
ENGINEERING JOURNAL / FOURTH QUARTER / 2007 / 291

Spec/Manual Reference

The AISC Specification for Structural Steel Buildings 
(AISC, 2005) provisions for the flexural stability design 

of steel I-section members have been updated relative to pre-
vious Specifications to simplify their logic, organization and 
application, while also improving their accuracy and general-
ity. White (2004, 2005) and White and Jung (2004) compare 
the updated AISC provisions to the provisions of the 1999 
Load and Resistance Factor Design (LRFD) Specification 
for Structural Steel Buildings (AISC, 2000). White (2004) 
provides a detailed technical overview of the updated equa-
tions, including complete flowcharts of the resistance calcu-
lations. White and Jung (2004) and White and Kim (2004) 
validate the updated equations against more than 760 uni-
form bending and moment gradient experimental tests. This 
paper gives a brief overview of the updated provisions, and 
compares and contrasts their flexural resistance calculations 
with the corresponding calculations from the previous AISC 
Allowable Stress Design (ASD) Specification (AISC, 1989). 
The relative simplicity and accuracy of the AISC (2005) 
equations is highlighted. The nomenclature in this paper is 
consistent with AISC (2005) unless noted otherwise.

The next section outlines the key concepts associated with 
the updated AISC provisions. This is followed by a review 
of key concepts employed in the flexural resistance equa-
tions of the prior AISC (1989) ASD Specification. The paper 
closes with a case study comparison of the updated and the 
prior flexural resistance calculations. 

KEY CONCEPTS WITHIN  
THE AISC (2005) PROVISIONS

All of the I-section member flexural stability resistance 
equations in AISC (2005) can be explained using the basic 
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illustration shown in Figure 1. The flexural resistances in 
these Specifications involve two independent stability limit 
state calculations, one for flange local buckling (FLB) and 
the other for lateral-torsional buckling (LTB). The resistance 
equations for both FLB and LTB are based consistently on 
the logic of identifying the two anchor points shown in Fig-
ure 1 for the case of uniform major-axis bending. Anchor 
Point 1 is located at the effective length KLb = Lp for LTB, 
or the flange slenderness, λfc = bfc /2tfc = λpf for FLB, corre-
sponding to development of the maximum potential flexural 
resistance. This resistance is labeled in the figure as Mmax (in 
terms of the bending moment) or Fmax (in terms of the cor-
responding compression flange flexural stress), where Mmax 
= Mp for members with a compact web. However, it is gener-
ally less than Mp for members with noncompact or slender 
webs. Anchor Point 2 is located at the smallest effective 
length, KLb = Lr, or flange slenderness bfc /2tfc = λrf, for which 
the LTB or FLB resistances are governed by elastic buck-
ling. The ordinate of Anchor Point 2 is taken (in terms of 
the bending moment) as RpgFLSxc = 0.7RpgFy Sxc, or 0.7RpgMyc, 
for most I-shapes, where Myc is the nominal yield moment  
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Fig. 1. Basic form of AISC (2005) FLB 
and LTB resistance equations.
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associated with the compression flange and Rpg is the web 
bend buckling strength reduction factor, equal to 1.0 for 
sections with compact or noncompact webs. The inelastic 
buckling resistance is expressed simply as a line between 
these two anchor points. For KLb > Lr or bfc /2tfc > λrf, the 
nominal resistance is defined explicitly as the theoretical 
elastic buckling moment or flange stress. The basic format 
shown in Figure 1, adopted largely from AISC (2000), 
greatly facilitates the definition of simple yet comprehensive 
flexural resistance equations. 

For unbraced lengths subjected to moment gradient, AISC 
(2005) modifies the calculated LTB resistance by the mo-
ment gradient factor, Cb, as illustrated by the dashed line in 
Figure 1. In these cases, the uniform bending elastic and in-
elastic LTB strengths are scaled by Cb, with the exception 
that the resistance is capped by Fmax or Mmax. The calculated 
FLB resistance for moment gradient cases is the same as that 
for uniform bending, neglecting the relatively minor influ-
ence of moment gradient effects on the FLB limit state.

The coordinates of the anchor points shown in Figure 1 
are (Lp, Mmax) and (Lr, Rpg FLSxc) for LTB, and (λpf, Mmax) and 
(λrf, RpgFLSxc) for FLB, written in terms of the major-axis 
bending moment. The specific terms associated with these 
anchor points are discussed in detail below. Also, since the 
noncompact bracing limit, Lr, and the noncompact compres-
sion flange slenderness limit, λrf, are associated with the 
theoretical elastic buckling equations, the base AISC (2005) 
elastic buckling equations are presented. 

Compact Bracing Limit, Lp

AISC (2005) specifies the equation

 L r
E

Fp y
yc

= 1 76.  (1)

as the compact bracing limit for doubly-symmetric compact-
web members, while it specifies 

 L r
E

Fp t
yc

= 1 1.  (2)

for all other I-section member types. Equation 1 uses ry, the 
radius of gyration of the full cross-section about its minor 
axis, whereas Equation 2 uses rt, which is essentially the ra-
dius of gyration of the compression flange plus one-third of 
the area of the web in compression. Equation 1 is taken from 
AISC (2000) whereas Equation 2 is based on the assessment 
of experimental data in White and Jung (2004) and White 
and Kim (2004). White and Jung (2004) show that Equation 
2 gives the best correlation with experimental data for all 
types of I-section members. Equation 1 gives a larger value 
for the compact bracing limit; however, the largest increase 
in the LTB flexural resistance associated with this more  

liberal equation is never more than approximately 6%. The 
use of Equation 1 rather than Equation 2 for doubly-sym-
metric compact-web members is based on: (a) the LTB re-
sistance is relatively insensitive to the unbraced length in the 
vicinity of Anchor Point 1; and (b) some additional restraint 
against LTB typically exists, particularly for these member 
types, beyond that typically considered in design. 

Equation 2 is generally more restrictive than the prior AISC 
LRFD (AISC, 2000) and ASD (AISC, 1989) compact brac-
ing limits for slender-web members. However, it is more 
liberal than the Lp equation recommended in the original 
LRFD research by Cooper, Galambos, and Ravindra (1978) 
for these member types. The tests considered by White and 
Jung (2004) show that in cases where the end restraint from 
adjacent unbraced segments is small (for example, when 
the adjacent unbraced lengths are also subjected to uniform 
bending), the true compact bracing limit is smaller than the 
AISC (2000) values. If Equation 2 is substituted into the 
original Column Research Council (CRC) based expression 
suggested by Basler and Thurlimann (1961) for the LTB 
resistance of slender-web members, a strength of 0.97My is 
obtained for members with Rpg equal to one. If Lp /rt from 
Equation 2 is substituted as an equivalent slenderness ratio 
into the AISC (2005, 2000) inelastic column strength for-
mula, a resistance of 0.95Fy is obtained. The conservatism 
of Equation 2 relative to AISC (1989) and AISC (2000) is 
offset somewhat by the larger value of FL for slender-web 
members in AISC (2005), as discussed below. 

Compact Flange Slenderness Limit, λpf 

AISC (2005) defines the compact-flange slenderness limit 
by the equation

 λ pf
yc

E

F
= 0 38.  (3)

for all types of I-section members. This equation is identical 
to the compact-flange limit in AISC (1989) and AISC (2000) 
and is based largely on the original research by Lukey, Smith, 
Hosain, and Adams (1969) as well as the subsequent studies 
by Johnson (1985). 

Maximum Potential Flexural Resistance, Mmax

The above equations define the extent of the plateau associ-
ated with the maximum flexural resistance, Mmax (see Figure 
1). As noted previously, for members with compact webs, 
Mmax is equal to the cross-section plastic moment capacity, 
Mp. However, for members with noncompact or slender webs, 
the ordinate of Anchor Point 1, Mmax, decreases as a function 
of the web slenderness, hc /tw, whereas the abscissa, Lp or λpf, 
is independent of the web slenderness. For noncompact-web 
members, Mmax decreases linearly as a function of hc /tw be-
tween the compact-web limit, λpw, and the noncompact-web 
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for singly-symmetric I-section members. Equation 5b ac-
counts for the larger demands on the web required to develop 
the cross-section plastic moment capacity in singly-symmet-
ric I-sections. The term hc /hp in the numerator converts Equa-
tion 5b from its fundamental form associated with the plastic 
depth of the web in compression, hp, to a form associated 
with the elastic depth of the web in compression, hc. This is 
necessary so that a consistent web slenderness parameter, hc 

/tw, may be employed for the linear interpolation between 
the anchor points, (λpw, Mp) and (λrw, Myc), in Figure 2. For a 
doubly-symmetric I-section with hc /hp = 1.0 and an assumed 
Mp /My = 1.12, Equation 5b reduces to Equation 5a. 

For hc /tw > λrw, the web is defined as slender and Mmax  
is given by the expression RpgMyc as shown in Figure 2. In 
this case, the term Rpg < 1 accounts for the reduction in Mmax 
due to the shedding of flexural stresses to the compression 
flange associated with the post-bend buckling response of 
the web. The web bend buckling strength reduction factor 
is written as

where 
aw = hc tw /Afc 

This equation is a simplification of the equation for RPG 
in AISC (2000) by using the web noncompact slender-
ness limit, λrw, given by Equation 4 rather than Equa-
tion 4 with Fyc replaced by a smaller compression flange 
stress accounting for the influence of LTB or FLB. The 
noncompact web limit, λrw, is the web slenderness, hc /tw,  
at which local web bend buckling starts theoretically at a 
compression flange major-axis bending stress equal to Fyc. 
Equation 6 is the original more accurate form proposed by 
Basler and Thurlimann (1961) with the above simplification. 
AISC ASD (1989) replaces the fraction involving the term 
aw with 0.0005Aw /Afc based on Basler and Thurlimann’s re-
search. This form is conservative for Aw /Afc < 2, but gives un-
reasonable results for larger Aw /Afc values. For noncompact 
and compact webs, Rpg is equal to one.

Compression Flange Stress Corresponding to the 
Nominal Onset of Inelastic Buckling, FL

AISC (2005) specifies FL = 0.7Fyc with the exception of 
highly monosymmetric compact-web and noncompact-web 
cross-sections with the larger flange in compression, where 
the neutral axis is so close to the compression flange that 
nominal tension flange yielding occurs prior to reaching a 
stress of 0.7Fyc at the compression flange. To address this 
latter case, AISC (2005) specifies 

limit, λrw, as shown by Figure 2. The noncompact-web limit 
is given by the equation

For doubly-symmetric members, this equation is the same 
as the limit on h/tw beyond which AISC (1989) classifies 
the member as a plate girder. Also, this equation is the 
noncompact-web limit specified in AISC (2000) in the case 
of doubly-symmetric I-sections. For singly-symmetric I-
sections, AISC (2005) relates the noncompact-web limit to 
hc /tw rather than h/tw. This is consistent with the handling of 
the web slenderness in the web bend buckling strength re-
duction factor, RPG, in AISC (2000). White (2004) addresses 
the accuracy of this approximation. 

AISC (2005) specifies the compact web limit as

for doubly-symmetric I-section members, whereas it gives 
the equation

Fig. 2.  Mmax versus the web slenderness hc /tw. 
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when Sxt /Sxc < 0.7. The product Fyt Sxt in this equation is  
the moment corresponding to nominal yielding at the ten-
sion flange. This value, divided by the section modulus  
to the compression flange, Sxc, is the compression flange 
stress corresponding to the onset of nominal yielding at the 
tension flange. 

For slender-web members, FL is taken equal to 0.7Fyc for 
all cases, including singly-symmetric sections with Sxt /Sxc 
< 0.7. This is because AISC (2005) specifies a separate ten-
sion flange yielding (TFY) limit state check for slender-web 
members. That is, the tension flange stress is limited to Fyt for 
these member types. AISC (2005) also specifies a limit state 
check associated with tension flange yielding for compact- 
and noncompact-web singly-symmetric I-section members 
with Sxt < Sxc. However, the TFY resistance for compact-  
and noncompact-web sections is generally larger than Myt =  
Fyt Sxt. It varies linearly from Myt to Mp as the web slender-
ness hc /tw varies from λrw to λpw. Therefore, Equation 7 is 
necessary for noncompact- and compact-web members, to 
avoid significant violation of the assumption of elastic mem-
ber behavior when using the elastic LTB or FLB equations 
of the Specification. 

The limit FL = 0.7Fyc is based on LTB and FLB experimental 
test data (White and Jung, 2004; White and Kim, 2004). This 
is a significant liberalization relative to the implicit use of FL =  
0.5Fyc for slender-web members in prior Specifications. 

Elastic LTB Stress, Fcr  

The AISC (2005) elastic LTB resistance is based on a single 
equation applicable to all types of I-section members. This 
equation gives the exact beam-theory solution for LTB of 
doubly-symmetric I-section members, and it gives an ac-
curate to somewhat conservative approximation for singly-
symmetric noncomposite members and composite members 
in negative bending (White and Jung, 2003a and b; White, 
2004). This equation may be written in terms of the com-
pression flange flexural stress as 

where 

rt = approximately the radius of gyration of the 
compression flange plus one-third of the area   
of the web in compression

Sxc = elastic section modulus to the compression 
flange 

ho = distance between the centroids of the flange  
elements 

J = St. Venant torsion constant

Equation 9 is a simple ratio of the bending and torsional 
efficiencies of the cross-section. For a doubly-symmetric I-
section, X 2 ≅ 2Ix /J. This parameter ranges from 13 to 2,500 
for the complete set of ASTM A6 W-shapes. 

The radius of gyration, rt, may be calculated exactly as 

for doubly-symmetric I-sections (White and Jung, 2003a). 
AISC (2005) gives this equation, but refers to the cor-
responding radius of gyration as rts, to avoid its potential 
erroneous use for singly-symmetric I-section members. Al-
ternately, rt may be calculated generally for any rectangular 
flange I-section as

where 

ho = distance between the compression and tension 
flange centroids 

d = total depth of the member 

h = depth of the web 

aw = hctw/Afc 

Afillet = area of each of the web-to-flange fillets (White 
and Jung, 2003a)*

If one assumes d ≅ ho ≅ h and Afillet ≅ 0, Equation 10b  
becomes
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*Afillet is commonly taken equal to zero for welded I-section members.
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which is precisely the equation for the radius of gyration of 
the compression flange plus one-third of the depth of the web 
in compression. Equation 10b gives results that are within 
1% of the exact Equation 10a for all rolled I-sections. Due to 
compensating effects in the approximation of Equation 10b 
by Equation 10c, Equation 10c also tends to give an accurate 
but slightly conservative approximation of Equation 10a. 

For column-type I-sections with h/bfc ≅ 1, h/tw less than about 
50 and compact flanges, the second term under the radical in 
Equation 8 tends to be significantly larger than 1.0. Thus it 
would be quite uneconomical to discount this major contri-
bution to the resistance to obtain a simpler form for Equa-
tion 8. However, in situations involving beam- or girder-type 
I-sections with h/bfc greater than about 2.0 and bfc /2tfc near 
the compact-flange limit, λpf, or larger, the contribution from 
the second term in Equation 8 is relatively small (White and 
Jung, 2003a). For slender-web members, the contribution 
from this term is neglected altogether, due to the reduction 
in the effective St. Venant torsional stiffness associated with 
web distortional flexibility (in other words, the deformation 
of the web into an S-shape upon twisting of the cross-section, 
and the corresponding reduction in the twist rotation of the 
flanges) (White and Jung, 2003c). In this case, Equation 8 
reduces to the form 

used traditionally by AISC for slender-web members. Equa-
tion 11 is multiplied by the bend buckling strength reduction 
factor, Rpg, to obtain the elastic LTB flexural resistance for 
slender-web members in terms of the compression flange 
stress. 

Noncompact Bracing Limit, Lr 

The noncompact bracing limit, Lr, is obtained by equating 
the base elastic LTB resistance for uniform bending, Cb = 1,  
to the compression flange stress at the nominal onset of yield-
ing, FL. Equation 8 results in a more succinct expression for 
the noncompact lateral brace spacing than in AISC (2000),

applicable for all types of compact- and noncompact-web 
I-section members, whereas Equation 11 gives (White and 
Jung, 2003a),

Appendix F of AISC (2000) does not provide an Lr equation 
for compact- and noncompact-web singly-symmetric I-sec-
tion members. Engineers often have assumed that this non-
compact bracing limit must be calculated iteratively. White 
and Jung (2003b) give a closed-form alternative expression 
to Equation 12a for members with these section types, based 
on the rigorous application of thin-walled open-section 
beam theory. Unfortunately, this equation is significantly 
longer than Equation 12a. Also, due to the larger effects of 
web distortion in singly-symmetric members, the rigorous 
beam-theory equation does not necessarily give a better rep-
resentation of the physical buckling resistance (White and 
Jung, 2003c). 

Elastic FLB Stress, Fcr  

AISC (2005) defines the base elastic FLB resistance by the 
equation

where the parameter kc is the flange local buckling coef-
ficient, taken as kc = 0.76 for rolled I-sections as in AISC 
(2000), and defined as

for other general I-shapes. Equation 13 is multiplied by the 
 bend buckling strength reduction factor, Rpg, to obtain the 
elastic FLB resistance for slender web members. Equation 
13 is the exact analytical expression for local plate buckling, 
given an exact calculation of the local buckling coefficient, 
kc. Equation 14 defines a transition from a maximum kc of 
0.76 (corresponding to the assumed kc for rolled I-shapes) to 
a minimum value of 0.35. The FLB coefficient for simply-
supported edge conditions at the web-flange juncture is kc = 
0.43. Therefore, smaller values of kc indicate that the web is 
tending to destabilize the flange. A value of h/tw less than 28 
is required to obtain kc = 0.76, whereas kc is equal to 0.35 
for h/tw ≥ 131. Equation 14 was developed originally by 
equating the results from the AISC 1993 LRFD Specifica-
tion for Structural Steel Buildings (AISC, 1993) resistance 
equations to measured experimental strengths for a num-
ber of tests in which the flexural resistance was governed 
by FLB, then back-solving for kc (J.A. Yura, unpublished 
notes, 1992). The data used in these developments was pre-
dominantly from Johnson (1985). White and Jung (2004) 
and White and Kim (2004) discuss the correlation of the 
AASHTO (2004) and AISC (2005) equations with a larger 
updated set of experimental test results. Equation 14 may be  
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considered as a simple but reasonable approximate lower-
bound value for the FLB coefficient. 

Noncompact Flange Slenderness Limit, λrf  

Similar to the calculation of Lr, the noncompact flange slen-
derness limit, λrf, is obtained by equating the elastic FLB 
stress given by Equations 13 and 14 to the compression 
flange stress at the nominal onset of yielding, FL. The result-
ing equation is

PRACTICAL CALCULATION OF EFFECTIVE 
LENGTH FOR LTB WHEN KLb < Lb

AISC (2005) uses the unbraced length Lb with an implicit K 
= 1 in its presentation of Equations 8 and 11. This is based 
on the fact that in many practical situations, the benefits of 
continuity with adjacent unbraced lengths are rather minor. 
However, particularly for longer unbraced lengths, the in-
fluence of beam continuity on the lateral-torsional buckling 
resistance can be substantial. To account for this attribute of 
the behavior, the commentary of AISC (2005) recommends 
a simple design-oriented method for calculation of the elas-
tic LTB effective length, KLb. The recommended procedure 
was developed first by Nethercot and Trahair (1976) and is 
discussed in Galambos (1998). The Nethercot and Trahair 
(1976) procedure starts with the calculation of buckling 
resistances based on the actual unbraced length (in other 
words, using K = 1), and it uses the AISC sidesway-inhibited 

alignment charts with equivalent G values corresponding 
to the LTB behavior for the calculation of K ≤ 1 in criti-
cal unbraced lengths. In cases where the adjacent unbraced 
segments have the same length as the segment under con-
sideration and all three segments are subjected to the same 
uniform bending, the Nethercot and Trahair procedure gives 
K = 1. However, for other cases, the calculated K value for 
the critical unbraced length can be significantly smaller than 
1. White and Jung (2004) and White and Kim (2004) utilize 
the Nethercot and Trahair (1976) method for calculation of 
K in their assessment of the AISC (2005) flexural resistance 
equations relative to extensive experimental test results. They 
note that when Mn is calculated simply based on K = 1, the 
LTB predictions are often substantially more conservative, 
leading to a substantially higher implicit reliability index β, 
although the dispersion in the test to the predicted flexural 
resistance ratio, Mtest /Mn, is also substantially increased.

SAMPLE COMPARISONS TO  
EXPERIMENTAL TEST RESULTS

Figure 3 illustrates the correlation of the AISC (2005) equa-
tions with one set of focused experimental LTB tests on 
compact rolled members subjected to uniform major-axis 
bending. One can observe that the AISC (2005) equations 
overestimate the test resistances by a minor amount at small-
er unbraced lengths. The AISC (2005) Specification assumes 
that some minor additional lateral restraint typically exists 
that compensates for this slightly liberal representation of 
the test data. The reader should note that the calculated K 

λrf c Lk E F= 0 95. / (15)

Fig. 3.  Comparison of AISC (2005) predictions to compact rolled I-section member test results from Dux and Kitipornchai (1983)  
and Wong-Chung and Kitipornchai (1987)  (bf /2tf = 6.6 to 7.0, h/tw = 34 to 36, h/bf = 1.6, Fyc = 41.3 to 42.5 ksi).
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values are 0.66 and 0.91 for the members considered in these 
tests. If K = 1 is used, the AISC (2005) equations are sub-
stantially conservative for these tests. The unbraced length is 
expressed in a normalized form in Figure 3, by multiplying 
the effective length KLb by (Fyc /E)0.5/rt. Figure 4 shows a 
comparison of the calculated and test resistances for several 
doubly-symmetric compact-flange noncompact-web welded 
members. One can observe that again the AISC (2005) equa-
tions are slightly liberal relative to the test data for smaller 
unbraced lengths. Based on the full data set of 320 uniform 
bending flexural tests considered by White and Jung (2004), 
the use of Equation 2 for Lp gives mean values for Mtest /Mn 
close to 1.0 for all types of I-section members throughout the 
inelastic LTB region of the response. 

The reader should note how well the simple inelastic LTB 
equation (the line between Anchor Points 1 and 2 in Figure 
1) represents the experimental data in Figures 3 and 4. The 
linear curve between Anchor Points 1 and 2 is clearly bet-
ter than a multi-plateau representation with discontinuities 
in the flexural resistance at certain unbraced lengths, such as 
the prediction from the AISC (1989) ASD provisions. The 
recommended Lp and FL equations are based on a total of 
more than 320 uniform bending and more than 440 moment-
gradient experimental tests on rolled and welded I-section 
members (White and Jung, 2004; White and Kim, 2004). 
These references provide a detailed analysis of the profes-
sional bias factor Mtest /Mn for the above data sets, and cor-
responding estimates of the notional reliability for statically 
determinate beams. 

KEY CONCEPTS IN THE AISC (1989)  
ASD PROVISIONS

As noted in the introduction, a major focus of this paper is 
the illustration of the simplicity and accuracy of the AISC 
(2005) provisions relative to the prior AISC (1989) Specifi-
cation. Therefore, it is useful to review a few of the key con-
cepts associated with the flexural resistance calculations in 
AISC (1989). For purposes of comparison to AISC (2005), 
the AISC (1989) equations are written here in terms of the 
base nominal moment resistance. This is accomplished by 
multiplying the allowable stresses from AISC (1989) by the 
underlying factor of safety, 1.67 = 1/0.6, and by the section 
modulus to the flange under consideration, Sxc or Sxt. 

Figure 5 illustrates the general approach for determining 
the LTB resistance in AISC (1989). For Lb ≤ Lc, the base 
nominal resistance is taken conservatively as 1.1My if the 
compression flange and the web are also compact, where 1.1 
is the implicitly assumed shape factor Mp /My. The bracing 
limit Lc is the AISC ASD equivalent of Lp in AISC (2005) for 
members with a compact web and a compact compression 
flange. However, for Lc < Lb ≤ Lu, the base nominal resistance 
is taken as My. This results in a 10% discontinuity in the flex-
ural resistance at Lb = Lc. Obviously, no such discontinuity 
exists in the physical flexural resistance. 

For Lb > Lu, the nominal LTB resistance is smaller than 
My. AISC (1989) defines the LTB resistance in this range 
of the unbraced length using the traditional double formula 
approach. In the double formula approach, the elastic LTB 
equation is simplified by neglecting either the St. Venant 

Fig. 4.  Comparison of AISC (2005) predictions to doubly-symmetric compact-flange noncompact-web welded  
member test results from Richter (1998) (bf /2tf = 8.0 to 8.1, h/tw = 110, h/bf = 3.6, Fyc = 48.4 ksi).
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torsional stiffness (GJ) or the nonuniform torsional stiffness 
(ECw). The larger of the two resulting elastic LTB resistanc-
es is taken as a conservative estimate of the physical elastic 
LTB strength. These two elastic LTB equations are labeled 
as Equations F1-7 and F1-8, respectively, in AISC (1989). 
In addition, AISC (1989) gives an inelastic LTB resistance 
equation, Equation F1-6, for the case where GJ is neglected. 
However, AISC (1989) uses only the resulting elastic LTB 
Equation F1-8 for the case where ECw is assumed equal 
to zero. The LTB resistance is defined as the larger of the 
values from Equations F1-6 and F1-8 for smaller unbraced 
lengths where the inelastic LTB Equation F1-6 applies. Fig-
ure 5 shows one example solution for the complete LTB 
resistance of a compact I-section member. In this example, 
Equation F1-8 governs for Lb ≅ Lu, Equation F1-6 governs 
for intermediate values of the unbraced length, Equation 
F1-8 governs for large Lb, and Equation F1-7 governs for a 
short range of the unbraced length just prior to the transition 
to Equation F1-8 for larger unbraced lengths. However, de-
pending on the specifics of the cross-section, Equation F1-8 
may tend to give larger or smaller strengths relative to the 
combination of Equations F1-6 and F1-7. For shallow cross-
sections (small h /bfc) with stocky plate elements, Equation 
F1-8 tends to give the larger governing resistance whereas 
for deep cross-sections (large h /bfc) and thin plate elements, 
Equations F1-6 and F1-7 tend to give the larger governing 
resistance except at very large values of Lb, where Equation 
F1-8 may still govern. 

For members in which the web slenderness, h /tw, violates  
the AISC ASD compactness limit, which is equivalent to 
Equation 5a, AISC (1989) uses the same LTB resistance 
equations as shown in Figure 5 with the exception that the 
maximum flexural resistance is limited to My for h /tw smaller 
than λrw from Equation 4 and to RPG My when h /tw is larger 
than λrw such that the member is classified as a plate girder. 

When expressed in terms of the nominal moment resis-
tance, the base AISC (1989) LTB equations may be written 
as follows:

In addition, the unbraced length limits Lc and Lu may be 
expressed as

One should note that AISC (1989) makes no mention of 
the use of an effective length factor for LTB. As noted pre-
viously, the use of K < 1 can lead to substantial gains in the 
economy for cases involving larger unbraced lengths. 

For members in which the compression flange slenderness, 
bfc /2tfc, violates Equation 3, AISC (1989) defines the FLB 
resistance by an independent linear transition equation 
specified in Chapter F for bfc /2tfc up to the noncompact 
limit,

written in normalized form. This is followed by a second 
linear transition equation specified in Appendix B for  
bfc / 2tfc up to 

Fig. 5.  Basic form of AISC (1989) LTB resistance equations, 
compact I-section members in uniform bending.
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and by the equivalent of Equation 13, with     instead of kc 
for larger values of the flange slenderness. The term     in the 
above expressions denotes the following flange local buck-
ling coefficient in AISC (1989),

This equation has a significant discontinuity at h/tw = 70, 
where    changes from 0.57 to 1.0. Figure 6 compares the 
base AISC (1989) FLB resistance to the AISC (2005) resis-
tance for a built-up I-section member with Fyc = 50 ksi, an 
assumed Mp /My = 1.16, and h /tw = 69 or 71. One can observe 
that the above discontinuity in    results in a significant dis-
continuity in the AISC (1989) flexural resistance at h /tw = 
70. The FLB resistance in AISC (1989) is quite liberal for 
h/tw = 69 relative to the ASD resistance for h /tw = 71 as well 
as the AISC (2005) FLB resistance. However, for practical 
slenderness values where the flange is only marginally non-
compact, the AISC (2005) resistance tends to be larger than 
that specified in AISC (1989). 

CASE STUDY COMPARISONS

Compact Rolled Wide-Flange Members

Figures 7 through 13 illustrate the base nominal flexural 
resistances in AISC (2005) and AISC (1989) for three rep-
resentative wide-flange sections: a W36×135, a W14×132 
and a W18×55. The first case is a typical beam-type wide-
flange section, where the cross-section aspect ratio, d/bf, is 
relatively large (d/bf = 2.97) and the torsional efficiency ratio 

is relatively high (X2 = Sxho/J = 2,180). Members composed 
of this type of section tend to be governed by Equations F1-6 
and F1-7 in AISC (1989) (see Figure 5). The second case is 
a representative column-type wide-flange section, where the 
ratio d/bf is close to 1.0 (d/bf = 0.996) and X2 is relatively 
small (= 231). Members composed of this type of section 
tend to be governed by Equation F1-8 in AISC (1989). That 
is, Equation F1-8 gives a larger resistance than the combina-
tion of Equations F1-6 and F1-7. The third case involves an 
intermediate wide-flange section with d/bf = 2.40 and X2 = 
750. This section is selected for the case study comparisons 
because it gives a flexural resistance obtained from Equation 
F1-8 that is comparable to that obtained from the combina-
tion of Equations F1-6 and F1-7 for a wide range of unsup-
ported lengths. 

Figures 7, 9, and 11 illustrate the nominal flexural resis-
tances in uniform bending for various members composed 
of the above sections. For AISC (2005), the resistances are 
shown both for an assumed K = 1 as well as for K = 0.8. In 
their assessment of inelastic beams under uniform bending 
moment, Lay and Galambos (1965) state that “K = 0.80 may 
be beyond [larger than] anything likely to occur in normal 
practice.” They base this assessment in part on the consid-
eration of beams loaded at the 3 span locations, with the 
center unbraced segment subjected to uniform bending and 
the outside unbraced lengths subjected to a linear variation 
in the moment. The Nethercot and Trahair (1976) method 
gives K = 0.83 for this case. Figures 8, 10, and 12 illustrate 
the magnitude of the flexural resistances obtained from the 
three different LTB equations in the AISC ASD Specifica-
tion (AISC, 1989). The following conclusions may be drawn 
from the above figures:
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Fig. 6.  Comparison of AISC (2005) flange local buckling  
flexural resistance to the corresponding AISC (1989) ASD 

resistance, built-up sections with Fyc = 50 ksi,  
an assumed Mp /My = 1.16, and h/tw = 69 or 71. 

Fig. 7.  Comparison of AISC (2005) and AISC ASD (1989)  
flexural resistances, W36×135 members in uniform  

bending (X2 = Sxho /J = 2180), Fy = 50 ksi.
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With the exception of the “corner” in the ASD-LTB resis-•	
tance for the W14×132, where the elastic Equation F1-8 
(Equation 18) gives Mn = Myc, the AISC (2005) flexural 
resistances based on K = 1 are more liberal than the AISC 
(1989) ASD resistances. The nominal capacities realized 
in AISC (2005) are from zero to 40% larger than the 
AISC (1989) ASD nominal resistances, with the largest 
gains occurring for the W18×55 members at intermedi-
ate unbraced lengths, and the smallest gains occurring 
for the column-type W14×132 section members. For the 
W14×132 case, the AISC (2005) resistance is still up to 
14% larger than the AISC (1989) ASD resistance. At the 
corner where Equation F1-8 gives a larger nominal ca-
pacity for the W14×132, the AISC (2005) resistance is 
only 9% smaller than the AISC (1989) prediction. 

It is not surprising that Equation 18 gives a liberal 
estimate at Mn = Myc, since no inelastic transition curve is 
considered in AISC ASD for members in which the LTB 
resistance is governed by Equation F1-8. Johnston (1960) 
states, “This omission of a transition curve in design 
practice has proved satisfactory in application to rolled 
beams with riveted or bolted end framing connections. 
Such connections provide a partial end restraint about 
both the xx and yy axes, thus reducing the unsupported 
span and providing an additional, though undetermined, 
element of conservatism that tends to offset any lack of 
consideration of inelastic properties when no transition 
curve is used.” However, for the case of three adjacent 
equal-length unbraced segments with the same uniform 
moment in each segment, these additional restraint 
conditions do not exist. 

The beneficial effects of calculating a •	 K < 1 are quite 
dramatic, particularly for larger unbraced lengths. Even 

for the easily achievable K = 0.8 used here for purposes 
of illustration, the LTB resistance determined using AISC 
(2005) is as much as 80% larger than the corresponding 
resistance using K = 1 with AISC (1989). Even for the 
W14×132 members, where Equation F1-8 gives a reason-
ably accurate representation of the true elastic LTB re-
sistance for K = 1, the elastic LTB resistance using AISC 
(2005) and K = 0.8 is as much as 41% larger than that 
obtained using K = 1 with AISC (1989). 

The AISC (2005) characterization of the uniform bend-•	
ing LTB resistance illustrated in Figure 1 is significantly 
simpler and more straightforward than the multiple equa-
tions and multiple plateaus in AISC (1989) (see Figures 
5, 8, 10, and 12). The ASD (AISC, 1989) Equations F1-6, 
F1-7 and F1-8 were developed during the slide rule era, 
when the simpler algebraic form of these equations had 
significant advantages. However, the use of Equations 8 
and 12a should not present any problem at the present 
time (2005), even for manual calculations, particularly 
since the parameters X2 = Sxcho /J and rt can be tabulated 
for standard I-shapes or easily calculated for built-up I-
shapes. For doubly-symmetric I-section members, Equa-
tion 8 is a particularly useful and understandable form 
for the elastic LTB resistance, expressed in terms of the 
compression flange major-axis bending stress. All of the 
variables in this equation are well known in terms of their 
physical significance, and are readily available or can be 
easily calculated during the design process. Equation 8 
shows that the fundamental elastic LTB resistance is sim-
ply a function of the elastic modulus, E, the LTB slender-
ness, Lb /rt, the torsional efficiency ratio, X2 = Sxcho /J, and 
the moment gradient modifier, Cb.

Fig. 8.  AISC (1989) ASD flexural resistance equations,  
W36×135 members in uniform bending, Fy = 50 ksi. 

Fig. 9.  Comparison of AISC (2005) and AISC ASD (1989)  
flexural resistances, W14×132 members in  

uniform bending (X2 = Sxho /J = 231), Fy = 50 ksi.
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AISC ASD. This raises the AISC (2005) Mmax or Fmax 

relative to the AISC ASD maximum potential resistances, 
and can lead to larger AISC (2005) strengths even at the 
knee in the AISC (1989) LTB resistance. 

2. The resistances given by the AISC (2005) Equation 8 
can be much larger than those given by the AISC (1989) 
Equation F1-8. For the heaviest W14×808 wide-flange 
section (X2 = 13), the AISC (2005) elastic LTB resistance 
is uniformly 1.54 times the corresponding AISC (1989) 
resistance using K = 1. For cases with K = 0.8, the AISC 
(2005) LTB resistance is up to 78% larger.

Figure 13 compares the AISC (2005) and AISC (1989) 
LTB resistances for a range of W18×55 members and a 

Other interesting results are obtained if one compares the 
AISC (2005) and AISC (1989) estimates for members com-
posed of a heavier Group 4 or 5 rolled column shape. These 
results have some similarity to those shown for the W14×132 
in Figures 9 and 10. In particular, due to the large value of J 
relative to Sxcho ≅ Ix /2 and the correspondingly small value 
for X in Equations 8 and 11, column-type I-section members 
are able to develop large compression flange stresses at rela-
tively large unbraced lengths (see Figure 9). However, there 
are some differences compared to the results shown here for 
the intermediate weight W14×132 column section, mainly: 

1. The shape factor Mp /My for heavy column-type I-sections 
is much larger than the implicit value of 1.1 assumed in 

Fig. 10.  AISC (1989) ASD flexural resistance equations, 
W14×132 members in uniform bending, Fy = 50 ksi. 

Fig. 12.  AISC (1989) ASD flexural resistance equations,  
W18×55 members in uniform bending, Fy = 50 ksi. 

Fig. 11.  Comparison of AISC (2005) and AISC (1989) ASD 
flexural resistances, W18×55 members in uniform bending  

(X2 = Sxho /J = 750), Fy = 50 ksi.

Fig. 13.  Comparison of AISC (2005) and AISC (1989) ASD flex-
ural resistances, W18×55 members with Cb = 1.75, Fy = 50 ksi.
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typical moment gradient case involving Cb = 1.75. One can 
observe from this figure that AISC (2005) offers substantial 
benefits for Lb > Lc, since AISC (1989) conservatively 
reduces its base nominal resistance to My for unbraced 
lengths larger than Lc. Also, AISC (1989) incorporates the Cb 
modifier into the inelastic LTB Equation F1-6 in the fashion 
shown in Equation 16, whereas AISC (2005) simply scales 
the inelastic buckling resistance by Cb but with a cap of Mmax 

(= Mp for this example) on the resistance. The experimental 
test results collected by White and Kim (2004) clearly 
justify the use of Mn = Mp for compact I-section members for 
relatively large unbraced lengths such as those shown in the 
figure. Gains as large as 72% are obtained above the AISC 
(1989) resistance based on Cb = 1.75 and K = 1 for the above 
W18×55 members. 

Singly-Symmetric Compact-Flange  
Noncompact-Web Example

Figures 14 and 15 compare the AISC (2005) and AISC 
(1989) flexural resistances for a representative singly-
symmetric compact-flange noncompact-web I-section with 
the larger flange in compression, and show the corresponding 
relationships between the AISC (1989) flexural resistance 
equations. The ratio Sxt /Sxc is equal to 0.866 for this example, 
and therefore FL = 0.7Fyc in AISC (2005). However, hc /tw = 118  
for this cross-section versus λrw = 131 and λpw = 72.  
Therefore, the web is nearly slender. Nevertheless, the 
AISC (2005) resistance at small unbraced lengths, which is 
governed by the tension flange yielding (TFY) limit state, 
is 5.3% larger than Myt. AISC (1989) limits the maximum 
potential flexural resistance of these types of members to the 
yield moment, Myt. 

Also, AISC (1989) ASD uses the same LTB resistance 
equations regardless of the web slenderness. The noncom-
pact web slenderness only influences the plateau of the 
ASD resistance (by disallowing the use of 1.1Myc). In AISC 
(2005), the inelastic LTB transition curve is influenced by 
the corresponding maximum potential moment level, Mmax, 
as shown in Figure 1, rather than Mmax simply acting as a cap 
on an independently calculated LTB resistance. White and 
Jung (2004) show that this leads to an improved character-
ization of the inelastic LTB strengths. 

Similar to the previous W18×55 example, Figure 14 
shows that for Cb = 1.75, AISC (2005) provides a further 
liberalization of the computed resistance relative to AISC 
(1989). This is due to the different manner in which AISC 
(2005) utilizes Cb. 

Doubly-Symmetric Noncompact-Flange  
Slender-Web Example

Figure 16 compares the AISC (2005) and AISC (1989) 
flexural resistances for a representative doubly-symmetric 
slender-web I-section with a noncompact compression 
flange. The respective FLB equations govern the maximum 
resistances in this plot both for the AISC (2005) and the 
AISC (1989) Specifications. For members with Cb = 1, the 
AISC (1989) ASD Specification tends to give a larger esti-
mated resistance for unbraced lengths close to where its LTB 
and FLB resistances are the same. This is again due to the 
fact that the ASD LTB equations are independent of the web 
slenderness whereas the AISC (2005) inelastic LTB transi-
tion curve is influenced by the value of Mmax, which is equal 
to Rpg Myc < Myc for this slender-web cross-section. 

Fig. 14.  Comparison of AISC (2005) and AISC (1989) ASD flex-
ural resistances, singly-symmetric compact-flange noncompact-

web section members (D × tw = 24 in. × 0.1875 in., bfc × tfc = 6 in. 
× 0.5 in., bft × tft = 6 in. × 0.375 in., Fy = 55 ksi).

Fig. 15.  AISC (1989) ASD flexural resistance equations, singly-
symmetric compact-flange noncompact-web section members (D × 

tw = 24 in. × 0.1875 in., bfc × tfc = 6 in. × 0.5 in.,  
bft × tft = 6 in. × 0.375 in., Fy = 55 ksi).
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Also, the AISC (2005) elastic LTB resistance is slightly 
smaller than the AISC ASD LTB resistance for this example. 
This is due to the conservative use of Fyc in the λrw term of 
Equation 6. AASHTO (2004) allows Mn (Rpg = 1) / Sxc in 
place of Fyc in this term to correctly account for the fact that 
the strength reduction due to web bend buckling is not as 
great when LTB or FLB occurs at a lower stress level. The 
AISC (1989) ASD Specification also allows this refinement 
in the calculation of its bend buckling strength reduction fac-
tor. One can observe that this refinement makes little differ-
ence in the computed results for this example, even though 
hc /tw = 200. Lastly, as in the previous example, the different 
handling of the term Cb in AISC (2005) results in a more 
liberal calculation in the vicinity of the “knee” of the flexural 
resistances for Cb = 1.75. 

CONCLUDING REMARKS

The AISC (2005) flexural resistance provisions represent the 
synthesis of the best research and practice from more than 50 
years of developments. This paper provides a brief outline of 
these provisions and compares them to the flexural resistance 
provisions of the prior AISC (1989) ASD Specification. Em-
phasis is placed on how the AISC (2005) resistances provide 
improvements both in the accuracy as well as the simplicity 
of the design calculations. The paper illustrates the results 
not only for compact rolled I-section members, but also for 
several other more general cases. More information on the 
background and usage of the AISC (2005) provisions can be 
found in the Commentary to the new Specification and the 
references listed in this paper and therein. 
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