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BEAM-COLUMNS are structural members subject to axial 
compression and simultaneous bending moments. In 
practice, the bending moments in such members are 
often induced by lateral loads. The axial force influences 
some functions of the beam, such as deflection, slope, 
shear force and bending moment. These functions are 
increased by an amplification factor which depends 
upon the magnitude of the axial compressive force. 
Since the member used for structural purposes has a 
variety of applications, it is desirable to have some 
information readily available for such beam-columns. 
Formulas for the determination of magnification factors 
under the most generalized conditions under symmetrical 
loading are presented herein. In particular, the end 
slope of a member equal to the small angle of rotation 
of the end is given, because many statically indetermi­
nate structures can be solved by a proper consideration 
of angle rotation. Beam-columns which are symmetri­
cally loaded with concentrated, uniformly distributed 
and triangularly distributed loads are considered. 

In elementary theory of bending, the principal of 
superposition is valid provided that Hook's Law holds 
for the material. In beam-columns, the presence of the 
axial force shows that the deflection of the member 
is not directly proportional to the lateral loads. However, 
the superposition method can be applied in a slightly 
modified form. Thus results shown in this paper can 
cover a large area of symmetrical loading. 

EQUATIONS FOR SYMMETRICAL LOADS 

There are various methods and techniques available 
for determining theoretical magnification factors. The 
development shown herein is based on the classical 
version and is presented in a form that will be most 
suitable for engineering design use. Three types of 
symmetrical loading for a pin-end member with uni­
form cross-section under an axial compressive force 
are shown in Fig. 1. 

The differential equation for the deflection curve of 
an ideal beam-column subjected to a concentric axial 
load P and a lateral load Q as shown in Fig. 2 is: 
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where E is the modulus of elasticity, / is the moment 
of inertia, and y represents lateral deflections of the 
member. The general solution of Equation (1) is 

Q sin kx sin kc Qc 
y = — — —'- x y P sin kL PL 

where k2 = P/EL 
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The slope of the deflection curve is obtained by 
differentiating Equation (2) as follows: 

r 
Qk cos kx sin kc Qc 

~P sin kL ~ PL (3) 

By substituting qdc for Q in Equations (2) and (3) and 
integrating from limits mL to (L — mL), both the 
deflection and slope equations of Case 2 and 3 are 
obtained. 

The moment equations are obtained by adding the 
moment produced by Py to the static moment produced 
by a lateral load acting only on a simply supported 
span. Thus, 

M = Mv + Py (4) 

Table 1 gives expressions for the lateral load func­
tions and the limits of integration. Table 1 (a) shows 
the location at which the maximum functions occur. 

RESULTS 

The equations for maximum deflection, slope and 
moment obtained by solving Equation (1) are listed in 
Table 2. The equations are expressed in static func­
tions multiplied by an amplification factor. Static 
functions represent simple beam functions which are 
obtained if there exists a uniformly or triangularly 
distributed load over the entire span, of if there is a 
concentrated load acting alone at the center of the 
span. The magnification factor gives the influence of 
the longitudinal force p on the deflection, slope and 
moment due to actual loading conditions. 

These factors are expressed as trigonometrical 
functions with parameters m and U which are as follows : 

m = ratio of the unloaded span to the overall span 
u = y2kL. 
Table 3 lists the simple beam functions (i.e., axial 

load P — 0) and Table 3(a) lists beam-column functions 
of corresponding lateral loadings. 

Table 1. 

L a t e r a l Loading 

Funct ion 
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I n t e g r a t i o n 
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APPLICATIONS 

By using the method of superposition in its modified 
form, the deflections due to various arrangements of 
lateral loadings acting on a beam-column may be ob­
tained by superimposing deflections produced separately 
by each lateral load acting in combinations with the 
identical axial force P. The deflection due to the lateral 
loading in Fig. 3(a) is equal to the sum of deflections 
produced by loadings in Figs. 3(b) and 3(c). 

Similarly the end moments of a fixed-end member 
can be obtained. With reference to Fig. 4, the statically 
indeterminate end moment M is obtained from the con­
dition that the slope at the built-in end is equal to zero. 
Therefore, the rotation of the ends produced by the two 
symmetrical concentrated loads plus the rotation from 
the action of the end moments M as shown in Table 2, 
Case 1(C) and Table 3(a), Case 4(F) must be zero. 
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The ( —) sign on the right-hand side of Equation (5) 
indicates that the end moment M acts opposite to the 
direction assumed in Fig. 4(a). 

Table 2. Beam-Column Amplification Factors for Symmetrical Loading 
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Example—The use of graphs as aids to engineering 
design and analysis is illustrated in a numerical example. 
Figure 5 shows a structural member (8 V\F 24) subject 
to axial and lateral loads as shown. It is required 
to determine the maximum deflection and moment at 
the center line of the member, 

1. From Table 3, Case 2(A): Ast = 0.624 in. 
2. Calculate L/r, which is equal to 84, 

Stress = P/A = 16.4 ksi 
m = 3.6/24 = 0.15 

3. In Graph 1 with the above L/r and P/A values, 
find the U value on the vertical axis, which is equal 
to 1.0. 

4. In Graph 3, with the m and U values as found above, 
read across horizontally the magnification value on 
the vertical axis, which is 1.503. 

5. Maximum deflection = 0.624 X 1.503 = 0.9378 in. 

For maximum bending moment, use the formula for 
Case 2(B) in Table 3 and obtain M = 172.8 kip-in. 
From the formula for Case 2(B) in Table 2, 

M = (172.8) 
cos (2) (0.15) (1) - cos (1)" 

(I)2 (cos (1)) 

= (172.8)(1.545) = 267 kip-in. 

Alternately, the maximum moment is equal to the static 
moment at the center line plus the axial load times the 
deflection at the center line, i.e., 

M = (0.2)(16.8/2)(12)(12) - (0.200)(8.4)(8.4)(12)/2 
+ (116)(0.9378) 

= 266 kip-in. 

CONCLUSION 

The results presented herein can form the basis for a 
useful beam-column analysis subject to symmetrical 
loadings. The magnification factors can be calculated, 
if desired, from the equations given in Table 2. The 
deflection magnification factor may be obtained from 
Graphs 2 through 4. 

For the problem illustrated, the technique has been 
simple and fast. It appears that the procedures may be 
applied to more complicated situations such as members 
with built-in ends, rigid frames and three dimensional 
structures. Several other topics presently under develop­
ment may add to the application. 
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