
INTRODUCTION

Design engineers frequently use built-up members for
steel building and bridge construction for economical

reasons. The riveted or bolted laced member and battened
member shown in Figures 1(a) and 1(b) have been used in
some historical bridges and currently used in heavy indus-
trial buildings to carry high axial load.  The smaller, bolted
or welded built-up members, like the ones shown in Figures
1(c) and 1(d) are common when axial load is not high.
Unlike single members with a solid web, additional issues
related to the behavior and design of built-up compression
members need to be considered.  

The first issue is the shearing effect. For laced or battened
members, the shear deformation produced by laces or bat-
tens would reduce the buckling capacity. The phenomenon
is well understood (Bleich, 1952; Timoshenko and Gere,
1961), and the shearing effect can be considered in design
by including a factor αv, in the computation of effective
length, (KL)eff = αv (KL):

where
Pe = elastic buckling load
Sv = shear stiffness of the member (= shear force

required to produce a unit shear deformation) 
Bleich (1952) suggested the following approximation for αv :

where
K = effective length factor of a built-up compression

member as a whole unit

L = laterally unsupported length of a built-up member in
buckling plane  

r = radius of gyration of built-up section about axis of
buckling acting as a whole unit

For laced member design, the shearing effect has been
considered in several major codes (Beedle, 1991), but not in
the AISC LRFD Specification (AISC, 1999).
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Fig. 1. Typical latticed members.



For built-up members like those shown in Figures 1(c)
and 1(d) with components interconnected at intervals, a
design procedure that considered the shearing effect of the
connectors (either high-strength bolts or welds) on the
member compression strength was first introduced in the
first edition of the AISC LRFD Specification (AISC, 1986;
Zahn and Haaijer, 1988). The design provisions were devel-
oped based on experimental results of back-to-back channel
members interconnected by intermediate welded or bolted
filler plates (Zandonini, 1985) and double-angle struts
(Astaneh, Goel and Hanson, 1985). This design procedure
was subsequently modified based on the work of Aslani and
Goel (1991 and 1992) and appeared as Equations E4-1 and
E4-2 in the second and third editions (AISC, 1993 and
1999). Note that these equations were derived for stitched
members with slip characteristics in the connectors; they
are not related to the shearing effect (Equation 1 or Equa-
tion 2) of lacing in laced members. The buckling of built-up
members in the plane of the connectors was reported by
Temple and Elmahdy (1992, 1993, 1995 and 1996). 

Aside from the shearing effect, the second issue that
would also reduce the compression strength of a built-up
member is compound buckling, that is, the interaction
between the global buckling mode and the localized buck-
ling mode of flange components between connectors (see
Figure 2). The effect of compound buckling on the laced
member behavior has been investigated by Koiter and
Kuilken (1971), Thompson and Hunt (1973), and Bazant
and Cedolin (1991).  This issue, which is the subject of this
paper, has been largely ignored in major design codes.

Before analytical derivations are presented, it is worth-
while to examine briefly the physical meaning of com-
pound buckling. Geometric imperfections always exist in

steel members. Consider the laced member in Figure 2a
with an assumed sinusoidal geometric imperfection profile.
The imperfection is amplified under an axial load due to the
P-δ effect, which results in an axial deformation in addition
to axial shortening of the flange components without initial
imperfection. The axial stiffness is, by definition, equal to
the axial force required for a unit axial deformation. There-
fore, the effective axial stiffness is smaller than the elastic
axial stiffness of each flange component when the effect of
initial geometric imperfection is considered. For a laced
member with widely spaced flange components (i.e., large
separation between flange components), its moment of iner-
tia is directly proportional to the effective axial stiffness of
the flange components. Therefore, the overall buckling
capacity of the laced member is also reduced.

COMPOUND BUCKLING:  
ANALYTICAL DERIVATIONS

Analytical derivations of the effect of compound buckling
on the elastic buckling load of a laced member have been
made by previous researchers (e.g., Bazant and Cedolin,
1991). The derivations assume that the local moment of
inertia of flange components can be ignored for the compu-
tation of moment of inertia for the whole section, an
assumption that is reasonable for laced members with
widely spaced flange components. Such an assumption is
removed in the following derivations. In this paper, a pro-
cedure is developed that uses a factor β to consider the
effect of compound buckling in a format which is easy to
implement for design purposes.

Consider a pin-ended laced member shown in Figure 2.
The area and moment of inertia of each flange component
on either side of the axis of buckling (Y-axis) are defined as
Af and If (see Figure 3).  In the local mode (Figure 2a), the
flange component is assumed to buckle as an infinite con-
tinuous beams of spans a, in a sinusoidal curve with zero
bending moments at the joints (Bazant and Cedolin, 1991).
Assume that the member geometric imperfection takes the
following form (see Figure 3):

where 
δo = out-of-straightness (see Figure 3)
a = length of each laced panel (see Figure 3)

When a compressive load, P, is applied, the deflection is
increased from δo to δ1 due to the P-δ effect:
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Fig. 2. Buckling models of built-up members.
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where PL is the elastic buckling load taken about the axis
parallel to the member axis of buckling of the two flange
components between the laced panel:

An increase of the out-of-straightness from δο to δ1 results
in an additional axial deformation, u, of each laced panel:

where w1 = δ1sin(πz/a).  Considering lateral deflection w1

and the above additional axial deformation, it can be shown
that the effective axial stiffness, EA*

f , is (Bazant and
Cedolin, 1991):

Next, consider the overall buckling of the laced member
[see Figure 2b]. For a perfectly straight member, the global
buckling load, PG, is 

where 
a = separation factor = h/2rf

h = distance between centroids of individual compo-
nents perpendicular to the member axis of buckling

rf = radius of gyration of individual flange component
relative to its centroidal axis parallel to member axis
of buckling =

Af = cross-sectional area of individual flange component
If = moment of inertia of individual flange component

relative to its centroidal axis parallel to the member
axis of buckling 

To include the effect of flange component buckling on
the global buckling capacity, replace EAf and α in Equation
8 with EA*

f and αo, respectively, where

The resulting equation that can be used to solve the buck-
ling load is

For a laced member with widely spaced flange compo-
nents, the local moment of inertia (If) can be ignored for
computing the moment of inertia of the built-up section.
Such an approximation leads to α → ∞ and αο → ∞.  Thus,
Equation 10 can be simplified to that derived by Bazant and
Cedolin (1991):

For design purposes, it is convenient to include the effect
of compound buckling on buckling load in the following
form:

From Equations 10 and 12, β can be solved from the fol-
lowing equation:

Ignoring the local moment of inertia (I
f
) for a laced mem-

ber with widely spaced flange components, the above equa-
tion can be reduced to the following:
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Fig. 3. Typical cross-section and individual flange components.
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The factor β is a function of four variables: the separation
factor (α), out-of-straightness ratio (δo/a), global slender-
ness ratio (L/r), and local slenderness ratio (a/rf).  An itera-
tive numerical procedure is needed to solve Equation 13 or
14 for β.

PARAMETER STUDY

Solutions for β based on Equation 13 are presented in
graphic forms.  Figure 4 shows the variations of β for dif-
ferent α values.  The six curves correspond to the increas-
ing α values given in the graph, with the bottom curve
corresponding to α = 0.5 and the top curve corresponding to
α = ∞. For α > 2, it is observed that variations of α have lit-
tle effect on the β value, indicating that Equation 14 can be
used under this circumstance.

The effect of out-of-straightness on the value of β is
shown in Figure 5.  The three curves given in Figure 5 cor-
respond with the δo/a values given in the graph, with the
bottom curve corresponding with δo/a = 1/1500 and the top
curve corresponding with δo/a = 1/500. For the particular
slenderness ratio (L/r = 100) considered, the figure shows
that compound buckling is insignificant when PG/PL is less
than approximately 0.4.  The effect of global slenderness
ratio on the value of β is shown in Figure 6; the effect of
compound buckling is more significant for slender mem-
bers.  The five curves given in Figure 6 correspond consec-
utively with the L/r values given in the graph, with L/r = 20
corresponding to the bottom curve, etc. 

DESIGN IMPLICATIONS

Equations 13 and 14 were derived for pin-ended cases.
These equations can be generalized for other boundary con-
ditions by replacing L/r by KL/r, where K is the effective
length factor for the laced member as a whole unit.  

Although the β factor is derived from an elastic theory,
the effect of material nonlinearity, residual stresses, and
geometrical imperfections on the actual compression
strength of the member is included in the Fcr formulae in
Chapter E of the LRFD Specification (AISC, 1999).

Previous researchers (Bazant and Cedolin, 1991) have
pointed out the danger of “naive optimization” in design,
i.e., designing a laced member such that the slenderness

Fig. 4. Effects of Separation Ratio on β Factor (δo/a = 1/1000). Fig. 5. Effects of Out-of-Straightness Ratio on β Factor (L/r = 100).
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ratio of the flange included between lacing connections is
close or equal to the overall slenderness ratio of the com-
pression member.  For built-up members like those shown
in Figures 1c and 1d, LRFD stipulates that Kaa/rf be 
no larger than three-fourths of KL/r.  It implies that 
PG/PL = (0.75)2 = 0.56.  It can be seen from Figure 4 that the
effect of compound buckling can be safely ignored for
PG/PL ≤ 0.56.

For the design of laced members like those shown in Fig-
ures 1a and 1b, however, the AISC LRFD Specification
(1999) states that:

Lacing, including flat bars, angles, channels, or
other shapes employed as lacing, shall be so
spaced that l/r of the flange included between their
connections shall not exceed the governing slen-
derness ratio for the member as a whole.  

Therefore, “naive optimization” may result.  Consider a
scenario that is not unlikely: a laced member of KL/r = 100
with a sinusoidal shape of initial geometric imperfection.
Assuming that δo /a = 1/1500, which is the basis for estab-
lishing the LRFD compressive strength formulae, Figure 5
shows that KL/r should be increased by 12 percent for com-
pound buckling. This increase is significantly higher than
the 1.5 percent increase in KL/r for the shearing effect (see

Equation 2a).
The next example would demonstrate that the upper limit

of 3/4(KL/r) for a/rf effectively mitigates the compound
buckling problem.  Consider a pin-ended built-up member
composed of two channels (see Figure 7) that are intercon-
nected by welded stitches at every one-eighth location.  The
values of KL/r and a/rf are 100 and 69, respectively.
According to Equation E4-2 of the LRFD Specification
(AISC, 1999), KL/r needs to be increased by 17 percent for
the shearing effect of welded connectors.  Assuming 
δo /a = 1/1500, the β value in Figure 8c for PG/PL = 0.48 is
very close to one, indicating that the effect of compound
buckling can be safely ignored. (Note that the curves in Fig-
ure 8 correspond consecutively with the KL/r values given
in the graph, i.e. the bottom curve represents KL/r = 20 and
the top curve KL/r = 200.) Therefore, it is recommended
that the existing AISC LRFD (1999) requirement be revised
as follows:  

Lacing, including flat bars, angles, channels, or
other shapes employed as lacing, or batten plates,
shall be so spaced that l/r of the flange included
between their connections shall not exceed three-
fourths times the governing slenderness ratio for
the laced member as a whole.

Information on the out-of-straightness (or crookedness)
at the member level is available.  For wide-flange members,
the maximum permissible crookedness is about 1/1000th of
the member length (AISC, 1999), and actual measurements
showed a value of 1/1470th (Bjorhovde, 1972). For a chan-
nel like the flange component in Figure 7, the maximum
permissible crookedness for the X-X axis buckling is about
1/500th of the member length; for weak-axis buckling of a
single channel, the 3rd Edition LRFD Manual (AISC, 2001)
states that “Due to the extreme variations in flexibility of
these shapes, straightness tolerances for sweep are subject
to negotiations between manufacturer and purchaser for
individual sections involved.” Unfortunately, little data is
available. The crookedness mentioned above refers to the
geometric imperfection at the member level, not δo that
occurs within a laced panel (see Figure 3). Since data of δo
from actual measurements is not available, it is necessary to
exercise engineering judgement to determine δo /a, say,

Fig. 6. Effects of global slenderness ratio on β factor (δo/a = 1/1000)
(a) a = 1, (b) a = 2. Fig. 7. Built-up member composed of two channels.



ported length L = 26′-10′′ and effective length factor Kx =
0.5 and Ky = 1.0; Fy = 50 ksi; E = 29,000 ksi.

Use AISC LRFD Specification (1999) and the proposed
procedure to check axial load-carrying capacity and deter-
mine the batten plates spacing a.

Solution:
1. Calculate section properties:

For a channel section C8×18.75:
Ag = 5.51 in.2

Ix = 43.9 in.4 rx = 2.82 in.
Iy = 1.97 in.4 ry = 0.598 in.

For built-up section Properties:
Ag = 2 × 5.51 = 11.02 in.2

Ix = 2 × 43.9  = 88 in.4

rx = 2.82 in.

Iy = 2(1.97) + 2(5.51)(4+0.565)2 = 233.59 in.4

2. Determine governing buckling plane
∴ (KL/r)y governs and buckling will be in the lacing

plane.

3. AISC LRFD Procedure—check axial load-carrying
capacity and determine lacing spacing a
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1/1000, before β can be determined.
For the purpose of evaluating an existing structure, Fig-

ure 8 provides engineers alternative graphical solutions for
widely separated built-up members with α > 2. In these fig-
ures, out-of-straightness ratios (δo/a) are 1/500, 1/1000 and
1/1500, and effective slenderness ratios (KL/r) are 20, 40,
60, 100, 140 and 200. In all these figures, the top line rep-
resents KL/r = 200, and the bottom line represents KL/r = 20. 

DESIGN EXAMPLE

Given: 
A built-up member of 2- C8×18.75 as shown in Figure 9 is
subjected to a factored axial load, Pu = 320 kips. Unsup-

Fig. 8. Buckling mode interaction factor β for α ≥ 2
(a) δo/a = 1/500 , (b) δo/a = 1/1000, (c) δo/a = 1/1500
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Fig. 9. Details of design example.



φcPn = 0.85AgFcr = 0.85(11.02)(34.95)
= 327 kips > Pu = 320 kips OK

Select batten plate spacing a = 42 in.  The slenderness
ratio of the flange component between connections 
(l/ry = 42/0.6 = 70) does not exceed the slenderness
ratio of the built-up member as a whole. Thus, the
AISC LRFD requirement is satisfied.  

4. Proposed Procedure—check axial load-carrying 
capacity and determine lacing spacing a

a) Try batten plate spacing a = 42 in. and assume 
δo/a = 1/1000

The β value is equal to 1.12 for KL/r = 70 (see Fig-
ure 8b). Therefore, 
φcPn = 0.85AgFcr = 0.85(11.02)(31.91)

= 299 kips < Pu = 320 kips NG

b) Try batten plate spacing a = 30 in. and assume 
δo/a = 1/1000

The β value is almost equal to 1.0 for KL/r = 70 (see
Figure 8b). The effect of compound buckling, there-
fore, can be safely ignored.

φcPn = 0.85AgFcr = 0.85(11.02)(34.95)
= 327 kips > Pu = 320 kips OK

CONCLUSIONS

Two types of built-up members are commonly used for steel
construction. Laced or battened members with widely
spaced flange components fall in the first type, and closely
spaced steel shapes interconnected at intervals by welds or
connectors form the second type.  The compressive strength
of both types of members is affected by the shearing effect.
For the first type, the shearing effect results from the defor-
mation of flanges and laces, while for the second type the
effect is caused by the shearing of intermediate connectors.
The LRFD Specification (AISC, 1999) considers the shear-
ing effect of the second type, but not the first type.

The compressive strength of built-up members may also
be affected by the “compound” buckling due to the interac-
tion between the global buckling mode of the member and
the localized flange buckling mode between lacing points
or intermediate connectors.  In this paper, a factor β was
developed to consider the effect of compound buckling.
Numerical values of β, that are a function of the global slen-
derness ratio, local slenderness ratio of flange components,
out-of-straightness ratio, and separation factor, were pre-
sented in charts.  For the second type of built-up members,
it was shown that the LRFD approach of limiting the slen-
derness ratio of flange components to three-quarters of the
global slenderness ratio effectively mitigates the effect of
compound buckling.  For the first type of built-up members,
however, no similar limit is specified in the LRFD Specifi-
cation (AISC 1999); thus, “naive optimization” may result.
Therefore, it is recommended that the AISC LRFD Specifi-
cation statement of:

Lacing, including flat bars, angles, channels, or
other shapes employed as lacing, shall be so
spaced that l/r of the flange included between their
connections shall not exceed the governing slen-
derness ratio for the member as a whole.

be revised as:

Lacing, including flat bars, angles, channels, or
other shapes employed as lacing, or batten plates
shall be so spaced that l/r of the flange included
between their connections shall not exceed three-
fourths times the governing slenderness ratio for
the laced member as a whole.

Charts that are developed for the β value can be used in
evaluating existing structures.

NOTATIONS

The following symbols are used in this paper:
a = length of each laced panel (see Figure 3)
Af = cross section area of individual flange component
EA*

f = effective axial stiffness
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h = distance between centroids of individual compo-
nents perpendicular to the member axis of buckling

If = moment of inertia of individual flange component
relative to its centroidal axis parallel to member axis
of buckling

K = Effective length factor of a built-up compression
member as a whole unit

L = laterally unsupported length of a built-up member in
buckling plane

Pe = elastic buckling load
PG = elastic global buckling load of built-up member
PL = elastic buckling load taken about the axis parallel to

member axis of   buckling of two flange components
between laced panel

Sv = shear stiffness of the member (= shear force
required to produce a unit shear deformation) 

r = radius of gyration of built-up section about axis of
buckling acting as a whole  unit

rf = radius of gyration of individual flange component
relative to its centroidal axis parallel to member axis
of buckling = 

w1 = deformed shape of local flange component buckling
wo = initial imperfection deflection shape
α = separation factor = h/2rf

αv = shearing factor for built-up members
δo = out-of-straightness (see Figure 3)
δ1 = maximum deformation of local flange component
β = buckling mode interaction factor
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