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Yielding Limit State of Tee 
Stems in Flexural Compression

C.J. EARLS and L.E. VOLLE

Steel tee beams are typically either fabricated from plate, 
as built-up members, or obtained from cutting a rolled I-

shaped member longitudinally along its centroidal axis; the 
latter case being the more frequently used in practice.  In ei-
ther case, the general treatment of tee members is somewhat 
ambiguous (Salmon and Johnson, 1996) within AISC speci-
fications (AISC, 2000, 1989).  It appears that consideration 
of tee beams as an extreme example of mono-symmetry in 
an I-shaped cross section has some precedent (Salmon and 
Johnson, 1996; Galambos, 2001), and is useful in a number 
of design applications.  However, in terms of ductility and 
rotation capacity, within a flexural context, such an approach 
may be problematic since the nature of the plate boundary 
conditions present in the webs of mono-symmetric I-shaped 
cross sections differs substantially from that of outstanding 
tee stems in compression (in other words, the former being a 
stiffened element and the latter being unstiffened).  Current-
ly, AISC makes no attempt to quantify compactness limits 
for the case of tee stems in compression.  The current paper 
presents research findings that support the notion that WT 
stems in compression may be considered compact; subject 
to certain limitations.

BASIS FOR CURRENT CROSS-SECTIONAL  
COMPACTNESS LIMITS FOR  
UNSTIFFENED ELEMENTS

The goal of the AISC compactness criteria promulgated in 
Table B5.1 of the Load Resistance Factor Design Specifica-
tion for Structural Steel Buildings (AISC, 2000), hereafter 
referred to as the AISC LRFD Specification, is to identify 
plate slenderness limits, λp, for cross-sectional plate com-

ponents such that satisfaction of said limits will result in 
an overall flexural cross section able to accommodate suf-
ficient plastic hinge rotation to support system-wide moment 
redistribution as required for the development of a global 
collapse mechanism. In pursuit of this condition, and as a 
general guiding principle, compactness limits have histori-
cally been formulated to loosely accommodate strains ap-
proaching strain hardening values within an individual plate 
component prior to the attenuation of post-buckling strength 
due to effects of material nonlinearity.

Prior to any subsequent discussion of tee stem compact-
ness, it is useful to consider the basis by which the AISC 
LRFD Specification addresses plate compactness within the 
context of another type of unstiffened element; flanges in 
I-shaped cross sections under uniform flexural compression.  
In this latter case, the question of how to address the uncer-
tainty with regard to the nature of rotational edge restraint 
provided at the plate boundary associated with the flange-
web junction is addressed through consideration of the work 
carried out by Haaijer and Thurlimann (1958).  Haaijer and 
Thurlimann discovered that unstiffened plates exhibit the 
onset of strain hardening at slenderness values, λc, of ap-
proximately 0.46 irrespective of whether the supported edge 
is fixed or pinned.  In this discussion, slenderness is defined 
as

where classical elastic plate buckling theory provides that

in which E and ν are the usual elastic material constants and 
b and t are the plate width and thickness quantities, respec-
tively. The term k is the plate buckling coefficient which 
depends on the plate aspect ratio, edge support conditions, 
and stress distribution along the loaded edge.  In the case of 
an I-shaped cross-sectional flange, the two extremes that k 
can assume are:  0.425 for the case of a supported edge that 
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is pinned; and 1.277 for the case of a rotationally-fixed sup-
ported edge.  If we set Equation 2 equal to the yield stress, 
Fy, and solve for the width-to-thickness ratio, b/t, we obtain 
Equation 3.

b
t

k
Fy

= 162

As mentioned previously, Haaijer and Thurlimann have 
observed that unstiffened plate components under the action 
of a uniform edge compression achieve strain hardening re-
sponse at slenderness values, λc, of 0.46 and thus we may 
use Equation 3 to identify a plate slenderness limit for the 
attainment of strain hardening response as

The only question remaining is what value to assume for 
the plate buckling coefficient, k. It has been standard prac-
tice for AISC (AISC, 2000) to employ elastic plate buckling 
coefficients as a guide in the development of actual design 
specification equations and as such we may consider that 
the two extreme values for the present case of an I-section 
flange: 0.425 and 1.277 for the pinned and fixed cases, re-
spectively, serve as reasonable bounds.  If we, somewhat ar-
bitrarily, consider one third of the difference between these 
two values and add this result to the smaller of the two we 
obtain a k of 0.71 which can be applied to Equation 4 so that 
we arrive at a limiting plate slenderness value for the onset 
of strain-hardening of

It is noted that Equation 5 represents the current compact-
ness limit, λp, presented in the AISC LRFD Specification in 
Table B5.1 for the case of an I-section flange under the ac-
tion of uniform flexural compression. 

We may employ a similar approach to the foregoing when 
developing a compactness limit for the case of a tee stem sub-
jected to flexural compression; if we assume that Haaijer and 
Thurlimann’s results concerning the invariance of λc with the 
degree of rotational restraint present at the supported edge in 
a uniformly compressed unstiffened element holds for the 
case of non-uniform compression. Non-uniform compres-
sion stresses would be observed along the loaded plate edge 
in a tee stem subjected to flexural compression (as depicted 
in Figure 1). While Haaijer and Thurlimann did consider the 
case of non-uniform compressive stresses within a plate com-
ponent, their investigation centered on the case of a stiffened 
element; as is consistent with the web of an I-shaped cross 

section; a condition quite different from a tee stem.  Pro-
ceeding with the assumption that the invariance in λc holds 
for the unstiffened case of a tee stem, we may reuse Equa-
tion 4 as the basic requirement for the attainment of strain 
hardening in a non-uniformly compressed plate component. 
In fact, current understanding would characterize this as a 
conservative approach to the problem since existing analyti-
cal solutions predict that a linearly varying stress field acting 
along a loaded edge is a less critical condition as compared 
with that of the uniformly distributed case. What is now left 
to do in the development of a compactness limit for tee stems 
in non-uniform flexural compression is to identify a suitable 
plate buckling coefficient, k. Guidance on the selection of an 
appropriate k value is obtained using the tabulated cases pre-
sented by Galambos (1998).  We may conservatively assume 
that the full depth of the tee stem experiences compressive 
stress (in other words, we assume that the neutral axis is at 
the flange-web junction and no portion of the WT stem ex-
periences tension). Two extreme values for k in this case may 
then be identified: 0.57 for a pinned supporting edge and 
1.61 for a rotationally-restrained supporting edge.  Proceed-
ing as was done for the case of an I-shaped beam flange, we 
may add one third of the difference between the k values of 
these two extremes to the smaller of the two to arrive at k = 
0.92.  We may then employ this value in Equation 4 to arrive 
at a limiting plate slenderness value of
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Fig. 1.  Depiction of FE mesh and schematic 
of loading and stress condition.
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The limits obtained from Equation 6 can now be com-
pared with results obtained from a finite element parametric 
study considering tee beams having various parametric com-
binations of:  flange width-to-cross-sectional depth ratio, bf /d; 
unbraced length-to-cross-sectional depth ratio, Lb /d; ratio of 
stem depth-to-stem thickness, h/tw; and the ratio of flange 
width-to-flange thickness, bf /2tf .

SCOPE

The current research focuses on tee beams subjected to a 
constant moment loading resulting in tee stem flexural com-
pression with end conditions that are fixed against:  out-of-
plane translation, twisting, and warping (see Figure 1).  The 
nonlinear finite element method is the vehicle by which the 
current research is carried out.  A description of the model-
ing techniques employed is discussed in the sequel, but it is 
pointed out here that these same techniques have been ex-
perimentally verified for the cases of:  minor principal axis 
flexure of single angle beams (Earls and Galambos, 1997), 
geometric axis flexure of single angle beams (Earls, 2001), 
major axis flexure of I-shaped beams (Thomas and Earls, 
2003; Greco and Earls, 2003), and minor axis flexure of I-
shaped beams (Aktas and Earls, 2004).  Based on the favor-
able results from the foregoing validation studies carried out 
on closely related cases, the modeling strategies used herein 
are thought to be appropriate for the current focus of tee 
beam compactness.

The precise ranges within the parametric combinations 
treated in the present study are given as

FINITE ELEMENT MODELING TECHNIQUES

Background

The commercial multipurpose finite element software pack-
age ABAQUS version 5.8-22 is employed in this research.  
All modeling reported herein considers both nonlinear geo-
metric and material influences. The incremental solution 
strategy chosen for this work is the modified Riks-Wempner 
method (ABAQUS, 2003) since this technique permits limit 
points on the equilibrium path to be negotiated.  The ability 

to accurately negotiate such limit points is a prerequisite for 
any compactness study since unloading response is at the 
heart of the currently accepted measure for flexural ductil-
ity: rotation capacity, R. The definition for rotation capacity 
adopted in the present discussion is that presented by ASCE 
(1971) 

R = (θu / θp ) − 1

where
 

θu = rotation when the moment capacity drops below 
Mp on the unloading branch of the M-θ plot 

θp = theoretical rotation at which the full plastic ca-
pacity is achieved based on elastic beam stiff-
ness

This ductility response measure is described graphically 
in Figure 2 wherein θ1 corresponds to θp, and θ2 corresponds 
to θu in the ASCE definition. It is currently assumed that 
R = 3 is an adequate level of structural ductility for the non-
seismic design of steel building components (AISC, 2000) 
and thus current compactness provisions are formulated with 
this measure in mind.

Material nonlinearity is modeled using ABAQUS’ stan-
dard metal plasticity material model which is based on an in-
cremental plasticity formulation employing associated flow 
assumptions in conjunction with a von Mises failure surface 
whose evolution in stress-space is governed by a simple iso-
tropic hardening rule. The initial failure surface bounds of 
the virgin material state is defined by the analyst through 
the use of uniaxial true stress versus incremental logarith-
mic strain data that is imported into ABAQUS through input 
cards.  In the present work, Grade 50 mild steel is considered; 0 6 2 0. .≤ ≤
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Fig. 2.  Definition of rotation capacity.
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Figure 3 displays a schematic representation of the uniaxial 
material response that is consistent with what is used in the 
present work.  ABAQUS uses the uniaxial material response 
data stored in the input cards to develop a three-dimensional 
failure surface (in other words, a cylindrical surface centered 
on a generator corresponding to a purely hydrostatic loading 
condition) in principle stress space whose interior defines 
the range of purely elastic material response.

Figure 1 depicts the finite element mesh of a typical tee 
beam model used in the current study.  The mesh consists 
of shell finite elements positioned so as to coincide with the 
middle surfaces of the cross-sectional plate components.  
ABAQUS S9R5 shell finite elements are used throughout 
this study since their performance within the context of com-
pactness research on similar cases to the present one have 
been well documented (Earls and Galambos, 1997; Earls, 
2001).  The S9R5 shell finite element is a nine-noded qua-
dratic element having five degrees of freedom per node (in 
other words, the out-of-plane “drilling” degree of freedom 
is not included in the element formulation) that employs re-
duced integration to control unwanted and spurious locking 
behaviors.  While it is that the S9R5 is shear deformable in 
the spirit of Mindlin-Reissner plate theory (in other words, 
it accommodates explicit consideration of nodal rotations as 
a degree of freedom—and not as a partial derivative of the 
displacement field), it is nonetheless effective in modeling 
thin-shell response due to the imposition of Kirchhoff plate 
bending assumptions at discrete points on the Gauss surface 
of the shell elements by way of a penalty method. 

Modeling Overview

A constant moment condition is imposed on all tee beams 
considered as part of this study since this loading case rep-
resents the most severe flexural condition and as such is the 
case explicitly treated in the development of design specifi-
cation equations for nominal moment capacity.  The constant 
moment loading is achieved in the current finite element 
models by applying concentrated forces perpendicular to the 
beam longitudinal axis at two points on a simply-supported 
span as depicted in Figure 1. The beam is separated into 
three segments, each having a length of Lpd as specified in 
AISC LRFD Specification Section F1.3 (AISC, 2000); with 
the two end segments being modeled with exaggerated plate 
thickness and an elastic modulus ten times greater than that 
of steel (in other words, 300,000 ksi) to approximate a rigid 
condition. The concentrated forces are applied to the cross-
sectional shear center of the beams.  Restraint against out-of-
plane translation is enforced at all nodes along the interfaces 
between the rigid and flexible segments.  As a result of this 
out-of-plane restraint being provided all along the tee stem 
height, torsional restraint is also effectively provided at the 
bracing locations.  Furthermore, as a result of the rigid end 
sections, these same locations also experience a complete 
restraint of warping deformations.  

Due to the fact that unloading in adequately braced tee 
beams experiencing a fully-yielded condition is most fre-
quently triggered by local buckling of the tee stem in com-
pression, the present work may be characterized as an in-
elastic buckling study.  As with any type of buckling study 
involving the incremental nonlinear finite element method 
(in other words, cases where true bifurcation response domi-
nates within the case of perfect geometry), an initial seed im-
perfection is required within the mesh so as to guard against 
the tendency of most finite element solver routines to remain 
on the primary equilibrium branch even after a bifurcation 
point has been passed.  While in an elastic analysis we can 
say for certain that remaining on the primary equilibrium 
path after bifurcation would result in the solution following 
an unstable equilibrium branch, the same cannot be said, with 
utter certainty, in an inelastic buckling analysis (Bazant and 
Cedolin, 1991; Teh and Clark, 1999).  However, in a practi-
cal sense for structural engineering work, it is most likely 
a reasonable assumption to consider this primary path as 
unstable after bifurcation; even within the inelastic material 
response regime.  In any case, a useful modeling strategy for 
the study of inelastic buckling problems with the incremental 
nonlinear finite element technique is to seed the previously 
perfect mesh with an imperfection displacement field of suf-
ficient magnitude to annihilate the bifurcation quality of the 
problem and produce an equivalent load-displacement prob-
lem in its place that asymptotically approaches the load level 
at bifurcation (Timoshenko and Gere, 1961).  To this end, a 
linearized eigenvalue buckling analysis (ABAQUS, 2003) is Fig. 3.  Uniaxial constitutive model considered.

Material Fy Fu /Fy εst / εy εu / εy

Steel 50 ksi 1.6 5.5 45.0
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performed on each tee beam parametric combination consid-
ered within the study so as to obtain approximations to the 
first ten elastic buckling modes of the given tee beam.  For 
each parametric combination, each of the ten modes are ex-
amined so as to identify the mode possessing a pronounced 
stem local buckling feature.  This mode is then scaled by a 
factor of Lb /1000 and employed as a seed imperfection on 
the perfect mesh used to carry out a fully non-linear incre-
mental finite element analysis.

RESULTS

Finite element studies of 50 different tee beam parametric 
combinations are carried out as part of the present study.  De-
spite the fact that the focus of the work is on tee beam com-
pactness when the stem is in compression, and the flanges 
are in tension, the majority of the parametric combinations 
considered herein are carried out using compact flanges as 
outlined in Table B5.1 of the AISC LRFD Specification  

As can be seen from Equation 8, the flanges are propor-
tioned to be right at the limit of compactness.  This approach 
is taken since it was not initially clear what role end rota-
tional restraint, as provided by the flange at the flange-web 
junction, might have on the manifestation of local buckling 
in the compressed stem.  The effect of this edge restraint 
turned out to be of little importance as is demonstrated later 
in the present paper.

Discussion of Results

Table 1 presents early results obtained from the present 
study that highlight an interesting detail regarding limits on 
just how short one can make a tee beam before shear effects 
erode the ability of a theoretical plastic hinge to evolve. In 
the table we see that many of the parametric combinations 
listed involve very stocky cross-sectional plate combinations 
that ought to easily produce a cross section capable of devel-
oping a ductile response. However, what was observed was 
that while the moment-rotation results of the tee beams was 
ductile in the sense that gradual unloading from the ultimate 
moment value occurred, the ultimate moment rarely achieved 
Mp.  The cause of this observed behavior is easily explained 

λ p
y
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F

= = =0 38 0 38 29 000
50

9 15. . , .ksi
ksi (8)

0.6 2.1 9.2 13.5 0.75 -
0.6 2.0 9.2 11.3 0.78 -
0.6 1.9 9.2 9.7 0.85 -
0.6 1.9 9.2 8.5 0.95 -
0.6 1.9 9.2 7.5 1.05 11.6
0.6 1.8 9.2 6.8 1.12 17.1

0.8 3.5 9.2 13.4 0.78 -
0.8 3.3 9.2 11.2 0.79 -
0.8 3.1 9.2 9.6 0.80 -
0.8 3.0 9.2 8.4 0.84 -
0.8 2.9 9.2 7.4 0.90 -
0.8 2.8 9.2 6.7 1.00 -

1.0 5.2 9.2 16.5 0.90 -
1.0 4.9 9.2 13.2 0.90 -
1.0 4.8 9.2 12.0 0.90 -
1.0 4.7 9.2 11.0 0.89 -
1.0 4.6 9.2 10.2 0.88 -

Table 1. Finite Element Results at Small Span-to-Depth Ratios
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by an examination of the plot of von Mises stresses occur-
ring within the finite element mesh (an example is presented 
in Figure 4). The von Mises stress contours indicate that the 
tee beams are most certainly fully yielded, however a signifi-
cant portion of this yielding is due to shear effects in the very 
short beams, meaning, at very short beam unbraced lengths, 
the multiaxial state of stress at the given material points in 
the mesh is sufficient to activate yielding of the steel. The 
net result of this behavior is that due to the presence of high 
shear stresses, only small longitudinal stresses can be ac-
commodated prior to the initiation of yielding at a given 
material point. A useful analogy to illustrate the net effect 
of this result might be that a designer specifies, and expects 
to receive, a Grade 50 steel beam and bases his/her calcula-
tions for Mp on a specified minimum yield stress of 50 ksi.  
However, the steel beam that shows up only has a yield stress 
of 36 ksi and hence it achieves an Mp, but unfortunately one 
that is much lower than expected. This type of effect (in 
other words, effective longitudinal yield stresses lower than 
expected due to the material’s capacity being consumed by 
shear stress) is observed in the present finite element studies 
when the unbraced length-to-depth ratios are less than 6.5; 
and thus, most of the later finite element parametric studies 

Fig. 4.  Depiction of von Mises stresses in a tee at ultimate load.

1.2 6.7 9.2 14.5 0.98 -
1.2 6.6 9.2 13.8 1.01 1.33
1.2 6.5 9.2 13.4 1.03 1.86
1.2 6.5 9.2 13.2 1.03 3.50
1.2 6.2 9.2 10.9 1.16 5.26

1.4 8.1 9.2 12.9 1.01 1.64
1.4 8.0 9.2 11.8 1.06 3.07
1.4 7.9 9.2 11.3 1.12 4.55
1.4 7.7 9.2 10.0 1.17 8.02

1.6 9.5 9.2 10.9 1.05 3.15
1.6 8.8 9.2 10.7 1.06 3.63
1.6 9.3 9.2 9.8 1.11 5.69
1.6 9.0 9.2 8.5 1.25 11.23

1.8 11.1 9.2 10.5 1.03 2.89
1.8 11.0 9.2 10.4 1.03 3.19
1.8 10.4 9.2 9.7 1.07 4.34
1.8 10.8 9.2 9.0 1.13 6.58
1.8 10.7 9.2 8.4 1.20 9.26
1.8 10.5 9.2 7.9 1.24 12.09

2.0 12.6 9.2 10.0 1.01 3.12
2.0 12.5 9.2 9.6 1.03 3.89
2.0 12.4 9.2 8.9 1.09 5.77
2.0 12.3 9.2 8.3 1.08 6.30

Table 2. Finite Element Results with Acceptable Span-to-Depth Ratios
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are carried out using the following criterion:

Since the models are constructed such that the flexible 
region of the tees are exactly Lpd in length, the bracing re-
quirements outlined in Sections F1.2a and F1.3 of the AISC 
LRFD Specification, as required for the attainment of Mp 

with the ability to accommodate moment redistribution, are 
still satisfied.

Table 2 presents additional finite element results from 
models satisfying the above mentioned criterion regarding 
an acceptable unbraced length-to-depth ratio.  From these 
results, it is observed that in order to satisfy the compactness 
requirement for a plastic hinge rotation capacity of three, the 
plate slenderness, h/tw, of the compressed Grade 50 tee stem 
should be given as:

• For bf /d = 1.2, then λp ≤  13.1

• For bf /d = 1.4, then λp ≤  11.8

• For bf /d = 1.6, then λp ≤  10.9

• For bf /d = 1.8, then λp ≤  10.4

• For bf /d = 2.0, then λp ≤  10.0

Based on the foregoing it is noticed that the data seem to 
indicate that the limiting plate slenderness of the tee stem, 
h/tw, seems to be inversely related to bf /d.  However, as will 
be seen later in this paper, this effect is mostly like due to the 
fact that unbraced length is increasing as bf /d grows (as can 
be seen in Table 2), and not due to any difference in edge re-
straint present at the tee stem flange-web junction (as might 
be implied by a variation in bf /d).

The effects of WT edge restraint provided by the flange at 
the flange-web junction can be investigated through the con-
sideration of the finite element results presented in Tables 
3 and 4.  These two tables contain tee stem response data 
obtained when flange slenderness grows, from 1.0λp to 1.2λp 

and then again to 1.4λp, while all other parametric combina-

L
d
pd ≥ 6 5. (9)

1.2 6.2 11.0 13.2 1.05 1.81
1.4 7.6 11.0 11.9 1.07 5.62
1.6 9.1 11.0 11.1 1.07 3.70
1.8 10.7 11.0 10.5 1.05 3.18
2.0 12.3 11.0 10.2 1.03 3.07

Table 3. Finite Element Results with Flange 
Slenderness Set Equal to 1.2 (�p )
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1.2 6.0 12.9 13.4 0.91 -
1.4 9.4 12.9 12.0 1.05 2.92
1.6 8.8 12.9 11.2 1.08 3.87
1.8 10.35 12.9 10.7 1.05 3.39
2.0 11.9 12.9 10.3 1.04 3.26

Table 4. Finite Element Results with Flange Slenderness Set Equal to 1.4 (�p )
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tions are held constant.  Based on these results it appears 
that, for the case of WT cross sections whose bf /d ratios lie 
between 1.4 and 2.0 [for example, the lighter rolled WT sec-
tions in the AISC Load and Resistance Factor Design Man-
ual of Steel Construction (AISC, 2001)], the slenderness of 
the flange only slightly impacts the web stem compactness 
in flexural compression.  Based on the results given in Tables 
3 and 4, it seems very reasonable to ignore this effect in a 
practical sense and consider that within the bf /d ratios men-
tioned, flange slenderness has essentially no impact up to 
1.4λp for the flange (as presented in Equation 8).

Recommendations

Based on the results from the finite element studies presented 
in Tables 1 through 4, it appears that a conservative limiting 
plate slenderness for Grade 50 steel tee beams subjected to 
constant moment loading might be h/tw = 10.  It is noticed 
that this value agrees quite well with the conclusions of the 
discussion presented in the introductory portion of the cur-
rent paper where it was pointed out that Equation 6 might be 
applicable to the problem at hand.  Indeed, for the case of 
Grade 50 steel, Equation 6 would predict that an h/tw ratio 
equal to 10 ought to be adequate for compactness.  This last 
point is tempered by the requirement described in Equation 
9.  In addition, satisfaction of the bracing requirements out-
lined in Sections F1.2a and F1.3 of the AISC LRFD Speci-
fication (AISC, 2000) would also be required for achieving 
moment redistribution.

It is pointed out that tee beams frequently have shape fac-
tors (defined as the ratio of plastic to elastic section moduli) 
that are quite large (for example, approaching two, or more, 
in some cases).  Within a load and resistance factor design 
context, employing the load case combinations from ASCE 7 
(ASCE, 2002), it may arise that designs predicated on tee 
beams developing full theoretical moment capacities, Mp, 
may suffer from yielding under service loading conditions.  
This is a condition that the designer must be aware of in any 
attempt to rely on the ability of a given tee beam to attain Mp 
and subsequently maintain this load level so as to redistrib-
ute moments in a larger structural system.

CONCLUSIONS

It appears from the results presented herein that it is possible 
to attain the theoretical plastic moment capacity, Mp, when 
a tee beam is bent under the action of a constant moment 
loading such that its stem experiences flexural compression.  
Furthermore, it appears possible to identify limiting plate 
slenderness ratios for the tee stem, h/tw, such that compact 
cross-sectional behavior ensues.  Both of these conclusions 
are predicated on the tee beam having a sufficiently large 
unbraced-length-to-depth ratio, Lpd /d, such that premature 
yielding within the cross section does not occur as a re-

sult of large shear stresses developing.  Furthermore, it is 
pointed out that within an LRFD design context, the large 
shape factors commonly exhibited by tee beams may result 
in a condition where yielding may occur under service loads 
and hence must be a consideration of the designer who may 
wish to use tee beams in designs requiring plastic moment 
redistribution.

NOTATION

bf  Flange width
d  Overall cross-sectional depth of tee beam
t  Plate thickness
tf  Flange thickness
tw  Tee stem thickness
h  Overall depth minus the flange cross-sectional 

depth: (d − tf)
Lb  Unbraced length of tee beam
Lpd  Maximum unbraced length permitted for use 

with moment redistribution
E  Modulus of elasticity
ν  Poisson’s ratio
Fcr  Plate buckling stress
Fy , σy Steel yield stress (true stress measure)
Fu , σu Steel ultimate strength (true stress measure)
k  Plate buckling coefficient depending on plate 

aspect ratio, edge support conditions, and stress 
distribution along the loaded edge

εy  Steel strain at yield (logarithmic strain measure)
εst  Steel strain at the onset of strain-hardening (log-

arithmic strain measure)
εb  Intermediate strain-hardening strain (logarithmic 

strain measure)
εu  Steel ultimate strain (logarithmic strain mea-

sure)
λ  Plate slenderness parameter quantified by width-

to-thickness ratio
λp  Compactness limit for plate cross-sectional plate 

slenderness needed for moment redistribution
θp  Cross-sectional rotation resulting in the attain-

ment of the theoretical plastic moment
My  Moment causing the extreme cross-sectional fi-

ber to yield
Mp  Full plastic capacity of cross section
Mu  Ultimate moment capacity
P  Concentrated force
Ry  Radius of gyration about the minor principal 

centroidal axis
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