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Notes on the Impact of Hole Reduction  
on the Flexural Strength of Rolled Beams
Louis F. Geschwindner

ABSTRACT

The use of ϕ = 0.9 and Ω = 1.67 with the provisions in Section F13.1 of AISC 360-05 (AISC, 2005) to account for the reduction in flexural strength 
for a beam with holes in the tension flange has been questioned several times since the publication of the Specification for Structural Steel Build-
ings in 2005. The intent of this paper is to review and provide justification for the use of the resistance/safety factors within the 2005 Specification 
provisions for the impact on flexural strength of holes in the tension flange.
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Introduction

The use of ϕ = 0.9 and Ω = 1.67 with the provisions in Sec-
tion F13.1 of AISC 360-05 (AISC, 2005) to account for the 
reduction in flexural strength for a beam with holes in the 
tension flange has been questioned several times since the 
publication of the Specification for Structural Steel Build-
ings in 2005. The research basis for the 2005 provisions 
originated from a report by Dexter et al. (2002). Their report 
includes a proposed formulation for the limits on when the 
impact of the holes must be considered and how the strength 
should be determined in those cases; however, the report 
does not address the appropriate resistance or safety factors 
to be used. The intent of this paper is to review and provide 
justification for the use of the resistance/safety factors within 
the 2005 Specification provisions for the impact on flexural 
strength of holes in the tension flange.

Theory

AISC 360-05 Equation F13-1 is intended to present a simple 
yet reasonable approach to account for holes in the tension 
flange of beams. Although not presented this way in the 
Specification, Equation F13-1 can be rewritten in terms of 
critical stress, always less than Fy, times the full elastic sec-
tion modulus as illustrated by the following two equations:
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Because ASTM A36 and A992 steels meet the limit given 
in Section F13 for Yt = 1.0, and the term
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in Equation 2 is always less than 1.0 if this check is appli-
cable, the critical stress is always less than the yield stress. 
Therefore, use of the resistance/safety factors associated with 
yielding (i.e., ϕ = 0.9, Ω = 1.67) appears to be warranted.

To examine this interpretation more closely, three models 
are developed for determining flexural strength when holes 
are present in the tension flange of W-shapes.

Model 1

For ease of calculation, the W-shape is modeled with holes in 
both the tension and compression flanges. The flange forces 
are taken as the rupture force and the web is assumed to be 
yielding throughout. Thus,
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If the ratio of flange-rupture strength to flange-yield 
strength, which is always less than 1.0, is taken as 
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Equation 3 can be stated as

	
M F Z F A d tn y x y fg f= − −( )( ) −( )1 Ψ 	 (5)
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flange and the web contributions. This multiple factor ap-
proach is similar to that used in connection design. For ex-
ample, a bolted flange plate moment connection could have 
the tension flange plate controlled by rupture and the com-
pression flange plate controlled by yielding. Thus, different 
resistance/safety factors would be applied in the design of 
each element yet they both participate in resisting the same 
connection moment. In the application here, using Equation 
6, this approach yields directly the design strength as 
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or the allowable strength as
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For this model, as Ψ approaches 1.0, the contribution of the 
tension flange is not fully restored to its yield strength since  
its contribution is always modified by the rupture resistance/
safety factor when Ψ = 1. This amounts to a 15% reduction in 
the contribution of the tension flange to the design strength. 
For this model, the design strength and the allowable strength 
for all values of the ratio of flange-rupture strength to flange-
yield strength results in available strengths greater than that 
obtained using Equation F13-1 from AISC 360-05.

Summary

Figure 1 illustrates the LRFD results for the three models 
discussed earlier compared to the Specification equation 
for a W8×24. This particular shape was chosen because it 
is compact and has a shape factor close to the lowest of all 
W-shapes, 1.105. It can be seen that Model 3 predicts design 
strengths greater than those predicted by Specification Equa-
tion F13-1. Identical comparisons would result if ASD had 
been used for the figure.

The intent of this study was to confirm that Equation F13-1  
with ϕ = 0.9 or Ω = 1.67 provides a prediction of flexural 
strength that is conservative. Models 1 and 2 show that for 
all W-shapes with a shape factor of 1.2 or greater, the predic-
tion by the Specification equation is conservative. However,  
a more accurate model was needed for W-shapes with a shape  
factor less than 1.2. Model 3 is a reasonable analytical ap-
proach that can be considered conservative. Since Model 3 al-
ways provides an available flexural strength greater than that 
obtained using the Specification provisions, it is considered 
acceptable to use Equation F13-1 with ϕ = 0.9 or Ω = 1.67.

Since this equation represents a rupture failure mode, the 
resistance factor, ϕ = 0.75, and safety factor, Ω = 2.00, are 
used to determine the available strength. 

When there is no reduction for the presence of holes, 
Ψ =  1.0, Equation 5 reduces to Mn = Fy Zx. Thus, the de-
sign strength is ϕMn = 0.75Fy Zx and the allowable strength 
is Mn /Ω = 0.5Fy Zx. Similarly, the provisions of Sec-
tion F13, as represented by Equations 1 and 2, reduce to 
Mn = Fy Sx. Thus, the design strength, using ϕ = 0.9, becomes 
ϕMn = 0.9Fy Sx and the allowable strength, using Ω = 1.67, 
becomes Mn /Ω = 0.6Fy Sx. In all cases where the shape fac-
tor, Zx /Sx, is greater than or equal to 1.2 (0.9/0.75 = 1.2 or 
2.00/1.67 = 1.2), the Specification approach gives a lower or 
equal available strength when compared to this model. But, 
if the shape factor is less than 1.2, this model, which was 
initially thought to be conservative, gives a lower value than 
the Specification approach.

Model 2

A second model is investigated to see if this underprediction 
can be reversed by eliminating the holes at the compression 
flange which were included for convenience only.

For this model, only the holes in the tension flange are 
accounted for and the compression flange is not reduced. It 
takes a bit more calculation effort to determine the nominal 
strength with this approach, but it is expected to yield a more 
accurate representation of the true behavior. In this case, pro-
vided the plastic neutral axis remains in the web,
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and the resistance/safety factor is again taken as ϕ = 0.75 or 
Ω = 2.00 since the strength calculation considered rupture 
of the tension flange. This model yields higher available 
flexural strength for most of the range of the ratio of flange-
rupture strength to flange-yield strength. However, as the re-
duction for holes gets smaller—that is, as Ψ approaches 1.0, 
the nominal strength approaches Fy Zx and the same problem 
occurs as for Model 1, where the available strength predicted 
by this model is lower than that predicted by the Specifica-
tion approach for W-shapes with a shape factor below 1.2. 

Model 3

A third approach is developed with the goal of increasing 
the design strength for those cases where the reduction for 
holes is small.

Since the flange in tension is controlled by tension rupture 
and the remainder of the shape is controlled by yielding in 
Model 2, Model 3 simply applies two different resistance/
safety factors, ϕ = 0.75 or Ω = 2.00, for the tension flange 
contribution and ϕ = 0.9 or Ω = 1.67, for the compression 
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Notation

The notation used in this paper is consistent with that used in 
ANSI/AISC 360-05 with one symbol added, Ψ.

Afg	=	gross flange area, in.2 (mm2)

Afn	=	net flange area, in.2 (mm2)

Fcr	=	critical stress, ksi (MPa)

Fu	 =	specified minimum tensile strength, ksi (MPa)

Fy	 =	specified minimum yield stress, ksi (MPa)

Mn	=	nominal flexural strength, kip-in. (N-mm)

Sx	 =	elastic section modulus about the x-axis, in.3 (mm3)

Yt	 =	hole reduction coefficient

Zx	 =	plastic section modulus about the x-axis, in.3 (mm3)

d	 =	depth of section, in. (mm)

tf	 =	thickness of flange, in. (mm)

tw	 =	thickness of web, in. (mm)

ϕ	 =	resistance factor

Ω	 =	safety factor

Ψ	 =	flange rupture to yield strength ratio
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Appendix

Derivations for the equations presented in this paper follow.

Model 1

In this case, both flanges are assumed to have the same re-
duction for the presence of holes. The nominal plastic mo-
ment strength is given by Fy Zx when no holes are present. 
To account for the reduced strength of the flanges, the yield 
contribution of both flanges is deducted and replaced by the 
tension rupture contribution. This is clearly a conservative 
approach for determining the nominal flexural strength since 
it ignores the actual contribution of the compression flange. 
Thus,
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Fig. 1. Design strength for a W8×24 with holes in the tension flange.
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Combining terms and multiplying the second term by 
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 and substituting into Equation b gives

	
( )M F Z F A d tn y x y fg f= − − ( ) −( )1 Ψ 	 (5)

Model 2

For this model, only the holes in the tension flange are 
considered. First, the contribution of the web is determined 
by deducting the flanges from the nominal plastic moment 
strength of the W-shape. 
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Then the tension flange rupture and compression flange yield 
contributions are added.
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Finally, the last factor to consider is the impact of the shift in 
the plastic neutral axis into the compression zone of the web, 
defined as distance x from the centroid of the gross area. 
This results in a moment reduction based on the removal of 
some compression force and the addition of an equal ten-
sion force, captured through the multiplication by 2 in the 
last term. These forces are half of the difference between the 
flange yield force and flange rupture force. Thus, 
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and the distance that the plastic neutral axis moves up into 
the compression zone, x, is
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Substituting for x yields
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Combining terms and substituting Ψ =
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Model 3

The only difference between Model 3 and Model 2 is the 
application of the yielding and rupture resistance/safety 
factors. Based on Equation g, for LRFD the design strength 
becomes
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where ϕy is the resistance factor for yielding and ϕr is the 
resistance factor for rupture. 

Combining terms and substituting Ψ =
F A

F A
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y fg

, ϕy = 0.9, and 
ϕr = 0.75 yields 
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For ASD the safety factors are applied to Equation g, yielding
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where Ωy is the safety factor for yielding and Ωr is the safety 
factor for rupture. 

Combining terms and substituting Ψ =
F A
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, Ωy = 1.67, and 
Ωr = 2.00 yields 
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