinear three-dimensional connections. The characterization models, (i.e., equations and procedures) introduced in this paper defined the 
mechanical properties of the WUF-B connections for a fast and accurate frame analysis of blast-oriented progressive collapse.

Keywords: welded unreinforced flange-bolted web connection, WUF-B, moment connections, mathematical modeling, finite element analysis.

Steel moment connections used in lateral load-resistant 
frames have shown a vulnerability to earthquakes, as 

observed in the Northridge earthquake (FEMA, 2000). The 
importance of beam to column connections was shown in 
progressive collapse studies (Krauthammer et al., 2004; Lim 
and Krauthammer, 2006). For relatively small local failures, 
strong connections enable the bridging of loads to undam-
aged structural columns. However, in the case of severe local 
damage by an abnormal load such as impact or blast, neigh-
boring portions of the structure become unable to bridge 
the overloads and consecutive failures might be inevitable. 
Therefore, an accurate understanding of connection behavior 
is required for accurate progressive collapse analysis and to 
provide the necessary combination of ductility and strength 
in collapse-resistant frame design.

Considering the complexity of interactions between vari-
ous parts in a connection, a finite element analysis (FEA) has 
been a viable approach for investigating such relationships. 

However, fully dynamic nonlinear FEA require significant 
computational resources. Analyzing even a single connec-
tion would require a sufficiently dense mesh for all compo-
nents (including also bolts, nuts, welds, etc.), representation 
of contacts between the components, and representation of 
their fully nonlinear dynamic behaviors. Furthermore, nu-
merical analyses of a three-dimensional multi-story build-
ing will require even more computational resources to derive 
and collect the structural behavior data. For instance, there 
are approximately 500 connections in a 10-story building 
with a plan layout of four bays by four bays. The numerical 
analyses of the whole structural system would be prohibi-
tively long and expensive. Hence, it is essential to find a fast 
but reliable approach to characterize the detailed assemblies 
and to apply the properties for the joints of a frame model.

Moment-rotation (M − θ) curves have been generally used 
to characterize steel connections and to provide the properties 
of connector elements of a building frame model. Although, 
M − θ curves can be derived either theoretically or numeri-
cally, such curves were typically created based on experi-
mental test results. Cyclic tests were performed to determine 
the welded-unreinforced flange-bolted-web connections 
(WUF-B) properties (Krawinkler et al., 1971; Engelhardt et 
al., 1992, 1994). Krawinkler et al. (1971) suggested a tri-
linear model of the shear moment versus rotation behavior 
of the panel zone. Mathematical models were proposed us-
ing extensive test results (Nethercot, 1985; Kishi and Chen, 
1986). Empirical models for several partially restrained con-
nections were also introduced based on the experimental re-
sults, applying constant derivation techniques, such as curve 
fitting and regression analysis (Kishi, 1994; Attiogbe and 
Morris, 1991). Mathematical expressions for the connection 
properties were derived for computational frame analysis.  
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where 
Ke	 =	 rotational elastic stiffness
Kp	 =	 plastic stiffness
Mo	=	 reference moment, and 
n	 =	 shape factor. 

The shape factor may be obtained by a two-point analytical 
expression on the curve, (θa , Ma), (θb , Mb). The value for n is 
given by Equation (2), as follows:
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Ka	 =	 Ma  /θa

Kb	 =	 Mb  /θb

The shape factor, n is then determined by iterations. There-
fore, in order to predict a moment-rotation property of an 
arbitrary connection, one should define four important pa-
rameters: elastic stiffness, plastic stiffness, a reference mo-
ment, and a shape factor.

Characterizations of the  
WUF-B Connections

Before identifying the parameters, we classified the WUF-B 
connections into two different types depending on their force 
transfers (Carter, 2003). In the first case, the total design 
moment is less than the flexural strength of the girder. This 
case is generally found in the designs for buildings located 
in wind and low-seismic zones. Continuity plates and dou-
bler plates are seldom embedded in the column panel zone. 
The tensile and compressive forces from the girder’s top and 
bottom flanges are transferred through the complete-joint-
penetration groove welds into the column flanges and spread 
into the web. Shear forces are transmitted through a fillet-
welded single plate (shear tab) on the girder web into the 
column web. The rotational behavior of this kind of connec-
tion is mostly formed inside the panel zone by the axial and 
shear deformations of the column web. In the second case—
connections designed for high seismic applications—most 
of the rotation occurs at the end of the girder because the 
higher strength of the panel zone restrains the deformation.  

Accurate representations of the moment-rotation relation-
ships must be addressed, especially for the prediction of 
overall frame performance. One of the most often used equa-
tions for mathematical representations of force-deformation 
(or stress-strain) for a given structural connection system is 
the Richard-Abbott model (Richard and Abbott, 1975). Me-
chanical models are represented by component approaches 
proposed in Eurocode 3 (European Prestandard, 1997). These 
spring models were established with a set of components 
(spring elements) that contain inelastic constitutive proper-
ties quantified individually. The spring components are ar-
ranged in series or in parallel, and the assemblage can gener-
ate appropriate M − θ curves. The arrangement of springs, 
deformation contribution, and capacity of the weakest spring 
determine the initial rotational stiffness and flexural resis-
tance capacity. The effectiveness of this method has been 
demonstrated by numerous studies (European Prestandard, 
1995; Faella et al., 2000; Tamboli, 1999; Ivany and Banioto-
poulos, 2000; Tschemmernegg, 1988; Simoes da Silva et al., 
2002; Rassati et al., 2004). Some of these studies dealt with 
the direct flange-to-flange welded joints. 

The present study is aimed at characterizing the WUF-B 
connection behavior via mathematical and mechanical rep-
resentations. The characterization equations and procedures 
introduced in this paper define the mechanical properties of 
the WUF-B connections for a fast and accurate analysis of 
progressive collapse that could occur after abnormal load-
ing such as blast. If the connection properties are only de-
termined through experimental tests and FEA simulations 
with detailed and complex modeling, then it would require 
significant time and effort to investigate the entire frame 
collapse. Methods using mechanical components (springs) 
were employed to determine the connection properties, and 
the component equations were either newly developed in this 
study or adopted from a previous study and then modified. 
The equations were used to determine specific parameters 
in the mathematical model. Based upon the finite element 
analyses of a full three-dimensional connection model, the 
developed methods were evaluated for their ability to sim-
plify the feasible configurations for fast-running algorithms 
used in structural assessment. Furthermore, the modified ap-
proach led to a much simplified input for such analyses that 
are quite feasible even in a design office environment. 

Mathematical Model of Nonlinear 
Moment-Rotation Curve

Richard and Abbott (1975) proposed a mathematical repre-
sentation for the nonlinear structural systems. The equation 
has been implemented for the determination of various load-
response relationships such as stress-strain, force-deflection, 
and moment-curvature curves. Using the Richard-Abbott 
model, the moment-rotation relationship of a steel connection 
can be expressed, as follows (Richard and Abbott, 1975):
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Subsequently, this induces larger deformations into the weak 
girder end. The strength enhancement in the panel zone is 
achieved by selecting a larger size of column or using conti-
nuity plates and doubler plates. Such enhancement can shift 
the plastic hinge location into the girder end, even when the 
transferred moment is equal to the full flexural strength of 
the girder. Therefore, the rotation angle should be carefully 
defined based on the ratio of panel zone strength to girder 
strength. This study provides the proper definitions of the ro-
tations for these cases and evaluates them by comparing the 
relationships of moment-connection rotation and moment-
girder tip displacements between detailed and simplified 
numerical models.

The WUF-B connections can be categorized into the 
aforementioned two groups using the AISC design guideline 
for stiffening of wide-flange columns (Carter, 2003). In this 
study, either of two categories is used: a weak panel zone-
strong girder (WPZ-SG), or a strong panel zone-weak girder 
(SPZ-WG). Compressive and tensile forces equivalent to the 
girder flexural limit moment are determined, as follows:	

	 Pu = Mu  /ht	
(3)

where
Pu	 =	 tensile or compressive axial force through girder 

top or bottom flange
Mu	 =	 girder flexural strength
 ht	 =	 moment arm length 

Continuity plates are required if the obtained forces
 
are 

greater than one of the following resisting strengths (AISC, 
2005):

Column flange bending (tension force only),

	
ϕR t Fn fc yc= ( )0 9 6 25 2. . 	

(4)

Column web yielding (tension and compression forces),

	
R k t t= +ϕ tFn fg yc wc( )1 0 5.

	
(5)

Column web crippling (compression force only),

	
t t8 1ϕR t N/d //t t E Fn c wcwc fc yc fc wc= ( ) + ( )( )⎡

⎣⎢
⎤
⎦⎥

0 75 0 32
2

. .
	

(6)
	 × t t8 1ϕR t N/d //t t E Fn c wcwc fc yc fc wc= ( ) + ( )( )⎡

⎣⎢
⎤
⎦⎥

0 75 0 32
2

. .

where 
tw	 =	 web thicknesses
tf	 =	 flange thicknesses
d	 =	 depth of a member 
Fy	 =	 yield strength
Fu	 =	 ultimate strength
E	 =	 modulus of elasticity
N	 =	 length of bearing
k	 =	 distance from outer face of flange to web toe of fil-

let weld

The subscripts c and g mean column and girder, respec-
tively.

 Meanwhile, a doubler plate is required if the transferred 
forces are greater than the column web shear strength, as 
follows: 

	
ϕR Fn cyc wcd t= ( )0 9 0 6. .  for = <P M /h F Au u t yc c0 4.

	
(7)

			 
	

ϕR F d t P F An yc c wc u yc c= ( ) −( )0 9 0 6 1 4. . . / 	 (8)

	 for = ≥/u tP M /h F Au u t yc c0 4.

The rotations of each group are defined, as illustrated in 
Figure 1. In the WPZ-SG connection, a rotating behavior 
is mostly observed in the panel zone, while the dominant 

 - 26 -

   

           WPZ SG girder−θ = θ        SPZ WG girder panel zone−θ = θ − θ   

(a) WPZ-SG Connection                      (b) SPZ-WG Connection 

Fig. 1. De�nition of rotations. 

θgirder 

θgirder 

θpanel zone 

(a) WPZ-SG connection                (b) SPZ-WG connection

Fig. 1. Definition of rotations.
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(a) Detailed model 

 

 

(b) Simpli�ed model 

Fig. 2. Detailed and simpli�ed models. 

Join + Cardan 
connector element 

Fixed boundary 
conditions 

Fig. 2. Detailed and simplified models.

angle in the SPZ-WG connection is from the girder. This 
fact is shown by comparing moment-girder tip displace-
ment relationships obtained from detailed and simplified 
models, as shown in Figures 2(a) and 2(b), respectively. 
First, a connection model was built as detailed as possible; 
i.e., considering full three-dimensional behaviors, bolt-nut 

pre-loading, contacts, and material and geometrical non-
linearity. These numerical studies used the finite element 
analysis program ABAQUS/Standard (Dassault Systems, 
2008), and were validated in previous research (Yim and 
Krauthammer, 2009). Figure 3 indicate that the finite ele-
ment models were successfully validated by comparison 
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with experimental data (Engelhardt and Sabol, 1994, for 

Case 16; Engelhardt and Husain, 1992, for Case 17 to Case 

19; and Uang and Bondad, 1996, for Case 20). Based on the 

validated modeling techniques, push-down analyses where 

the static pressures were monotonically applied to the gird-

ers’ top fl ange surfaces were conducted. The moment could 

be obtained by multiplying the applied pressures on the 

girder top fl ange by the lever arm lengths. The connection 

rotation was calculated from the displacements at the points 

close to the column fl ange and on the girder fl anges (Fig-

ure 1), and the tip displacement was collected from the node 

of the girder tip in the neutral axis. Then, a fi nite element 
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(a) Case 16 (Test result from Engelhardt and Sabol, 1994) 
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(b) Case 17 (Test result from Engelhardt and Husain, 1992) 

Fig. 3. Result comparisons for model validation.
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frame analysis was conducted with simpler beam elements 
and connector elements, as opposed to beam, column, and 
connection members modeled by 3D elements. All the same 
geometrical and material properties, boundary conditions, 
and loading, which had been adopted in the previous simu-
lations for the detailed model, were applied into the simple 
frame analyses, as shown in Figure  2(b). The moment- 
rotation relationship extracted from the analysis with the 

detailed model was utilized as a mechanical property of the 
connector element in the simplified frame analyses. 

Figures 4 and 5 are comparisons of moment-rotation 
(M − θ) and moment-tip displacement (M − Δ) relationships 
for detailed and simplified models. According to the com-
parisons, the simple models using the M − θ properties for 
both WPZ-SG and SPZ-WG connections proposed in this 
study could produce the M − Δ responses, which were in  

 - 29 -
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(c) Case 18 (Test result from Engelhardt and Husain, 1992) 
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(d) Case 19 (Test result from Engelhardt and Husain, 1992) 

Fig. 3. Result comparisons for model validation (continued). 

 

Fig. 3. Result comparisons for model validation (continued).
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(e) Case 20 (Test result from Uang and Bondad, 1996) 

Fig. 3. Result comparisons for model validation (continued). Fig. 3. Result comparisons for model validation (continued).

accord with the detailed model responses. Hence, it can be 
said that the rotations definition were accurate with respect 
to the specifically classified WUF-B connections.

In addition, it should be noted that the push-over simula-
tions for the detailed models contained approximately 90,000 
elements and required about 24 hours to run. The worksta-
tion had two Intel Xeon dual-core processors, operating at 
3 GHz, and 3.5 GB of RAM for each CPU. The number of 
elements of individual members in the detailed and simpli-
fied models is defined in Table 1. The displacements from 
the simplified model were within 5 percent of the detailed 
model results and showed considerable savings in computa-
tion times and output file sizes (e.g., 12 hours run time and  

1.20 GB of data, but less than 1 minute run time and 8 MB 
data for the simplified model). Hence, once the moment- 
rotation connection properties can be predicted mathemati-
cally and mechanically, the simplified models including 
these properties will be able to provide a good approxima-
tion of frame responses with very significant cost savings. 

Derivation of the Parameters in the 
Moment-Rotation Curves

In this study, the parameters of the mathematical representa-
tions were derived by means of a mechanical model, based  
on the Component Method (European Prestandard, 1997). In 

Table 1. Number of Elements for Various Components (Case 16 in Table 3)

Component
Number of Elements

Detailed Model Simplified Model

Girder 21280 38

Column 39964 31

Bolts 6784

1
(Connector element)

Nuts 1024

Shear Tabs 16680

Welds 7158

End Plate 176
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in shear (cws); column web in tension and compression (cwt 
and cwc); column flange in bending (cfb); girder flange in 
tension and compression (gft and gfc); and girder flange in 
tension/compression combined with shear tab in tension/
compression (gstab). 

As defined by Equation 1, the mathematical M − θ curve 
using the Richard-Abbott model is composed of the follow-
ing four parameters: elastic and plastic stiffnesses, a refer-
ence moment, and a shape factor. The reference moment 

particular, general approaches and terms presented in this study 
were adopted from previous research (e.g., Faella et al., 2000). 
One needs to modify the existing spring models or develop 
additional components (and those combinations), considering 
different force distributions in the unreinforced/reinforced 
panel zone to obtain more sophisticated M − θ curves.

The first step is the identification of the joint components. 
Seven basic components characterizing the WUF-B mo-
ment connection were considered (Figure 6): column web 
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(a) Moment-rotation relationships 
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(b) Moment-tip displacement relationships 

Fig. 4. WPZ-SG connection (Case 12 in Table 3). Fig. 4. WPZ-SG connection (Case 12 in Table 3).

071-090_EJ2Q_Yim_Krauthammer_2010.indd   78 7/9/10   2:32:40 PM



ENGINEERING JOURNAL / SECOND QUARTER / 2010 / 79

Group 1: Weak Panel Zone-Strong Girder (WPZ-SG) 
WUF-B Connection

Elastic Stiffness

Components associated with the column web govern the 
elastic stiffness in this group. The stiffness component from 
the column web in shear can be obtained by the following 
fundamental moment-shear deformation relationship. 

and shape factor can be obtained using yield and ultimate 
moments. The governing components associated with each 
parameter are summarized in Table 2. 

In the following sections, the component formulations and 
equation details are introduced in reference to each connec-
tion group. Procedures to extract the M − θ representations 
will then be presented. Finally, the reliability of the curve 
prediction will be discussed and demonstrated based on the 
comparisons with the simulation results.

 - 32 -

0.00E+00

5.00E+06

1.00E+07

1.50E+07

2.00E+07

2.50E+07

3.00E+07

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01

rotation (rad.)

moment (lb-in.)

detailed
model

simplified
model

 

(a) Moment-rotation relationships 
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(b) Moment-tip displacement relationships 

Fig. 5. SPZ-WG Connection (Case 16 in Table 3) 
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(b) Moment-tip displacement relationships 

Fig. 5. SPZ-WG Connection (Case 16 in Table 3) Fig. 5. SPZ-WG Connection (Case 16 in Table 3).
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 column web in tension (cwt)  girder �ange in tension (gft) 

 column web in compression (cwc)  girder �ange in compression (gfc) 
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Table 2. Component List for the Related Parameters

Parameters Components

WPZ-SG connection SPZ-WG connection

Elastic Stiffness • column web in shear
• column web in tension
• column web in compression

• girder flange in tension
• girder flange in compression

Yield Moment • column web in shear
• column web in tension
• column web in compression 
• column flange in bending
• girder flange in tension
• girder flange in compression

• girder flange in tension
• girder flange in compression

Plastic Stiffness • girder web in tension
• girder web in compression

• girder flange in tension
• girder flange in compression

Ultimate Moment • �column web in tension or compression 
combined with shear tab force transfer

• �girder flange in tension/ compression, 
combined with shear tab in tension/
compression

• groove weld failure

• �girder flange in tension/ compression, 
combined with shear tab in tension/
compression

• groove weld failure
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Next, the strength of the column web in compression is the 
minimum value of crushing or buckling resistance, as shown 
in Equation 15,

	
F F Fcwc cwc crushing cwc buckling= ⎡

⎣
⎤
⎦min ,

	
(15-1)

	 F b t fcwc crushing eff cw wc y cw= . . 	
(15-2)

The buckling resistance was determined by the use of the clas-
sical Winter formula (Faella et al., 2000). If the slenderness 

λ =
⎛

⎝
⎜

⎞

⎠
⎟

b t f

F

eff cw wc y cw

cr

. .

1
2

 

is greater than 0.67, where
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v d
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=
−( )
π 3

23 1
, then

	
. .F b t fcwc buckling eff cwc wc y cw= −
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where 

b t t r
d b

t t
eff cwc fb fc c

wc fc

wc fc

*
. = + +( )

⎛

⎝
⎜

⎞

⎠
⎟2

3
ψ

11
4⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥ 

	 = effective width for buckling resistance
ψ	 = reduction coefficient on the actual restraining ac-

tion from column web

If λ is less than 0.67, Fcwc buckling = Fcwc crushing.

Equation 16 provides the load carrying capacity of the col-
umn web in tension,

	 F b t fcwt eff cw wc y cw= . . 	
(16)

Equation 17 can be used for flexural strength by means of a 
column flange in bending.

	

F b t f
t d f

h t
cwc eff cfb fg y gf

wg wg y gw

g fg

= +
−( ). .

.

4
	 (17)

where
dwg	 =	 clear depth of girder web 
fy gw	 =	 yield strengths of girder web
fy gf	 =	 yield strengths of girder flange

2 7b t r kteff cfb wc c fc. = + +  
	 =	 effective width for column flange bending

k
f t

f t

y.cf fc

y.gf fg

=  = coefficient

If the panel zone is relatively stronger than a portion of the 
girder, plastic behavior of connection initiates at the groove-
welded girder flanges. Therefore, the resistance capacity of 
the girder flange is given by the following:

	
F F f f b tgft gfc cr gf y gf fg fg= = ⎡

⎣
⎤
⎦min , 	 (18)

	
K

GA

h
cws

vc

t

= 	 (9)

The effective column web area is

2 2+ += −A A b t t r tvc c ( )fc fc wc c fc

where 
Ac	 =	 column area 
rc	 =	 radius of web-to-flange connection
G	 =	 shear modulus of elasticity

The stiffness characterized by the column web in tension and 
compression are identical, as shown in Equation 10,

	
K K

Eb t

d
cwc cwt

eff cw wc

wc

= =
.

	
(10)

where 
beff. cw	 =	 effective width of the column web in tension 

and compression 
dwc	 =	 clear depth of the column web

The effective width beff. cw is determined considering the ac-
tion transmitted by the girder compressed flange, as shown 
in Equation 11 (European Prestandard, 1997):

	
+ += +b t t5 2a aeff fc c( )2 2.cw fg g 	 (11)

where 
tfg	 =	 girder flange thickness
ag	 =	 throat thicknesses of flange-to-web in girder
ac	 =	 throat thicknesses of flange-to-web in column

One of the key features of the component method is the cou-
pling of individual components. Since each component has 
an effect on the others during rotational behavior, a series 
formulation of the springs should be taken into account to 
define the constitutive model, as follows:

	

K
h

K K K

e
t

cws cwt cwc

=
+ +

2

1 1 1
	 (12)

Yield Moment

The flexural resistance can be determined from the weakest 
components, as expressed in Equation 13,

	

M F h

F F F F F F

y y t

cws cwcc ccwt cfb gfc gft

=

=
min

min , , , , , ,,F hgfcb t⎡
⎣

⎤
⎦ ⋅

	 (13)

First, the component strength in terms of column web in 
shear is given by Equation 14,

	
3 1

F
f A

h h L
cws

y pz vc

t t c

=
−( )/

	 (14)

where 
fy pz	=	panel zone strength 
Lc	 =	column length
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	 (24)

where 
hstab	 =	 height of shear tab plate
tstab	 =	 thickness of shear tab plate

Also,

	 F f b tgweld u gweld fg fg= 	 (25)

where fu gweld is the ultimate strength of groove weld.

It should be noted that the ultimate moment is produced by 
means of interactions between the panel zone and the girder. 
In particular, it will be more complicated if the panel zone 
yields before the girder and the shear tab plate reaches its 
ultimate conditions. Therefore, in the WPZ-SG case, the ul-
timate and yield forces are assumed to be distributed in the 
shape of concave and convex ellipses on the cross sections 
on shear tab plates and girder flanges, respectively, as shown 
in Figure 7.

Strong Panel Zone-Weak Girder (SPZ-WG) WUF-B 
Connection

Elastic Stiffness

As a panel zone is made stronger by increasing column size 
or reinforcing, the rotation behavior becomes more concen-
trated at the girder region. Therefore, the stiffness is obtained 
on the basis of girder flanges in tension and compression, 
similar to the plastic hardening stiffness of a WPZ-SG con-
nection. The initial stiffness is given by:

	

K K
h

K K

e eg
t

gft gfc

= =
+

2

1 1
	 (26)

where Kgft (equal to Kgfc) is the girder flange stiffness intro-
duced in Equation 20. Because the ultimate stress occurs at 
the girder flange zone, ρ is assumed to be 1.5.

Yield Moment

Since the girder flange zone is weaker than the panel zone, 
the yield resistance of an SPZ-WG connection can be com-
puted by Equation 18.

Plastic Stiffness

The plastic stiffness of an SPZ-WG case is identical to the 
WPZ-SG connection, where the ultimate stress is found in 
the girder flanges (Equation 21). 

The  fcr gf  is the flange strength to resist local buckling defined 
as (AISC, 2005): 
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2

2
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2

	 (19)

where 
μ	 =	 Poisson’s ratio 
k	 =	 constant depending on plate conditions (0.7 for 

flange)

Plastic Stiffness

Once yielding occurs in the panel zone before the girder end 
reach fully plastic condition, the girder flanges will contrib-
ute to the rotational plastic hardening behavior. Therefore,

	
K K

Eb t

b
gft gfc

fg fg

stab

= =
ρ

	 (20)

where 
ρ	 =	 coefficient 
bstab	 =	 width of shear tab plate

If the panel zone reaches the ultimate condition, ρ is 1.0. When 
the ultimate stress is found at the girder flange zone, ρ is 1.5. 
Considering the series of springs and material hardening 

ratio, 
E

E
h , the plastic stiffness can be computed by Equation 21:
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(21)

Ultimate Moment

Ultimate flexural resistance can be obtained from the weakest 
component ultimate strength as expressed in Equation 22:

	
M F h F F F hu u t cw stab g stab gweld t= = ⎡

⎣
⎤
⎦min min , ,

	 (22)

where 
Fcw stab	 =	 force by the column web in compression or 

tension, adding the forces transferred through 
shear tab

Fg stab	 =	 force from the girder in tension/compression 
combined with shear tab force

Fgweld	 =	 force by ultimate strength of groove weld be-
tween girder and column 

The specific expressions are shown in Equations 23 and 24, 
respectively:
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(23)

071-090_EJ2Q_Yim_Krauthammer_2010.indd   82 7/9/10   2:32:46 PM



ENGINEERING JOURNAL / SECOND QUARTER / 2010 / 83

and Husain, 1992; Engelhardt and Sabol, 1994; and Uang 
and Bondad, 1996). These eight SPZ-WG connections were 
designed to have highly stiff panel zones compared to the 
flexural strength of the joined girders.

The finite element models were established using 
ABAQUS/Standard, as shown in Figure 2. An elasto- 
plastic material property with isotropic hardening was select-
ed to simulate the material behavior of all the components of 
the finite element model. The material models are shown in 
Table 4. An elastic modulus of 29,000 ksi, Poisson’s ratio 
of 0.3, and ultimate strain of 0.2 were used for all cases. 
It should be noted that the girder and column properties of 
Cases 16 to 20 followed the mill certificate strength data re-
ported on the experimental study (Engelhardt and Husain, 
1992; Engelhardt and Sabol, 1994; and Uang and Bondad, 
1996) while those of Cases 1 to 15 were constructed with 
ASTM A992 steel. Shear tabs of ASTM A36 steel, A325N 
bolts, and E70T-7 welds were used for all cases. The element 
types mainly used for the finite element models in this study 
were eight-node continuum (brick) elements with reduced in-
tegration (C3D8R). Six-node wedge elements (C3D6) were 
also used to model the curved parts that included the weld 
access holes, bolt holes and welds (Dassault Systems, 2008).

The numerical simulation results were compared with 
the results predicted by the proposed models. In Cases 1 
through 4, the mechanical model results showed that both 
initial yield and ultimate moments were found in the panel 
zones, since the zones were weaker than girder region. Next, 
in Cases 5 to 8, it was shown that the yield moment occurs in 
the panel zones first, but the ultimate moment occurs at the 
girders. In Cases 9 to 12, both yield and ultimate moments 
were obtained from the girder regions, even though some 
portion of the panel zones yielded. Meanwhile, as expected 
before, the rotations were governed by girder deformations 

Ultimate Moment

The ultimate moment of an SPZ-WG connection can be ob-
tained using the approach for a WPZ-SG connection, and the 
ultimate strength is found in the girder zone, as represented 
by Equation 24. As shown in Equation 27, the only differ-
ence is that the full ultimate stress was applied instead of 
the elliptical stress distribution. This is because one expects 
more contribution from the girder region in the case of the 
strong-panel zone connection.
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Comparisons with Simulation Results

To show the accuracy of the mathematical-mechanical 
models, this study included extensive comparisons of the  
M  − θ curves computed by the aforementioned approach  
with numerical analysis conducted by ABAQUS/Standard 
(Dassault Systems, 2008). Various girder-column candidates 
were employed or designed, as summarized in Table 3. For 
the WPZ-SG and WUF-B connections (from Cases 1 through 
12), girder-column combinations and connections were 
employed from a building assumed to be located in a low- 
seismic zone, and the connections were designed on the 
basis of the pre-Northridge design concept. For the SPZ-
WG cases, three connections were designed based on the 
AISC Manual (AISC, 2005). The column panel zones were 
reinforced by continuity plates and doubler plates. Cases 16 
to 20 were obtained from seismic test studies (Engelhardt 

 - 34 -

       

 

(a) Shear tab (elevation view)                     (b) Girder �ange (top view) 

Fig. 7. Stress distributions on the shear tab and girder �ange cross sections. 

 

 

65 ksi 65 ksi 50 ksi 50 ksi 

Fig. 7. Stress distributions on the shear tab and girder flange cross sections.
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M M M My u y0

3
= + −( )η

	 (28-3)

	 θb  = 2θa	 (28-4)

	

θ θ
θ θ

M M M Mb y u y
b a

u y

= + −( ) −
−

⎛

⎝
⎜

⎞

⎠
⎟ 	 (28-5)

where η = 1 if the beam web supplemental weld is not pro-
vided and η = 2 if such a weld is provided.

in the SPZ-WG connections (Cases 13 to 16). Table 5 sum-
marizes the overall results from simulations and mechanical 
representations. 

Once the yield or ultimate moments and elastic or plastic 
stiffnesses are computed, the next step was to generate the 
parameters for the mathematical representations (Equation 1). 
The required parameters, θa, Ma, θb, Mb, Mo and n are defined 
by Equations 28-1 through 28-5. The shape factor n is then 
determined through iteration, as defined by Equation 2.

	
Ma  = My	 (28-1)

	
θa  = θy = My  / Ke	 (28-2)

Table 3. Connection Cases

No. Girder Column
Shear Tab Plate Bolt Weld Continuity Plate

Doubler 
Plate

bstab hstab tstab Lev Leh ϕ Nb s tw stab-cflange tw stab-gweb bstiff wstiff tstiff tdp 2–tdp

W
P

Z
-S

G

1 W21×62 W14×74 42 9 c 1.5 1.5 w 3 3 c x 0 0 0 0 0

2 W21×57 W14×99 42 9 c 1.5 1.5 w 3 3 c x 0 0 0 0 0

3 W27×94 W14×90 42 15 c 1.5 1.5 w 4 4 c x 0 0 0 0 0

4 W30×99 W14×90 42 15 4 1.5 1.5 w 4 4 4 4 0 0 0 0 0

5 W24×76 W14×120 42 9 c 1.5 1.5 w 3 3 c x 0 0 0 0 0

6 W27×94 W14×176 42 15 c 1.5 1.5 w 4 4 c x 0 0 0 0 0

7 W30×108 W14×132 42 15 c 1.5 1.5 w 4 4 c 4 0 0 0 0 0

8 W30×116 W14×159 42 15 c 1.5 1.5 w 4 4 c 4 0 0 0 0 0

9 W18×35 W14×74 42 9 c 1.5 1.5 w 3 3 c x 0 0 0 0 0

10 W18×35 W14×99 42 9 c 1.5 1.5 w 3 3 c x 0 0 0 0 0

11 W30×116 W14×233 42 15 c 1.5 1.5 w 4 4 c 4 0 0 0 0 0

12 W36×135 W14×283 42 19 a 1.5 1.5 1 5 4 c 4 0 0 0 0 0

S
P

Z
-W

G

13 W21×44 W12×53 3 12 4 3 1.5 s 3 3 4 x 4x 11 v 1 2

14 W24×62 W14×120 3 15 4 3 1.5 s 4 3 c x 7 12s b 1 2

15 W24×68 W12×252 3 15 c 3 1.5 w 4 3 c 4 0 0 0 1 2

16 W36×150 W14×455 5 25 s 1.5 1.5 1 8 3 c 4 0 0 0 0 0

17 W24×55 W12×136 42 18 2 1.5 1.5 d 6 3 c 0 5w 10d 2 0 0

18 W18×60 W12×136 42 12 2 1.5 1.5 d 4 3 c 0 5w 10d 2 0 0

19 W21×57 W12×136 42 15 2 1.5 1.5 d 5 3 c 0 5w 10d 2 0 0

20 W30×99 W14×176 42 24 s 1.5 1.5 d 8 3 c c 7v 12b a 0 0

bstab	= width of shear tab plate (in.)
hstab	= height of shear tab plate (in.)
tstab	 = thickness of shear tab plate (in.)
Lev	 = vertical length from edge to first bolt hole (in.)
Leh	 = horizontal length from edge to first bolt hole (in.)
ϕ	 = bolt diameter (in.)
Nb	 = number of bolts 
s	 = bolt spacing (in.)

tw stab-cflange	= �thickness of weld between shear tab plate and  
column flange (in.)

tw stab-gweb	 = �thickness of weld between shear tab plate and 
girder web (in.)

bstiff	 = length of continuity plate (in.)
wstiff	 = width of continuity plate (in.)
tstiff	 = thickness of continuity plate (in.)
tdp	 = thickness of doubler plate (in.)
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Table 4. Connection Component Yield and Ultimate Strengths

Case Strength Girder Column Shear Tabs Bolt/Nut Weld

1-15
fy (ksi) 50.0/50.0 50.0/50.0 36.0 92.0 70.0

fu (ksi) 65.0/65.0 65.0/65.0 58.0 120.0 80.0

16a
fy (ksi) 50.0/50.0 62.5/62.5 50.0 92.0 70.0

fu (ksi) 64.8/64.8 78.9/78.9 64.8 120.0 80.0

17b
fy (ksi) 41.6/42.3 52.0/54.9 36.0 92.0 58.0

fu (ksi) 59.6/63.9 70.4/73.7 58.0 120.0 70.0

18b
fy (ksi) 40.9/43.0 52.0/54.9 36.0 92.0 58.0

fu (ksi) 59.9/59.9 70.4/73.7 58.0 120.0 70.0

19b
fy (ksi) 38.4/36.5 52.0/54.9 36.0 92.0 58.0

fu (ksi) 56.1/54.7 70.4/73.7 58.0 120.0 70.0

20c
fy (ksi) 46.5/57.1 52.5/51.2 36.0 92.0 58.0

fu (ksi) 67.7/72.5 68.2/67.2 58.0 120.0 70.0
a Engelhardt and Sabol, 1994
b Engelhardt and Husain, 1992
c Uang and Bondad, 1996

Table 5. Results from Mathematical-Mechanical Models and Simulations

No.
Ke (in.-lb-rad) My (in.-lb) Kp (in.-lb-rad) Mu (in.-lb)

Simulation Math.-Mech. Simulation Math.-Mech. Simulation Math.-Mech. Simulation Math.-Mech.

W
P

Z
-S

G

1 5.92E+08 6.71E+08 3.34E+06 2.57E+06 1.50E+07 1.85E+07 4.78E+06 5.08E+06

2 7.40E+08 7.23E+08 3.32E+06 2.96E+06 1.30E+07 1.57E+07 5.46E+06 5.18E+06

3 2.76E+10 2.67E+10 4.81E+06 3.29E+06 4.56E+07 4.48E+07 6.85E+06 6.36E+06

4 1.04E+09 1.09E+09 5.05E+06 3.60E+06 4.58E+07 5.22E+07 7.61E+06 7.47E+06

5 1.10E+09 1.14E+09 3.64E+06 4.65E+06 3.06E+07 1.94E+07 7.82E+06 8.11E+06

6 1.68E+09 2.12E+09 9.36E+06 9.45E+06 3.25E+07 2.99E+07 1.22E+07 1.12E+07

7 1.67E+09 1.79E+09 6.38E+06 6.86E+06 4.33E+07 3.95E+07 1.27E+07 1.36E+07

8 1.91E+09 2.15E+09 8.50E+06 8.92E+06 5.49E+07 4.45E+07 1.56E+07 1.51E+07

9 4.78E+08 5.10E+08 2.13E+06 2.13E+06 5.66E+06 4.46E+06 2.82E+06 2.76E+06

10 5.27E+08 5.46E+08 2.13E+06 2.20E+06 5.06E+06 4.46E+06 2.82E+06 2.76E+06

11 2.54E+09 3.49E+09 1.26E+07 1.30E+07 3.43E+07 4.45E+07 1.55E+07 1.51E+07

12 3.84E+09 5.58E+09 1.63E+07 1.65E+07 5.54E+07 6.74E+07 1.97E+07 1.95E+07

S
P

Z
-W

G

13 5.36E+09 5.80E+09 3.55E+06 2.96E+06 1.06E+07 1.58E+07 3.97E+06 4.27E+06

14 9.10E+09 1.07E+10 5.16E+06 4.80E+06 2.26E+07 2.93E+07 5.94E+06 6.90E+06

15 1.21E+10 1.36E+10 6.99E+06 6.06E+06 4.43E+07 3.70E+07 8.27E+06 8.71E+06

16 2.76E+10 2.67E+10 2.32E+07 1.97E+07 1.38E+08 1.09E+08 2.94E+07 3.12E+07

17 5.98E+09 4.06E+09 3.42E+06 2.94E+06 1.05E+08 1.01E+08 5.64E+07 5.85E+06

18 4.36E+09 3.46E+09 3.42E+06 3.31E+06 9.34E+07 9.93E+07 5.69E+06 5.44E+06

19 3.90E+09 3.83E+09 3.71E+06 3.14E+06 1.14E+08 9.88E+07 5.91E+06 6.12E+06

20 1.41E+09 1.27E+10 1.19E+07 8.91E+06 1.20E+08 9.37E+07 1.50E+07 1.67E+07
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Finally, the M − θ curves are derived and compared with 
the curves extracted from the simulations. The comparisons 
in Figures 8 demonstrate that the theoretical curves were 
in quite good agreement with those from the finite element 
analyses.

Discussion

The Richard-Abbott model could be used to describe a non-
linear behavioral model for a moment connection using me-
chanical parameters and a shape factor. The strong point of 
the model is that it produces the nonlinear curves if points are 
defined before and after the point of inflection (i.e., before the 
curve between proportional limit and strain hardening). The 
points before the inflection were accurately determined by 
the initial stiffness and yield strength formulations given in 

this study. The connection yielding started at the panel zones 
in Cases 1 through 8 while the girder regions yielded first 
in Cases 9 to 20, due to the relatively stronger panel zones 
that moved the yield initiations into the girder regions. The 
simulation results for Cases 5 to 8 showed that the yielding 
initiated in the panel zones, but the girders reached the ulti-
mate conditions earlier. This can happen because the panel 
zones are the stiffened regions, and they may resist the loads 
until the unstiffened girder flanges reached ultimate stresses. 
Stress concentrations around the weld access holes caused 
the ultimate moment condition at the girder to be reached 
sooner. In Cases 9 to 12, both yield and ultimate moments 
were obtained in the girder regions, even though some por-
tion of the panel zones yielded. Meanwhile, as expected, the 
rotations were governed by girder deformations for the SPZ-
WG connections (Cases 13 to 20). The differences in results 

 - 35 -

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

rotation (rad.)

moment (in-lb.)

detailed
model

math-mech
model

 

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

0 0.01 0.02 0.03 0.04 0.05

rotation (rad.)

moment (in-lb.)

detailed
model

math-mech
model

 
(a) Case 1        (b) Case 2 

 

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

8.00E+06

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04

rotation (rad.)

moment (in-lb.)

detailed
model

math-mech
model

 

0.00E+00

1.00E+06

2.00E+06

3.00E+06

4.00E+06

5.00E+06

6.00E+06

7.00E+06

8.00E+06

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045

rotation (rad.)

moment (in-lb.)

detailed
model

math-mech
model

 
(c) Case 3       (d) Case 4 

 
Fig. 8. Comparisons of the curves from mathematical-mechanical model with simulation results from detailed model. 
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Fig. 8. Comparisons of the curves from mathematical-mechanical model with simulation results from detailed model (continued). 
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Fig. 8. Comparisons of the curves from mathematical-mechanical model with simulation results from detailed model (continued). 
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Fig. 8. Comparisons of the curves from mathematical-mechanical model with simulation results from detailed model (continued). 
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Fig. 8. Comparisons of the curves from mathematical-mechanical model with simulation results from detailed model (continued).
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Fig. 8. Comparisons of the curves from mathematical-mechanical model with simulation results from detailed model (continued). 
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Fig. 8. Comparisons of the curves from mathematical-mechanical model with simulation results from detailed model (continued). 

	 (m) Case 13 	 (n) Case 14
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Fig. 8. Comparisons of the curves from mathematical-mechanical model with simulation results from detailed model (continued). 

	 (o) Case 15 	 (p) Case 16

Fig. 8. Comparisons of the curves from mathematical-mechanical model with simulation results from detailed model (continued).
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between the mathematical-mechanical models and the FEM 
simulations are less than 10 percent. These differences are 
probably due to the simplification of the detailed connection 
assembly. The M − θ curves produced in the mathematical-
mechanical model were determined by mechanically defin-
ing the critical yield and ultimate points in terms of spring 
component behaviors and then mathematically connecting 
the points. In the FEM simulations, on the other hand, the  
M − θ curves were obtained by means of calculations of forces 
and deformations on a mesh of densely discrete elements, so 
that they can reflect the precise propagation of yielding and 
ultimate conditions in the girders and panel zones. Although 
the transition between pre-yield to post-yield behavior in the 
mathematical-mechanical model is based on two points and 
a shape factor, the derived curves compared well with the 
results from detailed simulations.

Conclusions

This study presents a comprehensive mathematical-mechan-
ical modeling approach to define the resistance function 
of the welded unreinforced flange-bolted web (WUF-B) 
connection. The approach utilized a mathematical model 
for nonlinear characteristics, and a component method for 
coupling of individual components. A connection in a steel 
frame is a configuration of components that contains differ-
ent geometries, shapes, and material properties. The same 
connection type may show diverse behavior, depending on 
the assembled components. Connection yielding will flow 
through the weakest component and spread to adjacent 
areas. Based on the hypothesis, this study considered the 
combined behaviors of individual components, since each 
of the assembled elements affects the combined behavior. In 
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Fig. 8. Comparisons of the curves from mathematical-mechanical model with simulation results from detailed model (continued). 
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Fig. 8. Comparisons of the curves from mathematical-mechanical model with simulation results from detailed model (continued). 
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Fig. 8. Comparisons of the curves from mathematical-mechanical model with simulation results from detailed model (continued).
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order to evaluate the representation approaches proposed in 
this study, various possible cases were selected that show the 
yield flows in different directions. Then, by tracing the re-
sponses, appropriate equations were collected, modified, and 
newly developed for each component property. The WUF-B 
connections were reclassified according to strength com-
parison of panel zones and girder regions. Comparisons of 
the M − θ curves showed that the mathematical-mechanical 
models developed in this study are able to accurately predict 
the resistance functions for the selected connections. Since 
a steel building generally includes a large number of con-
nections, this mathematical-mechanical method is expected 
to reduce computational effort while providing acceptable 
levels of accuracy in the frame analysis.
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Tables for Eccentrically Loaded  
WT Shapes in Compression
MARK E. GORDON

Abstract

WT shapes are often used for bracing, and they are typically connected to their supports with gusset plates on the flange. This attachment 
creates an eccentric axial load on the WT, which is not considered by design tables in the 13th edition AISC Manual of Steel Construction. This 
paper demonstrates one method for generating design tables that account for this eccentric loading.

Keywords: WT shapes, compression, eccentric loading.

Horizontal WT braces commonly connect to their supports 
with gusset plates to the WT flange. This connection cre-

ates an eccentric axial loading. The axial compression tables 
in Section 4 of the 13th edition of the AISC Steel Construc-
tion Manual do not consider connection eccentricity. An Ex-
cel spreadsheet was developed to generate allowable stress 
design (ASD) and load and resistance factor design (LRFD) 
tables to assist engineers in considering these eccentric con-
nections using the 13th edition Manual. Tables are located 
at the end of this paper. The available strengths in Table 1 
(ASD) and Table 2 (LRFD) for WTs were determined by 
inputting different lengths and loads until a maximum load 
was found for which the WT still passed. The reduction fac-
tors in Table 3 (ASD) and Table 4 (LRFD) were developed 
by taking the maximum allowable P load with the eccentric 
connection and dividing by the maximum allowable P load 
without the eccentric connection. These factors are useful in 
reducing the allowable stresses in analysis and design pro-
grams, instead of having to check the WTs with eccentrici-
ties by hand. The tables were developed with the following 
assumptions:

1.	 ASD and LRFD, 2005 AISC Specification for Struc-
tural Steel Buildings.

2.	 WT member yield strength, Fy, of 50 ksi.
3.	 The WT members are horizontal, connected to a gusset 

plate at the flange, with the gusset plate on top.
4.	 Gusset plates are 2 in. thick.
5.	 The ends of the WT are pinned (K = 1).
6.	 Eccentricity taken from centroid of WT to the centroid 

of the gusset plate.

7.	 Design moment includes self-weight of WT.
8.	 For the LRFD method, a dead load factor of 1.2 is ap-

plied to the self-weight of the member.

The following examples demonstrate the procedure that  
is incorporated in the spreadsheet that was used to make  
the tables. Equation numbers refer to the 2005 AISC Speci-
fication.

Example 1

Slender WT in Compression Using ASD

½ in. gusset plate 

WT7×21.5 

19.2 kips 

19.2 kips 

Tables for Eccentrically Loaded WT Shapes in Compression  
 
MARK E. GORDON 
 
Mark E. Gordon, P.E., Structural Engineer, Southern Company, 42 Inverness Center Parkway, Bin B-253, Birmingham, AL, 35242. E-
mail: megordon@southernco.com 
 
Abstract 
 
 
Keywords: WT shapes, compression, eccentric loading. 
 
Horizontal WT braces commonly connect to their supports with gusset plates to the WT �ange.  This connection creates an eccentric 
axial loading.  The axial compression tables in Section 4 of the 13th edition of the AISC Steel Construction Manual do not consider 
connection eccentricity. An Excel spreadsheet was developed to generate tables to assist engineers in considering these eccentric 
connections using the 13th edition Manual. The available strengths in Table 1 (ASD) and Table 2 (LRFD) for WTs were determined 
by inputting different lengths and loads until a maximum load was found for which the WT still passed.  The reduction factors in 
Table 3 (ASD) and Table 4 (LRFD) were developed by taking the maximum allowable P load with the eccentric connection and 
dividing by the maximum allowable P load without the eccentric connection. These factors are useful in reducing the allowable 
stresses in analysis and design programs, instead of having to check the WTs with eccentricities by hand.  The tables were developed 
with the following assumptions: 
 

1. Both ASD and LRFD aproaches. 
2. WT member yield strength Fy of 50 ksi. 
3. The WT members are horizontal, connected to 

         a gusset plate at the �ange with the gusset plate 
         on top. 
4. Gusset plates are ½ in. thick. 
5. The ends of the WT are pinned. (K = 1) 
6. Eccentricity taken from centroid of WT to the centroid of the gusset plate. 
7. Design moment includes self weight of WT. 
8. For the LRFD method, a dead load factor of 1.2 is applied to the self weight of the member. 

                  
The following examples demonstrate the procedure that is incorporated in the spreadsheet that was used to make the tables. 
 
                                            
 
 
 
 
 
 
Example 1 (WT slender in compression by ASD method): 
 
 
 
 
 
 
 
 
 
 
Given: 

Given:
A 25 ft. horizontal WT7×21.5 brace with an axial compres-
sion load of 19.2 kips that is connected on top of the flange 
with a ½-in. gusset plate.

WT7×21.5 properties from Table 1-8 of the AISC Manual 
and from the AISC Shapes Database:

Ag	= 6.31 in.2

d	 = 6.83 in.
tw	 = 0.305 in.
bf	 = 8.00 in.
tf	 = 0.530 in.
Ix	 = 21.9 in.4

Sx	 = 3.98 in.3

rx	 = 1.86 in.
y	 = 1.31 in.
Zx	 = 7.05 in.3

Iy	 = 22.6 in.4

Mark E. Gordon, P.E., Senior Structural Engineer, Southern Company,  
42 Inverness Center Parkway, Bin B453, Birmingham, AL 35242. E-mail:  
megordon@southernco.com
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Table 1 (ASD)                            

     
     

     

Horizontal WT Shapes
Available Strength (Pn  /Ωc)

for Compression Loads* with Connection Eccentricity 
(kips)

Fy = 50 ksi

Shape
Span Length (ft)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0

WT4×9 27.1 24.0 19.9 15.4 11.4 8.64 6.62

WT5×11 31.7 30.0 26.8 22.6 18.3 14.3 11.3 9.00

WT5×13 38.4 36.1 31.8 26.7 21.5 16.9 13.3 10.6 8.49

WT5×15 47.1 43.2 37.6 31.4 25.2 19.7 15.6 12.4 10.0

WT6×11 30.0 27.3 22.2 16.2 11.6

WT6×13 31.6 30.7 29.0 26.4 23.2 19.8 16.5 13.5 11.0 9.04

WT6×15 40.9 39.5 36.8 32.8 28.3 23.7 19.3 15.6 12.8 10.5

WT6×17.5 52.6 50.5 46.4 40.7 34.6 28.5 23.0 18.6 15.2 12.5

WT6×20 58.1 55.7 51.1 44.1 37.0 30.3 24.3 19.5 15.8 12.9

WT6×22.5 68.7 65.6 59.4 51.1 42.6 34.7 27.7 22.4 18.2 14.8

 WT6×25 78.0 73.3 65.5 56.4 47.2 38.5 30.9 25.0 20.3 16.6

WT7×11 23.1 22.3 20.6 18.0 14.9 11.7

WT7×13 31.3 30.1 27.4 23.5 19.2 14.8 11.6

WT7×15 37.8 36.9 35.1 32.2 28.4 24.4 20.3 16.5 13.6

WT7×17 45.7 44.5 42.0 38.2 33.5 28.6 23.7 19.3 15.9 13.1

WT7×19 54.6 53.0 49.6 44.6 38.8 32.8 26.8 21.9 18.0 14.9

WT7×21.5 61.7 59.9 56.6 51.6 45.6 39.5 33.7 28.1 23.2 19.3 16.0 13.4

WT7×24 73.0 70.7 66.3 59.9 52.7 45.4 38.3 31.7 26.2 21.8 18.2 15.2

WT7×26.5 82.9 80.0 74.6 67.1 58.8 50.3 42.2 34.8 28.8 24.0 20.0 16.8

WT7×30.5 93.0 89.9 84.4 74.8 64.5 54.5 45.0 36.8 30.3 25.1 20.8

WT7×34 108 103 94.1 83.3 71.9 60.8 50.2 41.2 33.9 28.1 23.3 19.4

WT7×45 138 130 117 102 85.9 70.9 57.3 46.4 37.8 30.8 25.3

WT8×33.5 102 99.3 95.6 90.1 82.5 73.4 64.3 55.6 47.5 40.1 34.0 28.9 24.6 21.0

WT8×38.5 123 121 116 108 97.6 86.4 75.4 64.8 54.9 46.5 39.5 33.6 28.7 24.5

WT8×44.5 148 143 135 125 113 100 87.6 75.6 64.2 54.5 46.4 39.6 33.8 29.0 24.8

WT8×50 164 159 150 139 126 112 97.9 84.6 72.1 61.3 52.2 44.6 38.2 32.7 28.1

WT9×38 114 112 109 104 98.0 90.2 81.6 73.0 64.5 56.2 48.5 41.7 36.0 31.1 26.9 23.3

WT9×43 137 135 130 124 116 106 95.0 84.3 73.8 64.0 55.0 47.4 40.9 35.4 30.6 26.5

WT9×48.5 164 159 152 143 132 120 108 95.5 83.5 72.1 62.1 53.5 46.3 40.0 34.7 30.1

WT9×53 179 174 166 156 144 131 118 105 91.8 79.6 68.6 59.2 51.3 44.4 38.6 33.5

WT9×59.5 199 194 185 174 161 147 132 117 103 89.4 77.1 66.7 57.8 50.2 43.6 37.9

WT9×65 214 208 199 187 173 157 141 125 109 94.9 81.8 70.7 61.2 53.1 46.0 39.9

WT9×71.5 232 226 216 203 188 171 154 137 120 105 90.4 78.2 67.8 58.8 51.1 44.4

WT10.5×83 278 272 262 250 235 219 201 183 165 148 131 115 101 88.9 78.2 68.9

 *Based on the following: • Horizontal WT member attached to a ½-in. gusset plate
• K = 1 (pinned ends)
• Ωc = 1.67

Note: Strength values only shown for KL/rmin < 200.
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Table 2 (LRFD)                            

     
     

     

Horizontal WT Shapes
Available Strength (ϕcPn) 

for Compression Loads* with Connection Eccentricity 
(kips)

Fy = 50 ksi

Shape
Span Length (ft)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0

WT4×9 40.8 36.3 30.3 23.6 17.7 13.5 10.4

WT5×11 47.7 45.3 40.6 34.5 28.1 22.1 17.5 14.1

WT5×13 57.8 54.5 48.3 40.7 33.1 26.0 20.7 16.6 13.4

WT5×15 70.9 65.2 57.1 47.9 38.8 30.5 24.2 19.5 15.8

WT6×11 45.1 41.1 33.5 24.4 17.5

WT6×13 47.5 46.3 43.9 40.0 35.3 30.4 25.5 20.9 17.2 14.2

WT6×15 61.6 59.6 55.7 49.8 43.2 36.3 29.8 24.3 19.9 16.5

WT6×17.5 79.2 76.2 70.2 61.9 52.9 43.8 35.5 28.9 23.8 19.7

WT6×20 87.4 84.1 77.5 67.3 56.9 46.9 37.8 30.7 25.1 20.6

WT6×22.5 103 99.0 90.2 78.0 65.5 53.6 43.2 35.1 28.7 23.7

 WT6×25 117 111 99.3 86.1 72.5 59.6 48.1 39.1 32.1 26.5

WT7×11 34.8 33.6 31.0 27.1 22.5 17.7

WT7×13 47.1 45.3 41.3 35.6 29.1 22.5 17.6

WT7×15 56.8 55.5 52.9 48.7 43.2 37.1 31.0 25.4 21.0

WT7×17 68.8 67.0 63.5 57.9 51.0 43.6 36.3 29.7 24.5 20.4

WT7×19 82.1 79.8 74.9 67.6 59.0 50.0 41.1 33.6 27.8 23.1

WT7×21.5 92.8 90.3 85.6 78.3 69.7 60.8 52.1 43.8 36.4 30.4 25.6 21.6

WT7×24 110 107 100 91.1 80.5 69.8 59.3 49.4 41.2 34.5 29.0 24.5

WT7×26.5 125 121 113 102 89.8 77.3 65.2 54.2 45.2 37.9 31.9 27.0

WT7×30.5 140 136 128 114 98.8 83.9 69.8 57.5 47.7 39.8 33.3

WT7×34 163 155 142 127 110 93.6 77.9 64.3 53.4 44.6 37.4 31.5

WT7×45 207 195 177 155 132 110 89.2 72.8 59.8 49.4 41.0

WT8×33.5 153 150 144 137 126 112 99.1 86.2 74.0 63.0 53.8 46.1 39.6 34.1

WT8×38.5 186 182 175 164 149 132 116 100 85.5 72.9 62.3 53.5 46.0 39.7

WT8×44.5 222 215 204 190 172 153 135 117 100 85.4 73.2 62.9 54.3 46.9 40.6

WT8×50 247 239 227 210 191 171 151 131 112 95.9 82.3 70.9 61.2 52.9 45.9

WT9×38 171 169 164 158 149 138 125 112 100 87.7 76.1 66.0 57.3 49.9 43.6 38.1

WT9×43 206 203 197 188 176 161 146 130 115 99.8 86.3 74.9 65.2 56.8 49.6 43.4

WT9×48.5 247 240 230 216 200 183 166 147 129 112 97.3 84.5 73.6 64.2 56.1 49.2

WT9×53 269 262 250 236 219 200 181 162 142 124 108 93.5 81.5 71.2 62.3 54.6

WT9×59.5 299 291 279 263 244 224 203 181 160 139 121 105 91.8 80.3 70.3 61.7

WT9×65 321 313 300 282 262 239 216 192 170 148 128 112 97.4 85.1 74.5 65.3

WT9×71.5 349 340 326 308 286 261 236 211 186 163 142 123 108 94.3 82.7 72.5

WT10.5×83 418 409 396 378 356 333 307 281 255 229 204 180 159 141 125 111

 *Based on the following: • Horizontal WT member attached to a ½-in. gusset plate
• K = 1 (pinned ends)
• ϕc = 0.90

Note: Strength values only shown for KL/rmin < 200.
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Table 3 (ASD)                            

     
     

     

Horizontal WT Shapes
Reduction Factor for Compression Loads*

with Connection Eccentricity
Pr /(Pn /Ωc)

Fy = 50 ksi

Shape
Span Length (ft)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0

WT4×9 0.391 0.389 0.398 0.439 0.501 0.545 0.568

WT5×11 0.479 0.468 0.466 0.481 0.512 0.558 0.593 0.613

WT5×13 0.435 0.425 0.428 0.445 0.479 0.527 0.562 0.582 0.590

WT5×15 0.390 0.394 0.406 0.428 0.468 0.520 0.556 0.578 0.587

WT6×11 0.539 0.563 0.624 0.709 0.776

WT6×13 0.581 0.573 0.563 0.559 0.562 0.572 0.589 0.613 0.628 0.634

WT6×15 0.519 0.511 0.504 0.508 0.521 0.543 0.575 0.604 0.620 0.626

WT6×17.5 0.463 0.455 0.454 0.466 0.488 0.521 0.563 0.593 0.611 0.618

WT6×20 0.436 0.421 0.408 0.416 0.432 0.458 0.495 0.520 0.533 0.536

WT6×22.5 0.403 0.389 0.383 0.395 0.417 0.451 0.491 0.517 0.531 0.535

WT6×25 0.376 0.372 0.378 0.390 0.411 0.445 0.485 0.512 0.527 0.532

WT7×11 0.663 0.665 0.676 0.700 0.733 0.772

WT7×13 0.606 0.609 0.626 0.658 0.701 0.749 0.783

WT7×15 0.588 0.584 0.580 0.584 0.598 0.619 0.649 0.679 0.699

WT7×17 0.550 0.545 0.543 0.549 0.565 0.589 0.622 0.654 0.675 0.687

WT7×19 0.510 0.505 0.505 0.516 0.537 0.568 0.608 0.642 0.664 0.676

WT7×21.5 0.487 0.477 0.465 0.459 0.458 0.463 0.473 0.493 0.515 0.528 0.532 0.529

WT7×24 0.447 0.438 0.428 0.426 0.430 0.440 0.459 0.486 0.509 0.523 0.528 0.526

WT7×26.5 0.419 0.410 0.403 0.404 0.411 0.427 0.452 0.484 0.507 0.520 0.526 0.524

WT7×30.5 0.415 0.403 0.387 0.393 0.405 0.425 0.455 0.486 0.506 0.517 0.519

WT7×34 0.378 0.373 0.376 0.384 0.397 0.418 0.450 0.482 0.502 0.513 0.516 0.511

WT7×45 0.361 0.361 0.366 0.376 0.395 0.424 0.462 0.489 0.503 0.508 0.503

WT8×33.5 0.472 0.464 0.452 0.439 0.433 0.437 0.445 0.457 0.475 0.495 0.508 0.514 0.514 0.508

WT8×38.5 0.429 0.421 0.410 0.401 0.403 0.412 0.425 0.444 0.470 0.491 0.504 0.511 0.512 0.507

WT8×44.5 0.397 0.396 0.393 0.391 0.396 0.404 0.418 0.436 0.462 0.483 0.498 0.505 0.507 0.503 0.495

WT8×50 0.389 0.388 0.386 0.386 0.391 0.400 0.413 0.432 0.458 0.480 0.495 0.503 0.505 0.502 0.495

WT9×38 0.499 0.493 0.483 0.472 0.462 0.457 0.455 0.456 0.461 0.471 0.486 0.498 0.504 0.505 0.501 0.494

WT9×43 0.456 0.450 0.441 0.431 0.426 0.424 0.427 0.434 0.447 0.464 0.483 0.495 0.502 0.503 0.500 0.493

WT9×48.5 0.412 0.411 0.409 0.408 0.408 0.410 0.414 0.424 0.440 0.461 0.480 0.493 0.500 0.501 0.499 0.492

WT9×53 0.407 0.406 0.405 0.405 0.405 0.407 0.411 0.420 0.435 0.455 0.475 0.488 0.496 0.498 0.496 0.490

WT9×59.5 0.399 0.398 0.397 0.397 0.398 0.400 0.406 0.417 0.432 0.452 0.472 0.486 0.494 0.498 0.496 0.490

WT9×65 0.388 0.387 0.386 0.386 0.386 0.391 0.399 0.411 0.426 0.447 0.466 0.480 0.487 0.490 0.488 0.482

WT9×71.5 0.381 0.381 0.380 0.380 0.382 0.387 0.395 0.406 0.421 0.441 0.461 0.475 0.483 0.487 0.485 0.479

WT10.5×83 0.395 0.395 0.395 0.396 0.397 0.399 0.403 0.409 0.417 0.429 0.443 0.460 0.473 0.482 0.486 0.487

*Based on the following: • Horizontal WT member attached to a ½-in. gusset plate
• K = 1 (pinned ends)
• Ωc = 1.67

Note: Strength values only shown for KL/rmin < 200.

091-100_EJ2Q_Gordon_2010.indd   94 7/9/10   2:34:28 PM



ENGINEERING JOURNAL / SECOND QUARTER / 2010 / 95

Table 4 (LRFD)                            

     
     

     

Horizontal WT Shapes
Reduction Factor for Compression Loads*

with Connection Eccentricity
Pu /(ϕcPn)

Fy = 50 ksi

Shape
Span Length (ft)

2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0

WT4×9 0.391 0.392 0.404 0.448 0.515 0.564 0.594

WT5×11 0.479 0.470 0.470 0.488 0.523 0.573 0.612 0.637

WT5×13 0.435 0.427 0.432 0.452 0.490 0.542 0.581 0.607 0.621

WT5×15 0.390 0.396 0.410 0.435 0.478 0.534 0.575 0.603 0.618

WT6×11 0.539 0.564 0.626 0.713 0.781

WT6×13 0.582 0.574 0.566 0.564 0.570 0.584 0.605 0.632 0.652 0.663

WT6×15 0.520 0.512 0.507 0.513 0.529 0.554 0.590 0.623 0.644 0.656

WT6×17.5 0.463 0.456 0.457 0.471 0.496 0.532 0.578 0.612 0.634 0.647

WT6×20 0.437 0.423 0.412 0.422 0.441 0.472 0.513 0.543 0.562 0.571

WT6×22.5 0.403 0.390 0.387 0.401 0.426 0.464 0.508 0.539 0.559 0.569

 WT6×25 0.376 0.373 0.381 0.395 0.420 0.457 0.502 0.534 0.555 0.565

WT7×11 0.663 0.666 0.678 0.703 0.738 0.779

WT7×13 0.606 0.610 0.628 0.661 0.706 0.756 0.792

WT7×15 0.589 0.585 0.582 0.588 0.604 0.628 0.660 0.694 0.717

WT7×17 0.551 0.546 0.545 0.553 0.571 0.598 0.634 0.670 0.694 0.710

WT7×19 0.510 0.506 0.507 0.520 0.544 0.577 0.620 0.657 0.683 0.699

WT7×21.5 0.487 0.478 0.468 0.463 0.466 0.473 0.487 0.511 0.538 0.556 0.565 0.568

WT7×24 0.448 0.439 0.431 0.431 0.437 0.450 0.472 0.504 0.531 0.550 0.560 0.563

WT7×26.5 0.420 0.412 0.406 0.409 0.419 0.437 0.465 0.501 0.529 0.547 0.558 0.562

WT7×30.5 0.415 0.404 0.390 0.398 0.413 0.436 0.470 0.505 0.530 0.546 0.553

WT7×34 0.378 0.374 0.379 0.389 0.404 0.429 0.464 0.500 0.526 0.542 0.550 0.551

WT7×45 0.361 0.362 0.369 0.382 0.403 0.436 0.478 0.510 0.531 0.541 0.543

WT8×33.5 0.473 0.465 0.454 0.443 0.439 0.445 0.456 0.472 0.493 0.517 0.534 0.545 0.550 0.549

WT8×38.5 0.429 0.422 0.412 0.404 0.409 0.420 0.436 0.458 0.487 0.512 0.530 0.541 0.547 0.547

WT8×44.5 0.398 0.397 0.395 0.395 0.401 0.412 0.428 0.449 0.478 0.504 0.523 0.535 0.541 0.543 0.539

WT8×50 0.389 0.389 0.388 0.390 0.397 0.408 0.423 0.445 0.474 0.500 0.519 0.532 0.539 0.541 0.538

WT9×38 0.499 0.493 0.485 0.475 0.467 0.464 0.464 0.468 0.475 0.489 0.508 0.524 0.534 0.540 0.541 0.538

WT9×43 0.456 0.450 0.442 0.434 0.430 0.431 0.435 0.445 0.461 0.481 0.504 0.520 0.531 0.537 0.539 0.536

WT9×48.5 0.412 0.411 0.411 0.411 0.413 0.416 0.422 0.435 0.454 0.478 0.501 0.517 0.529 0.535 0.537 0.535

WT9×53 0.407 0.407 0.407 0.408 0.409 0.413 0.420 0.431 0.449 0.472 0.495 0.513 0.524 0.531 0.534 0.532

WT9×59.5 0.399 0.399 0.399 0.400 0.402 0.406 0.414 0.428 0.446 0.469 0.492 0.510 0.523 0.530 0.533 0.532

WT9×65 0.388 0.388 0.388 0.389 0.391 0.398 0.408 0.421 0.440 0.463 0.487 0.504 0.516 0.523 0.525 0.524

WT9×71.5 0.381 0.381 0.382 0.383 0.386 0.393 0.403 0.416 0.434 0.457 0.481 0.499 0.511 0.519 0.522 0.521

WT10.5×83 0.395 0.396 0.397 0.398 0.400 0.404 0.410 0.418 0.428 0.442 0.459 0.479 0.496 0.508 0.517 0.521

*Based on the following: • Horizontal WT member attached to a ½-in. gusset plate
• K = 1 (pinned ends)
• ϕc = 0.90

Note: Strength values only shown for KL/rmin < 200.
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ry	 = 1.89 in.
Qs	= 0.776
J	 = 0.522 in.4

ro	 = 2.86 in. (Equation E4-7, ro
2) 

H	 = 0.865 (Equation E4-8)

Sxc	= Ix/yc = 21.9/1.31 = 16.72 in.3

Check for slender elements:

From Table B4.1 Case 8, 
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Therefore, the web is slender.

From Table B4.1 Case 3,
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Therefore, the flange is noncompact.

There are slender elements. Specification Section E7 is  
applicable.

The cross section is composed of only unstiffened compres-
sion elements. Therefore, Qa = 1.0.

Q = QsQa = (0.776)(1.0) = 0.776

Flexural buckling about the x-x axis:

KL

rx
= =1 0 25 12

1 86
161 3

. ( )( )

.
.

ft in./ft

in.

4 71 4 71
29 000

0 776 50
128 8 161 3. .

,

( . )
. .

E

QFy
= = <

Therefore, Equation E7-3 applies.

From Equation E3-4,

F
E

KL

r

e

x

=
⎛

⎝
⎜

⎞

⎠
⎟

=
( )

=π π2

2

2

2

29 000

161 3
11 0

( , )

.
. ksii

From Equation E7-3,

Fcr = 0.877Fe = 0.877(11.0) = 9.6 ksi; controls

Flexural buckling about the y-y axis:

KL

ry
=

( )( )
=

1 0 25 12

1 89
158 7

.

.
.

ft in./ft

in.

4 71 4 71
29 000

0 776 50
128 8 158 7. .

,

( . )
. .

E

QFy
= = <

Therefore, Equation E7-3 applies.

From Equation E3-4,

F
E

KL

r

e

y

=
⎛

⎝
⎜

⎞

⎠
⎟

=
( )

=π π2

2

2

2

29 000

158 7
11 4

( , )

.
. ksii

From Equation E7-3,

Fcr = 0.877Fe = 0.877(11.4) = 10.0 ksi; does not control

Torsional and flexural-torsional buckling of members 
with slender elements:

From Equation E4-11,

F
EC

K L
GJ

A r
ez

w

z g o

=
( )

+
⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

π2

2 2

1

Omit term with Cw per User Note at end of Section E4.

F
GJ

A r
ez

g o

= =
( )

=
2 2

11 200 0 522

6 31 2 86
113 3

, ( . )

. .
. kssi

Calculate Fe using Equation E4-5,

F
F F

H

F F H

F F
e

ey ez ey ez

ey ez

=
+⎛

⎝
⎜

⎞

⎠
⎟ − −

+( )

⎡

⎣

⎢
2

1 1
4

2⎢⎢
⎢

⎤

⎦

⎥
⎥
⎥

= +⎛

⎝
⎜

⎞

⎠
⎟ − −11 4 113 3

2 0 865
1 1

4 11 4. .

( . )

( . ))( . )( . )

. .

.

113 3 0 865

11 4 113 3

11 2

2
+( )

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

= kksi

 0.44QFy = 0.44(0.776)(50) = 17.1 > 11.2 ksi

Therefore, use equation E7-3.

Fcry = 0.877Fe = 9.8 ksi; does not control

Nominal compressive strength:

Pn = Fcr Ag = (9.6)(6.31) = 60.9 kips

Calculate the required flexural strength:

Moment due to axial load, Mecc = P(y + y′) where y′ = 4 in., 
half of 2-in.-thick gusset plate.

Mecc �= (19.2)(1.31 + 0.25) 
= 30.0 kip-in. 
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Moment due to weight of WT, M0 = wL2/8

M0 = 20.2 kip-in. 

Mnt = Mecc + M0 = 30.0 + 20.2 = 50.1 kip-in. (ASD)

Second-order effects with Cm based on Section C2.1b,

α = 1.6 (ASD)

Cm = 1

From Equation C2-5,

P
EI

K L
e1

2

1

2

2 29 000 21 9

25 12
=
( )

=
⎡⎣ ⎤⎦

π π ( , )( . )

( )( )
22

69 6= . kips

From Equation C2-2,

B
P Pr e

1
1

1

1
1 0=

−
≥

α
.

B1

1

1 1 6 19 2 69 6
1 79=

−
=

. ( . ) .
.

 
(ASD)

M1 = B1Mnt = (1.79)(50.1) = 89.7 kip-in (ASD)

Calculate the nominal flexural strength:

Flexural yielding limit state is Mp = Fy Zc < 1.6My

Using Equation F9-2, 

Mp = Fy Zx < 1.6My, for stems in tension	

1.6My = 1.6Fy Sx = 1.6(50)(3.98) = 318.4 kip-in.

Mp = Fy Zx = (50)(7.05) = 352.5 kip-in.

From Equation F9-1, 

Mn = Mp = 318.4 kip-in.; controls 

Flange local buckling limit state:

Check flange compactness using Table B4.1 Case 7,

λ = = =
b

t

f

f2

8 0

2 0 530
7 5

.

( . )
.

λ p
y

E

F
= = = >0 38 0 38

29 000

50
9 2 7 5. .

,
. .

Therefore, the flange is compact.

Check flange slenderness using Table B4.1 Case 7,

λr
y

E

F
= = = >1 0 1 0

29 000

50
24 08 7 5. .

,
. .

Therefore, the flange is not slender.

Calculate critical flange local buckling stress (only appli-
cable if noncompact or slender),

For noncompact sections (Equation F9-7),

= −F F
b

t

F

E
cr y

f

f

y⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟1 19 0 50

2
. .

For slender sections (Equation F9-8),

F
E

b

t

cr

f

f

=
⎛

⎝
⎜

⎞

⎠
⎟

0 69

2

2
.

Calculate the nominal flexural strength (Equation F9-6),

Mn = Fcr Sx not applicable

Lateral-torsional buckling:

From Equation F9-4, 

M M
EI GJ

L
B Bn cr

y

b

= = + +( )⎡
⎣⎢

⎤
⎦⎥

π 1 2

From Equation F9-5,

B
d

L
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Jb

y
= ±
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⎝
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⎞

⎠
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⎝
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.

.
.
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.

00 522

0 345

.

.

⎛

⎝
⎜

⎞

⎠
⎟

= +

1 0. .1 0B B+ +( ) = + + + +( )( )⎡

⎣
⎢

⎤

⎦
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=

345 345

1 403

2 2

.

M Mn cr= =
( )( )( )( )

π
29 000 22 6 11 200 0 522

25 12

, . , .

( )
11 403.( )

Mn = 909.0 k-in.; does not control

Design of WT member for combined forces:

Since Iyc /Iy ≈ 1.0 > 0.9, use H2-1.

From Equation H2-1,

+ ≤
f

F

f

F
a

a

bw

bw

1 0.
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Which can be rewritten for ASD as,

P

P

M

M

r

n c

r

n bΩ Ω( )
+
( )

≤ 1 0.

19 2

60 9 1 67

89 7

318 4 1 67
1 0 1 0

.

. .

.

. .
. .

( )
+
( )

= ≤

Calculate the reduction factor for the compression load 
with connection eccentricity:

P

P

r

n cΩ( )
=
( )

=19 2

60 9 1 67
0 528

.

. .
.

Example 2

Nonslender WT in Compression and Noncompact in 
Bending Using LRFD

½-in. gusset plate 

WT7×45 

Pu = 72.7 kips 

Pu = 72.7 kips 

 
                                                                             (Eqn. F9-5) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
                        k-in.        does not control 
 
Design of WT member for combined forces 
 
Since Iyc / Iy ≈ 1.0 > 0.9 use H2-1 
 
From Equation H2-1, 
 
  
 
 
Which can be rewritten for ASD as, 
 
 
 
 
 
 
 
 
Calculate the reduction factor for the compression load with connection eccentricity: 
 
 
 
 
 
Example 2 (WT nonslender in compression and noncompact in bending by LRFD method): 
 
 
 
 
 
 

 
 
 
Given: 
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Given:
A 20-ft. horizontal WT7×45 brace with an ultimate axial 
compression load of 72.7 kips that is connected on top of the 
flange with a ½-in. gusset plate.

WT7×45 Properties from Table 1-8 of the AISC Manual and 
the AISC Shapes Database:

Ag	= 13.20 in.2

d	 = 7.01 in.
tw	 = 0.440 in.
bf	 = 14.50 in.
tf	 = 0.710 in.
Ix	 = 36.5 in.4

Sx	 = 6.16 in.3

rx	 = 1.66 in.
y	 = 1.09 in.
Zx	 = 11.50 in.3

Iy	 = 181 in.4

ry	 = 3.70 in.
Qs	= 1.0
J	 = 2.030 in.4

ro	 = 4.12 in. (Equation E4-7, ro
2) 

H	 = 0.968 (Equation E4-8)

Sxc	= Ix /yc = 36.5/1.09 = 33.49 in.3

Check for slender elements:

From Table B4.1 Case 8,

9 0. .
d

t

E

Fw
r

y

= = < = = =7 01

0 440
15 75 0 75

29 000

50

.

.
.

,λ 118 1.

Therefore, the web is noncompact.

From Table B4.1 Case 3,

b

t

E

F

f

f
r

y2

14 50

2 0 710
10 2 0 56 0 56

29= = < = =.

( . )
. . .

,λ 0000

50
13 5= .

Therefore, the flange is noncompact.

There are no slender elements. AISC Specification Sections 
E3 and E4 apply.

Flexural buckling about the x-x axis:

KL

rx
= =1 0 20 12

1 66
144 6

. ( )( )

.
.

ft in. ft

in.

4 71 4 71
29 000

50
113 4 144 6. .

,
. .

E

Fy
= = <

Therefore, Equation E3-3 applies.

From Equation E3-4,

F
E
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r

e

x

=
⎛

⎝
⎜

⎞

⎠
⎟

=
( )

=π π2

2

2

2

29 000

144 6
13 7

( , )

.
. ksii

From Equation E3-3,

Fcr = 0.877Fe = 0.877(13.7) = 12.0 ksi; controls

Flexural buckling about the y-y axis:

KL

ry
= =1 0 20 12

3 70
64 9

. ( )( )

.
.

ft in. ft

in.

4 71 4 71
29 000

50
113 4 64 9. .

,
. .

E

Fy
= = >

Therefore, Equation E3-2 applies.

From Equation E3-4,

F
E
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r

e

y

=
⎛

⎝
⎜

⎞

⎠
⎟

=
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=π π2

2

2

2
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( , )

.
. ksi
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From Equation E3-2,

. .F
F

F
Fcry

y

e
y=

⎡

⎣
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50

68 0
5

.
00

Fcry = 36.8 ksi; does not control

Torsional and flexural-torsional buckling of members 
without slender elements:

From Equation E4-3,

F
GJ

A r
crz

g o

= =
( )

=
2 2

11 200 2 030

13 20 4 12
101

, ( . )

. .
.55 ksi

From Equation E4-2,

. .

. .
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F F
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⎟ −

2

36 8 101 5
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1 1

( . )
−
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⎣

⎢
⎢

⎤

⎦

⎥4 36 8 101 5 0 968

36 8 101 5
2

( . )( . )( . )
⎥⎥

Fcr = 36.1 ksi; does not control

Nominal compressive strength:

Pn = Fcr  Ag = (12.0)(13.20) = 158.5 kips

Calculate the required flexural strength:

 Moment due to axial load, Mecc = P(y + y′) where y′ = ¼ in., 
half of ½-in.-thick gusset plate.

Mecc = (72.7)(1.09 + 0.25)

	 = 97.4 kip-in.

Moment due to weight of WT, M0 = wL2 /8

M0	 = 27.0 kip-in. 

Mnt	 = 1.2M0 + Mecc  
	 = 1.2(27.0) + 97.4 = 129.8 kip-in. (LRFD)

Second-order effects with Cm based on section C2.1b,

α	 = 1.0 (LRFD)

Cm	 = 1

From Equation C2-5,

P
EI

K L
e

x
1

2

1

2

2 29 000 36 5

20 12
=
( )

=
⎡⎣ ⎤

π π ( , )( . )

( )( )⎦⎦
=

2
181 4. kips

From Equation C2-2,

B
P Pr e

1
1

1

1
1 0=

−
≥

α
.

B1

1

1 1 0 72 7 181 4
1 67=

−
=

. ( . ) .
.

 
(LRFD)

M1 = B1Mnt = (1.67) (129.8) = 216.7 kip-in (LRFD)

Calculate the nominal flexural strength:

Flexural yielding limit state is Mp = Fy Zx < 1.6My

Using Equation F9-2,

Mp = Fy Zx< 1.6 My for stems in tension

1.6My = 1.6Fy Sx = 1.6(50)(6.16) = 492.8 kip-in.

Mp = Fy Zx = (50)(11.50) = 575 kip-in.

From Equation F9-1, 

Mn = Mp = 492.8 kip-in.; controls

Flange local buckling limit state:

Check flange compactness using Table B4.1 Case 7,

λ = = =
b

t

f

f2

14 5

2 0 710
10 2

.

( . )
.

λ p

E

Fy
= = = <0 38 0 38

29 000

50
9 2 10 2. .

,
. .

Therefore, the flange is noncompact.

Check flange slenderness using Table B4.1 Case 7,

λr
y

E

F
= = = >1 0 1 0

29 000

50
24 1 10 2. .

,
. .

Therefore, the flange is noncompact.

Calculate critical flange local buckling stress:

For noncompact sections (Equation F9-7),

F F
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E
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⎝
⎜
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⎠
⎟

=

.
.

( . )

. kksi

Calculate the nominal flexural strength (Equation F9-6),
Mn = Fcr Sxc = (48.9)(33.49)

Mn =1637.5 kip-in.; does not control
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Lateral-torsional buckling:

From Equation F9-4,

M M
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From Equation F9-5,
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Mn = 8223.7 k-in.; does not control

Design of WT member for combined forces:

Since Iyc  /Iy ≈ 1.0 > 0.9 use H2-1.

From Equation H2-1,

f

F

f

F
a

a

bw

bw

+ ≤ 1 0.

which can be rewritten for LRFD as,

+ ≤
P

P

M

M
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u
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.

ϕ ϕ
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+ =72 7

0 9 158 5
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.

( . )( . )

.

( . )( . )
. .≤

Calculate the reduction factor for the compression load 
with connection eccentricity:

P

P
u

c n( )

.

( . )( . )
.

ϕ
= =72 7

0 9 158 5
0 510
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Stiffener Requirements to Prevent  
Edge Buckling
Bo Dowswell

This paper was presented at the 2009 Annual Stability Conference of the Structural Stability Research Council.

Abstract

Steel connection elements such as gusset plates and coped beam webs feature unsupported edges that are sometimes stiffened to prevent 
buckling. The stiffener requirements for structural elements with large aspect ratios are well established. However, for typical connections with 
an aspect ratio of ½ to 2, the existing requirements may not provide accurate results. The results from 123 elastic finite element models were 
analyzed to determine the stiffness requirements for edge stiffeners with smaller aspect ratios. A design procedure based on a simplified model 
is proposed as a starting point for stiffener design. 

Keywords: edge stiffeners, coped beams, gusset plates.

In steel connection elements such as gusset plates and coped 
beam webs, unsupported edges are sometimes stiffened to 

prevent buckling. The top edges of coped beam webs are 
subjected to compressive flexural stresses as shown in Fig-
ure 1, which can cause a local instability. The AISC Steel 
Construction Manual (AISC, 2005) provides equations 
to determine the buckling capacity. To increase the criti-
cal stress of the coped section, the edge can be stiffened as 
shown in Figure 2.

In seismic applications, Nast et al. (1999), and Rabino-
vitch and Cheng (1993) showed that the addition of gusset 
plate edge stiffeners results in significantly improved en-
ergy absorption capability and a more stable post-buckling 
response. The AISC Seismic Design Manual (AISC, 2006) 
recommends stiffening the edge when the unsupported 
length exceeds 

	
L t

E

F
fg

y

= 0 75. 	 (1)

where
Lfg	=	 free length of the gusset plate at the edge, in., as 

shown in Figure 3
t 	 =	 gusset plate thickness, in.
E 	 =	 modulus of elasticity, ksi
Fy 	=	 yield stress of the material, ksi

Design limits for the maximum unsupported length of the 
free edge of gusset plates are also provided by AASHTO 
(2004), Astaneh (1998), Reno and Duan (1997), and Cal-
trans (2001). When these limits are not met, the edge can be 
stiffened as shown in Figure 4.

For the stiffener to be effective, it must be stiff enough to 
alter the buckled shape of the plate. The stiffener require-
ments for structural elements with large aspect ratios are 
well established (AISI, 1997). In this paper, the aspect ratio 
is defined as the length-to-width ratio of the plate, a/b, as 
shown in Figure 5. For typical connections, the aspect ratio 
varies from 2 to 2, and the existing requirements may not 
provide accurate results. This paper will examine the effect 
of the aspect ratio on the stiffener requirements to prevent 
edge buckling.

The results from 123 elastic finite element models were 
used to determine the critical flexural stiffness of edge stiffen-
ers. The effects of width-to-thickness ratio and aspect ratio of 
the braced element were studied, resulting in a simple equa-
tion that can be used to predict the minimum moment of iner-
tia required to force the plate to buckle in a stiffened mode.

Bo Dowswell, Principal, SDS Resources, LLC, 300 Cahaba Park Circle, Suite 
116, Birmingham, AL 35242. E-mail: bo@sdsresources.com 	Actual	 Theory	 Section a-a

Fig. 1. Flexural stress at a beam cope.
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Fig. 2. Coped beam with a stiffened edge.

Fig. 3. Free length of gusset plate edges.

Fig. 4. Gusset plate with a stiffened edge.

Fig. 5. Model used for finite element analysis.

BACKGROUND

Plate Buckling

For infinitely long plates, the well known plate buckling 
equation is (Galambos, 1998)

	

σ π

ν
c k

E

b t
=

−( )( )
2

2 2
12 1

	 (2)

where
σc 	 =	 critical stress, ksi 
k 	 =	 buckling coefficient
E 	 =	 modulus of elasticity, ksi
ν 	 =	 Poisson’s ratio
b 	 =	 plate width, in.
t 	 =	 plate thickness, in.

For plates in pure compression with both non-loaded edges 
simply supported, k = 4.00. For plates in pure compression 
with one non-loaded edge simply supported and one free, 
k = 0.425.

Gerard and Becker (1957) presented equations for plates 
of finite length with simple supports at the loaded edges. 
For plates with one non-loaded edge simply supported and 
one free,

	

k
b

= − +
( )⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

6
1

62

2

π
ν

π λ
	 (3)

where
	 λ	 = a/m
	 a 	= plate length, in.
	 m 	= integer that gives the lowest k

For plates with both non-loaded edges simply supported
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2
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Stiffener Requirements

Timoskenko and Gere (1961) solved the differential equation 
for a plate supported on both non-loaded edges by an elastic 
beam and provided a graphical solution for various values of 
beam stiffness. The CRC Handbook of Structural Stability 
(CRC, 1971) provides graphical solutions for plates simply 
supported on three edges and stiffened on one non-loaded 
edge. The curves indicate that the stiffener requirements in-
crease as the aspect ratio of the plate increases.
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According to Caltrans (2001), the moment of inertia of a 
gusset plate stiffener should be the largest of:

	
I t b ts = ( ) −1 83 1444 2

. 	 (5)

	 Is = 9.2t 4	 (6)

These equations were originally specified in the 1962 edi-
tion of the Specification for the Design of Light Gage Cold-
Formed Steel Structural Members (AISI, 1962) to provide a 
minimum stiffness for bracing the edge of an infinitely-long 
plate element within a member. The 1996 AISI Specification 
(AISI, 1997) has a more refined approach which is based on 
the research of Desmond et al. (1981), and Pekoz (1986). The 
newer provisions account for the post-buckling strength as 
well as the critical buckling capacity, and provide a method 
to calculate the effect of partially effective stiffeners.

Finite Element Models

The study consisted of 123 models with width-to-thickness 
ratios, b/t, of 25, 35 and 45. The aspect ratios, a/b, were 0.50, 
0.75, 1.00 and 2.00, and each of the 12 base model geom-
etries were modeled with various stiffener sizes as shown in 
Tables 1, 2 and 3.

Figure 5 shows the loading and edge conditions for the 
finite element models. The simply supported edges, desig-
nated with dashed lines in Figure 5, were modeled with out-
of-plane translation fixed and all three rotational degrees of 
freedom free. The stiffener was centered on the plate and 
a uniform axial stress was applied parallel to the stiffened 
edge. The modulus of elasticity was 29,000 ksi, and Pois-
son’s ratio was 0.3.

The finite element program used for the buckling analysis 
is BASP, which was developed at the University of Texas at 

Table 1. Critical Stress for Models with b = 25 in., ksi

Model a, in.
Stiffener Moment of Inertia, I, in.4

0 1.254 2.508 5.017 10.03 15.05 20.07 30.10 40.14 60.20 Infinite

25-1 12.50 187.6 253.6 268.1 274.6 278.1 279.5 280.2 281.1 281.6 282.2 286.0

25-2 18.75 91.56 140.4 162.3 178.1 187.4 190.9 192.9 – – – 185.4

25-3 25.00 59.04 91.68 115.8 141.6 161.2 169.0 173.3 178.0 180.6 183.5 195.0

25-4 50.00 27.96 35.46 45.36 63.28 93.44 117.9 138.4 170.0 184.0 187.7 212.1

Table 2. Critical Stress for Models with b = 35 in., ksi

Model a, in.
Stiffener Moment of Inertia, I, in.4

0 1.880 3.760 7.521 15.04 22.56 30.08 45.13 60.17 90.25 Infinite

35-1 17.50 94.49 129.5 134.5 137.3 139.0 139.6 140.0 140.5 140.7 141.0 142.8

35-2 26.25 46.57 73.49 82.37 90.69 94.89 96.51 97.40 – – – 93.83

35-3 35.00 30.06 49.11 61.34 73.60 82.40 85.94 87.89 90.03 91.26 92.69 102.3

35-4 70.00 14.28 19.27 25.01 35.37 52.23 65.66 76.40 91.14 92.57 94.29 105.7

Table 3. Critical Stress for Models with b = 45 in., ksi

Model a, in.
Stiffener Moment of Inertia, I, in.4

0 2.480 4.961 9.921 19.84 29.76 39.68 59.53 79.37 119.1 Infinite

45-1 22.50 56.78 77.93 80.76 82.38 83.33 83.71 83.93 84.18 84.36 84.53 85.56

45-2 33.75 28.09 44.87 50.64 54.64 57.04 57.98 58.49 – – – 56.47

45-3 45.00 18.16 30.36 37.69 44.76 49.78 51.78 52.87 54.11 54.82 55.64 61.09

45-4 90.00 8.644 12.04 15.74 22.40 33.16 41.49 47.93 54.62 55.42 56.40 62.84
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Austin. The program uses a two-dimensional idealization. 
The analysis is performed in two steps. First, the in-plane 
analysis is performed to calculate the stresses arising from 
the applied loading. Using these stresses, an out-of-plane 
analysis is performed to solve for the critical buckling load. 
The program provides an elastic solution and does not ac-
count for pre-buckling deformations or initial out-of-flatness 
of the plate. The program is described in more detail in Akay 
et al. (1977).

The accuracy of the models were verified by comparing 
the critical loads from the program to the theoretical critical 
loads for the case where the plate has one non-loaded edge 
free and the remaining edges simply supported. The theoreti-
cal critical loads were calculated using Equation 2 with the 
buckling coefficient, k, from Equation 3. The critical loads 
from the finite element models were obtained using a 2.5-in. 
square mesh. Calculations were carried out for each of the 
12 base model geometries used in this study and the ratio 
of BASP load to theoretical load varied from 0.98 to 1.01. 
Therefore, the 2.5-in. mesh size is adequate to capture the 
critical loads in sufficient accuracy and the remaining mod-
els used a maximum mesh size of 2.5-in.

Results

The effect of stiffener moment of inertia on the critical load 
of the plates is shown in Tables 1, 2 and 3. The results are 
plotted in Figures 6, 7 and 8 for the models with plate width-
to-thickness ratios, b/t, of 25, 35 and 45, respectively. The 
critical stress versus stiffener moment of inertia curves are 
nonlinear, and in each case, the plots show that the stiffener 
moment of inertia reaches a critical value where a further 
increase in stiffness provides only marginal gains in the criti-
cal buckling stress of the plate.

The sharp knee on the curves in Figures 6, 7 and 8 indicate 
the point where the plate buckling shape changed from the 
classical unstiffened mode to the stiffened mode. This can 
be seen by observing the buckled shapes of model 35-4 in 
Figures 9, 10 and 11, which show the effect of the stiffener 
moment of inertia on the buckled shape. Figure 9 shows that 
a stiffener with a moment of inertia of 1.88 in.4 does not re-
strain the lateral translation at the stiffened edge adequately. 
In Figure 10, the model with I = 60.17 in.4, shows some lat-
eral translation at the stiffened edge, but the stiffener’s mo-
ment of inertia was large enough to alter the buckled shape. 
When the moment of inertia of the stiffener is increased to 
90.25 in.4, Figure 11 shows the lateral translation at the stiff-
ened edge is very small; however, the critical stress was only 
about 2% higher than for the specimen with I = 60.17 in.4

Fig. 6. Critical stress versus stiffener moment of inertia  
for models with b/t = 25.

Fig. 7. Critical stress versus stiffener moment of inertia  
for models with b/t = 35.

Fig. 8. Critical stress versus stiffener moment of inertia  
for models with b/t = 45.
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a. Isometric view

	 	

	 b. Sectioned isometric view	 c. Cross-sectional view

Fig. 9. Buckled shape for Model 35-4 with stiffener I = 1.880 in.4.

Proposed Design Method

For use in design, a critical stiffener moment of inertia must 
be determined that, if exceeded, will be adequate to brace 
the plate against buckling in an unstiffened mode. Proposed 
stiffness requirements should produce critical loads in the 
plate approximately equal to the case of infinite stiffness. 
This occurs at the transition point where the plate buckling 
shape changes from the classical unstiffened mode to the 
stiffened mode. To meet this objective, the Caltrans (2001) 
requirements can be modified to account for the plate aspect 
ratio. A simple design equation can be obtained by multiply-
ing Is from Equation 5 by the aspect ratio, and dividing by 
2, which gives 
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Equation 6 controls the design only for connections with 
b/t < 13, which is much stockier than most connection ele-
ments; therefore, it will not be considered further in this paper. 
Substituting Equation 5 into Equation 7, the final equation is
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. 	 (8)

This equation should only be used for aspect ratios between 
2 and 2. For an aspect ratio of 2, it gives the same results as 
Equation 5.

The critical moment of inertia calculated with Equation 8 
is indicated in Figures 6, 7 and 8 with a vertical line for each 
of the 12 base model geometries. In each case, the calculated 
critical moment of inertia is at a location on the curve beyond 
the sharp knee, where the rate of change is low, indicating 
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a. Isometric view

	 	

	 b. Sectioned isometric view	 c. Cross-sectional view

Fig. 10. Buckled shape for Model 35-4 with stiffener I = 60.17 in.4.

that the buckled shape has transitioned from an unstiffened 
mode to a stiffened mode. Once the stiffener critical moment 
of inertia is reached, additional stiffness provides only very 
small gains in the critical stress of the plate. In Tables 1, 2 
and 3, the values to the right of the heavy line are for models 
with stiffeners that meet or exceed the stiffness requirements 
of Equation 8. 

Conclusion

For an edge stiffener to be effective, it must have adequate 
flexural stiffness to alter the buckled shape of the plate. The 
results from 123 elastic finite element models were analyzed 
to determine the stiffness requirements for edge stiffeners 
with aspect ratios between 2 and 2. The parameters studied 
were the width-to-thickness ratio and the aspect ratio of the 
braced element. 

Equation 8 was proposed as a simple method to calculate 
the minimum stiffener moment of inertia required to brace 

connection elements against buckling in an unstiffened 
mode. Use of the proposed equation should be limited to the 
range of aspect ratios studied. At aspect ratios larger than 
two, Equation 5 should be used.

The design procedure outlined in this paper was based 
on a simplified model that does not include many factors 
that are present in real structures. Some of these factors are 
initial out-of-flatness of the element/stiffener assembly, re-
sidual stresses and inelastic material behavior, non-idealized 
boundary conditions, and non-uniform stress distribution in 
the braced element. Further research is needed to quantify 
the effects of these items; therefore, sound judgment is re-
quired when applying the proposed design procedure.
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Behavior of Vertical Boundary Elements  
in Steel Plate Shear Walls
BING QU and MICHEL BRUNEAU

Abstract

The AISC Seismic Provisions and CSA S-16 Standard require a minimum moment of inertia for the vertical boundary elements (VBEs) in steel 
plate shear walls (SPSWs) to avoid undesirable VBE behaviors. The equation limiting VBE flexibility has been derived from a flexibility factor,  
ωt, developed in plate girder theory and the limit on VBE flexibility has been empirically specified based on previous test results. This paper 
reviews the derivations of the flexibility factor and how that factor was incorporated into current code design requirements for SPSWs. Then, 
analytical models to prevent VBE shear yielding and to estimate the out-of-plane buckling strength of VBE are developed, followed by a review of 
past experimental data to investigate if the significant inward VBE inelastic deformation and out-of-plane buckling observed in some instances 
were due to excessive VBE flexibilities or other causes such as shear yielding at the ends of the VBEs. It is shown that the existing limit on ωt 
is uncorrelated to satisfactory in-plane and out-of-plane VBE performance. The proposed analytical models predict performance of previously 
tested SPSWs that correlates well with the experimental observations.

Keywords: steel plate shear walls, vertical boundary elements, shear yielding, out-of-plane buckling.

A	typical steel plate shear wall (SPSW) such as the one  
	shown in Figure 1 consists of infill steel panels sur-

rounded by columns, called vertical boundary elements 
(VBEs), on each side, and beams, called horizontal boundary 
elements (HBEs), above and below. These infill panels are 
allowed to buckle in shear and subsequently form diagonal 
tension fields when resisting lateral loads. Energy dissipa-
tion of SPSW during seismic events is principally achieved 
through yielding of the panels along the diagonal tension 
fields (Sabelli and Bruneau, 2007). Consistent with capacity 
design principles, the Canadian Standard S16 on Limit States 
Design of Steel Structures (CSA, 2001) and the AISC Seis-
mic Provisions for Structural Steel Buildings (AISC, 2005c) 
require HBEs and VBEs to be designed to remain elastic 
when the infill panels are fully yielded, with the exception of 
plastic hinges at the ends of HBEs and at the VBE bases that 
are needed to develop the expected plastic mechanism of the 
wall when rigid HBE-to-VBE and VBE-to-ground connec-
tions are used. The procedures to achieve capacity design 
of the boundary frame of SPSWs have been presented by  
Berman and Bruneau (2008), Vian and Bruneau (2005), 

Qu and Bruneau (2008). Using the knowledge on capacity 
design, as well as building on findings from a recent study 
of HBEs that provided new insights on the design demands 
and capacities to consider for their design (Qu and Bruneau, 
2008), a study was undertaken to reassess demands on VBEs, 
and the relevance in that context of existing provisions that 
limit VBE flexibility. 

The early Canadian provisions for SPSWs (i.e., CSA Stan-
dard S16-94 [CSA, 1994]) required VBEs to be designed as 
beam-column using a conventional strength-based approach. 
This approach was challenged by the results of tests on  
quarter-scale SPSW specimens by Lubell et. al (2000), in 
which the VBEs designed using the strength-based approach 
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Fig. 1. Typical steel plate shear wall and analogous vertical 
cantilever plate girder.
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exhibited significant “pull-in” deformation or undesirable 
premature out-of-plane buckling. In a subsequent discus-
sion of the Lubell et al. SPSW specimens, Montgomery 
and Medhekar (2001) attributed this poor performance to 
insufficient VBE stiffness, and that rationale was accepted 
in the development of CSA-S16 provisions. If VBEs deform 
excessively, they may be unable to anchor the infill panel 
yield forces. A non-uniform diagonal tension field may then 
develop and affect the VBEs inconsistently to the design as-
sumptions. 

To ensure adequately stiff VBEs, CSA S16-01 (CSA, 
2001) introduced the flexibility factor, ω t, proposed in pre-
vious analytical work of plate girder theory, as an index of 
VBE flexibility. Please note that this flexibility factor, ω t, is 
different from the other symbol, ω , which is used in the later 
sections of this paper for denoting the distributed infill panel 
forces. Noting that the Lubell et al. specimens had flexibility 
factors of 3.35, and that all other known tested SPSWs that 
behaved in a ductile manner had flexibility factors of 2.5 or 
less, CSA S16-01 empirically specified an upper bound of 
2.5 on ω t. Note that this requirement can be converted into 
the VBE flexibility requirement presented in the current de-
sign codes as demonstrated later.

In design, the intent is that the aforementioned flexibility 
limit prevents excessively slender VBE. However, beyond 
the empirical observations and analogy to plate girder theo-
ry, no work has investigated whether the significant inward 
inelastic deformations of VBEs observed in past tests were 
directly caused by excessive VBE flexibilities or due to other 
causes, such as shear yielding at the ends of VBEs. In addi-
tion, no theoretical research has established a relationship 
between ω t and the out-of-plane buckling strength of VBE 
as part of SPSW behavior. 

To better understand the preceeding issues, in this paper, 
derivation of the flexibility factor in plate girder theory is first 
reviewed, followed by the description of how that factor was 
incorporated into the current design codes. Then, analytical 
models for preventing VBE shear yielding and for estimating 
the out-of-plane buckling strength of VBEs are developed. 
Finally, results from some previously tested SPSWs are revis-
ited and assessed to validate the proposed analytical models.

Review of Flexibility Factor in Plate 
Girder Theory

In the SPSW literature, SPSWs are often described like can-
tilever vertical plate girders. Using this analogy, the story 
height and bay width of a SPSW are analogous to the stiff-
ener spacing and the depth of a plate girder, respectively, as 
shown in Figure 1. Note that this analogy has only qualitative 
merits in providing a conceptual understanding of the VBE 
behavior in a SPSW. Berman and Bruneau (2004) have iden-
tified that many significant differences exist in the strengths 
and behavior of these two systems.

Nonetheless, plate girder studies provided the theoretical 
framework from which Equation 1 that will be introduced 
in detail later was originally derived. The CSA S16-01 and 
the AISC Seismic Provisions reference Wagner’s analytical 
studies (Wagner, 1931) on the elastic behavior of girders 
with thin metal webs subjected to transverse shear, where a 
method for determining the minimum moments of inertia of 
flanges to ensure a sufficiently uniform tension field across 
the web plate has been developed. Since that method is the 
one underlying the current flexibility limit for VBE design, 
a brief review of that study is presented here. The symbols 
used in the original work have been changed to fit the no-
menclatures used for SPSW design.

Wagner’s analysis postulated that the deformation of a 
cantilever plate girder of elastic behavior under transverse 
load can be schematically shown as in Figure 2. The sub-
scripts o and u are assigned to the variables correspond-
ing to the top and bottom flanges, respectively. As shown 
in Figure 2, plate girder flange deformation is obtained by  
superposing two effects, namely, global deflection of the 
plate girder due to transverse load, represented by δ , and lo-
cal deflections of the flanges between neighboring stiffeners 
due to elastic web tension actions, represented by ηu  and ηo. 
In Figure 2, L is the depth of the plate girder; and α is the 
inclination of infill tension actions. 

Uniformity of the tension field across the web plate of the 
girder depends on the flexibility of flanges. To better under-
stand this, consider the effect of a single tension diagonal, 
which is denoted by line “uo” in Figure 2. When the flanges 
are flexible and develop inward deflections (i.e., ηu  and ηo 
shown in Figure 2) due to the web plate forces, the elonga-
tion of uo decreases, compared to the case when rigid flang-
es would be present, as a result of deformation compatibility. 
Note that this effect varies along the flanges (i.e., the elonga-
tions of tension diagonals at different locations are differ-
ent), resulting in uneven tension fields across the web plate. 

L

hs

o

xu

u

o

u

o

x

V

Fig. 2. Deformation of a cantilever plate girder under  
transverse load (adapted from Wagner, 1931).
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For flanges infinitely rigid in bending, there would be no lo-
cal deflections of flanges between neighbouring stiffeners, 
resulting in a uniform tension field across the web plate. 

Modeling each flange of the plate girder as a continuous 
beam on elastic foundations, and accounting for the real load 
distribution along each flange, which can be determined by 
superposing the uniform load obtained assuming that the 
flanges are infinitely rigid and the loss of this uniform load 
due to flange flexibility, Wagner (1931) derived the follow-
ing governing equation for the local flange deflections:
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where
ηu	 =	 deflection of the bottom flange due to web tension 

actions
ηo	 =	 deflection of the top flange due to web tension  

actions
Iu	 =	 moment of inertia of the bottom flange
Io	 =	 moment of inertia of the top flange
α	 =	 inclination angle of the web plate tension action
twi	 =	 web plate thickness
L	 =	 depth of the plate girder which corresponds by anal-

ogy to the width of a SPSW
εg	 =	 strain in the tension diagonals assuming that the 

flanges are rigid

Equation 1 is a fourth-order ordinary differential equation 
and can be solved for (ηu − ηo) using classic procedures. 
The maximum value of (ηu − ηo), which corresponds to the 
maximum loss of the of tension diagonal elastic elongation 
(i.e., an index of the maximum loss of the elastic uniform 
load along the flanges), is:
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where 
ωt	 =	 flexibility factor, defined as:
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where
hsi	 =	 spacing between neighboring stiffeners in a plate 

girder (which corresponds by analogy to story 
height of a SPSW). 

As explicitly expressed in Equation 3, increasing the flange 
stiffness of a plate girder (i.e., increasing Iu and Io) would 
decrease the corresponding flexibility factor for given values 
of the other terms. 

To assess the uniformity of the web tension field, a stress 
uniformity ratio, σmean /σmax, was proposed and calculated as:
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ω ω
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where
σmean	 =	 mean of the web tension force components par-

allel with the stiffener
σmax	 =	 maximum of the web tension force components 

parallel with the stiffener

The relationship between the stress uniformity ratio (i.e., 
σmean /σmax) and the flexibility factor (i.e., ωt) is shown in  
Figure 3. As shown on that curve, for smaller values of  
ωt (e.g., in the range 0 ≤ ωt ≤ 1), for which the plate girder 
has relatively stiff flanges, the stress uniformity ratio approx-
imately equals 1 (which physically means that the maximum 
stress is close to the average stress), indicating development 
of a uniform web tension field. However, with increases in 
the flexibility factor, the stress uniformity ratio decreases, 
indicating formation of a less uniform web tension field in 
plate girders having more flexible flanges.
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Fig. 3. Relationship between flexibility factor  
and stress uniformity ratio.
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For simplicity, Kuhn, Peterson and Levin (1952) sim-
plified Equation 3, by assuming α = 45°, for which 
sin α = 0.7, and by substituting the approximate equivalency

1 1 4

I I I Iu o u o

+
⎛

⎝
⎜

⎞

⎠
⎟ =

+( )
, to obtain:

	 ω t s
wi

u o

h
t

I I L
≈

+( )
0 7 4. 	 (5)

Kuhn et al. (1952) proposed the stress amplification factor, 
C2, which can be determined from the following equation, to 
characterize the uniformity of elastic web tension field:

	 σmax = (1 + C2)σmean	 (6)

As expressed in Equation 6, the stress amplification factor, 
C2, captures the difference between σmax and σmean. Large 
value of C2 corresponds to a significant difference between 
σmax and σmean, indicating the formation of a less uniform 
web tension field. Solving for C2 with respect to the stress 
uniformity ratio (i.e., σmean /σmax) from Equation 6 and re-
calling Equation 4, the relationship between C2 and ωt can 
be obtained and is illustrated in Figure 4. Consistent with 
Figure 3, the curve shown in Figure 4 indicates that a less 
uniform tension field (which corresponds to greater C2) will 
develop in a plate girder with more flexible flanges (which 
corresponds to greater ωt).

Flexibility Limit for VBE Design

To quantify the minimum flexural stiffness of VBE needed 
to ensure uniformity of elastic infill tension fields in SPSWs 
and avoid the undesirable VBE behaviors described previ-
ously, CSA S16-01 adopted Equation 5. Provided that each 
VBE has the same moment of inertia, Ic, as normally the case 
in SPSWs, Equation 5 becomes:

	 ω t si
wi

c

h
t

I L
= 0 7

2
4. 	 (7)

For the reasons described earlier, and on the strength of 
the information provided by Montgomery and Medhekar 
(2001), the CSA S16 limited this factor to a maximum value 
of 2.5. This limit of 2.5 was also selected on the assumption 
that tension fields should be sufficiently uniform for ductile 
behavior to develop. In Figure 4, limiting the flexibility fac-
tor to a value of 2.5 is shown to correspond to a maximum 
stress not exceeding by more than 20% the average stress of 
the web tension field. Imposing the upper bound of 2.5 on 
Equation 7 and solving for Ic leads to the following require-
ment, first implemented in the CSA S16-01:

	 I
t h

L
c

wi si≥
0 00307 4.

	 (8)

The requirement was subsequently adopted in the Nation-
al Earthquake Hazards Reduction Program (NEHRP) Provi-
sions for Seismic Regulations for New Buildings and Other 
Structures, also known as FEMA 450 (FEMA, 2003), and 
then the AISC Seismic Provisions (AISC, 2005c).

Note that the analytical work by Wagner (1931) and 
Kuhn et al. (1952) for plate girders, which was used for 
determination of the VBE flexibility limit, assumed elastic 
behavior. Although at the onset of the tension field action, 
the maximum stress in an infill panel may be significantly 
greater than the average due to VBE deflections, this differ-
ence could decrease upon greater story drifts, provided that 
the boundary frame members are able to allow infill panel 
stress redistribution after the first yielding of tension diago-
nals. To better understand this, stress distributions across the 
first-story web plates (i.e., along the direction perpendicu-
lar to the tension diagonals) are shown in Figure 5 for two 
tested specimens, namely, the specimen tested by Driver et 
al. (1998) and the specimen tested by Lee and Tsai (2008). 
Note that these two specimens have different flexibility fac-
tors and will be introduced in more detail in a later section.  
Figure 5 shows that, as drift levels progressively increase, 
both specimens will ultimately develop uniform tension 
fields, although the specimen tested by Lee and Tsai (which 
had more flexible VBEs) develops less uniform tension fields 
at lower drift levels. Since identical uniform stress distribu-
tion ultimately develop in the panels of SPSW, the issue of 
initial stress distribution seems irrelevant to the performance 
of SPSW. By inference, this raises questions about the rel-
evance of considering a flexibility factor altogether, ωt, in 
SPSW design. Therefore, different models are investigated 
in the next sections to rationalize desirable and undesirable 
VBE behaviors.
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Fig. 4. Relationship between flexibility factor  
and stress amplification factor.
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Prevention of VBE In-Plane Shear Yielding

As mentioned earlier, the significant “pull-in” deformation 
of VBE observed during the tests on single-story SPSWs by 
Lubell et al. (2000) as shown in Figure 6 was a milestone 
event that led to the current limit specified for the flexibil-
ity of VBEs in SPSWs (AISC, 2005c; CSA, 2001). This 
undesirable performance was ascribed to the insufficient 
VBE stiffness (Montgomery and Medhekar, 2001). How-
ever, VBE shear yielding is another important factor that 
may result in significant inelastic VBE deflections. At the 

time of this writing, no literature has reported or checked 
whether the previously tested specimens have encountered 
VBE shear yielding.

To have a better understanding of the observed significant 
inward deformations in VBEs, an analytical model for esti-
mating VBE shear demand is proposed in this section fol-
lowed by assessment on the previously tested SPSWs using 
the proposed analytical model. For comparison purpose, re-
sults from pushover analysis on strip models of those con-
sidered SPSWs are also provided. Predictions are compared 
with the observed behavior. 
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Fig. 5. Uniformity of tension fields: (a) pushover curves; (b) schematic of tension fields; (c) uniformity of panel stresses in strip models.
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Shear Demand and Strength of VBE

According to the current design codes, VBEs of a SPSW, 
which are sized as beam-column members (i.e., considering 
the P-M interaction demands), are required to remain elastic 
when the webs are fully yielded, with exception of plastic 
hinges at the VBE bases when VBEs are fixed to ground. 
Although not explicitly stated, those plastic hinges should 
be flexural-plastic hinges (i.e., as opposed to shear-yielding 
hinges) for the infill panels to be effectively anchored and 
consequently allow development of the expected tension 
fields. Note that the shear demands in VBEs can be of sig-
nificant magnitude. One major contribution to the shear 
demands is due to yielding of the infill plate (incidentally 
this contribution produces equal and opposite shears in the 
opposing VBEs and thus do not contribute to the total story 
shear resisted). The free-body diagram of Figure 9 (explained 
later in this paper) for which equilibrium is explained in Ber-
man and Bruneau (2008) is typically used to calculate these 
shear forces. When the resulting VBE shear demands are 
greater than their shear strengths, VBEs exhibit undesirable 
shear yielding behavior resulting in the significant pull-in 
deformation in VBEs as observed in some prior experimen-
tal research.

As shown in Figure 7, the free body diagram of the right-
hand-side VBE at the ith story in a uniformly yielded single-
bay SPSW under rightward lateral forces is used to deter-
mine the maximum VBE shear demand here. Note that the 
same VBE design shear force can be obtained for left-hand-
side VBE based on the procedure presented later. Conser-
vatively, assuming that the moments applied at the top and 
bottom ends of the VBE are equal to their expected nominal 
plastic moments, one can obtain the following estimate of 
VBE shear demand from equilibrium:

	 = +V
R f Z

h

h d
u design

y y c

si

xci si yci ci
− +

2

2 2

ω ω 	 (9)

where 
dci	 =	 VBE depth 
Zc	 =	 plastic section modulus of VBE
ωxci 	 =	 horizontal component of infill panel yield forces 

along VBE
ωyci	 =	 vertical component of infill panel yield forces 

along VBE
fy	 =	 yield stress of boundary frame
Ry	 =	 ratio of expected to nominal yield stress

Note that equations for calculating
 
ωxci, and ωyci  are avail-

able in Berman and Bruneau (2008).

It is recognized that Equation 9 overestimates the VBE shear 
design force for two reasons: (1) the plastic moments at the 
VBE ends may be reduced due to the presence of axial force, 
shear force and vertical stresses in the VBE (i.e., similar to 
the reduction of HBE plastic moments presented in Qu and 
Bruneau 2008); and (2) plastic hinges in properly designed 
SPSWs may develop in the HBEs, not in the VBEs. Note that 
for this case, the plastic moment of HBE may not necessar-
ily distribute equally (2 and 2) between the columns above 
and below the connection due to higher mode effects. For 
expediency, it is conservative to design the columns to resist 
the shear force given by Equation 9, and acting concurrently 
with the corresponding axial force and moment. However, 
the true shear demand on columns may be less than given by 
Equation 9, and predicting the adequacy existing in SPSW 
VBEs using this procedure may incorrectly predict failure 
due to shear yielding (as will be the case for some tested 
SPSWs discussed in the following section). 

In design, the shear demand obtained from Equa-
tion 9 should be compared to the VBE shear strength, 
Vn, which, when the VBE web is compact (i.e., when 
h t E fwci wci y≤ 2 24.  per ANSI/AISC 360-05), is calcu-
lated as: 

Fig. 6. Deformation and yield patterns of SPSW2 after 6δy  
(Lubell et al., 2000).
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Fig. 7. In-plane free body diagram of the VBE at the ith story  
for determination of shear demand.
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	 Vn = 0.6fy dcitwci	 (10)

where
hwci	 =	 VBE web depth
twci	 =	 VBE web thickness
E	 =	 young’s modulus

It should be noted that, for simplicity here, Equation 10 
does not take into account the reduction effects on the VBE 
shear resistance due to the presence of other internal forces 
in VBEs and such a simplification may lead to a VBE de-
sign that is not conservative. However, when necessary, the 
interaction of these effects can be considered using a more 
rigorous procedure provided in Qu and Bruneau (2008).

Observation of VBE Shear Yielding  
in Past Testing

To check whether VBE shear yielding had occurred in previ-
ous tests, a selection of SPSWs for which the experimental 
data are available is assessed in Table 1. Those examples 
include both single-story and multi-story SPSWs. Using the 
analytical model proposed in prior section, the shear demands 
(i.e., Vu−design) and strengths (i.e., Vn), respectively calculated 
using Equations 9 and 10, are presented in Table 1. Using 
published information on SPSW geometries and member 
sizes, strip models for those considered SPSWs were devel-

oped, and the corresponding maximum VBE shears obtained 
from the pushover analysis using SAP2000 (i.e., Vpushover) are 
also provided in Table 1. Note that 20 strips were used for 
the infill plates at each story in all specimens. Steel was mod-
eled as an elasto–perfectly plastic material using the yield 
strength provided in each relevant reference. Plastic hinges 
accounting for the interaction of axial force and flexure were 
defined at the ends of HBEs and the VBE bases. The vertical 
distributions of lateral forces used in the pushover analyses 
were determined according to the loading conditions report-
ed for each actual test. For comparison purposes, specimen 
scale, aspect ratio and tension field inclination angle of those 
considered SPSWs are provided in Table 1.

Comparing Vpushover to Vu−design, Table 1 confirms that Equa-
tion 9 gives conservative VBE design shear forces (as ex-
pected since it assumes plastic hinges at both ends of the 
VBE). The level of conservation varies from 0.7% to 57%, 
and is, on average, 25% for the cases considered. 

On the other hand, comparing Vn to Vpushover reveals that 
the VBEs in cases 1, 3, 6, 7 and 8 should have experienced 
shear yielding during their tests while the VBEs in other 
cases would not. This prediction is consistent with experi-
mental observations. For a better understanding, the follow-
ing will focus on the observed VBE behaviors in cases 1, 3, 
6, 7 and 8. 

Table 1. Evaluation of VBE Shear Demand and Strengtha

Case Researcher
Specimen  

Identification
Number of  

Stories
Scale

Aspect Ratioc  
(L/h)

α  
( º )

ωt
Vn 

(kN)
Vpushover 

(kN)
Vu-design 

(kN)
Shear 

Yielding

(i) single-story specimen

1 Lubell et al. (2000) SPSW2 1 1:4 1.00 37.4 3.35 75 108 113 Yes

2 Berman and Bruneau (2005) F2 1 1:2 2.00 44.8 1.01 932 259 261d No

(ii) multi-story specimena

3 Driver et al. (1998) b 4 1:2 1.58 43.4 1.73 766 1361 1458 Yes

4 Park et al. (2007) SC2T 3 1:3 1.46 44.4 1.24 999 676 1064 No

5 SC4T 3 1:3 1.46 44.1 1.44 999 984 1383 No

6 SC6T 3 1:3 1.46 43.9 1.58 999 1218 1622 Yes

7 WC4T 3 1:3 1.46 45.0 1.62 560 920 1210 Yes

8 WC6T 3 1:3 1.46 45.0 1.77 560 1151 1461 Yes

9 Qu et al. (2008) b 2 1:1 1.00 41.3 1.95 2881 1591 2341 No

10 Lee and Tsai (2007) SPSW N 2 1:1 0.66 38.8 2.53 968 776 955 No

11 SPSW S 2 1:1 0.66 36.5 3.01 752 675 705 No
a For multi-story specimens, VBEs at the first story are evaluated.
b Not applicable.
c Using the first-story height.
d The plastic moments applied at the VBE ends are equal to the strength of web–angle beam-to-column flexible connections.
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For the SPSW of case 1 [i.e., the single-story SPSW 
(SPSW2) tested by Lubell et al. (2000)], significant in-
ward deformations were observed in the VBEs as shown in  
Figure 6. Montgomery and Medhekar (2001) ascribed this 
undesirable VBE behavior to: (1) the small infill panel 
width-to-height aspect ratio compared to other specimens 
for which the VBEs exhibited desirable behavior, (2) rela-
tive small tension field inclination angle calculated per the 
equation provided in the AISC Seismic Provisions and CSA 
S16-01, and (3) excessive VBE flexibility.

The fact that the single-story specimen had a width-to-
height infill panel aspect ratio of approximately 1.0, by it-
self, should not be a concern contrary to the claim by Mont-
gomery and Medhekar (2001). This is because the VBEs of 
the MCEER/NCREE full-scale two-story SPSW specimen, 
which had the same width-to-height aspect ratio of 1.0, ex-
hibited desirable VBE performance (Qu et al., 2008), and 
others have also tested narrow SPSWs that exhibited equally 
satisfactory behavior (e.g., Lee and Tsai, 2008, used an as-
pect ratio of 0.66).

In addition, the tension field inclination angle of the  
single-story specimen calculated per the AISC Seismic Pro-
visions (AISC, 2005c) and CSA S16-01 is 37.4°. That, by 
itself, should not be a reason for the observed undesirable 
VBE behavior. As presented in Table 1, the two-story SPSW 
(specimen SPSW S) recently tested by Lee and Tsai (2008) 
had an even smaller inclination angle of 36.5° and exhibited 
satisfactory VBE performance up to story drifts greater than 
5%.

As to whether the undesirable VBE inward deformation 
observed in the single-story specimen can be attributed to 
excessive VBE flexibility, even though this specimen had a 
flexibility factor of 3.35 (i.e., greater than the code speci-
fied limit of 2.5), the results in Table 1 demonstrate that 
VBE shear yielding occurred in that specimen during the 
tests, resulting in the significant in-plane VBE deflection 
due to inelastic shear deformations. Yielding pattern of the 
VBE webs further confirms this point. As indicated by the 
flaked whitewash shown in Figure 6, the VBE web yielded 
uniformly at the VBE ends as opposed to the yielding pat-
tern usually observed in flexural plastic hinges, indicating 
significant inelastic shear deformations. Note that the axial 
force in the VBEs can also affect the yielding pattern of VBE 
webs. However, the axial force developed in the VBEs is in-
significant in this single-story case. 

For the SPSW of case 3 (i.e., the four-story SPSW tested 
by Driver et al., 1997), deformations at the first story of the 
wall are shown in Figure 8. Note that this specimen had a 
code-compliant flexibility factor of 1.73. Incidentally, plas-
tic strength of the wall predicted using the procedure pro-
posed by Berman and Bruneau (2003), which has been veri-
fied by numerous other experimental results, is substantially 
greater than the strength obtained during the test. Sabouri-
Ghomi (2005) alleged that the reduced plastic strength of 

the wall could be due to overall bending effects. However, 
results shown in Table 1 unequivocally show that VBE 
shear yielding occurred in the first-story of that specimen. 
This may have resulted in incomplete development of the 
expected VBE plastic moments and infill tension field at the 
first story, and thus the lower plastic base shear compared to 
the predictions from plastic analysis. Interestingly, fractures 
were observed to penetrate into the VBE web at the column 
bases during tests, which may also be related to the signifi-
cant shear force acting there. 

Cases 6, 7 and 8 are three-story specimens from a series 
of tests on SPSWs by Park et al. (2007). For comparison 
purpose, case 6 is first compared against cases 4 and 5. 
Specimens of cases 4, 5 and 6 (i.e., SC2T, SC4T and SC6T, 
respectively, in Park et al., 2007) have flexibility factors of 
1.24, 1.44 and 1.58, respectively, which all satisfied the code- 
specified limit of 2.5. These specimens had identical bound-
ary frame members and constant infill panels along the height 
of each wall [with thicknesses of 2 mm, 4 mm and 6 mm in 
SC2T, SC4T and SC6T, respectively (0.08 in., 0.16 in. and 
0.24 in.)]. These specimens had the same VBE members and 
thus the same shear strength per Equation 10. However, the 
shear demands on the first-story VBEs of SC2T, SC4T and 
SC6T increased directly as a function of the infill panel yield 
forces, which are determined from the infill panel thick-
nesses. As shown from the results in Table 1, the first-story 
VBEs of SC6T are expected to yield in shear while those of 
SC2T and SC4T would not. This prediction agrees with the 
observed yielding patterns shown in the photos presented in 
Park et al. (2007). 

For the specimens in cases 7 and 8 [i.e., WC4T and 
WC6T in Park et al. (2007), respectively], the VBEs were 
wide flange members with noncompact flanges. WC4T and 
WC6T have code-compliant flexibility factors of 1.62 and 

Fig. 8. First story of Driver’s SPSW  
(photo courtesy of R.G. Driver).
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infill plate yield force along the VBE; Pbli and Pbri represent 
the axial forces at the left and right ends of HBE; Vli and  
Vri represent the shear forces at the left and right VBE faces; 
Mli and Mri represent the moments at the left and right VBE 
faces; Rxl, Rxr, Ryl, Ryr, Mcl and Mcr represent the reaction 
forces at VBE bases; and Fi represents the applied lateral 
forces to develop the expected plastic mechanism. Note that 
the free body diagrams of Figure 9 are only for illustration 
purpose and the forces shown in the figure may have a differ-
ent direction depending on the equilibrium of the free body.

Free body diagram of the VBE on the right-hand side is 
chosen for derivation of the out-of-plane buckling strength 
of VBE, since the compression effect in that VBE due to the 
HBE end shears is additive to that from the vertical com-
ponent of the infill panel yield forces along that VBE. The 
compression at the top end of the considered VBE, Ptopi, can 
be obtained as:

	 P V htopi rj
j i

n

ycj sj
j i

ns s

= + ⋅
= = +
∑ ∑ ω

1

	 (11)

where ns is the number of stories and all other terms have 
been defined previously. 

To ensure desirable VBE behavior, it is recommended, 
although slightly conservative, to neglect the reduction ef-
fects on HBE plastic moment accounting for the presence of 
axial force, shear force, and vertical stresses in HBE when 
calculating Vrj for determination of the VBE axial forces. In 
addition, it is assumed that plastic hinges form at the column 
face when reduced beam section (RBS) connections (ANSI/
AISC 358-05) are not used in HBEs. Accordingly, the right-
end shears of HBEs are obtained as:

1.77, respectively. However, significant pull-in deformations 
were observed in the VBEs of these two specimens. Lo-
cal buckling due to flange noncompactness is an important  
factor that contributed to the VBE deflections during these 
tests, but the results in Table 1 indicate that shear yielding 
also developed in those VBEs. The observed VBE yielding 
pattern and deformation further confirm this point. As shown 
in the photos published by Park et al. (2007), yield lines 
gradually developed in the VBE web with the increases of 
story drift, indicating the development of VBE shear yield-
ing, which finally resulted in significant inward deflections 
in the VBEs.

As discussed earlier, undesirable inward VBE deflections 
were observed in SPSW specimens with and without code-
compliant flexibility factors. There is no correlation between 
flexibility factor and significant VBE pull-in deformations. 
Based on the analytical work conducted in this section, the 
observed undesirable VBE deflections were mainly caused 
by VBE shear yielding.

VBE Out-of-Plane Buckling

Besides the aforementioned excessive pull-in deformations, 
another undesirable behavior of VBE is out-of-plane buck-
ling, which has been observed during the tests on a quarter-
scale four-story SPSW specimen by Lubell et al. (2000). 
Confusion exists at whether this undesirable performance 
was also ascribed to the insufficient VBE stiffness; the AISC 
341-05 commentary is not clear in this regard. At the time of 
this writing, no theoretical work has been conducted to es-
tablish the correlation between ωt and out-of-plane buckling 
strength of VBEs. 

This section will investigate whether the available data-
base of test results sustain the use of flexibility limit for VBE 
design to successfully prevent the out-of-plane buckling of 
VBE, or whether different methods are necessary for that 
purpose. To be able to do such comparisons, analytical mod-
els to estimate the out-of-plane buckling strength of VBEs 
are provided based on simple free body diagrams and the 
energy method taking into account representative boundary 
conditions of VBEs. Using the proposed analytical models, 
the out-of-plane behaviors of VBEs in a few representative 
tested SPSWs that have various values of flexibility factor 
are reviewed.

Analytical Models for Out-of-Plane 
Buckling Strength of VBEs

Free Body Diagrams of VBEs

Figure 9 shows free body diagrams of the left and right VBEs 
in a typical single-bay multi-story SPSW when the expected 
plastic mechanism of the wall develops under the right-
ward lateral forces. In the free body diagrams, ωxci and ωyci  
represent horizontal and vertical components of the  
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Fig. 9. VBE free body diagrams.
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a conservative design model is of limited value. Second, if 
the simplified idealized elastic model considered here pre-
dicts buckling, then it is reasonably certain that the actual 
VBE would buckle (given that inelastic behavior and initial 
imperfections would reduce buckling strength). As such, a 
prediction of VBE buckling using the simplified approach 
proposed here can be helpful to confirm the case where 
buckling was observed in the experimental studies reviewed 
in this paper (recognizing that a prediction of non-buckling 
is not a guarantee of satisfactory performance). Finally, the 
results obtained using the idealized model, in spite of its 
own shortcomings, help bring attention to some of the im-
portant issues that must be considered in future more com-
plex models such as boundary conditions and loads applied 
by the infill plate along the length of the VBEs. As such, 
the analytical models assuming elastic buckling behaviors 
of VBEs provide some of the building blocks and important 
perspectives necessary to derive the more advanced analyti-
cal models for calculating VBE buckling strength account-
ing for inelastic behavior and more complicated boundary 
conditions in future investigations. 

The energy method considered in this paper is used in 
buckling problems to determine approximate values of the 
critical buckling strength when an exact solution of the dif-
ferential equation of the deflection curve is either unknown 
or too complicated. In such cases, solution proceeds by as-
suming a reasonable shape for the deflection curve. While 
it is not essential for an approximate solution that the as-
sumed curve perfectly match the deflected shape, it should 
satisfy the boundary conditions at the ends of the member. 
Using a reasonable assumed shape for the deflection curve, 
the energy method can give an approximate out-of-plane 
buckling strength of VBE, within the previously enunciated 
constraints (Timoshenko and Gere, 1961). 

Figure 10 illustrates orientations of the VBE weak and 
strong axes in a typical SPSW, for which the smaller and 
greater moments of inertia of the VBE cross-section can be 
obtained. Note that VBE out-of-plane buckling develops in 
the plane perpendicular to the weak axis. The ends of VBEs 
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where
ωxbi	 =	 horizontal component of the infill plate yield 

forces along HBE (Berman and Bruneau, 
2008)

ωybi	 =	 vertical component of the infill plate yield forc-
es along HBE (Berman and Bruneau, 2008)

d	 =	 HBE depth
L	 =	 distance between the column faces 
Lh	 =	 distance between plastic hinge locations
Zef	 =	 effective plastic section modulus of HBEs

Note that Zef is equal to the plastic section modulus of a HBE 
when RBS connections are not used. For a HBE without 
RBS connections Zef should be determined according to the 
equations proposed by Qu and Bruneau (2008) to account 
for the variation of plastic hinge location in the RBS zone.

Energy Method and Boundary Conditions

Although modeling the considered VBE in some FE software 
packages such as ABAQUS is always possible, at the cost of 
computational efforts, it is relatively expedient and efficient 
here to illustrate important trends by using the energy meth-
od to approximately calculate the critical buckling strength 
of VBEs (i.e., the Euler buckling strength assuming elastic 
behavior and no initial imperfection in the member). It is 
recognized that the actual buckling strength of the member 
considering the previously mentioned effects would be lower 
and that the buckling strength calculated by this approach is 
optimistic. It should, therefore, not be used for design. 

A rigorous derivation of the buckling strength of VBEs 
which takes into account inelastic behaviors and all pos-
sible boundary conditions of VBEs is complex and would 
be a major undertaking beyond the scope of this paper. For 
example, one major impediment is how to consider the 
boundary conditions of VBEs due to the infill panels. Note 
that the infill panels provide tension-only supports along 
the VBEs while exerting longitudinal and transverse loads 
along VBEs. While awaiting further research results on the 
buckling strength of VBEs, it is recommended to continue 
designing VBEs as beam-columns according to Chapter H 
of ANSI/AISC 360-05 for conservative combinations of 
maximum acting moment, shear, and axial forces, assuming 
conservative unsupported lengths.

However, the work presented here, even though based on 
elastic analysis and idealized properties, is important and 
included for the following reasons. First, while it is always 
possible to achieve conservative VBE designs (as described 
earlier), the objective here is to review behavior of VBEs 
in prior tests and attempt to see if the observed out-of-
plane buckling failure can be predicted. In that perspective,  

Weak axis
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Fig. 10. Strong and weak axes of VBEs.
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where Iyi 
is the moment of inertia of the VBE taken from the 

weak axis.

Graphical versions of the criteria presented in Table 2 are 
shown in Figure 11(b). For a given load combination (i.e., 
a pair of m and n) and boundary conditions, if the left-hand 
side of the corresponding criterion presented in Table 2 is 
greater than 1, the VBE is expected to encounter out-of-
plane buckling. Those combinations for which buckling 
failure occurs are represented by the shaded area in Figure 
11(b). Incidentally, using an alternative approach based on 
the differential equations of beam-column theory, Timosh-
enko and Gere (1961) provided the critical buckling strength 
of the column under Case A boundary conditions for a few 
selected individual scenarios. Their results are also presented 
in Figure 11(b). As expected, a good agreement is observed. 
As shown, for each case, the value of m decreases when 
the value of n increases, which physically means that lower 
concentrated force needs to be applied at the top of the col-
umn to avoid column buckling when higher infill panel yield 
forces are applied. Note that parts of Figure 11 are presented 
with different vertical axes to purposely improve legibility. It 
also should be mentioned that the negative range of m in Cri-
terion A is reasonable and it is consistent with the fact that, 
when large infill panel yield forces are applied along the col-
umn (which corresponds to large values of n), the axial force 
required at the top end of the member to avoid out-of-plane 
buckling failure should be upward (i.e., it should be a tensile 
force which corresponds to the negative value of m).

are laterally supported by the floor system, and the first-story 
VBE is either fixed or pinned to ground. Under those condi-
tions, the out-of-plane translations at the VBE ends are re-
strained. However, the out-of-plane rotational restraints due 
to the beams framing into the VBEs can vary from fully free 
to fully fixed and would have to be assessed on a case by 
case basis. The VBE end conditions considered in this paper 
are illustrated in Figure 11(a) and correspond to ideal cases. 

Criteria for the Considered Boundary Conditions 

The out-of-plane buckling strength of VBE under each case 
of boundary conditions can be obtained following the clas-
sic procedure of energy method and the detailed derivations 
are presented in Qu and Bruneau (2008). In such derivation, 
the internal strain energy is obtained by accounting for the 
curvature determined from the assumed VBE deflection 
curve, and the external work is obtained by combining the 
contribution due to the concentrated force applied at the 
top of the VBE and that due to the infill panel yield forces 
along the VBE. Setting the internal strain energy equal to 
the external work, one can obtain the criterion to calculate 
the out-of-plane buckling strength of VBE. Deflection curve, 
internal strain energy, external work, and criterion of each 
considered case are presented in Table 2.

For each case of boundary conditions, the correspond-
ing criterion that defines the buckling limit state can be ex-
pressed as a combination of m and n equal to unity, where 
m and n are the generalized external forces and can be re-
spectively obtained by normalizing the concentrated force 
applied at the top of the VBE (i.e., Ptopi) and the resultant 
infill panel yield force along the VBE (i.e., ωyci hsi ), by the 
Euler buckling load of a simply supported VBE without any 
intermediate loads along its height. Namely, m and n can be 
determined as:

Table 2. Key Parameters and Criteria for Considered Boundary Conditionsa

Factors Case A Case B Case C Case D
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a �An arbitrarily selected nonzero defection factor, δi, is used in the shape function. Note that the magnitude of δi has no 
impact on the buckling strength of VBE.
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The considered SPSW specimens are assessed using the cri-
teria developed for the four boundary conditions considered 
since the out-of-plane restraints at the ends of the VBEs of 
some specimens are not provided in the available references. 
As shown by the results presented in Table 3, no matter what 
boundary conditions were applied, VBE out-of-plane buck-
ling would not be predicted to occur in any of the SPSWs 
except for the Lubell et al. (2000) quarter-scale four-story 
SPSW. This prediction is consistent with the observations 
on those SPSWs obtained during tests, validating to some 
degree the proposed analytical models for calculating VBE 
out-of-plane buckling strength. Note that for this Lubell 
et al. specimen insignificant amounts of hysteretic energy 
were dissipated before instability of VBE precipitated the 
system failure.

A closer look at the Lubell et al. specimen and the buckled 
shape of its VBE reveals that Case C boundary conditions 
were present (i.e., bottom end of the VBE was fixed to the 
ground while the top end was pinned in the out-of-plane di-
rection). To better understand this, the VBE deflection traced 
from the specimen is superposed to those corresponding to 
cases B and C boundary conditions in Figure 12. Comparing 
the deflected shapes confirms that the VBE end conditions 
correspond to those of Case C. Accordingly, applying Crite-
rion C provides a value of 1.066 greater than 1.0 as shown 
in Table 3, indicating the expected occurrence of VBE out-
of-plane buckling. This suggests that out-of-plane buckling 
of the VBEs in the Lubell et al. specimen can be rationally 
predicted using the out-of-plane buckling equations derived 
here rather than excessive VBE flexibility.

Two other interesting cases in Table 3 are the two speci-
mens (i.e., SPSW N and SPSW S) tested by Lee and Tsai 
(2008). SPSW N and SPSW S, respectively, had flexibility 
factors of 2.53 and 3.01 (i.e., above the code-specified upper 

Review of Out-of-Plane Buckling  
of VBEs in Past Tests

To better understand the VBE out-of-plane buckling behav-
ior, performance of the VBEs in previously tested SPSWs 
are revisited in perspective of the criteria derived in the 
previous section to see whether the proposed alternative ap-
proach can shed additional light on the behavior of VBEs. 
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Fig. 11. Out-of-plane buckling of VBE: (a) considered boundary 
conditions; (b) interaction of critical loads.
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Fig. 12. Out-of-plane buckling of bottom VBE  
(photo courtesy of C.E. Ventura).
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equations similar to those used for out-of-plane buckling are 
necessary for use in the interaction equations to calculate the 
beam-column strength of VBEs, and whether other concerns 
may justify retaining the use of ωt factor to achieve satisfac-
tory seismic performance of VBEs in SPSWs.
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Current Steel Structures Research

Reidar Bjorhovde

After more than five years of assembling and evaluating 
structural steel research projects at universities and other 

institutions around the world, it has become very clear to 
me that significant efforts are taking place in a number of 
countries. Although American steel research for buildings 
and bridges was preeminent for many years, and especially 
during the period from 1930 to 1980, it is amply evident that 
the developments in many countries have produced wide-
ranging results with major implications for engineering and 
the construction industry. Most importantly, the worldwide 
community of researchers and engineers exchange ideas and 
findings to ensure that advances will continue to take place. 
Differences occur in interpretations and developments in the 
form of design criteria and construction practices, but by and 
large, the end results are effectively the same.

As a result, a new feature is being introduced for these 
steel structures research papers. In addition to the regular 
project descriptions from individual institutions, each paper 
will highlight the work at two or three major steel research 
universities—the “steel schools” of the world. The descrip-
tions will not discuss all of the current projects at the school. 
Rather, a selection of studies will provide a representative 
picture and demonstrate the school’s importance to the ef-
forts of industry and the profession. 

This issue of Engineering Journal provides the first in 
this new series, featuring the work at two North American 
universities. It reflects their ongoing, central roles in the re-
search activities of the United States and Canada and their 
long-time impact on the design standards of the two coun-
tries. Both schools are well known: Lehigh University in 
Bethlehem, Pennsylvania, and the University of Alberta in 
Edmonton, Alberta. Researchers at the two universities have 
been very active for many years, as evidenced by their par-
ticipation and leading roles in the standards development 
committees and by large numbers of outstanding technical 
papers, reports and conference presentations.

References are provided throughout the paper, whenever 
such are available in the public domain. However, much 
of the work is still in progress, and in some cases reports 
or publications have not yet been prepared for public  
dissemination.

LEHIGH UNIVERSITY

Development of Improved Welded Moment Connections 
for Earthquake-Resistant Design: This study was con-
ducted with the sponsorship of the SAC Joint Venture and 
the Pennsylvania Infrastructure Technology Alliance. Steel 
shapes for the test specimens were donated by the Technical 
Committee on Structural Shapes. Professor James M. Ricles 
has been the director of the project.

The project was undertaken as a major assessment of the 
effects on the cyclic (seismic) ductility of welded unrein-
forced moment connections of the weld metal, the geom-
etry of the weld access hole, the form of the beam web at-
tachment to the column, the continuity plates, and the panel 
zone strength. Using finite element evaluations as well as 
full-scale physical tests, the results of the former were used 
to develop 11 connections for the testing program (Ricles 
et al., 2003). As illustrations of some of the findings,  
Figure 1 shows the setup for the connection tests and Fig-
ure 2 shows the effective plastic strain contours in the vicin-
ity of the weld access hole.

Commenting on some of the key findings, the researchers 
note that:

1.	 Several studies have shown that the geometry of the 
weld access hole is critical to the performance of the 
connections. The difference between the original con-
figuration and the modified access hole is emphasized 
by a short, flat portion on the beam flange. Figure 2 
shows that the modified shape allows for a larger por-
tion of the flange to develop plastic strains, hence an 
increased ductility for the connection as a whole.

Reidar Bjorhovde, Research Editor for Engineering Journal, 5880 E. Territory 
Ave., Suite 202, Tucson, AZ 85750-1803. E-mail: rbj@bjorhovde.com Fig. 1. Test setup for connections  

(Courtesy of Professor James M. Ricles).

123_130_EJ2Q_research_2010.indd   123 7/9/10   2:37:47 PM



124 / ENGINEERING JOURNAL / SECOND QUARTER / 2010

slenderness. Six full-scale frame subassemblages were test-
ed; the general appearance of the test setup is similar to what 
is illustrated in Figure 1.

Among the unique performance characteristics of these 
types of frames is the fact that under certain conditions 
and for some of the parameters, the column will exhibit 
significant twisting. Figure 3 illustrates this phenomenon. 
Specifically, the twisting occurs as a result of out-of-plane 
movement of the RBS compression flange. But it was also 
demonstrated that the composite slab has a very significant 
influence on the response of the subassemblage, to the ef-
fect that it restrains the top flange of the beam and therefore 
reduces the lateral displacement of the RBS connection and 
consequently the magnitude of the column twist. In addi-
tion, the slenderness of the beam web is an important con-
tributor to the lateral displacement of the beam flange in the 
connection. Figure 4 shows the finite element results for the 
column twist as a function of the beam web slenderness and 
the influence of the slab, using a range of beam shape sizes. 
Thus, the amount of twist is small and essentially constant 
for all magnitudes of beam slenderness when the slab effect 
is taken into account. In the absence of the slab, the twist 
is quintupled as the beam slenderness goes from that of a 
W36×135 to that of a W36×256.

Horizontally Curved Tubular Flange Girders: This project 
has been sponsored by the Federal Highway Administration 
and the Pennsylvania Infrastructure Technology Alliance, 
with High Steel Structures, Inc., Lancaster, Pennsylvania, 
as a project partner. The project director has been Professor 
Richard Sause.

Recognizing the fact that complex highway geometries 
offer significant challenges for the bridges that have to be 
built, curved girder bridges have become very common over 

2.	A  panel zone designed on the basis of the column web 
yield capacity gives a connection that performs better 
than specimens that also incorporate the contribution 
of the column flanges.

3.	 Shear studs should not be placed in the plastic hinge 
region of the beam, since this reduces the fracture 
toughness of the beam flange material.

4.	 Continuity plates are not always needed. The connec-
tions that were tested without such plates and without 
shear studs in the plastic hinge region of the beam per-
formed very well, developing plastic story drifts larger 
than 0.04 radian.

Seismic Behavior of Reduced Beam Section Moment Con-
nections to Deep Columns: This study was conducted with 
the sponsorship of AISC and the Pennsylvania Infrastructure 
Technology Alliance. Materials for the test specimens were 
donated by Arcelor International America, Nucor Vulcraft 
Group and Lincoln Electric Company. Professor James M. 
Ricles has been the director of the project.

A number of other projects have addressed the issues of 
reduced beam section (RBS) connections and the perfor-
mance of frames with such connections. This project fo-
cused on frames using deep beam shapes as columns, which 
is not an uncommon feature of certain structures in seismic 
areas. Finite element analyses were used to perform para-
metric studies with three-dimensional RBS models in spe-
cial perimeter moment-resisting frames subjected to inelas-
tic monotonic and cyclic loading (Zhang and Ricles, 2006a; 
2006b). The parameters were (1) the beam-to-column con-
nection type, (2) the column shape, (3) the composite floor 
slab, (4) the strength of the panel zone, and (5) the beam web  

Fig. 2. Plastic strain contours for (a) traditional weld access hole and (b) modified weld access hole  
(Courtesy of Professor James M. Ricles).
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the past several years. One of the major issues for curved 
girders is the lateral stability during construction as well as 
during service. Traditional rolled beams and plate girders 
have flanges that offer low torsional stiffness. The concept 
of built-up girders with tubular flanges was developed in 
recognition of the stiffness offered by the tubular shape, in 

addition to the fact that such flanges could add strength as 
well as bending stiffness for the girders. Figure 5 illustrates 
the concept.

Recent analytical studies have demonstrated the poten-
tial of such girders (Dong and Sause, 2009, 2010). A testing  
program for curved tubular flange girders is now under  
way, focusing first on one-half scale individual girders and 
now also on a two-thirds scale two-girder bridge, as shown 
in Figure 6. The two-girder bridge test aims at determining 
the behavior and strength under simulated construction and 
service conditions; the response characteristics of individual 
girder will be assessed in comparison to regular curved plate 

Fig. 3. (a) Details of the RBS connection; (b) column twisting  
that occurs when a plastic hinge forms in the RBS  

(Courtesy of Professor James M. Ricles).

Fig. 4. Influence of slab, beam size and web slenderness  
on the magnitude of the column twist. Column sizes  

are shown in top left corner.  
(Courtesy of Professor James M. Ricles). 

Fig. 5. Curved hollow flange girder system  
(Courtesy of Professor Richard Sause).

Fig. 6. Test specimen for a two-thirds scale curved tubular flange 
bridge structure (Courtesy of Professor Richard Sause).
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girders. The results to date confirm the predicted stiffness 
and strength, with substantially smaller stresses, deflections 
and cross-sectional rotations than those of curved plate gird-
ers. Further, a multi-girder tubular flange bridge requires 
fewer cross frames and smaller frame members.

Damage-Free Seismic-Resistant Self-Centering Concen-
tric Braced Frames: This project has been sponsored by the 
NEES Program of the National Science Foundation and by 
AISC. Professors James M. Ricles and Richard Sause have 
been the project directors.

Concentrically braced frames (CBF) offer relatively sim-
ple and economical structural systems. However, in view of 
the limited drift capacity of such types of frames and their 
tendency to suffer seismic damage, the self-centering CBF 
system was developed to provide structures that would un-
dergo limited damage. At the same time the system offers 
the opportunity for improved repair and restoration after an 
earthquake (Sause et al., 2006; Roke et al., 2009).

The unique behavior of these self-centering frames (SC-
CBF) is represented by the rocking of the frame at the base. 
The structure is stabilized by vertical high-strength post-
tensioning (PT) bars that extend over the full height of the 
frame. Under low-level earthquakes the frame behaves as 
traditional CBF; under high lateral loads the PT bars provide 
a stabilizing, restoring system that limits the frame displace-
ments and the damage that otherwise would occur. 

Extensive nonlinear dynamic analyses have been per-
formed to assess the behavior of the frame, and at this time a  
large-scale frame test is under way. Figure 7 shows the multi-
story frame (yellow elements within the test setup), and Fig-
ure 8 shows the uplift that takes place at the base. The physi-
cal response therefore mirrors the analytical predictions.

The researchers have developed an improved design meth-
od that also incorporates nonlinear dynamic procedures. It 
takes into account the internal forces associated with yield-
ing of the post-tensioning bars as well as the forces associ-
ated with higher modes of dynamic response.

UNIVERSITY OF ALBERTA

Steel Plate Shear Walls with Partially Encased Compos-
ite Columns: This project has been sponsored by the Natu-
ral Sciences and Engineering Research Council (NSERC) of 
Canada and the Canam Group. Professor Robert G. Driver 
has been the project director.

Steel plate shear walls are now being used in a number 
of structures in seismic areas. One of the problems of these 
otherwise very efficient and ductile lateral load-resisting 
systems has been the stability and strength of the columns 
(boundary elements) of the walls. Studies have demonstrat-
ed that partially encased composite columns, with concrete 
placed between relatively thin flanges and web of built-up 
H-shapes (Chicoine et al., 2002; Prickett and Driver, 2006), 
may offer a suitable solution for the columns of the shear 
walls. It is noted that the thin flanges are connected by close-
ly spaced steel bars to prevent local buckling. These bars can 
be seen in Figure 9.

A series of three large-scale shear wall tests are in the 
process of being conducted. The intent is to establish the 
behavior, ductility and failure mode of the shear wall and 
the columns. The second of the test walls utilized a modular 
system, omitting the moment connections to have a more 

Fig. 7. SC-CBF test setup. Yellow elements in the picture represent 
the braced frame (Courtesy of Professors James M. Ricles  

and Richard Sause).

Fig. 8. Rocking displacement at the base of a column  
of the SC-CBF (Courtesy of Professors James M. Ricles  

and Richard Sause).

123_130_EJ2Q_research_2010.indd   126 7/9/10   2:37:49 PM



ENGINEERING JOURNAL / SECOND QUARTER / 2010 / 127

by fracture mechanics, reliability methods and similar ad-
vanced approaches. The variables include material proper-
ties, detail geometries, initial flaw conditions and loading 
conditions. Possibly two of the most common repair meth-
ods involve hole drilling and hole drilling with hole expan-
sion. For the case of hole drilling alone, a hole is placed at 
the crack tip, on the assumption that this will arrest the crack 
propagation. Such has been successfully used in many cases.  
On the other hand, hole drilling and a small amount of hole 
expansion has been found to be very effective. Thus, ex-
panding the hole at the crack tip by a mere 3% increases the  
fatigue life by a factor of 4 to 5. This is illustrated in Figure 
11, where fatigue life versus stress range has been determined  
for holes with and without expansion. The correlation with re-
liability analyses of various forms is very good (Josi, 2010).

SWISS FEDERAL INSTITUTE OF LAUSANNE

Crack Propagation in Tubular Joints under Compressive 
Loading: This project has been sponsored by the Swiss Na-
tional Science Foundation (SNF) with test materials provided 
by Vallourec & Mannesmann. Professor Alain Nussbaumer 
has been the project director.

economical solution. Figure 9 shows this test specimen be-
fore the concrete has been placed between the flanges of the 
columns.

The first test used the regular solution with beam-to- 
column moment connections; it demonstrated very ductile 
response characteristics but also identified certain connec-
tion detailing issues. Figure 10 shows this test in progress, 
with the usual buckling shape of the shear wall. 

Design recommendations are currently being developed. 
In particular, special attention is paid to the detailing needs 
of the walls.

Repair of Fatigue Cracks in Steel Structures: This project 
has been sponsored by the Natural Sciences and Engineer-
ing Research Council (NSERC) of Canada and Syncrude 
Canada Ltd. Professor Gilbert Y. Grondin has been the proj-
ect director.

Fatigue cracks occur regularly in structures such as 
bridges, industrial structures, offshore structures and mining 
equipment. Downtime due to repair efforts can be long and 
costly, and the repairs are not always effective. Under the 
best of circumstances, the designer should be in a position 
to specify what repair method and procedures should be fol-
lowed, and even whether repairs should be attempted in the 
first place. The latter is recognition of the fact that such re-
pairs often make the situation worse. Nevertheless, practical 
repairs need to be done, with a realistic expectation that they 
will be successful. Very often the designer will evaluate what 
was done in the past for similar cracking details, but such an 
approach is neither effective nor fully reliable.

Various repair techniques are being evaluated by the re-
searchers at the University of Alberta, including assessments 

Fig. 9. Modular shear wall specimen before concrete  
placement in between the flanges of the columns  

(Courtesy of Professor Robert G. Driver).
Fig. 10. Shear wall with partially composite columns  

(Courtesy of Professor Robert G. Driver).
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the crack propagation speed, and the formation of additional 
(secondary) cracks. As expected, the final failure took place 
when the tension member cracked. Further tests and analy-
ses are being conducted, with the aim of providing improved 
fatigue design criteria and fatigue life predictions (Acevedo 
and Nussbaumer, 2009). 

UNIVERSITY OF LJUBLJANA

Bending-Shear Interaction in Plate Girders: This project 
has been conducted at the University of Ljubljana in Lju-
bljana, Slovenia, with Professor Darko Beg as the director.

Studies have shown that the interaction between bending 
and shear may not be significant. As a result, the design cri-
teria of Eurocode 3 (EC3) appear to be very conservative 
(CEN, 2005). The key question is whether it is correct to use 
the same moment-shear interaction approach for longitudi-
nally stiffened and unstiffened plate girders. A major para-
metric study was conducted to arrive at a realistic approach. 
At this stage it has been determined that the interaction is 
negligible for girders with high web slenderness; the oppo-
site is correct for girders with low slenderness. Further, the 
EC3 criteria are shown to be safe for high slenderness gird-
ers; the opposite is true for girders with low slenderness. Fig-
ure 13 demonstrate these observations, with the left portion 
showing the results for girders with a web thickness of 6 mm 
(4 in.) and the right portion for girders with a web thickness 
of 10 mm (a in.). All of these girders had a web slenderness 
of 1,500. The flange b/t value was 300 with a thickness of 
20 mm (w in.). The vertical stiffener spacing was 1,500 mm 
(5 ft). There was one longitudinal stiffener.

An extensive investigation is currently under way to de-
termine the importance of web imperfections. The initial re-
sults show very limited influence in the context of moment-
shear interaction.

Large scale tubular truss beams have been tested under 
constant amplitude fatigue loading. The trusses were 30 ft 
(9 m) long and 6 ft 8 in. (2 m) high, as shown in Figure 12. 
The truss members were circular hollow sections (CHS) in 
S355 steel (50 ksi yield stress). The truss itself was planar 
only, and the connections to be tested were all of the K- 
configuration. The primary aim was to evaluate the fatigue 
behavior of compression-loaded joints; specifically, where 
the chord is in compression, one diagonal is in compression 
and one diagonal is in tension. 

As found in other studies, fatigue cracks developed in the 
compression joints as a result of the high tensile residual 
stress that was produced by the welding of the connection. 
The cracks started at the weld toe and their propagation 
was monitored by checking the alternating current potential 
drop. The residual stress measurements were made by hole 
drilling as well as neutron diffraction. Additional observa-
tions have been made regarding the crack initiation location, 

Fig. 11. Fatigue life test data for hole drilling with  
and without hole expansion  

(Courtesy of Professor Gilbert Y. Grondin).

Fig. 12. Planar truss with circular hollow section members for fatigue testing of K-joints  
(Courtesy of Professor Alain Nussbaumer).
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The authors discuss the application of a set of equations 
for analysis and design of composite columns subjected 

to combined compression and bending. These equations 
were presented in the CD that accompanied the 13th edition 
Steel Construction Manual (AISC, 2005). The CD presents, 
in Figures I-1a through I-1d, sets of equations to be used to 
determine specific points on a simplified interaction diagram 
for encased W-shapes with bending about either the strong 
or the weak axes and filled rectangular and round HSS. 
These figures are used as the basis for Tables 2 through 5 in 
the paper. However, the authors have altered the figures from 
the CD for presentation in their paper.

The most significant difference between the authors’ ta-
bles and the AISC figures occurs for the round HSS. The 
authors correctly point out a typographical error in Figure 
I-1d in the equation for θ where the terms f ′c Ac should be 
removed. Clearly, if these variables were included in a cal-
culation, the units, as well as the value, would be incorrect. 
The authors also point to “a discrepancy in the computation 
of ZsB.” However, the two equations that the authors provided 
for the plastic section modulus of the steel, ZsB, appear to 
contain approximations that can be replaced with simple 
derivations that provide better accuracy. The paper does not 
include derivations for these equations. 

In this discussion, three equations for use in determining 
ZsB are developed and compared to those of the authors. The 
first equation is developed using the segment of a circle; the 
second, considered as a usable lower bound representation, 

is developed using the sector of a circle; and the third solu-
tion is developed as an exact solution.

Figure 1 shows the geometry of a concrete-filled round 
HSS. The plastic neutral axis is shown in the location that 
would result if the member were to undergo pure bending. 
This is point B in Table 5 of the paper and this figure is simi-
lar to that shown for point B in Table 5. The development of 
the flexural strength of the composite member requires the 
determination of several different properties of portions of 
the steel and concrete. One is the plastic section modulus, 
ZsB, of that portion of the steel beyond the plastic neutral axis 
on the compression side and the symmetrically placed steel 
section on the tension side. These areas are shown shaded in 
Figure 1. The different solutions for ZsB result from different 
approaches to modeling these two areas.

Circular Segment

Figure 2(a) shows the geometric properties of a circular seg-
ment. Using these properties, the moment of the area of this 
circular segment taken about the circle center is 

Discussion

Limit State Response of Composite  
Columns and Beam-Columns  
Part II: Application of Design Provisions  
for the 2005 AISC Specification

Paper by Roberto T. Leon and Jerome F. Hajjar 
(First Quarter, 2008)

Discussion by Louis F. Geschwindner

Louis F. Geschwindner, P.E., Ph.D., Vice President, American Institute of Steel 
Construction, 1 E. Wacker Dr., Suite 700, Chicago, IL 60601. E-mail: lfg@
psu.edu

 

 
 

θ  hn

hn

h d 

PNA 

Fig. 1. Plastic neutral axis of concrete-filled round  
HSS in pure bending.
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Equation 4 is the equation given in AISC Figure I-1d. This 
is not an exact solution since the two circle segments are not 
properly aligned. Figure 3 shows the areas that are used to 
determine Zseg and ZcB and where they are located with respect 
to each other. It also shows the area of steel that should have 
been included but is not, As,missing, and the area of concrete 
that was subtracted that should not have been, Ac,extra. As the 
thickness of the steel section gets smaller or the angle, θ, 
approaches π, Equation 4 approaches the correct value.

Circular Sector

Figure 2(b) shows the geometric properties of a circular sec-
tor. The moment of the area of the circular sector about the 
circle center is
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Using r = d / 2, the plastic section modulus for the pair of 
circular sectors in tension and compression is twice the mo-
ment of the area of one circular sector. Thus,
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Similarly, the plastic section modulus for the matching sec-
tors of concrete with diameter, h, is 
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Using R = d / 2, the plastic section modulus for the pair of 
circular segments in tension and compression is twice the 
moment of the area of one circular segment. Thus,
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Similarly, the plastic section modulus for the matching seg-
ments of concrete with diameter, h, is 
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The plastic section modulus of the steel areas shown shaded 
in Figure 1, ZsB, can then be determined as the plastic section 
modulus of the segment minus the plastic section modulus 
of the concrete. Thus,
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Fig. 2. Properties of a circle.
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Fig. 3. Geometry for circular segment solution.
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Subtracting the Zconc from Zsec will give the plastic section 
modulus of the steel. Thus,
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6
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As was the case with the derivation of Equation 4, this is not 
an exact solution. Figure 4 shows the areas that are used to 
determine Zsec and Zconc. It also shows the area of steel that 
has not been included in the final calculation for ZsB. Since 
the only approximation included in this derivation is the 
steel that has been ignored, this approach can be considered 
a “lower bound” solution.

Exact Solution

An exact solution is possible using the geometry of the 
circular segment and properly accounting for the two 
angles needed to describe the steel and concrete geometry.  
Figure 5(a) shows the concrete-filled round HSS with two 
circular segments defined by the angles, θ and θs. The angle, 
θ, is the same angle as defined for the earlier two deriva-
tions. The angle, θs, is the angle that defines the location of 
the plastic neutral axis at the outer face of the steel. Using 
the plastic section modulus as defined by Equation 2 and θs, 
yields

	
Z

d
sseg = ( )

3
3

6
2sin θ 	 (9)

For the concrete segment, using Equation 2 and θ, yields

	
Z

h
cB = ( )

3
3

6
2sin θ 	 (10)

The exact plastic section modulus for the steel is then

	
ZsB = Zseg − ZcB 	 (11)

In order to combine Equations 9 and 10, the relationship 
between θ and θs is needed. From Figure 5(b), the following 
relationship is seen

	

h d
s2

2
2

2cos cosθ θ( ) = ( ) 	 (12)

and combined with the basic trigonometric relationship, 
sin cosA A= −1 2 , yields

	

sin cosθ θ
s

h

d
2 1 2

2

2

2

1
2

( ) = − ( )





	 (13)

Substituting Equation 13 into Equation 9 yields

	

Z
d h

d
seg = − ( )





3 2

2

2

6
1 2

3
2

cos θ 	 (14)
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Fig. 4. Geometry for circular sector solution.
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Figure 5 Geometry for exact solution 
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Fig. 5. Geometry for exact solution. 
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and substituting Equations 10 and 14 into Equation 11 
yields

	

Z
d h

d

h
sB = − ( )





− ( )
3 2

2

2

3
2 3

3

6
1 2

6
2cos sinθ θ 	 (15)

Unlike the two previous derivations given for the circular 
segment and the circular sector, this derivation gives the ex-
act solution for ZsB.

Authors’ Equations

The two equations presented in the paper for ZsB are:

a “correct” formulation 

	

Z
d h

sB = −





( )
−

+
−( )

−

3 3
3

12
2

2

2
sin

sin
θ θ

θ θ
π θ

π θ(( ) − −( )










sin 2π θ

	

(16)

		  × Z
d h

sB = −





( )
−

+
−( )

−

3 3
3

12
2

2

2
sin

sin
θ θ

θ θ
π θ

π θ(( ) − −( )










sin 2π θ

and a simplified approximation

	

Z
d h

sB ≈
−( ) ( )

3 3
4

3

6
2sin θ

	
(17)

Comparison of Results 

Five equations for the plastic section modulus of the steel 
for point B, pure bending, of a concrete-filled round HSS 
have been presented. The results from these five equations 
are plotted in Figure 6 for an HSS 16.000×0.250 over the 
full range of angle, θ, from 0 to π.

Equation 4, the original AISC equation, is the least accu-
rate of the equations derived in this discussion. Equation 8, 

the “lower bound” solution is closer to the exact solution 
than all of the other equations shown. The two equations 
presented by the authors, Equations 16 and 17, appear to be 
unrelated to those derived in this discussion. Although they 
give values closer to the exact solution than Equation 4, they 
do not provide a better solution than Equation 8, the “lower 
bound” solution. The origins of Equations 16 and 17 are not 
discussed in the paper.

The difference between Equations 8 and 15 is greatest for 
the lower values of θ. Thus, it would be helpful to know the 
approximate range of θ for realistic round HSS and accept-
able values of concrete strengths. As concrete strength in-
creases, the angle, θ, decreases. Thus, a check was made for 
all of the concrete filled round HSS listed in the Composite 
Column Tables of the 13th edition Steel Construction Manual 
(AISC, 2005b) but with a concrete strength, f  ′c = 10.0 ksi. 
For these shapes, with Fy = 42 ksi, the HSS 16.000×0.250 
required the smallest angle, θ = 1.77 rad. As seen in Figure 
6 for this shape, Equations 4, 8, 15, 16 and 17 give the fol-
lowing values for ZsB: 

Eq. No. Model ZsB (in.3)

4 Circular segment 26.9

8 Circular sector 44.8

15 Exact 45.3

16 Paper “correct” 41.1

17 Paper simplified 41.2

In addition to using the ZsB equations for determining mo-
ment strength for the pure bending case, the same basic 
formulation is used by the authors, with θ2 to determine ZsE, 
for moment strength at point E. The realistic range for θ2 is 
π to 0 as points between C and somewhere close to A are 
determined. Thus, the error in not using Equation 15 with 
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Fig. 6. Comparison of five equations for ZsB for an HSS 16.000×0.250.
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In addition, revised versions of Figures I-1a through I-1d 
from the CD Companion V.13.0 are presented as Tables A 
through D of this Discussion. Note that Tables A through D 
also correspond to Figures 2 through 5 of the Leon and Haj-
jar paper, but with corrections.

In summary the revisions incorporated are: 

1.	N o changes to Figure I-1a (Table A).
2.	 Two editorial changes in Figure I-1b (Table B). 
3.	 Several editorial changes and the inclusion of equations 

for point E in Figure I-1c (Table C). 
4.	 Several editorial changes, the inclusion of equations for 

point E, and updated equations for ZsB and ZsE in Figure 
I-1d (Table D).

REFERENCE

AISC (2005), Steel Construction Manual, 13th Edition, 
American Institute of Steel Construction, Chicago, IL.

Editor’s Note: AISC’s Committee on Manuals and Textbooks 
has decided to incorporate Dr. Geschwindner’s recommen-
dations in revisions that will be made with the 14th edition 
AISC Steel Construction Manual.

θ2 for these points can be quite substantial. However, the 
lowest value of θ2 for point E as defined by the authors for 
the HSS 16.000×0.250 discussed earlier is 1.23 rad and the 
error in computing ZsE using the “lower bound” equation is 
approximately 5%. 

Recommendations

Based on the derivations presented in this discussion, it is 
recommended that either the exact solution, Equation 15, or 
the circular sector solution, Equation 8, be used in calcula-
tions for pure bending, Point B, for a concrete-filled round 
HSS. Considering the simplicity of the latter and its ability 
to closely represent the correct value for ZsB, it is further rec-
ommended that Equation 8 be adopted for use in place of the 
currently listed equation in Figure I-1d of the 13th edition 
companion CD.

In the rare case where point E is to be determined, it is 
recommended that the lower bound equation, Equation 8 
with θ2, be used. If more points on the interaction curve are 
to be determined, the exact solution, Equation 15, should 
be used. 
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Table A. 
Plastic Capacities for Rectangular, Encased  

W-Shapes Bent About the X-X Axis

Section Stress Distribution Point Defining Equations
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h1

bf

c

c
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0.85C c c

C B

P f A

M M

′=
=

D

 
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2

4
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D

c
D s y r yr c

s
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c s r

f A
P

Z
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Z

A

h

h h
Z Z Z

′
=

′= + +

=

 
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B

( )

( )
( )

1
2

2
1

1

2

0
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=
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2 2

n f n

srsyr

n

c f y f
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d d
h t h
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h

f h b F b

d d
Z Z b h h
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=
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Table B. 
Plastic Capacities for Rectangular, Encased  

W-Shapes Bent About the Y-Y Axis

Section Stress Distribution Point Defining Equations
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d
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Table C.  
Plastic Capacities for Composite, Filled HSS  

Bent About the X-X Axis

Section Stress Distribution Point Defining Equations

h2

h1

d

b

t

0.85f 'c Fy

CL

CL

CL

CL

PNA

PNA

PNA

(A)

(E)

(C)

(D)

(B)

hn

d/2

hn

hE

CL

t

ri

A

P F A f A

M

A

A h h r

A y s c c

A

s

c i

= + ′

=
=

= −

0 85

0

0 8581 2

.

.

area of steel shape
22

1

2

2

2

h b t

h d t

= −
= −

E

E = +

fP A f h h F th

M M F Z f Z

E c c c E y E

E D y sE c c

= ′( )+ ′ +

= − − ′

1
2 1

1
2

0 85 0 85 4

0 85

. .

. E

cE E

sE E

n

Z h

Z t

h

h

h
h d

( )
=

=
1

2

22

2 4

C
P f A

M M
C c c

C B

= ′

=

0 85.

D

P
f A

M F Z f Z

Z

D
c c

D y s c c

s

=
′

= + ′( )
=

0 85

2
0 851

2

.

.

full x-axis plastic seection modulus of HSS

Z
h h

rc i= −1 2
2

3

4
0 192.

B

P

M M F Z f Z

Z th

Z h h

h
f

B

B D y sn c cn

sn n

cn n

n
c

=

= − − ′( )
=

=

=
′

0

0 85

2

0 85

1
2

2

1
2

.

. AA

f h tF

hc

c y2 0 85 4 2
1

2

. ′ + 
≤

131-142_EJ3Q_discuss_closure_2010.indd   138 7/9/10   2:51:26 PM



ENGINEERING JOURNAL / SECOND QUARTER / 2010 / 139

Table D.  
Plastic Capacities for Composite, Filled Round HSS  

Bent About Any Axis

Section Stress Distribution Point Defining Equations
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*0.95f ′c may be used for concrete filled round HSS.
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CLOSURE

Limit State Response of Composite  
Columns and Beam-Columns 
Part II: Application of Design Provisions  
for the 2005 AISC Specification

Paper by Roberto T. Leon and Jerome F. Hajjar

Closure by Roberto T. Leon, Tiziano Perea and Jerome F. Hajjar

The authors thank Dr. Geschwindner for his comments on 
the derivation of the plastic section modulus, Zs, of circu-

lar HSS as shown in Table 5 of the original paper. (Equation 
numbers referenced in this Closure are the same as those 
used in the Discussion, for clarity.)

The derivation of Equation 16 of the Discussion was omit-
ted from the original paper for brevity. It is shown in the 
attached Appendix. Equation 17 was intended as a straight-
forward lower-bound curve fit to Equation 16; many similar 
expressions are possible. The primary assumption that was 
made in Equation 16 is that the wall of the circular HSS is 
assumed to be thin (i.e., that θ ≈ θs using the nomenclature 
of the Discussion). As noted by Dr. Geschwindner, this as-
sumption results in the area of the steel being underestimated 
and that for the concrete being overestimated. 

The authors appreciate Dr. Geschwindner’s efforts in de-
veloping new exact and approximate equations for Zs, rep-
resented by Equations 15 and 8, respectively, in the Discus-
sion. The authors agree that his equations are applicable to 
thick-walled circular CFTs (θ ≠ θs) and provide results with 
better accuracy than those stated in the original paper.

The authors agree that Equation 8 in the Discussion is a 
reasonable replacement for both the original equation for  
ZsB in Table I-1d on the CD companion to the 13th edition 

AISC Manual (Equation 4 in the Discussion) and the pro-
posed equation for ZsB in our original paper (Equation 17 
in the Discussion). Finally, the authors will like to note that 
Equation 8 is the same as those given by the Architectural In-
stitute of Japan (AIJ) in their provisions for composite mem-
bers once a number of geometric transformations are made.

Appendix

Derivation of the Plastic Section Modulus  
of a Circular HSS Thin Tube  

(Equation 16 in the Discussion)

This appendix derives the equation to get the plastic sec-
tion modulus (Zs) of a circular HSS stated in Table 5 in the 
original paper (Equation 15 in this appendix). The derivation 
assumes a thin-walled HSS cross section as shown in Figure 
A.1b.

The area and the centroidal distance of a circular segment 
(Figure A.1a) including both concrete and steel sections are 
given by:

Roberto T. Leon, Professor, School of Civil and Environmental Engineering, 
790 Atlantic Dr., Georgia Institute of Technology, Atlanta, GA 30332, corre-
sponding author. E-mail: rl58@ce.gatech.edu

Tiziano Perea, Graduate Research Assistant, School of Civil and Environmen-
tal Engineering, 790 Atlantic Dr., Georgia Institute of Technology, Atlanta, GA 
30332. E-mail: tperea@gatech.edu

Jerome F. Hajjar, Professor and Chair, Department of Civil and Environmental 
Engineering, 400 Snell Engineering Center, 360 Huntington Ave., Northeast-
ern University, Boston, MA 02115. E-mail: jf.hajjar@neu.edu

  
	 (a) Circular segment	 (b) Circular HSS cross-section

Fig. A.1. Variables used in the derivation.
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3sin
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θ
θ θ

	 (A.2)

Note in Figure A.1 that the angle θ in (a) is not the same as 
the angle θ in (b). This difference is small for thin-walled 
sections. Assuming the steel wall is thin enough that the dif-
ference can be neglected, the area and centroidal distance 
of the circular segment in the concrete only can be approxi-
mated as:
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h
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	 (A.4)

Thus, the area and the first moment of the area of the shaded 
ring segment in Figure A.1b are as follows:

	
Ar = Ad − Ah 	 (A.5)

	
Qr = Ad Yd − Ah Yh	 (A.6)

Then, the centroidal distance of a ring segment (i.e., only the 
steel) is given by:

	

2 2
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d h
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r
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sin
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	 (A.7)

The last equation can be adjusted for the complement ring 
segment when θ is changed by 2π − θ. Thus:
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π θ θ
	 (A.8)

The compression and tension forces on the steel ring seg-
ments, their respective centroidal distances, and the total 
bending moment are given by the following equations.

For the compression zone defined by the angle θ, where  
rm = (d − t)/2 and t = (d − h)/2:
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For the tension zone defined by the complement of the angle 
θ, where rm = (d − t)/2 and t = (d − h)/2:
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Then, the nominal moments in the steel cross section can be 
summed as:

	 Cs Ycs + Ts Yts = Fy Zsθ 	 (A.13)

From Equation A.13, the plastic modulus of the steel cross-
section for any angle theta is given by:
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In the denominator of the second term of Equation A.14, 
the sin(θ) term may be taken as its trigonometric equivalent, 
–sin(2π – θ). With all like terms based upon the same angle, 
2π – θ, Equation A.14 can be restated as: 

	 Z
d h

sθ

θ θ
θ θ

π θ
π θ

=
−( ) ( )

−( ) +
−( )

−( )
3 3 3 2

12

2

2

sin

sin −− −( )










sin 2π θ

	
(A.15)

		

×
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Equation A.15 is the one shown in Table 5 (Point B) in the 
original paper to get the plastic section modulus (Zs) of a 
circular HSS.
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