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ABSTRACT

To avoid excessive vibration in ballroom-type floors,
engineers can evaluate a floor system design before

construction using the procedures outlined in the AISC
Design Guide 11.  These procedures are most appropriately
applied to simply supported beam systems where dancing is
expected to occur over the entire span.  This paper presents
a modification to assess beam/girder systems subjected to
dance type loads over only a portion of the bay.  This mod-
ification is especially useful for long-span systems where
meeting the serviceability requirements is difficult.

INTRODUCTION

Rhythmic activities, such as dancing, have been reported to
cause excessive vibration levels of steel-framed floor sys-
tems.  To combat this problem, a criterion has been devel-
oped to assess a floor system design before it is constructed.
This criterion has been most recently presented in the AISC
Design Guide 11 (Murray, Allen, and Ungar, 1997).  The
material presented in this paper is intended to add to the
usefulness of the “Design for Rhythmic Excitation” criteria
presented in the Design Guide.

The Rhythmic Excitation Criteria for dancing was
derived for a simply supported beam-like floor construction
with the dynamic excitation applied over its entire span
(Allen, Rainer, and Pernica, 1985).  Perhaps more com-
monly found than this case would be a simply supported
beam/girder floor system subjected to a dance excitation
over only a portion of the bay.  Such a case is not addressed
by the current criterion.  A modification to address this
common condition is the main subject of this paper.  Struc-
tural engineers may find this modification especially help-
ful when designing long span ballroom floors, where
dancing activities are likely to take place in only a limited
area of the bay.  In the long span case, satisfying the exist-
ing criterion, with the assumption of loading over the entire
floor area, results in a design so massive that the cost is pro-
hibitive.

Dynamic Amplitude Prediction for Ballroom Floors

THE CURRENT RHYTHMIC EXCITATION 
CRITERION FOR DANCING

To understand the derivation of the modifications proposed
herein, a review of the current criterion derivation is pre-
sented.  The peak dynamic amplitude, in this case accelera-
tion, of a simply supported beam-like floor system
subjected to dance-type loads can be closely approximated
as the steady-state acceleration peak at the mid-span for the
dynamic beam model shown in Figure 1 where f(t) is the
uniformly distributed sinusoidal load specified in Design
Guide 11 (Murray et al.,1997), m− is the uniformly distrib-
uted mass, and        is the steady state acceleration response
at mid-span.  The dynamic behavior of this beam is gov-
erned by the partial differential equation (Meirovitch, 1997)

where 
L =  homogeneous differential stiffness operator 
C =  homogeneous differential damping operator 
M =  homogeneous differential mass operator 
y(x, t) = displacement of point x
x = a coordinate location along the span of the beam
f(x, t) = force density

Assuming a solution to Equation 1 of the form
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Fig. 1.  Dynamic beam model.
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From Equation 4, the force for the first mode, N1(t), due
to the dynamic load shown in Figure 1 becomes

Substituting Equation 10 into Equation 3 for the first
mode yields an equivalent single-degree-of-freedom sub-
jected to a sinusoidal load, N1(t).  

The maximum acceleration from the classical steady-
state solution for

is

Substituting Equation 12 into Equation 2 yields the peak
steady-state acceleration response at the center of the beam,
ap, as follows

The expression for peak acceleration of the floor due to a
harmonic rhythmic force, Equation 2.4 in Design Guide 11
(Murray et al., 1997), is given as

where fn = ω1 / 2π and  f = ωf / 2π.  When comparing Equa-
tions 13 and 14, one can see that the 4/π is replaced by a
constant, 1.3, rounded to one decimal place.  It is important

where 
φi(x) = eigenfunctions of the undamped system 
ηi(t) = time-dependent generalized coordinates often

referred to as normal or modal coordinates  
The eigenfunction describes the shape of the structure

while vibrating in that mode.  Substituting Equation 2 into
Equation 1, multiplying through by φi(x), assuming propor-
tional damping, and considering the orthonormality rela-
tions, we obtain the independent set of modal equations

where 
ωi = the natural frequencies, the square roots of the

eigenvalues, of the system 
βi = the viscous damping factors
Ni(t) = the modal force for the ith mode

where

For a simply supported beam with a uniformly distrib-
uted mass, as represented in Figure 1, the eigenfuctions and
natural frequencies are 

where C1 = π2 for the first mode of vibration, m− = wt / g, and
g is the acceleration of gravity.  The amplitude of the mode
shape, Ai, is found from setting the modal mass for the ith

mode shape equal to unity, or 

This corresponds to the assumption of unity on the accel-
eration term in the expressions represented by Equation 3.  

For dance step frequencies less than the first natural fre-
quency of the beam, as is usually the case, the peak accel-
eration will be primarily the result of vibration of the first
mode.

For the first mode

therefore
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to note that this constant would be different if either the
mode shape expression, Equation 5, or the load distribution
changed.

It is convenient to refer to the constant noted above as k
and understand that k can be found from the more general
expression

DETERMINATION OF THE 
MODIFIED CONSTANT

This section, and the thrust of this paper, will derive a
method for determining the constant, to replace 1.3 in Equa-
tion 14, when the floor has a two dimensional mode shape,
as in a beam/girder floor system, and only a partial loading
of the bay.

The first step is to define an expression that reasonably
characterizes the mode shape of a beam/girder bay for the
fundamental mode.  This expression is shown below and the
parameters are defined in Figure 2. 

Equation 16 can be compared to Equation 5 to under-
stand the parallel with the simple beam case.  Note that the
expression of the mode shape necessarily becomes two-
dimensional.

The next step is to determine the amplitudes, Aj and Ag,
in the mode shape such that the modal mass, m1, is unity.
Paralleling Equations 7 through 9 in the previous section,

From inspection of Equation 18, it is obvious that the two
unknowns, Aj and Ag, cannot be determined from this single

expression.  It is therefore reasonable and necessary to
assume that

where ∆g and ∆j are as defined in the unmodified criterion
of Design Guide 11.  After some manipulation and substi-
tuting wt / g for m−, Aj and Ag are determined to be

Therefore, φ1max, to be substituted in Equation 15,
becomes

The final step in determining the modified constant, as
expressed by Equation 15, is to determine N1max.  The
expression for determining N1 is shown below along with
the derivation of N1max for partial loading.

For the limits of partial loading shown in Figure 3, a sinu-
soidal force ( f(t) = αwp sinωf t), and the mode shape
expressed by Equation 16,

where Aj and Ag are defined in Equations 20 and 21.  There-
fore,

After integrating and simplifying,
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Fig. 2.  Fundamental mode shape for a beam/girder bay.
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Substituting Equations 20, 21, and 26 into Equation 15,
the constant, k, becomes

where

The expression in Equation 27 can be simplified for the
case of a fully loaded bay with the following substitutions:

j1 = 0, j2 = j, g1 = 0, g2 = g.  Therefore, for a fully loaded
beam/girder bay

To facilitate the determination of k for the fully loaded
case, k is plotted in Figure 4 for a range of deflection ratios,
∆g / ∆j.  From this plot, it can be noted that the maximum
possible k value is approximately 1.41.  Therefore, the
assumption of k = 1.3, implied by the Rhythmic Excitation
Criterion for dancing (Murray et al., 1997), is not always
conservative when assessing beam/girder systems. It should
also be noted that Equation 30 reduces to the fully loaded,
simple beam case, k = 4/π derived in the previous section,
by setting ∆g = 0.   

EXAMPLE USING THE MODIFIED k FACTOR

The beam girder system shown in Figure 5 represents a typ-
ical bay in a large ballroom that has been designed for
strength assuming a 100-psf live load and meets a static live
load deflection limit of L/360.  This example illustrates the
use of the modified k factor in determining whether this sys-
tem will perform acceptably when subjected to dancing
over the 20 ft × 20 ft area noted in Figure 5.  

Deck Properties

Concrete: wc = 110 pcf
f'c = 3,000 psi

Beam Properties

W36 × 135
A = 39.7 in.2

Ix = 7,800 in.4

d = 35.55 in.

Girder Properties

W44 × 262
A = 77.2 in.2

Ix = 24,200 in.4

d = 43.3 in.

Beam Natural Frequency

With an effective concrete slab width of 120 in. < 0.4Lj =
0.4 × 60 × 12 = 288 in., considering only the concrete above
the steel deck, and using a dynamic concrete modulus of
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Fig. 3.  Framing plan of bay subjected to partial loading. Fig. 4.  Graph of k vs. ∆g/∆j for fully loaded bay.
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elasticity of 1.35Ec, the transformed moment of inertia is
calculated as follows

The transformed moment of inertia, assuming composite
behavior, is

= 13.33 in. below the top of slab

For each beam, the uniformly distributed load is

where 46 psf is the weight of the slab + deck, 4 psf is an
estimate of the actual superimposed dead load, and 12.5 psf
is the estimated weight of the participants as recommended
in Table 5.3 in Design Guide 11 (Murray et al., 1997).  The
corresponding deflection is

The beam mode fundamental frequency is

Girder Natural Frequency

With an effective slab width of 0.4Lg = (0.4)(40)(12) = 192
in. < Lj = (60)(12) = 720 in. and considering the concrete in
the deck ribs, the transformed moment of inertia is calcu-
lated as follows

For each girder, the uniformly distributed load is

The corresponding deflection is

The girder mode fundamental frequency is

System Natural Frequency

The system fundamental natural frequency is

Fig. 5. Floor plan and section for example problem.
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where the dynamic coefficient, α = 0.5, is recommended in
Table 5.2 of Design Guide 11 (Murray et al., 1997), the
damping coefficient, b, is estimated at 3 percent of critical,
and the forcing frequency, f = 2.8 Hz, is the upper limit for
the first harmonic of group dancing given in Table 2.1 of
Design Guide 11.

An appropriate limit for dining and dancing is 2%g (Mur-
ray et al., 1997); therefore, the floor represented in Figure 5
is considered acceptable.

CONCLUDING REMARKS

A method to consider partial dance-type loading on a bay of
a steel framed, beam/girder system has been presented.  The
essence of this method is a modification to the 1.3 constant
in the “Rhythmic Excitation” Criterion for dancing in AISC
Design Guide 11.  The modification uses Equations 27
through 29 to compute a new constant based on the area of
the dance floor.  This modification is particularly useful in
assessing long span ballroom floors where dancing activi-
ties would only take place over a portion of the bay.  The
derivation is presented as a justification of the proposed
modification and is not particularly significant to its appli-
cation.  A detailed example is presented to illustrate the use
of the “modified k factor.”
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Modified k Value for Partial Loading

The modified k value is computed from Equations 27
through 29 as follows

Peak Steady State Acceleration Ratio

The peak steady state acceleration can be computed from
Equation 14 by substituting the modified constant, k, above
for 1.3 as follows

2

2 2 2 2

2

2 2 2

16

(0.441)
0.0537

(0.441) 16(0.441)(0.190)  (0.190)

j
j

j j g g

c
∆

=
π ∆ + ∆ ∆ + π ∆

= =
π + + π

2

2 2 2 2

2

2 2 2

16

(0.190)
0.0100

(0.441) 16(0.441)(0.190)  (0.190)

g
g

j j g g

c
∆

=
π ∆ + ∆ ∆ + π ∆

= =
π + + π

( )

( )

( )

( )
( )

( )

1 2
2 1

1 2
2 1

2

cos cos

cos cos

2
0.0537 0.0100

(40)(60)

20 40
60 0.0537 30 10 cos cos

60 60

10 30
40 0.0100 40 20 cos cos

40 40

0.

j g
g j

j j
j j g g

j j

g g
g g j j

g g

k c c

c

c

π= +

  π π
 − − 
  

 π π
+ − − 
  

π= +

 π π − −   
π π + − −    

= 340

2 22

2

2 22

2

2
1

(0.340)(0.5)(12.5 / 76)

4.45 2(0.03)(4.45)
1

2.82.8

0.0183

1.8%

p

p t

n n

p

w
k

a w

g
f f

ff

a g

α
=

   β
− +     

=
   − +      

=
=

2

2


