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T H E MAXIMUM DEFLECTION of a beam occupies an im

portant role in discussions concerning structural design. 
Building codes such as ACI-63 and the AISC Specifica
tion limit the deflection caused by a live load to 1/360 
of the beam span. Beam design calculations to meet the 
specifications usually involve tedious and lengthy com
putations. In this paper, the following simplified proce
dure is proposed: For any beam of variable moment of 
inertia, subject to end moments and lateral loads, first 
use matrix multiplication to determine a segment where 
maximum deflection will occur. Then, using boundary 
conditions of the segment, repeat matrix multiplication 
to obtain the maximum deflection. 

THEORETICAL BACKGROUND 

To introduce the technique, a brief review of general 
theoretical background is presented. For a beam sub
jected to any arbitrary transverse loads, the differential 
equation of deflection is expressed as: 

Mn 

EIn 
(1) 

where 

y 
Mr 

E 

In 

= deflection (negative sign points downward) 
= moment at point n produced by transverse 

loads (conventional beam sign, i.e., positive 
moment tends to bend upward and causes top 
fiber to be in compression) 

= modulus of elasticity 
= moment of inertia of cross-section of a beam 

at point n . 

By dividing a beam into equal intervals of length h 
and designating equally spaced points, starting from 
left support, such as 0, 1, 2, . . ., etc., Equation (1) can 
be expanded by finite difference expression as: 

Yn-\ — 2Yn + Yn+i — h2 Mn 

EL 
(2) 
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For each pivotal point one equation can be written, 
so that a set of simultaneous linear equations equal to 
the number of unknown deflection points on the beam 
is obtained. In most common practice, the beam is 
divided into four (at most five) equal segments with 
three equally spaced pivotal points (Fw_i, Yn and Yn+i) 
located between the two end support points (Fw_2 and 
Fn +2). Application of Equation (2) results in the follow
ing simultaneous equations: 

Yn 2Yn-i + Yn = h2 Afn-l 

EIn 

7M_i - 2Yn + Yn+1 = h2 

Y„ — 2Yn+i + Yn+2 = h2 

Mr, 

EIn 

Mn+l 

EI„+i 

(2a) 

(2b) 

(2c) 

These equations can be written in compact matrix 
form as: 

[A]{Y] = {C} 

{Y} = [A]-1{C] (3) 

where [̂ 4] is a coefficient matrix and [A]~l is its inverse, 
{Y\ is the deflection matrix, and {C\ is the constant 
matrix. If there is no settlement for each end support, 
then 

Yn-2 and Yn+2 = 0 

Thus for 

[A] 

-2 1 
1 - 2 
0 1 

and C = 

0 
1 

- 2 
and [A]-1 

3 2 1 
2 4 2 
1 2 3 

where Cn_i, Cn and Cn+i equal, respectively, 

h2 Mn 

EIn. 
h2 Mn 

EIn 

and h2 Mn + i 
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then 

Yn-l 

Yn 
Yn+1 

1 

~~4 
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Cn-i 

^n 

Cn+1 

(4) 

Equation (4) has the merit of simplicity. After matrix 
multiplication, if it is found that the numerical value of 
Yn-\ is the smallest among the three, then the maximum 
deflection must occur in the interval Yn, Yn+\. Then 
subdivide Yni Yn+i again into four equal subintervals 
of h' and designate pivotal points as F ' w - i , Y''n and F'w+i. 
Use the same [A]~l but assign different values to the 
elements of {C\, i.e., 

M' 

Yn 

C — 
'-i n — EI' 

EI 71+1 

For ordinary design accuracy, the maximum deflection 
can usually be found among one of the Y' values after 
matrix multiplication. 

In order to explain the procedure more clearly, a 
numerical example is given. 

EXAMPLE 

Given: A simply supported beam of variable moment of 
inertia subject to two end moments, concentrated loads 
and uniformly distributed load is shown in Fig. 1. 
(E = 29 X 106 psi; 7 = 270 in.4) Assume the end sup
ports are on the same level. 
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Figure 1 

Solution: 

Step 1: Divide the beam into four equal segments of 
h = 6 ft-0 in. and designate the interior pivotal 
points 1, 2, and 3, and left and right supports, 0 and 
4, respectively. 

Determine the moment at each pivotal point by 
statics (or by matrix algebra and finite difference 
methods as explained in the Appendix). 

Apply Equation (2) to each interior pivotal point: 

Y0 - 2Y1 + F2 = (6)2 (J^ = 576/EI (2a) 

7x - 2 7 2 + F 3 = (6)' (^^ = 1920/^7 (2b) 

2F 3 + F4 = (6)2 (™\ = 2448/EI (2c) F2 

As there is no deflection at the end supports, the 
boundary conditions are Y0 = Y4 = 0. 

From these three simultaneous equations, the matrix 
{C\ can be written as: 

{c} 
5 7 6 

1,9 2 0 
2,4 4 8 

1 

EI 

Substituting into Equation (4), the complete solu
tions in the following format are : 

Fx 
F2 

F3 

\ 

~ 4EI 

3 2 1 
2 4 2 
1 2 3 

5 7 6 
1,9 2 0 
2,4 4 8 

\ 

"~ EI 

- 2 , 0 0 4 
- 3 , 4 3 2 
- 2 , 9 4 0 

It is obvious that a maximum value can occur in a 
segment between pivotal points 2 and 3, as shown in 
Fig. 2. 

Step 2 : Repeat the previous procedure by dividing the 
segment 2,3 into four equal subdivisions of h' = 1.5 
ft and designating pivotal points, F ' i , Y\ and Y'z. 
Again the moment at the pivotal points can be ob
tained by statics (or'by matrix algebra — see Appen
dix). 

The three simultaneous equations formed by 
repeat application of Equation (2) to the pivotal 
points are: 

F2 - 2Y\ + F ' 2 = (1.5)2 (83.75)/£7 
= 188.4375/^7 

F ' I - 2 F ' 2 + F r
3 = (1.5)2 (83) /£7 

= 186.75/£7 

F ' 2 - 2 F r
3 + F 3 = (1.5)2 (77.75)/£7 

= 174.9735/^7 

(2d) 

(2e) 

(2f) 

With boundary conditions of F2 = —1/EI (3432) 
and F 3 = —1/EI (2940), and substituting into Equa
tion (4) again, 

Y\ 
Y\ 

1 

4EI 

3 2 1 
2 4 2 
1 2 3 

3620.4375 
185.75 

3114.9375 
= 

1 
EI 

-3587.4375 
-3554.3750 
-3334.6875 
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T h e maximum deflection obviously shows at the 
point F ' I , whose numerical value is computed as: 

r\ = 
3587.4375 X 1000 X 1728 

29 X 106 X 270 
= 0.791 in. | 

In comparing with the maximum value of 0.775 
in. obtained by the conventional conjugate beam 
method, the difference is about 2 percent, well within 
the tolerance of engineering design computation. 

Numerous extensions of the technique are feasible. 
Among the extensions are provisions for shears, 
moments, and stresses for two and three dimensional 
structural elements. Several other topics presently 
under development may add to the technique. 

APPENDIX 

When a beam is subjected to transverse distributed 
loads, the moments can be expressed by a differential 
equation as: 

d2Mn 

dx2 = q (A-l) 

where q = distributed load, negative sign, when acting 
downward. Following the same pattern of derivation in 
deflection analysis, Equation (A-l) can be expanded by 
finite difference expression as: 

Mn-X - 2Mn + Mn+l = h2q (A-2) 

In matrix form, 

[A]{M\ = {K} 
\M} = [A]-*{K] (A-3) 

where [M] and {K} are the moment and constant 
matrices, respectively. From Equation (A-3), 

(A-4) 

where Kn-\ = h2qn-\ — M„_2, Kn = h2qn, 
and Kn+i = h2qn+i — Mn+2 

Referring to Fig. 1, the three simultaneous moment 
equations, one for each pivotal point, are: 

Mo - 2MX + M2 = 6( —10) = - 6 0 (A-2a) 

Afi - 2M2 + M3 = 6 [ - 4 + 3 * ( - 2 ) ] - - 6 0 (A-2b) 

M2 - 2M 3 + MA = 6[6 * ( - 2 ) ] = - 7 2 (A-2c) 

Mn 

Mn+1 

1 
~ 4 

3 2 1 
2 4 2 
1 2 3 

Kn-\ 

Kn+l 
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Figure 2 

The applied end moments constituting the boundary 
conditions are M0 — — 76 kip-ft and Af4 = —16 kip-ft. 
Substituting the values first into Equations (A-2a) and 
(A-2c), and then applying Equation (A-4), the solutions 
in matrix format are: 

Ml 

M2 

Mz 

1 
3 2 1 
2 4 2 
1 2 3 

1 + 16 
- 6 0 
- 5 6 

= 
32 
80 
68 

Referring to Fig. 2, the following moment equations are 
obtained: 

M2 - 2M\ + Mf
2 = 1.5( —2 X 1.5) = - 4 . 5 

M\ - 2M'2 + M'i = 1.5( —2 X 1.5) = - 4 . 5 

(A-2d) 

M'2 - 2 M r
3 + M 3 

(A-2e) 

1 . 5 ( - 2 X 1.5) = - 4 . 5 (A-2f) 

With boundary values of M2 = + 8 0 kip-ft and Mz — 
+ 68 kip-ft, substituting into Equations (A-2d) and 
(A-2f), and later applying Equation (A-4), the solutions 
are as follows: 

M'2 

M\ 

1 

" 4 

3 2 1 
2 4 2 
1 2 3 

-84.5 
- 4.5 
-72 .5 

= 
83.75 
83.00 
77.75 
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