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In 1976 and 1977, LeMessurier published two landmark 
papers on practical methods of calculating second-order ef-

fects in frame structures. LeMessurier addressed the proper 
calculation of second-order displacements and internal 
forces in general rectangular framing systems based on first-
order elastic analysis. He also addressed the calculation of 
column buckling loads or effective length factors using the 
results from first-order analysis. Several important facts are 
emphasized in LeMessurier’s papers:

1.	 In certain situations, braced-frame structures can have 
substantial second-order effects.

2.	 The design of girders in moment-frame systems must ac-
count for second-order moment amplification. 

3.	 Control of drift does not necessarily prevent large second-
order effects. 

4.	 In general, second-order effects should be considered 
both in the assessment of service drift as well as maxi-
mum strength. 

Furthermore, LeMessurier discussed the influence of 
nominal out-of-plumbness in rectangular frames as well as 
inelastic stiffness reduction in members subjected to large 
axial loads, although the handling of these factors has ma-
tured in the time since his seminal work. 

Direct Analysis and Design Using Amplified  
First-Order Analysis 
Part 1: Combined Braced and Gravity  
Framing Systems 

In spite of the significant contributions from LeMessurier 
and others during the past 30 years, there is still a great deal 
of confusion regarding the proper consideration of second-
order effects in frame design. Engineers can easily misinter-
pret and incorrectly apply analysis and/or design approxi-
mations due to an incomplete understanding of their origins 
and limitations. For instance, in braced frames, it is common 
to neglect second-order effects altogether. Although this 
practice is acceptable for certain structures, it can lead to 
unconservative results in some cases. LeMessurier (1976) 
presents an example that provides an excellent illustration 
of this issue. 

The 2005 AISC Specification for Structural Steel Build-
ings (AISC, 2005a), hereafter referred to as the 2005 AISC 
Specification, provides a new method of analysis and design, 
termed the Direct Analysis Method (or DM). This approach 
is attractive in that:

It does not require any •	 K factor calculations, 

It provides an improved representation of the internal •	
forces throughout the structure at the ultimate strength 
limit state,

It applies in a logical and consistent fashion for all •	
types of frames including braced frames, moment 
frames and combined framing systems. 

The DM involves the use of a second-order elastic analy-
sis that includes a nominally reduced stiffness and an ini-
tial out-of-plumbness of the structure. The 1999 AISC Load 
and Resistance Factor Design Specification for Structural 
Steel Buildings (AISC, 1999), hereafter referred to as the 
1999 AISC Specification and the 2005 AISC Specification 
permit this type of analysis as a fundamental alternative to 
their base provisions for design of stability bracing. In fact, 
the base AISC (1999) and AISC (2005a) stability bracing 
requirements are obtained from this type of analysis. 

This paper demonstrates how a form of LeMessurier’s 
(1976) simplified second-order analysis equations can be 
combined with the AISC (2005a) DM to achieve a particular-
ly powerful analysis-design procedure. In this approach, P∆ 
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shears associated with the amplified sidesway displacements 
are applied to the structure using a first-order analysis. This 
removes the need for separate analyses for “no lateral trans-
lation” (NT) and “with lateral translation” (LT), which are 
required in general for accurate amplification of the internal 
forces in the AISC (2005a) B1-B2 (or NT-LT) approach. The 
combination of the DM with the proposed form of LeMes-
surier’s equations for the underlying second-order analysis 
streamlines the analysis and design process while focusing 
on the following important system-related attributes:

Ensuring adequate overall sidesway stiffness.•	

Accounting for second-order •	 P∆ effects on all the lat-
eral load-resisting components in the structure, when 
these effects are significant, including the influence of 
reductions in stiffness and increases in displacements 
as the structure approaches its maximum strength. 

The first part of the paper gives an overview of the AISC 
(2005a) DM in the context of braced frames, or combined 
braced and gravity framing systems. This is followed by a 
step-by-step outline of the combined use of the DM with 
LeMessurier’s (1976) second-order analysis approach. The 
paper closes by presenting analysis results and load and re-
sistance factor design (LRFD) checks for a basic braced col-
umn subjected to concentric axial compression, and for an 
example long-span braced frame from LeMessurier (1976). A 
companion paper, Part 2 (White, Surovek, and Chang, 2007), 
discusses an extension of the above integrated approach to 
general framing systems including moment frames and mo-
ment frames combined with gravity and braced framing. 

OVERVIEW OF THE DIRECT ANALYSIS METHOD 
FOR BRACED-FRAME SYSTEMS

For simply-connected braced structures, the DM requires 
two modifications to a conventional elastic analysis: 

1.	 A uniform nominal out-of-plumbness of ∆o = L/500 is 
included in the analysis, to account for the influence of 
initial geometric imperfections, incidental load eccen-
tricities and other related effects on the internal forces 
under ultimate strength loadings. This out-of-plumbness 
effect may be modeled by applying an equivalent notional 
lateral load of 

Ni = 0.002Yi

	 at each level in the structure, where Yi is the factored grav-
ity load acting at the ith level. Alternatively, the nonverti-
cality may be modeled explicitly by altering the frame 
geometry. The above nominal out-of-plumbness is equal 
to the maximum tolerance specified in the AISC Code of 
Standard Practice (AISC, 2005b).

2.	 The nominal stiffnesses of all the components in the 
structure are reduced by a uniform factor of 0.8. This fac-
tor accounts for the influence of partial yielding of the 
most critically loaded component(s), as well as uncertain-
ties with respect to the overall displacements and stiffness 
of the structure at the strength limit states. 

These adjustments to the elastic analysis model, combined 
with an accurate calculation of the second-order effects, pro-
vide an improved representation of the second-order inelas-
tic forces in the structure at the ultimate strength limit. Due 
to this improvement, the AISC (2005a) DM bases the mem-
ber axial resistance, Pn, on the actual unsupported length not 
only for braced and gravity frames, but also for all types of 
moment frames and combined framing systems. 

The above modifications are for the assessment of 
strength. In contrast, serviceability limits are checked using 
the ideal geometry and the nominal (unreduced) elastic stiff-
ness. Also, it should be noted that the uniform factor of 0.8, 
applied to all the stiffness contributions, influences only the 
second-order effects in the system. That is, for structures in 
which the second-order effects are small, the stiffness reduc-
tion has a negligible effect on the magnitude and distribu-
tion of the system internal forces. The rationale for the above 
modifications is discussed in detail by White, Surovek-Ma-
leck, and Kim (2003a), White, Surovek-Maleck, and Chang 
(2003b), Surovek-Maleck and White (2004), and White, 
Surovek, Alemdar, Chang, Kim, and Kuchenbecker (2006). 
The reader is referred to Maleck (2001), Martinez-Garcia 
(2002), Deierlein (2003, 2004), Surovek-Maleck, White, 
and Ziemian (2003), Maleck and White (2003), Nair (2005), 
and Martinez-Garcia and Ziemian (2006) for other detailed 
discussions as well as for validation and demonstration of 
the DM concepts. 

STEP-BY-STEP APPLICATION: COMBINATION  
OF THE DIRECT ANALYSIS METHOD WITH  

LEMESSURIER’S SECOND-ORDER  
ANALYSIS PROCEDURE

The proposed second-order analysis and design procedure 
involves a combination of the DM with a specific form of 
the approach for determining second-order forces in braced-
frame systems originally presented by LeMessurier (1976). 
A succinct derivation of the key equations is provided in Ap-
pendix A. For a given load combination, the basic steps of 
the proposed combined procedure are as follows:

1.	 Perform a first-order elastic analysis of the structure.

2.	 Obtain the total first-order story lateral displacement(s).

3.	 Calculate the story sidesway displacement amplification 
factor(s). 

(1)
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4.	 Calculate the story P∆ shears based on the amplified story 
sidesway displacement(s).

5.	 Apply the P∆ shears in a separate first-order analysis 
to determine the second-order portion of the internal 
forces.

6.	 Calculate the required forces by summing the appropriate 
first- and second-order contributions and check against 
the corresponding design resistances. 

In the context of the DM, the above P∆ shears include the 
effects of a nominal reduction in the structure stiffness and 
a nominal initial out-of-plumbness, ∆o. However, for check-
ing of service deflection limits, or for conventional strength 
analysis and design using the Effective Length Method 
(ELM), the same approach can be applied using ∆o = 0 and 
zero stiffness reduction, in other words, with a stiffness re-
duction factor of 1.0. 

The following is a more detailed description of the steps:

1.	 Perform a first-order analysis to obtain the first-order in-
ternal member forces and story sidesway displacements 
for each of the load types that need to be considered. The 
authors recommend the use of separate analyses for each 
load type (D, L, W, Lr, E, etc.) at the nominal (unfactored) 
load levels. By arranging the analyses in this way, the 
results can be factored and combined using superposition 
for each of the required load combinations. 

2.	 Obtain ∆1, the total first-order story lateral displacement(s) 
for a given load combination, by summing the analysis 
results from step 1 multiplied by the appropriate load fac-
tors. Note that throughout this paper, the over bar on a 
variable means that it is obtained by applying a stiffness 
reduction factor of 0.8 whenever the DM is used.

3.	 Calculate the story sidesway amplification factor(s) asso-
ciated with a given load combination using the equation

	

where 

 

Blt
i

=
−

1

1
β
β

(2)

βi
rP

L
=

Σ
(3)

†White et al. (2003a) discuss an appropriate reduction in the ∆o values, or the corresponding notional loads, Ni, from Equation 1, 
for tall multi-story frames.  The reader should note that the resulting lateral loads shown in Figure 1 include the effect of both the 
amplified initial out-of-plumbness,      ∆o, as well as the amplified sidesway deflections due to the applied loads,         .Blt Blt ∆1

is referred to as the ideal stiffness (Galambos, 1998) and 

 	 is the actual story sidesway stiffness of the lateral load 
resisting system in the first-order analysis model. The 
term ΣPr in Equation 3 is the total factored vertical load 
supported by the story and L is the story height. The term 
ΣH in Equation 4 is the total story shear force due to the 
applied loads and ∆1H is the first-order horizontal displace-
ment due to ΣH. If ΣH = 0 (and therefore ∆1H = 0), β may 
be determined by applying any fraction of ΣPr as an equal 
and opposite set of shear forces at the top and bottom of 
all the stories and then dividing by the corresponding ∆1H. 
For combined braced and gravity frames, the sidesway 
amplification factor Blt is the same as the term B2 in AISC 
(2005a). The symbol Blt is used in this paper, since the 
subscripts 0, 1, and 2 are reserved to denote the initial, 
first-order and second-order forces and/or displacements. 
The notation “lt” stands for “lateral translation.”

4.	 For each of the load combinations, calculate the story P∆ 
shears, HP∆, using the equation

	

and apply to each story of the frame in a separate first-
order analysis to determine the second-order component 
of the internal forces. Figure 1 illustrates the application 
of these forces in a multi-story frame.† 

5.	 Add the second-order forces from step 4 to the first-order 
forces from step 1 times the load factors for the strength 
load combination under consideration. This gives the re-
quired strengths throughout the structure. 

6.	 For axially loaded members subjected to transverse loads, 
amplify the internal moments using the traditional NT 
amplification factor, denoted by B1 in AISC (2005a). The 
calculation of internal moments in general framing sys-
tems is addressed by White, Surovek, and Chang (2007). 

7.	 Check the required forces from steps 5 and 6 versus the 
corresponding design resistances.

=
Σ
∆

H

H1

β (4)

H P B
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o
∆ Σ
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=
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



1

(5)
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It should be noted that the above procedure may be ap-
plied for design by either LRFD or ASD. However, if ap-
plied for ASD, AISC (2005a) requires that the applied loads 
must be multiplied by a parameter α = 1.6 to account for the 
second-order effects at the ultimate load level. The resulting 
internal forces are subsequently divided by α to obtain the 
required ASD forces. 

To use the above procedure for strength analysis and de-
sign by the DM, the nominal initial out-of-plumbness 

and the reduced stiffness

are employed. Also, since the stiffness is reduced, the cor-
responding first-order story sidesway displacements are

where ∆1 is the first-order story displacement, obtained us-
ing the nominal (unreduced) stiffness values. The out-of-
plumbness, ∆o, may be modeled explicitly by canting the 
frame geometry or it may be represented by the equivalent 
notional lateral loads given by Equation 1. If a notional lat-
eral load is used, this load is handled the same as any other 
applied lateral load in the above procedure. Alternately, for 
service load analysis, or for strength analysis and design by 
the conventional Effective Length Method (ELM), where 
the analysis is conducted on the idealized nominally-elastic 
initially-perfect structure, the above terms are 

and

The above analysis approach gives an exact solution for 
the second-order DM, ELM, or service level forces and dis-
placements within the limits of:

the idealization of the lateral load resisting system as a •	
truss, 

the approximation cos•	

the assumption that the stiffness •	 β– for any story is the 
same value for both of the loadings ΣH and H

–
P∆, and 

the approximation of equal sidesway displacements •	
throughout each floor or roof level. 

That is, with these qualifications, LeMessurier’s procedure 
is an “exact” noniterative second-order analysis (Vandepitte, 
1982; Gaiotti and Smith, 1989; White and Hajjar, 1991) for 
combined gravity and braced-frame systems. The assump-
tion of cos                        is certainly a reasonable one, since 
any structure that violates this limit will likely have objec-
tionable sidesway deflections under service loads. For multi-
story structures, the interactions between the stories, for ex-
ample, the rotational restraint provided at the top and bottom 
of the columns in a given story as well as the accumulation 
of story lateral displacements due to overall cantilever bend-
ing deformations of the structure, strictly are different for 
different loadings and load effects. However, the differences 
in the β values for the different loadings are typically small. 
The handling of unequal lateral displacements at a given 
story level, for example, due to thermal expansion or due to 
flexible floor or roof diaphragms, is addressed by White et 
al. (2003a). 

Fig. 1.  Application of the P∆ shear forces         
in a multi-story frame.

HP∆

∆o L= 0 002.

= 0.8ββ .

∆
∆

1
1

0 8
=

.

(6a)

(6b)

(6c)

∆o = 0

= ββ

∆ ∆1 1=

(7a)

(7b)

(7c)

∆ ∆ ∆ ∆tot tot lt oL B/ ,( ) ≅ = +( )1 1, where 

∆ ∆ ∆ ∆tot tot lt oL B/ ,( ) ≅ = +( )1 1, where 

∆ ∆ ∆ ∆tot tot lt oL B/ ,( ) ≅ = +( )1 1, where 
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Since the influence of member axial deformations, in-
cluding differential column shortening, as well as other 
contributions to the displacements can be included in the 
first-order analysis, the above approach is applicable to all 
types of combined gravity and braced building frames. For 
a multi-story frame, sidesway due to column elongation and 
shortening in the stories below the one under consideration, 
in other words, sidesway due to cantilever deformations of 
the building, is addressed by analyzing the full structure. In 
general, it is not appropriate to determine β

–
 = ΣH / ∆

–
1H by 

just applying equal and opposite lateral loads at the top and 
bottom of a single story. 

The proposed approach is particularly amenable to pre-
liminary analysis and design. Typically, it is desired for 
structures to satisfy a certain drift limit under service load 
conditions. The story P∆ shear forces,         , can be calculated 
for preliminary design by scaling the target service load drift 
limit to obtain the corresponding    /L for use in Equation 
5.  Part 2 of the paper illustrates this process (White et al., 
2007). 

For structures with a large number of stories and/or com-
plex three-dimensional geometry, the proposed analysis ap-
proach can be programmed to avoid excessive manual calcu-
lations. The above approach can be implemented for general 
3D analysis of building frames by incorporating the concepts 
discussed by Wilson and Habibullah (1987) and White and 
Hajjar (1991) to include the P∆ effects associated with over-
all torsion of the structural system. However, in the view of 
the authors, the use of general-purpose second-order analy-
sis software is often preferable for complex 3D frames. The 
most important benefit of the proposed approach is that it 
facilitates preliminary analysis and design (using an estimat-
ed        based on target service drift limits). Also, it is a useful 
aid for understanding second-order responses and checking 
of computer results. For instance, if       from Equation 5 is 
smaller than a certain fraction of the story shear due to the 
applied lateral loads ΣH (say 5%), the Engineer may choose 
to exercise his or her judgment and assume that the second-
order sidesway effects are negligible. 

BRACED COLUMN EXAMPLE

Figure 2 shows the results obtained using the proposed com-
bination of the DM with LeMessurier’s second-order analy-
sis equations for one of the most basic analysis and design 
solutions addressed in the AISC (2005a) Specification—
determination of the required bracing forces for simply-
supported columns. For this problem, the stability bracing 
provisions of AISC (2005a) also apply. These provisions 
require a minimum brace stiffness of 

in LRFD, where φ = 0.75 and Pr(LRFD) = Pu is the required axial 
compressive strength of the column obtained from the LRFD 
load combinations, such as 1.2D + 1.6L. They require 

in ASD, where Ω = 2.0 and Pr(ASD) is the required axial com-
pressive strength of the column obtained using the ASD load 
combinations, for example, D + L. 

If one assumes a live-to-dead load ratio, L /D = 3, then the 
ratio, Pr(LRFD) /Pr(ASD) is 1.5 for the above dead and live load 
combinations.  By substituting Pr(ASD) = Pu /1.5 into Equa-
tion 8b, one can observe that this equation is equivalent to 
Equation 8a at L /D = 3. However, for other live-to-dead load 
ratios and/or other load combinations, the required minimum 
brace stiffness is slightly different in ASD and LRFD. 

At the βbr limit given by Equation 8a, the sidesway am-
plification obtained from an explicit second-order analysis 
without any reduction in the stiffness is Blt = 1.6. When 
the analysis of the system shown in Figure 2 is conducted 
using the DM, β = 0.8βbr and the sidesway amplification  

Fig. 2.  Braced column example. 
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is      = 1.88. As a result, the brace force induced by the axial 
force, Pr, acting through the amplified nominal initial out-of-
plumbness of      ∆o =       (0.002L) is 

Pbr = Pu       (0.002) = 0.00376Pu

from Equation 5 (note that    in this problem). The corre-
sponding base AISC (2005a) Appendix 6 brace force re-
quirement is

Pbr = 0.004Pu

in LRFD (6% higher). The above 6% reduction in the brace 
force may be considered as a benefit allowed by AISC 
(2005a) for the explicit use of a second-order analysis for 
LRFD. Figure 2 shows the brace force requirements for the 
above basic column case as a function of increasing values 
of βact /βi, where βact is the nominal (unreduced) brace stiff-
ness. The requirements are plotted using the AISC (2005a) 
DM with LeMessurier’s second-order analysis approach as 
well as the using the equation

which is specified as a refinement of the brace force require-
ment in the AISC (2005a) Appendix 6 Commentary. One 
can observe that the force requirements from the DM and 

from Equation 10 are increasingly close to one another for 
larger values of βact /βi. At βact /βi = 10, the DM requires Pbr = 
0.00228Pu whereas Equation 10 gives Pbr = 0.00231Pu, only 
57% and 58% of the base AISC (2005a) brace force require-
ment, respectively.  It should also be noted that if the above 
analyses are conducted using the AISC (2005a) ASD provi-
sions, the results from the corresponding form of Equation 
10 and the corresponding DM solution match exactly. 

LONG-SPAN BRACED FRAME EXAMPLE

Figure 3 shows a long-span roof structure originally consid-
ered by LeMessurier (1976). The frame consists of 165-ft-
long trusses at 20 ft on center, supporting a total (unfactored) 
gravity load of 100 psf. A live-to-dead load ratio of 3 is as-
sumed for the purposes of checking this frame by LRFD. 
The structure is 18 ft high and is required to resist a nominal 
wind load of 15 psf. These nominal loadings are the same as 
in (LeMessurier, 1976); however, the LRFD factored load-
ings obtained using the above assumptions are different than 
LeMessurier’s factored loads. The nominal column axial 
loads are 0.5(165 ft)(2 kips/ft) = 165 kips. A W8×48 with Fy 
= 50 ksi is selected for the column size based on the LRFD 
load combinations. LeMessurier selected an ASTM A572 
Grade 50 W14×48 section in the original design. A brace 
is provided on the left side of the structure; for architectural 
reasons this member is an HSS 4.5×4.5×x with Fy = 46 ksi.  
The original brace selected by LeMessurier was an  

Blt

Blt Blt

Blt
(9a)

(9b)

∆1H

P Pbr
br

act

u=
−

0 004

2

.
β
β

(10)

Fig. 3.  LeMessurier’s (1976) example frame, designed by LRFD.
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HSS 3.5×3.5×x with the same yield strength. The increase 
in size of the brace is predominantly a result of the LRFD 
wind load factor in SEI/ASCE 7-05 (ASCE, 2005) com-
pared to that originally assumed by LeMessurier. This brace 
is sized to act in both tension and compression. 

The load combinations considered in this example include 
the service cases (ASCE, 2005), 

D + Lr

and      
D + 0.5Lr + 0.7W 

where 

	 D	 =	 dead load 

	 Lr 	 = 	 roof live load 

	 W 	 = 	 wind load 

as well as the strength combinations,

1.2D + 1.6Lr + 0.8W, 

0.9D + 1.6W 
and 

1.2D + 0.5Lr + 1.6W

The size of column bc and the tension force requirement 
in the brace ab are governed by the strength load combina-
tion 1.2D + 1.6Lr + 0.8W with the wind acting to the right. 
However, the size of the diagonal ab is governed by its com-
pressive strength under the load combination 0.9D + 1.6W 
with the wind acting to the left. 

In the following, separate first-order analyses of the above 
structure under the nominal (unfactored) gravity and wind 
loads are presented first. Then the calculation of the required 
axial strengths by the DM is illustrated for the load combina-
tion 1.2D + 1.6Lr + 0.8W with the wind acting to the right. 
The DM results for the other load combinations are summa-
rized at the end of this presentation. Finally, the results from 
the following analysis models are compared and contrasted 
with the DM analysis results:

1.	 First- and second-order analysis using the nominal (un-
reduced) elastic stiffness and ∆o = 0.  These solutions are 
appropriate for analysis of service load conditions, but 
are not always appropriate for calculation of the force re-
quirements at strength load levels. The proposed form of 
LeMessurier’s (1976) equations is used for these second-
order analyses with zero elastic stiffness reduction and 
zero initial out-of-plumbness. Since all the strength load 
combinations considered here involve a lateral wind load, 
these second-order analyses satisfy all the requirements 
of the Effective Length Method (ELM) of the 2005 AISC 
Specification.

2.	 Summation of the stability bracing forces obtained from 
the refined equations specified in the AISC (2005a) Ap-
pendix 6 Commentary with the bracing forces obtained 
from a first-order structural analysis. This is the approach 
specified in AISC (1999) for calculation of the required 
strength of braced-frame systems. The AISC (2005a) 
Specification no longer uses this approach. Instead, it 
specifies the use of either the DM (in its Appendix 7) or 
the use of a second-order elastic analysis with nominal 
stiffness and perfect frame geometry, but with a minimum 
lateral load included in gravity-only load combinations 
(in the ELM procedure of its Chapter C). The stability 
bracing provisions of the AISC (2005a) Appendix 6 are 
specified solely to handle “bracing intended to stabilize 
individual members,” in other words, cases where bracing 
forces due to the applied loads on the structure are not 
calculated. However, it is useful to understand the close 
relationship between the DM and the AISC (1999) and 
AISC (2005a) Appendix 6 stability bracing provisions.

3.	 Distributed Plasticity Analysis. This method of analysis 
is useful for evaluation of all of the analysis and design 
methods, since it accounts rigorously for the effects of 
nominal geometric imperfections and member internal 
residual stresses. The details of the Distributed Plasticity 
Analysis solutions are explained in Appendix B. 

Base First-Order Analysis, Nominal (Unfactored) Loads 

LeMessurier (1976) derived base first-order elastic analysis 
equations for the structure in Figure 3. These equations are 
summarized here for purposes of continuity. As noted above, 
the nominal (D + L) column load in this example is P = 165 
kips. The corresponding total story vertical load is ΣP = 330 
kips. The axial compression in column bc causes it to short-
en. Consequently, compatibility between the diagonal ab and 
the top of the column at b requires a story drift ratio of

where 

	 L	 =	 story height 

	 B	 = 	 horizontal distance between the base of col-
umn bc and the base of the diagonal ab 

	 Ac	 =	 column area = 14.1 in.2

	 E	 =	 29,000 ksi 

The nominal elastic sidesway stiffness of the structure is 
given by 

∆1 0 00242
1

413
P

cL

P
L

B

A E
=







= =. (11)
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	 Lab	 =	 length of the diagonal = L B2 2+  = 18.25 ft 

	 Aab	 =	 area of the brace = 2.93 in.2 

Equations 11 and 12 are rather simple to derive for the ex-
ample frame. In cases where the framing is more complex, it 
is often more straightforward to determine the story stiffness 
β as ΣH/∆1H. Based on Equation 12, the drift ratio due to the 
nominal horizontal load ΣH = 2.7 kips is 

	
∆ Σ1 0 00143

1

699
H

L

H

βL
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It is important to note that the story drift ratio under the 
nominal gravity load alone (∆1P /L) is significantly larger 
than 1/500. Furthermore, the drift due to the nominal gravity 
load is 1.7 times that due to the nominal wind load. This 
attribute of the response, as well as the magnitude of the 
total vertical load, makes this example a severe test of any 
stability analysis and design procedure for braced frames. 
The first-order drift under the nominal wind load itself is 
rather modest. 

Strength Analysis Under 1.2D + 1.6Lr + 0.8W, with the Wind 
Acting to the Right, Using the Direct Analysis Method

The ideal stiffness of the structure for the load combination 
(1.2D + 1.6Lr + 0.8W) is 
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where the factor 1.5 is obtained from [1.2D +1.6(3D)] / [D + 
(3D)]. Furthermore, the sidesway amplification based on the 
reduced stiffness model is 
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The total story drift at the maximum strength limit is therefore
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This results in a story P∆ shear of

a tension force requirement in the diagonal ab of 

and a maximum compressive strength requirement in col-
umn bc of 

Synthesis of Results

Table 1 summarizes the key results from the service and  
the LRFD strength load combinations considered for the 
example long-span braced frame. The results for the ser-
vice load combinations are presented first, followed by the 
results for the strength load combinations. The procedures 
utilized for the analysis calculations are listed in the second 
column of the table. The third through sixth columns in-
clude the following information:  the forces in the brace ab  
(Fab based on the nominal stiffness or Fab based on the 
reduced stiffness, as applicable); the comparable forces in 
column bc (Fbc or Fab ); the drift values (∆tot /L based on the 
nominal stiffness or ∆1tot /L based on the reduced stiffness, as 
applicable); and the sidesway amplification factor (Blt based 
on the nominal stiffness or Blt based on the reduced stiffness,  
as applicable). 

The second-order sidesway amplification is 1.21 and 
1.12 under the service load combinations, (D + Lr) and 
(D + 0.5Lr + 0.7W), respectively. Therefore, although the 
structure is braced, its second-order effects are significant 
even under service loading conditions. Engineers often as-
sume that second-order effects are small in braced struc-
tures. This is true in many situations, but this assumption 
can lead to unacceptable service load performance in some 
cases. The maximum total drift (including the second-order 
P∆ effects) for the two service load combinations consid-
ered here is 1/341. This drift is acceptable for many types 
of structures (West, Fisher and Griffis, 2003). However, the 
corresponding first-order drift is 1/413, 21% smaller than 
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the actual drift calculated including the P∆ effects under the 
service loading, D + Lr. 

The influence of unavoidable geometric imperfections 
tends to be relatively small at service load levels, where 
these effects tend to be offset somewhat by incidental con-
tributions to the stiffness from connection rotational stiff-
nesses, cladding, etc. Also, yielding effects are usually neg-
ligible at service load levels. Therefore, the reduction in the 
elastic stiffness and the out-of-plumbness utilized in the DM 
solution at strength load levels are not necessary and should 
not be employed for service load analysis. However, as dis-
cussed by LeMessurier (1976 and 1977), the second-order 
effects at service (or working) load levels generally should 
not be neglected. Neglecting the second-order effects can 
lead to a violation of the service deflection limits and inad-

equate structural performance in cases where these effects 
are significant. 

As noted previously, the strength load combination (1.2D 
+ 1.6Lr + 0.8W) gives the largest required tension force in 
the brace ab and the largest required compression force in 
the column bc of the example frame. Therefore, most of the 
following discussions are focused on the results for this load 
combination. A conventional first-order analysis for this load 
combination gives a tension force in the brace ab of only 
13.1 kips. Equilibrium of the deflected geometry requires a 
brace force of Fab = 32.6 kips based on the AISC (2005a) 
ELM model, which assumes no initial geometric imperfec-
tions and no reduction in the effective stiffness of the struc-
ture at the strength limit state. This is due largely to the sig-
nificant drift of the structure under the gravity loads, 1.2D + 
1.6Lr, in other words, 1.5∆1P, plus the significant sidesway  

Table 1. Summary of Analysis Results

Load  
Combination

Analysis Procedure
Fab or 

Fab (kips)
Fbc or 

Fbc (kips)
∆tot/L or 

∆tot/L
Blt or 
Blt

Service 
D + Lr

First-order, nominal stiffness, ∆o = 0 1/413

Second-order, nominal stiffness, ∆o = 0 1/341 1.212

Service  
D + 0.5Lr + 0.7W 
W acting to right

First-order, nominal stiffness, ∆o = 0 1/398

Second-order, nominal stiffness, ∆o = 0 1/354 1.123

Strength 
1.2D + 1.6Lr + 0.8W
W acting to right

First-order, nominal stiffness, ∆o = 0 13.1 –260 1/209

AISC (2005a) ELM(a) 32.6 –280 1/154 1.355

AISC (2005a) Appendix 6 44.5 –291 1/96 1.537

AISC (2005a) DM(b) 48.8 –296 1/83 1.487

Distributed Plasticity Analysis(c) 40.8 –272 1/98

Distributed Plasticity Analysis(d) 44.2 –291 1/97

Strength 
0.9D + 1.6W
W acting to left

First-order, nominal stiffness, ∆o = 0 –26.3 –11.2 –1/574

AISC (2005a) ELM –27.1 –10.4 –1/551 1.041

AISC (2005a) Appendix 6 –28.1 –9.4 –1/253 1.055

AISC (2005a) DM –28.3 –9.2 –1/228 1.052

Distributed Plasticity Analysis –28.1 –9.3 –1/243

Strength
1.2D + 0.5Lr + 1.6W
W acting to right

First-order, nominal stiffness, ∆o = 0 26.3 –137 1/255

AISC (2005a) ELM 32.3 –143 1/225 1.134

AISC (2005a) Appendix 6 35.8 –147 1/142 1.187

AISC (2005a) DM 37.2 –148 1/124 1.173

Distributed Plasticity Analysis 36.2 –147 1/137
(a)The ELM analysis is based on the nominal (unreduced) elastic stiffness and ∆o = 0. 
(b)DM analysis is based on a reduced elastic stiffness of 0.8 of the nominal stiffness, and ∆o = 0.002L.
(c)Maximum load capacity reached due to a compression failure of column bc at P = 272 kips at 0.936 of 1.2D + 1.6Lr + 0.8W. The AISC 

(2005a) LRFD column strength is φcPn = 288 kips.
(d)Analysis conduced up to 1.2D + 1.6Lr + 0.8W with distirbuted yielding neglected such that the structure remains elastic at this load 
level.
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amplification of Blt = 1.355. LeMessurier (1976) notes a 
similar significant increase in the diagonal brace tension in 
his discussions (but in the context of allowable stress de-
sign). The column bc axial compression is also increased 
from –260 to –280 kips due to the P∆ effects. 

If one assumes a nominal ∆o = 0.002L in the direction of 
the sidesway and conducts a Distributed Plasticity Analysis 
to rigorously account for the effects of early yielding due to 
residual stresses (see Appendix B), a diagonal brace tension 
of 40.8 kips is obtained when the frame reaches its maximum 
strength. In this example, the structure’s maximum strength 
determined from this type of analysis occurs at 0.936 of 
(1.2D + 1.6Lr + 0.8W). The maximum strength is governed 
by a failure of column bc at P = 272 kips [6% smaller than 
the AISC (2005a) LRFD column design strength]. If yielding 
is delayed such that the frame remains fully elastic at (1.2D 
+ 1.6Lr + 0.8W) (for example, if the actual Fy is sufficiently 
larger than the specified minimum value such that column bc 
remains elastic), the Distributed Plasticity Analysis model 
gives Fab = 44.2 kips and Fbc = –291 kips at this load level. 
This is shown as a second entry in Table 1 for the Distributed 
Plasticity Analysis [also see footnote (d)]. The reader should 
note that none of the Distributed Plasticity results shown in 
Table 1 account for attributes such as connection slip, con-
nection elastic deformations or yielding, or foundation flex-
ibility. These attributes can increase the diagonal brace ten-
sion further.  In addition, the influence of axial elongation in 
the long-span roof system, causing a larger sidesway of the 
leaning column on the right-hand side of the frame, is not 
considered here. White et al. (2003a) address the handling 
of this effect, including the effect of axial deformation in 
member bd due to changes in temperature. The DM provides 
a reasonable estimate of the frame deflections and internal 
forces from the above Distributed Plasticity solutions, giv-
ing        = 48.8 kips (tension) and       = –296 kips (compres-
sion) as illustrated in the previous section. 

Interestingly, for this example the calculation using the 
stability bracing equations in AISC (1999) and the AISC 
(2005a) Commentary to Appendix 6 gives the closest esti-
mate of the second Distributed Plasticity results for the load 
combination 1.2D + 1.6Lr + 0.8W. These calculations are 
summarized as follows:

1.	 The designer must recognize that the drift of the frame 
under the above gravity plus wind load combination sub-
stantially violates the assumption of ∆o.total = ∆o + ∆1 = 
0.002L in the base Appendix 6 equation for the stability 
bracing force, in other words, the horizontal force com-
ponent in the bracing system due to second-order effects. 
Based on an assumed nominal initial out-of-plumbness 
of ∆o = 0.002L and the first-order analysis calculations 
summarized in Table 1, ∆o.total/L = (∆o + ∆1)/L = 0.002 + 
1/209 = 0.00678 = 1/148. 

2.	 The Commentary to Appendix 6 of (AISC, 2005a) and the 
Commentary to Chapter C of (AISC, 1999) indicate, “for 
other ∆o and θo values, use direct proportion to modify the 
brace strength requirements.” Note that the above Com-
mentaries use the term ∆o to represent ∆o.total. The notation 
∆o.total is used here to clarify the two sources of relative 
transverse displacement between the brace points. There-
fore, the appropriately modified base equation for the 
stability bracing force is

	 P P Pbr u u= 



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=0 004
0 00678

0 002
0 0136.

.

.
.Σ Σ 	 (21)

3.	 In addition to the above modification, the AISC (2005a 
and 1999) Commentaries specify, “If the brace stiffness 
provided, βact, is different from the requirement, then the 
brace force or brace moment can be multiplied by the  
following factor:
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	 and φ = 0.75. By applying this factor to the above calcula-
tion of the stability bracing force, one obtains
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	 It is important to note that in this example, the above 
coefficient of 0.0104 is substantially larger than the base 
Appendix 6 coefficient of 0.004. 

4.	 Finally, the above stability bracing force must be applied 
to the bracing system along with the horizontal force de-
termined from a first-order elastic analysis for the subject 
applied load combination. That is, the bracing system 
must be designed for a total horizontal force of 

Pbr + 0.8ΣH = 5.16 kips + 2.16 kips = 7.32 kips 

	 in addition to the vertical load of 1.5P = 1.5(165 kips) = 
247.5 kips applied to the left-hand column. This is specified  

Fab Fbc
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only load combinations. The approach is referred to as 
the Effective Length Method (ELM) in Table 2-1 of AISC 
(2005c). For the load combinations considered in Table 1, 
this approach amounts to the use of a conventional second-
order analysis with the nominal elastic stiffness and ∆o = 
0 (since all the load combinations considered in the table 
include wind load). As a result, the AISC (2005a) Chapter 
C provisions give required strengths for members ab and bc 
of only 32.6 kips and –280 kips, respectively. The relatively 
large difference between Fab = 32.6 kips and the DM value 
of Fab = 48.8 kips is due to: (1) the small angle of the brace 
relative to the vertical orientation; (2) the large gravity load 
supported by the structure; (3) the relatively small wind 
load; and (4) the correspondingly small lateral stiffness of 
the bracing system. If a symmetrical configuration of the 
bracing were introduced, the second-order P∆ effects in this 
frame are dramatically reduced. Also, Figure 2 shows that 
the second-order internal story shears approach 0.002ΣPr 
when the bracing system has substantial stiffness relative 
to the ideal stiffness βi. In many cases, particularly if ΣPr 
is relatively small, these internal shear forces are only a 
small fraction of the lateral load resistance of the bracing 
system. However, in sensitive stability critical frames such 
as LeMessurier’s example in Figure 3, the application of the 
AISC (2005a) DM provisions is considered prudent. 

The required strengths for the other load combinations 
shown in Table 1 are less sensitive to the design approach. 
For example, the governing axial compression in brace ab is 
determined as –28.3 kips using the DM for the load combi-
nation 0.9D + 1.6W with the wind acting to the left. A ba-
sic first-order analysis for this load combination gives -26.3 
kips, only 7.1% smaller. The AISC (2005a) Chapter C ap-
proach gives a compressive force of –27.1 kips, only 3.0% 
smaller. 

SUMMARY

This paper presents an analysis-design approach based on a 
combination of the AISC (2005a) Direct Analysis Method 
(DM) with a form of LeMessurier’s (1976) simplified 
second-order analysis equations. The results from several 
DM analysis solutions are compared and contrasted with the 
results from other analysis solutions including second-order 
service drift calculations, AISC (2005) Effective Length 
Method (ELM) solutions, refined calculations based on the 
Commentaries to AISC (1999) Chapter C and AISC (2005a) 
Appendix 6, and benchmark Distributed Plasticity Analysis 
solutions. The DM is attractive in that:

It does not require any •	 K factor calculations, 

It provides an improved representation of the internal •	
forces throughout the structure at the ultimate strength 
limit state,

in Section C3.2 of AISC (1999) by the clause, “These 
story stability requirements shall be combined with the 
lateral forces and drift requirements from other sources, 
such as wind or seismic loading.” AISC (2005a) no longer 
includes this clause in its Appendix 6, since Appendix 6 is 
intended only for cases where the bracing is not subjected 
to any forces determined from a structural analysis. 

The resulting calculations are
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Note that the result from Equation 24 can be obtained more 
directly by applying LeMessurier’s (1976) approach as fol-
lows:
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Equation 27 is simply Equation 5 but with a stiffness reduc-
tion factor of 0.75 used in the sidesway amplifier and with 
zero stiffness reduction assumed in the calculation of ∆1. The 
corresponding sidesway amplification and total drift ratio 
are shown in the last two columns of Table 1. Obviously, the 
use of a reduced stiffness in the sidesway amplifier and the 
use of a nominal (unreduced) stiffness in the calculation of 
the deflections due to the applied loads is inconsistent. The 
DM provides a consistent second-order analysis calculation 
based on ∆o = 0.002L and an elastic stiffness reduction factor 
of 0.8. 

As noted previously, AISC (2005a) Chapter C also allows 
the use of a second-order elastic analysis with the nominal 
elastic stiffness and idealized perfect geometry, as long as 
notional lateral loads of 0.002Yi are included in all gravity-
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It applies in a logical and consistent fashion for all types •	
of frames including braced frames, moment frames and 
combined framing systems. 

LeMessurier’s (1976) second-order analysis equations are 
particularly useful in that they capture the second-order ef-
fects in rectangular frame structures by explicitly applying 
the P∆ shears associated with the amplified sidesway dis-
placements in a first-order analysis. LeMessurier’s approach 
also can be used for analysis of service deflections and for 
conventional strength analysis and design by the Effective 
Length Method (ELM) using the nominal elastic stiffness 
and the idealized perfect structure geometry. However, the 
combination of the DM with LeMessurier’s equations for 
the underlying second-order analysis streamlines the analy-
sis and design process, while also focusing the Engineer’s 
attention on the importance of:

Ensuring adequate overall sidesway stiffness, and •	

Accounting for second-order •	 P∆ effects on all the lateral 
load-resisting components in the structural system at the 
strength load levels. 
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APPENDIX A

DERIVATION OF AMPLIFIED FIRST-ORDER 
ELASTIC ANALYSIS EQUATIONS 

This appendix derives a specific form of the method for 
determining second-order forces in braced-frame systems 
originally presented by LeMessurier (1976). The heavily 
idealized model shown in Figure 4 represents the essen-
tial attributes of a story in a rectangular frame composed 
of gravity framing combined with a braced-frame system. 
Gravity framing is defined by AISC (2005a) as a “portion 
of the framing system not included in the lateral load re-
sisting system.” This type of framing typically has simple 
connections between the beams and columns and assumed 
to provide zero lateral load resistance. The braced-frame 
system is designed to transfer lateral loads and some portion 
of the vertical loads to the base of the structure, as well as to 
provide lateral stability for the full structure. The structure’s 
sidesway stiffness is assumed to be provided solely by the 
braced-frame system, which AISC (2005a) allows to be ide-
alized as a vertically-cantilevered simply-connected truss. 

The vertical load carrying members in the physical struc-
ture are represented by a single column in the Figure 4 mod-
el. The bracing system is represented by a spring at the top of 
this column. This spring controls the relative displacement 
between the top and bottom of the story. An axial load of ΣPr 
is applied to the model, where ΣPr is the total required verti-
cal load supported by the story. The model has a nominal 
initial out-of-plumbness of ∆o, taken equal to a base value 
of 0.002L in the DM but taken equal to zero in conventional 
analysis and design by the Effective Length Method (ELM). 
This nominal out-of-plumbness represents the effects of un-
avoidable sidesway imperfections. A horizontal load, ΣH, 
is also applied to the model, where ΣH represents the story 
shear due to the applied loads on the structure. The first-or-
der shear force in the bracing system, (F1), is equal to ΣH. 
Figure 4 may be considered as a representation of a single-
story braced-frame structure, or as an idealized free-body 
diagram of one level in a multi-story system. In the latter 

case, a portion of ΣH and ΣPr is transferred from the story 
above the level under consideration. 

Based on a first-order elastic analysis of the above model, 
the load ΣH produces a story drift of        = ΣH/   , where β is 
the reduced lateral stiffness of the bracing system as speci-
fied for the DM.‡ In general, the vertical loads also produce a 
drift of the story whenever the loadings and/or the frame ge-
ometry are not symmetric. This first-order lateral displace-
ment is denoted by   1P. The net lateral force in the bracing 
system is zero due to this displacement.§ The total first-order  
inter-story drift is denoted by ∆ ∆ ∆1 1 1= +H P . Summation  
of moments about point A gives

where the displacement   2 is the additional drift due to 
second-order (P∆) effects. Since

the terms ΣHL and ∆β 1H L  cancel on the left and right-hand 
sides of Equation A1, and therefore this equation becomes

If the columns are initially plumb (in other words, ∆o = 0) 
and the horizontal load ΣH is such that     is also equal to 
zero, then one finds that either    2 must be zero, or the system 
is in equilibrium under an arbitrary sidesway displacement 
∆2 at a vertical load 

where ΣPcr is the sidesway buckling load of the combined 
system. One can observe that this load is proportional to the 
bracing system stiffness, β. The minimum bracing stiffness 
required to prevent sidesway buckling under the load ΣPr 
(with ∆o and ΣH equal to zero for a symmetrical structure 

β∆1H

∆1H

∆1H
∆1H

‡	The symbol β is selected for the lateral stiffness of the structural system in this paper and in White et al. (2007), consistent with 
the use of this term for the lateral stiffness of a bracing system in AISC (1999 & 2005a). This is different from the definition of  
β in LeMessurier (1976). Also, in this paper, an over bar “   ” is shown on all quantities that are influenced by the stiffness reduc-
tion employed within the DM. The equations presented are equally valid for a service load analysis or a conventional strength 
load analysis with zero stiffness reduction, in other words, with a stiffness reduction factor of 1.0.

§	In the context of the bar-spring model of Figure 4, the displacement    1P is equivalent to a lateral movement of the horizontal 
spring’s support. See the example of Figure 3 for an illustration of the source of this displacement.

∆1H

Σ Σ ∆ ∆ ∆ ∆ ∆HL P Lr o H+ + +( ) = +( )1 2 1 2β

Σ ∆βH H= 1

Σ ∆ β∆ ∆ ∆P Lr o + +( ) =1 2 2

Σ ΣPr = =P Lβcr

(A1)

(A2)

(A3)

(A4)

∆1H
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subjected to symmetrical vertical load) is defined as the 
ideal stiffness (Galambos, 1998)

whereas the sidesway stiffness provided by the bracing sys-
tem is denoted by the symbol β. Based on Equation A4, the 
provided stiffness can be written in terms of the sidesway 
buckling load as

By solving for the displacement ∆2  of the imperfect laterally 
loaded system from Equation A3, one obtains the following 
after some algebraic manipulation,

This displacement induces a second-order lateral force in the 
bracing system of 

where 

is the sidesway displacement amplification factor. The last 
two forms shown in Equation A9 are the same as the expres-
sions provided for the sidesway amplification factor, B2, in 
AISC (2005a) for braced-frame systems. The symbol Blt is 
used in this paper, since the subscripts 0, 1 and 2 are reserved 
to denote the initial, first-order and second-order force and/
or displacement quantities in this work. The notation “lt” 
stands for “lateral translation.”

Summation of all the contributions to the total drift in Fig-
ure 4 gives

or in other words, the total drift of the story ∆tot = (∆o + ∆1 
+ ∆2) is equal to the total first order displacement (∆o + ∆1) 
multiplied by the sidesway displacement amplification fac-
tor, Blt. The total horizontal shear force developed in the 

Fig. 4.  Idealized model of a story in a general rectangular frame composed of gravity framing combined with a braced-frame system.
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bracing system is in turn

where

or

From Equation A13, it is apparent that the total horizontal 
force in the bracing system is equal to the sidesway amplifier   
Blt times the sum of the following internal shear forces: (1) 
the first order force due to the applied lateral loads, ΣH; (2) 
the P∆ shear force due to the initial out-of-plumbness, ∆o; 
and (3) the P∆ shear force due to the lateral deflection caused 
by the vertical loads on the story. In the traditional AISC 
(2005a) no translation-lateral translation (NT-LT) analysis 
approach, the last of the above horizontal forces is captured 
by artificially restraining the structure against sidesway in an 
NT analysis. The reverse of the artificial reactions is then ap-
plied to the structure along with any other horizontal forces 
in an LT analysis. An estimate of the corresponding total 
second-order internal forces is then obtained by multiply-
ing the results from the LT analysis by the corresponding 
story Blt amplifier. White et al. (2003a) show the derivation 
of this procedure in the context of the above fundamental 
equations. However, one can see from Equation A11 that the 
total internal shear force in the lateral load resisting system 
is also simply equal to the primary (or first-order) applied 
load effect ΣH plus the effect of ΣPr acting through the total 
amplified story drift

Stated most directly, the total story internal shear force is 
simply equal to ΣH plus the P∆ shear force HP∆ given by 
Equation A12. Therefore, Equation A11 points to a more 
straightforward procedure than the traditional B1-B2 or NT-
LT analysis approach. This equation shows that the second-

order shear forces may be obtained by a first-order analysis 
in which equal and opposite P∆ shears HP∆  (Equation A12) 
are applied at the top and bottom of each story of the struc-
ture. The Engineer never needs to consider the subdivision 
of the analyses into artificial NT and LT parts. Additional 
considerations associated with Pδ amplification of internal 
moments in moment-frame systems are addressed by White 
et al. (2007).

APPENDIX B

DISTRIBUTED PLASTICITY ANALYSIS RESULTS 
FOR LEMESSURIER’S (1976) EXAMPLE FRAME

It is informative to compare the elastic analysis and design 
solutions presented in the paper for LeMessurier’s example 
frame to the results from a Distributed Plasticity Analysis. 
Distributed Plasticity Analysis is a useful metric for evalu-
ation of all of the analysis and design methods, since it ac-
counts rigorously for the effects of nominal geometric im-
perfections and member internal residual stresses. The load 
combination (1.2D + 1.6Lr + 0.8W) with the wind applied 
to the right is considered here (refer to Figure 3), since this 
combination gives the governing axial force requirement 
in the most critically loaded member, column bc. As noted 
previously, this load combination also produces the largest 
tension in brace ab. For the Distributed Plasticity Analysis, a 
nominal out-of-plumbness of 0.002L to the right is assumed 
throughout the frame and a nominal out-of-straightness of 
0.001L is assumed in column bc. Also, the Lehigh residual 
stress pattern (Galambos and Ketter, 1959), which has a 
maximum residual compression of 0.3Fy at the flange tips 
and a linear variation over the half-flange width to a constant 
self-equilibrating residual tension in the web, is taken as 
the nominal residual stress distribution for the wide-flange 
columns. These are established parameters for calculation 
of benchmark design strengths in LRFD using a Distributed 
Plasticity Analysis (ASCE, 1997; Martinez-Garcia, 2002; 
Deierlein, 2003; Surovek-Maleck et al., 2003; Surovek-
Maleck and White, 2004; White et al., 2006). Columns bc 
and de are assumed to have their webs oriented in the di-
rection normal to the plane of the frame. The tension at the 
maximum load level in brace ab is significantly less than its 
yield load; therefore, the residual stresses in the brace are not 
a consideration in the Distributed Plasticity Analysis for the 
above load combination. A resistance factor of φ = 0.90 is ap-
plied to both the yield strength, Fy, and the elastic modulus, 
E, including the occurrence of Fy in the above description 
of the nominal residual stresses. The steel is assumed to be 
elastic-plastic, with a small inelastic modulus of 0.0009E for 
numerical purposes. The gravity and the lateral loads are ap-
plied proportionally to the frame in the Distributed Plasticity 
solution. Two mixed elements (Alemdar, 2001), which are 
capable of accurately capturing the inelastic Pδ moments in 
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column bc as this member approaches its maximum strength, 
are employed to model all the members. All the members are 
modeled as ideally pin-connected. The roof system is mod-
eled by a strut between the two columns, and the gravity 
loads from the roof system are applied as concentrated verti-
cal loads at the top of each of the columns. The Engineer 
should note that it is essential to include column de in any 
second-order analysis model.  Otherwise, the second-order 
effects caused by the “leaning” of this column on the lateral 
load resisting system are missed. 

The Distributed Plasticity solution predicts a maximum 
load capacity of the frame at 0.936 of the maximum roof live 
load combination. The predominant failure mode is the flex-
ural buckling of column bc at an axial compression of 272 
kips. This load is 0.944 of the AISC (1999) column strength 
of φcPn = 288 kips based on φc = 0.90. There is some yielding 
in the middle of the column unbraced length at the predicted 
maximum load level, but the amount of yielding is relatively 
minor and the frame deformations are still predominantly 
elastic. Approximately 10% of the column area is yielded 
resulting in a reduction in the effective elastic weak-axis mo-
ment of inertia of 29% at the mid-length of the column. Col-
umn bc is still fully elastic over a length of 4.5 ft at each of 
its ends. The above solution for the column strength is within 
the expected scatter band for the actual-to-predicted column 
strengths based on the single AISC (1999) column curve for-
mula. The total drift of the frame at the maximum load level 
is ∆tot /L = 0.0102, including the initial out-of-plumbness of 
∆o /L = 0.002. It should be noted that this drift is only slightly 
larger than ∆tot /L = 0.00958 obtained by a second-order elas-
tic analysis of the structure at 0.936 of (1.2D + 1.6Lr + 0.8W) 
using 0.9 of the nominal elastic stiffness. The tension force 
in brace ab is 40.8 kips at the maximum strength limit in the 
Distributed Plasticity Analysis, versus 38.8 kips in the above 
corresponding second-order elastic analysis. 

If the maximum load capacity of column bc is assumed to 
be greater than or equal to that required to reach the design 
load level of (1.2D + 1.6Lr + 0.8W), and if the effects of mi-
nor yielding at this load level are assumed to be negligible, 
the above inelastic analysis gives the second-order elastic 
solution (based on 0.9 of the structure nominal elastic stiff-
ness) of Fbc = 291 kips, Fab = 44.2 kips and ∆tot /L = 0.0103. 
The Engineer should note that this solution is only slightly 
less conservative than the recommended DM values of Fbc 
= 296 kips from Equation 20, Fab = 48.8 kips from Equation 
19, and ∆tot /L = 0.0120 from Equation 17. The DM values 
account approximately for the potential additional sidesway 
deflections and P∆ effects associated with yielding at the 
maximum strength limit. The reader is referred to Martinez-
Garcia (2002) for other DM and Distributed Plasticity Anal-
ysis examples involving truss framing and using the estab-
lished parameters employed in the above study. 

The results from the Distributed Plasticity Analysis solu-
tions for the load combinations 0.9D + 1.6W and 1.2D + 
0.5Lr + 1.6W are summarized in Table 1. The member forces 
for these load combinations are sufficiently small such that 
no yielding occurs at the strength load levels (including the 
consideration of residual stress effects). Therefore, these so-
lutions are the same as obtained using a second-order elastic 
analysis with a nominal stiffness reduction factor of 0.9 and 
∆o = 0.002L. 

APPENDIX C

NOMENCLATURE

	 B1	 =	 Nonsway moment amplification factor in 
AISC (1999)

	 Blt, Blt	 =	 Sidesway displacement amplification factor 
given by Equation 2 or Equation A9

	 E	 =	 Modulus of elasticity

	 F1	 = 	 First-order story shear force in the bracing 
system, equal to ΣH

	 F2 	 =	 Second-order shear force in the bracing 
system; second-order contribution to the force 
in a component of the lateral load resisting 
system

	 Fy	 =	 Yield stress

HP∆, HP∆  	 =	 Story shear due to P∆ effects

	 L	 =	 Story height

	 Ni, Ni 	 =	 Notional load at ith level in the structure 

	 P	 =	 Column axial load

	 Pbr 	 =	 Stability bracing shear force required by AISC 
(1999) & (2005a)

	 Pn	 =	 Nominal axial load resistance

	 Pr	 =	 Required axial load resistance

	 Yi	 = Total factored gravity load acting on the ith 

level

	 β, β  	 =	 Total story sidesway stiffness of the lateral 
load resisting system 

	 βi	 = Story sidesway destabilizing effect, or ideal 
story stiffness, given by Equation 3

	 φ	 =	 Resistance factor

	 ∆o	 =	 Initial story out-of-plumbness

	 ∆1, ∆1  	 = First-order interstory sidesway displacement 
due to applied loads = ∆1H + ∆1P or  ∆1H + ∆1P 
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	 ∆2, ∆2  	 =	 Additional interstory sidesway displacement 
due to second-order (P∆) effects

	∆1H, ∆1H  	 =	 First-order interstory sidesway displacement 
due to ΣH

	∆1P, ∆1P  	 = 	 First-order interstory sidesway displacement 
due to vertical loads

	 ∆tot, ∆tot  	 =	 Total interstory sidesway displacement

	 Σ	 = 	 Summation

	 ΣH	 = 	 Story shear due to the applied loads on the 
structure 

	 ΣP	 = 	 Total story vertical load

	 ΣPr 	 = 	 Total required story vertical load

	 ΣPcr	 =	 Story sidesway buckling load, given by Equa-
tion A4

	(over bar)	 = 	 Indicates quantities that are influenced by the 
stiffness reduction employed in the Direct 
Analysis Method
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