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Shear lag effects and moments reduce the strength of
structural steel tension members. This shear lag exists

when connections to tension members transmit the load
through some, but not all, elements of the member (legs of
an angle, web and flanges of a W or tee, etc.) and may result
in an eccentrically loaded connection. Recent research on
structural tees at the University of Connecticut has shown
that the moment produced by eccentric loading depends
upon the connection geometry as well as the rotational stiff-
ness of the connection. Once the moments in tension tees
and other sections are found, these members may be more
correctly and safely designed by accounting for the interac-
tion of bending moment and axial force, instead of the
empirical shear lag factors. The rotational stiffness of the
connections is shown to be an important design consideration.

INTRODUCTION AND BACKGROUND

Approximately half of the structural members in two-
dimensional and three-dimensional (space) trusses are ten-
sion members. Structural tension members are also found
when assemblies or entire structures are hung. Another sig-
nificant use is for bracing elements (wind and seismic) of
structures and in draglines in structural framing. Structural
steel tension members are designed to insure that any pos-
sible failure mode, resulting from mandated magnitudes of
applied loads, can be safely resisted. For many years, the
design of these members was based upon avoiding failure
from either the gross cross section yielding or the net sec-
tion fracturing through any reduced cross section. 

The LRFD (AISC, 1999) design strength for yielding of
the gross section is given by

φPn = φtyFyAg (1)

where Pn is the nominal axial strength, φty is the resistance
factor for yielding equal to 0.90, Fy is the specified mini-

mum yield stress, and Ag is the gross area. Only the LRFD
specifications will be referred to in this paper. However,
any description or conclusion reached regarding LRFD
specifications is equally applicable to the ASD specification
treatment (AISC, 1989).

When there is a reduction in cross-sectional area, such as
for bolt holes, net section failure strength is given by

φPn = φtf Fu Ae (2)

where φtf is the resistance factor for fracture = 0.75, Fu is the
specified minimum ultimate strength, and Ae is the effective
net area.

If all the elements on the cross section are connected, the
effective net area equals the net area. If some of the ele-
ments on the cross section are not connected, the net area,
An, is reduced to the effective net area, Ae. Over the years,
design specifications have treated the reduction in strength
differently. For instance, some specifications ignored part
of the area of unconnected elements of the cross section.
Current specifications use a shear lag reduction factor to
compensate for the increase in stress in those elements that
are connected. An angle, connected by only one leg, and
structural tees with only the flange or web connected, are
examples of sections with reduced strength due to shear lag.
AISC uses the shear lag factor U that reduces the net area to
the effective net area through

in which x− is the connection eccentricity and l is the con-
nection length. Alternately, this reduction may be given by
specific values, according to the commentary in the LRFD
specification.

Birkemoe and Gilmor (1978) observed a possible failure
mode for the connection of a coped beam. This failure
involved tearing of the base metal along the perimeter of the
bolt holes and this new failure mode was termed block
shear. They suggested an equation for strength that com-
bined tensile strength on one plane with shear strength on
the perpendicular plane. While the treatment of block shear
has undergone modest modifications over the years, speci-
fication equations for strength remain similar to those orig-
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inally posed. For nominal strength, Rn, the current LRFD
specification (AISC, 1999) uses

and 

where φ = 0.75, Agv is the gross area subjected to shear, Agt

is the gross area subjected to tension, Anv is the net area sub-
jected to shear, and Ant is the net area subjected to tension.
Prior to the 1999 Specification, the block shear strength was
based on the fracture of the net tension or shear area
together with yield of the gross remaining area (AISC,
1993).  Now, the block shear strength cannot exceed that
obtained from fracture of both net areas.

Block shear was first documented in coped beam con-
nections.  An angle in the debris of the Hartford Civic Cen-
ter roof collapse led to block shear investigations in tension
members. Figure 1 shows a typical block shear failure in (a)
a coped beam and (b) an angle in tension. Epstein and
Thacker (1991) used non-linear finite element analyses to
model an angle with the dimensions of the one that failed in
block shear in the collapse of the Hartford Civic Center. The
analyses verified block shear as the mode of failure. By
varying the stagger paths of the bolt holes, it was concluded
that the direction of a staggered path influences the failure
load, when shear lag is present.

Madugula and Mohan (1988) reviewed test results of
angles in eccentric tension. They documented 13 block
shear failures out of 61 angles tested. They concluded that
the block shear failure mode might be critical for angles in
eccentric tension.

In the years 1990-92, results were presented from the
full-scale testing of double-row, staggered and unstaggered,
bolted tension connections of structural angles (Adidam,
1990; Epstein and Adidam, 1991; Epstein, 1992). It was
concluded that the factors of safety in AISC s ASD and

LRFD appeared to be inadequate for block shear failures of
angles. Also, as the area of the outstanding leg increases,
the amount of eccentricity increases, reducing the strength
of the member. To account for this, it was recommended
that the shear lag reduction factor, U, should be included in
the tension terms of Equations 4(a) and 4(b).

A limited series of tension tests on structural tees, with
unconnected webs, was then performed (Twilley, 1996;
Epstein, 1996). The testing program revealed a previously
undocumented block shear failure path. Figure 2 shows the
failure paths for (b) the expected failure path and (c) the
previously undocumented (alternate) failure path. This
alternate block shear failure path involved tension on trans-
verse sections in the flange of the tee and shear on a longi-
tudinal section in the web of the tee. 

EFFFECT OF MOMENTS IN TEES 
USED IN TENSION

Several of the aforementioned studies have shown that the
eccentricities, commonly found in block shear failures in
tension connections, are important in determining failure
modes and loads. Eccentricity of the load causes moments
along the length of a member and produces non-uniform
stresses. Therefore, the stresses in an eccentric tension
member, in general, and in block shear failure paths, in par-
ticular, are not simply uniaxial, but also include bending
stresses. As a first step in an ensuing investigation, McGin-
nis (1998) used finite element analyses to predict the failure
modes of tees in tension. He compared the results of the
finite element models with the previous test failures
(Epstein, 1996). The models accurately predicted the test
failure modes, including the previously undocumented
alternate block shear failure path.

One interesting finding in McGinnis analyses of models
with large eccentricities was the presence of a compressive
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Fig. 1. Block shear failure paths. Fig. 2. Block shear paths in structural tees.



zone in the web of tees, at the lead bolt holes. The moments
became so large that the resulting maximum compressive
stresses, at the unloaded edge of the web, more than offset
the uniform tensile stresses. Recent tests conducted at the
University of Connecticut have clearly shown the presence
of compressive stresses. In fact, local buckling of the web
has been observed prior to the fracture of many of the spec-
imens tested. It was also demonstrated that the moments are
not just the load multiplied by the eccentricity (Epstein and
McGinnis, 2000). 

Finite element analyses have been shown to be an excel-
lent method for investigating tension failure phenomena
(Ricles and Yura, 1983; Epstein and Chamarajanagar, 1996;
Epstein and McGinnis, 2000). Finite element analyses have
accurately predicted failure patterns and relative failure
loads. D Aiuto (1999) used finite element analyses together
with conventional structural theory to find actual moments
present in an eccentrically loaded structural tee. If a mem-
ber is acted upon by a force, P, that is applied with an
eccentricity, e, equilibrium dictates that the moment along a
simply supported member is equal to P multiplied by e, as
shown in Figure 3. For a connection of length that is fixed
against rotation, Figure 4 shows that the resulting moment
is not merely Pe, but may be approximated by

M = Pe − Rl (5)

where R is the reaction at the inner and outer bolt holes. The
moment, therefore, requires knowledge of this reaction. 

In order to determine the reactions, R, as a first approxi-
mation consider the elastic displacements shown in Figure
5. From elementary mechanics of materials theory

where Ma is the applied moment equal to Pe (as shown in
Figure 3), E is the modulus of elasticity, I is the moment of
inertia about the axis of bending, l is the connection length,
and L is the overall length of the member.

If the connection does not rotate, the two displacements
in Equation 6 are equal. Thus,

δM = δR (7)

and results in

The reaction in Equation 8 did not agree with finite ele-
ment results for structural tees connected by their flanges
(D Aiuto, 1999). It was found necessary to account for
shear deformations in the vicinity of the connection. Fur-
ther, connections may not be either fully restrained or sim-
ply supported, but may have a rotational stiffness. When
these two factors (shear deformation and rotational stiff-
ness) are included, Equation 8 becomes 
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Fig. 3. Moments in an eccentrically loaded tension member.

Fig. 4. Simplified resisting moment.
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Fig. 5. Elastic loading cases.
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where in addition to the parameters previously defined, G is
the shear modulus, d is the depth of the tee, tw is the thick-
ness of the web, and Kθ is the rotational stiffness of the con-
nection. The parameter λ accounts for the shear
deformation associated with deep beam behavior. If the
shearing stress on the web is constant between the reac-
tions, λ = 1. Figure 6(a), however, shows that the shearing
stresses tend to distribute in an arching pattern between the

reactions. Assuming the 45  distributions in Figures 6(b) or
6(c) produces 

Figure 7 shows the comparison of the reactions for the
theoretical and finite element results for connections fully
fixed against rotation (Kθ becomes infinite). The nondimen-
sional reaction is plotted versus nondimensional connection
length. As can be seen, Equation 8 did not give satisfactory
results for short connections, but adding uniform shear
deformation over the connection length led to improve-
ments. Then, using the more realistic estimate of shear
deformation, a very satisfactory comparison was produced.
The single Mesh 5  point in the figure resulted from a
much finer mesh in the vicinity of the connection. This gave
further confirmation to the appropriateness of the theory.
Also, very small values of l/L do not have practical appli-
cations. Thus, Equation 9 was shown to represent reactions
very well. 

When R, in Equation 9, is substituted into the moment
equation, Equation 5, the result is

Fig. 6. Shear stress distribution at the connections and approximate
arching patterns.
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or,

M = βPe (12)

where β is the term in the large brackets in Equation 11.
Once the moment is known, the capacity of an eccentri-

cally loaded tension member does not have to be found with
the empirical shear lag reduction factor. Instead, existing
specification treatments for the interaction of flexure and
axial force (tension in this case) can be used. The LRFD
specification uses, for doubly and singly symmetric shapes, 

where Pu is the tensile strength, Mu is the flexural strength,
φb is the flexural resistance factor equal to 0.90, and since
this is a tension connection and there is no lateral instabil-
ity, Mn (for compact sections) is the flexural design strength
= Mp = FyZ, in which Mp is the plastic moment and Z is the
plastic section modulus. The other LRFD interaction equa-
tion (for Pu/(φtPn) < 0.2) is not appropriate for this applica-
tion. If there is no moment present, since 

Equation 13 would produce 

where Pn′ = FuAn. In effect, U is the efficiency of the con-
nection due to the presence of shear lag. To see how the effi-
ciency changes as a result of considering the moment given
by Equation 12, simply substitute Equation 14 into Equa-
tion 13 and redefine efficiency with the symbol UL. The
result is

For ASD, the efficiency of a connection with shear lag
can be similarly redefined by UA. Considering the moment,
given in Equation 12, and the ASD interaction equation, the
result is (D Aiuto, 1999)

where fa is allowable stress and S is the section modulus.
For this application, S = I/e, since the eccentricity to the ten-
sion side is where the interaction needs to be considered.

TEST RESULTS 
AND SPECIFICATION TREATMENT

Equation 16 represents a new reduction factor that is based
on the moments created by the eccentricity of the load and
the bending and tensile capacities of the section. In other
words, UL serves a similar function to the empirical shear
lag factor, U, currently used for eccentric tension connec-
tions. The shear lag factor was originally introduced to
account for cross sections that had insufficient shear stiff-
ness to develop a condition of ultimate stress over the entire
net section area. Since shear is rarely present without bend-
ing, one can logically suggest that shear lag is also related
to bending. In fact, both shear and bending are recognized
in the empirical [1 − x / l ] because x is a measure of bend-
ing and both x and l are related to shear stiffness. Logically,
the shear area (depth and the width of the web) should also
be important factors in the amount of shear lag present.
Equation 11 does, indeed, incorporate actual shear stiffness. 

Recently conducted tests (D Aiuto, 1999; Stamberg,
2000) were designed to have failures transition from net
section to block shear as the parameters of connection
length and length of the unconnected leg (and, therefore,
connection eccentricity) were varied. Figure 8(a) shows a
typical series of the failed ends of specimens depicting (left
to right) failures that transitioned from net section to block
shear (alternate) as the depth of the unconnected web
increased. Both parts of the specimen in Figure 8(a) that
failed in alternate block shear are shown in Figure 8(b).
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Fig. 8. Failures from net section to alternate block shear.



Block Shear

Because there is not a uniform tension field, the eccentric-
ity of the load appears to cause premature failures of the
tension plane, when compared to coped beams. Previous
investigations of block shear failure in angles (Epstein,
1992; Gross, Orbison, and Ziemian, 1995; Cunningham,
Orbison, and Ziemian, 1995) have demonstrated that the
use of Equations 4(a) and 4(b), without the recently incor-
porated (AISC, 1999) additional restrictions, was not
appropriate. It was shown (Epstein, 1992) that including the
shear lag reduction factor, U, in the tension terms of block
shear led to significant improvements. This was done
before the 1999 Specification was introduced. The use of
the 1999 Specification helps for some connections, but per-
haps the incorporation of eccentricity effects, such as con-
tained in UL, may be more appropriate. 

More than Block Shear

When D Aiuto and Stamberg (D Aiuto, 1999; Stamberg,
2000) examined specimens that only failed in the net sec-
tion, it became apparent that the use of UL produced more
appropriate safety factors over wider ranges of connection
geometries for these net section failures. In all there were
50 tests conducted. The 36 tests that had net section failures
are shown in Figure 9. All tests had ends restrained against
rotation. In this figure, PF is the so-called professional fac-
tor.  PF values are obtained by calculating the test failure
load divided by the nominal specification strength and they
are shown as crosses in this figure. The circles in this figure

are for the same tests, same values of [1 − x / l ], but use the
newly derived factor UL in place of U. 

Numerical Example 

One of the tests was for a standard WT5×6. The specimen
failed at a load of 83.0 kips. The material properties were Fy

= 58.3 ksi and Fu = 77.5 ksi. A WT5 × 6 has the following
properties: Ag = 1.77 in.2, d = 4.935 in., tw = 0.19 in., bf =
3.96 in., tf = 0.21 in., e = y = 1.36 in., I = 4.35 in.4, and Z =
2.50 in.3 The connection length, l, was 3 in. and the overall
length, L, was 50 in. This gives U = 1  1.36/3 = 0.547. 

The connection had four 3/4-in. bolts connected to the
flange so that two full holes were taken from the cross sec-
tion, similar to the connection labeled 2-3 in Figure 8(a).
Thus, the net area is 1.40 in.2 In finding the strength of this
connection, based on Equation 2, the effective area needs to
include the shear lag factor, U. Values for the calculated U
can get unrealistically small and designers would likely opt
for the values given in the commentary. That approach (U =
the larger of [1 − x / l ] or the appropriate commentary value
of 0.75 or 0.85) was done for all of the results reported in
this paper. In this case, U was taken as 0.75. Substituting
into Equation 2 therefore gives φPn = 61.1 kips. The
strengths predicted from other failure modes are all higher
and the numbers are not reproduced here. Thus, PF =
φPtest /φPn = 0.75(83.0)/61.1 = 1.018. The corresponding
data point (x) is shown in Figure 9 {0.547, 1.02}.

To see the effect that the use of the UL factor has on this
data point, β must first be found using Equations 11 and 12.
Aside from the values already given, the usual values for E
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Fig. 9. The professional factor, PF, using UL versus using U. 



and G are used, 29,000 and 11,200 ksi, respectively, and λ
= 0.152 is calculated from, in this case, Equation 10(b).
This gives β = 0.539. Then, substituting into Equation 16
gives UL = 0.7118. Therefore, PF, if UL is substituted for the
U of 0.75, is

PF = 1.018 (0.75) / 0.7118 = 1.073

The corresponding data point (o) is shown in Figure 9
{0.547, 1.07}.

Results

The least-square linear regression line for the U data points
(x) is shown in Figure 9 as a dashed line.  As can be seen,
many tests produced PF values less than 1.0, and when this
occurs design specifications need to be seriously ques-
tioned. PF should ideally remain fairly constant at 1.33
(which is 1.0 divided by the φ factor for connections, 0.75).
The trend in the test results clearly shows that as [1 − x / l ]
decreases, so does the professional factor, PF. So, with
decreasing connection length or with increasing eccentric-
ity and, therefore, moment, the present shear lag reduction
in nominal specification strength appears to be insufficient.
It is exactly for the conditions of short connection length or
large eccentricity, however, which the shear deformations
over the length of the connection become increasingly sig-
nificant, and these are included in Equation 16.

The solid regression line in Figure 9 is the least-square fit
of the UL data points (o). As can be seen, the slope of the
regression line is more appropriate and the magnitude of the

UL line is more appropriate for the lower values of [1 −
x / l ].

With high strength bolts, connections have become
shorter. Many actual connections can produce values for [1
− x / l ] less than the 0.75 (or 0.85) minimum values permit-
ted. The connections in Figure 9 that had PF less than one
when using [1 − x / l ] for U all had less than 0.75. There-
fore, at least a rethinking of these minimum specification
values for U appears to be warranted.

Structural Rotational Restraint at the Connection

If a member is attached in a way that develops significant
moments at the connection, the structural restraint is high.
If the moment that develops at the net section is simply that
caused by the eccentricity of the axial load, the structural
restraint is zero. As the connection becomes less stiff, the
moment resistance in Equation 5, Rl, decreases, causing the
moments to increase. If there is symmetry due to, for
instance, back-to-back members, the rotational stiffness is
infinite. Actual unsymmetrical connections will usually
have rotational stiffness that greatly increase the moments
when compared to the same connection where rotation is
completely restrained. Figure 10 shows curves of β (recall
that M = βPe) versus non-dimensional connection length,
l /L, for varying connection rotational stiffnesses. 

To get an idea about how important the end restraint
could be, suppose that there is a 6-in. connection length for
a 10-ft long member, thus giving l /L = 0.05. Figure 10
shows that the moment in that member would approxi-
mately double for a simple versus a fixed ended connection.

ENGINEERING JOURNAL / SECOND QUARTER / 2002 / 97

0.00

0.50

1.00

0.00 0.05 0.10 0.15 0.20

/L

ββ

Infinite
Stiffness

Zero
Rotational
Stiffness

Increasing
Rotational 
Stiffness

Fig. 10. β versus  l/L with variable rotational stiffness.



98 / ENGINEERING JOURNAL / SECOND QUARTER / 2002

Assume, for example, that a connection with l /L = 0.05 pro-
duced unity, for a fixed ended connection, using the
moment-axial interaction from Equation 13. Further assume
that the moment only accounted for 25 percent of the inter-
action, a reasonable percentage. For the same connection
that is free to rotate, the interaction equation would produce
0.75 + 0.25 × 2 = 1.25, a 25 percent overstress.

The variation of moments with connection rotational
stiffness is an important factor that is not accounted for in
current specification treatments. The present shear lag
reduction factor, U, is only a function of the eccentricity, e,
and the connection length, l. Much of the work that led to
the current empirical shear lag reduction factor is based on
tests at the University of Illinois during the late 1950s and
early 1960s (e.g., Munse and Chesson, 1963). The reported
tests appear to have been for symmetrically placed mem-
bers and, therefore, have connections that are infinitely stiff
for rotation. Partially due to not having high-strength bolts
at the time, the connections tested were longer than they
probably would be today. The appropriateness of the empir-
ical equation that resulted is, therefore, in question. 

The tests conducted at the University of Connecticut
were intended to limit end rotations. For these tests, steel
cantilevered pallets that were 2-in. deep by 8-in. wide (4 in.
at the grip of the testing machine) restrained the ends. One
of the early tests actually broke the pallet before the speci-
men failed due to the moment caused by the eccentricity of
the load. The connections are subsequently braced to mini-
mize the end rotation. The authors strongly recommend that
future testing of eccentric tension connections should incor-
porate the effects of end rotational stiffness. Until then,
unless connections are symmetric or are essentially
restrained against rotation, thus eliminating end rotation, 
a conservative approach would be to consider the moment
in the member as just the load times the eccentricity 
(β = 1.0) and use the interaction equations already in the
specifications.

CONCLUSIONS

For as long as there have been codes and specifications to
govern the design of structural steel, the need to reduce the
design strength of a tension member has been recognized
when some, but not all, of the cross-sectional elements of a
member are included in its connection. The reduction has
been attributed to shear lag. Over the years, hundreds of
tests at the University of Connecticut have shown that the
eccentricity of the load, with the resulting moment, appears
to account for the diminished strength.

Present shear lag factors are based on tests that were per-
formed forty years ago. These tests were for connections
that, in essence, did not rotate and were relatively long.
Many of the tests of the tees, reported in this paper, have

produced inappropriate professional factors. Further, the
trend in the data appears to show that, especially for shorter
connections or connections with larger eccentricities or
both, the presently permitted minimum shear lag reduction
factor is not sufficient. Additional analytic work as well as
tests (especially varying stiffness, other sections and shorter
connections) will probably lead to a more appropriate
design treatment for tension members with eccentricity. At
present, it appears that any such treatment should include
the actual moments present. 

This paper has presented a new approach to the design of
tension members that takes the moment resulting from
loading eccentricity as well as structural rotational restraint
into account. The moments were found for structural tees.
These moments can be used with existing interaction equa-
tions in the specifications. 

It is far from the intent of this paper to suggest the incor-
poration of the presented equations for moment into any
specification. First, these equations have only been shown
for tees and suggesting a design of a particular type of ten-
sion member would not be appropriate. Second, without
extensive design aids, the equations are too involved. The
intent of presenting this information is to show a new
approach to possible future tests and recommendations
concerning connection efficiency. 

For the present, however, it is reasonable to recommend
that at least a reduction be made for the minimum [1 − x / l ]
values currently permitted. Additional investigation of
eccentric tension members is warranted.  Further, future
investigators of tension connections should undertake tests
and analytic work that incorporate end rotational effects.  
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