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INTRODUCTION

The purpose of this paper is to provide a fairly compre-
hensive view of the subject of beam stability bracing.

Factors that affect bracing requirements will be discussed
and design methods proposed which are illustrated by
design examples.  The design examples emphasize simplic-
ity.  Before going into specific topics related to beam brac-
ing, some important concepts developed for column bracing
by Winter (1960) will be presented because these concepts
will be extended to beams later.

For a perfectly straight column with a discrete midheight
brace stiffness βL, the relationship between Pcr and βL is
shown in Figure 1 (Timoshenko and Gere, 1961). The col-
umn buckles between brace points at full or ideal bracing;
in this case the ideal brace stiffness βi = 2Pe/ Lb where Pe =
π2EI/Lb

2.  Any brace with stiffness up to the ideal value will
increase the column buckling load. Winter (1960) showed
that effective braces require not only adequate stiffness but
also sufficient strength.  The strength requirement is
directly related to the magnitude of the initial out-of-
straightness of the member to be braced.

The heavy solid line in Figure 2(a) shows the relationship
between ∆T, the total displacement at midheight, and P for
a column with a hinge assumed at the midheight brace point
(Winter’s model), an initial out-of-straightness ∆o at mid-
height and a midheight brace stiffness equal to the ideal
value.  For P = 0, ∆T = ∆o.  When P increases and
approaches the buckling load, π2EI/Lb

2, the total deflection
∆T becomes very large.  For example, when the applied load
is within five percent of the buckling load, ∆T = 20∆o.  If a
brace stiffness twice the value of the ideal stiffness is used,
much smaller deflections occur.  When the load just reaches
the buckling load, ∆T = 2∆o.  For  βL = 3βi and P = Pe, ∆T

= 1.5∆o.  The brace force, Fbr, is equal to (∆T - ∆o )βL and is
directly related to the magnitude of the initial imperfection.
If a member is fairly straight, the brace force will be small.
Conversely, members with large initial out-of-straightness
will require larger braces.  If the brace stiffness is equal to
the ideal value, then the brace force gets very large as the
buckling load is approached because ∆T gets very large as
shown in Figure 2(a).  For example, at P = 0.95Pcr and ∆o =
Lb/500, the brace force is 7.6 percent of Pe which is off the
scale of the graph.  Theoretically the brace force will be

infinity when the buckling load is reached if the ideal brace
stiffness is used. Thus, a brace system will not be satisfac-
tory if the theoretical ideal stiffness is provided because the
brace forces get too large. If the brace stiffness is overde-
signed, as represented by βL = 2βi and 3βi curves in Figure
2(b), then the brace forces will be more reasonable.  For a
brace stiffness twice the ideal value and a ∆o = Lb/500, the
brace force is only 0.8%Pe at P = Pe, not infinity as in the
ideal brace stiffness case.  For a brace stiffness ten times the
ideal value, the brace force will reduce even further to 0.44
percent.  At Pcr the brace force cannot be less than 0.4%P
corresponding to ∆T = ∆o (an infinitely stiff brace) for ∆o =
Lb/500.  For design Fbr = 1%P is recommended based on a
brace stiffness of twice the ideal value and an initial out-of-
straightness of Lb/500 because the Winter model gives
slightly unconservative results for the midspan brace prob-
lem (Plaut, 1993).

Published bracing requirements for beams usually only
consider the effect of brace stiffness because perfectly
straight beams are considered.  Such solutions should not be
used directly in design.  Similarly, design rules based on
strength considerations only, such as a 2 percent rule, can
result in inadequate bracing systems.  Both strength and
stiffness of the brace system must be checked.

BEAM BRACING SYSTEMS

Beam bracing is a much more complicated topic than col-
umn bracing.  This is due mainly to the fact that most col-
umn buckling involves primarily bending whereas beam
buckling involves both flexure and torsion. An effective
beam brace resists twist of the cross section.  In general,
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bracing may be divided into two main categories; lateral
and torsional bracing as illustrated in Figure 3.  Lateral
bracing restrains lateral displacement as its name implies.
The effectiveness of a lateral brace is related to the degree
that twist of the cross section is restrained.  For a simply
supported I-beam subjected to uniform moment, the center
of twist is located at a point outside the tension flange; the
top flange moves laterally much more than the bottom
flange. Therefore, a lateral brace restricts twist best when it
is located at the top flange.  Lateral bracing attached at the
bottom flange of a simply supported beam is almost totally
ineffective.  A torsional brace can be differentiated from a
lateral brace in that twist of the cross section is restrained
directly, as in the case of twin beams with a cross frame or
diaphragm between the members.  The cross frame loca-
tion, while able to displace laterally, is still considered a
brace point because twist is prevented.  Some systems such
as concrete slabs can act both as lateral and torsional braces.
Bracing that controls both lateral movement and twist is
more effective than lateral or torsional braces acting alone
(Tong and Chen, 1988; Yura and Phillips, 1992).  However,
since bracing requirements are so minimal, it is more prac-
tical to develop separate design recommendations for these
two types of systems.

Lateral bracing can be divided into four categories: rela-
tive, discrete (nodal), continuous and lean-on.  A relative
brace system controls the relative lateral movement
between two points along the span of the girder.  The top
flange horizontal truss system shown in Figure 4 is an
example of a relative brace system.  The system relies on
the fact that if the individual girders buckle laterally, points
a and b would move different amounts.  Since the diagonal
brace prevents points a and b from moving different
amounts, lateral buckling cannot occur except between the
brace points.  Typically, if a perpendicular cut anywhere

along the span length passes through one of the bracing
members, the brace system is a relative type.  Discrete sys-
tems can be represented by individual lateral springs along
the span length.  Temporary guy cables attached to the top
flange of a girder during erection would be a discrete brac-
ing system.  A lean-on system relies on the lateral buckling
strength of lightly loaded adjacent girders to laterally sup-
port a more heavily loaded girder when all the girders are
horizontally tied together.  In a lean-on system all girders
must buckle simultaneously.  In continuous bracing sys-
tems, there is no “unbraced” length.  In this paper only rel-
ative and discrete systems that provide full bracing will be
considered.  Design recommendations for lean-on systems
and continuous lateral bracing are given elsewhere (Yura,
Phillips, Raju, and Webb, 1992).  Torsional brace systems
can be discrete or continuous (decking) as shown in Figure
3.  Both types are considered herein.

Some of the factors that affect brace design are shown in
Figure 5.  A lateral brace should be attached where it best
offsets the twist.  For a cantilever beam in (a), the best loca-
tion is the top tension flange, not the compression flange.
Top flange loading reduces the effectiveness of a top flange
brace because such loading causes the center of twist to
shift toward the top flange as shown in (b), from its position
below the flange when the load is at the midheight of the
beam.  Larger lateral braces are required for top flange load-
ing.  If cross members provide bracing above the top flange,
case (c), the compression flange can still deflect laterally if
stiffeners do not prevent cross-section distortion.  In the fol-
lowing sections the effect of loading conditions, load loca-
tion, brace location and cross-section distortion on brace
requirements will be presented.  All the cases considered
were solved using an elastic finite element program identi-
fied as BASP in the figures (Akay, Johnson, and Will, 1977;
Choo, 1987). The solutions and the design recommenda-

Fig. 2. Braced Winter column with initial out-of-straightness.
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tions presented are consistent with the work of others:
Kirby and Nethercot (1979), Lindner and Schmidt (1982),
Medland (1980), Milner (1977), Nakamura (1988), Naka-
mura and Wakabayashi (1981), Nethercot (1989), Taylor

and Ojalvo (1966), Tong and Chen (1988), Trahair and
Nethercot (1982), Wakabayashi and Nakamura (1983), and
Wang and Nethercot (1989).

LATERAL BRACING OF BEAMS

Behavior

The uniform moment condition is the basic case for lateral
buckling of beams.  If a lateral brace is placed at the
midspan of such a beam, the effect of different brace sizes
(stiffness) is illustrated by the finite element solutions for a
W16×26 section 20-ft long in Figure 6.  For a brace
attached to the top (compression) flange, the beam buckling
capacity initially increases almost linearly as the brace
stiffness increases.  If the brace stiffness is less than 
1.6 k/in., the beam buckles in a shape resembling a half sine
curve.  Even though there is lateral movement at the brace
point, the load increase can be more than three times the
unbraced case. The ideal brace stiffness required to force
the beam to buckle between lateral supports is 1.6 k/in. in

Fig. 3. Types of beam bracing.

Fig. 4. Relative bracing.

Fig. 5. Factors that affect brace stiffness.

Fig. 6. Effect of lateral brace location.
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this example.  Any brace stiffness greater than this value
does not increase the beam buckling capacity and the buck-
led shape is a full sine curve.  When the brace is attached at
the top flange, there is no cross section distortion.  No stiff-
ener is required at the brace point.

A lateral brace placed at the centroid of the cross section
requires an ideal stiffness of 11.4 kips/in. if a 4 × 1/4 stiffener
is attached at midspan and 53.7 kips/in. (off scale) if no
stiffener is used.  Substantially more bracing is required for
the no stiffener case because of web distortion at the brace
point.  The centroidal bracing system is less efficient than
the top flange brace because the centroidal brace force
causes the center of twist to move above the bottom flange
and closer to the brace point, which is undesirable for lat-
eral bracing.

For the case of a beam with a concentrated centroid load
at midspan, shown in Figure 7, the moment varies along the
length. The ideal centroid brace (110 kips/in.) is 44 times
larger than the ideal top flange brace (2.5 kips/in.).  For both
brace locations, cross-section distortion had a minor effect
on Pcr (less than 3 percent).  The maximum beam moment
at midspan when the beam buckles between the braces is
1.80 times greater than the uniform moment case which is
close to the Cb factor of 1.75 given in specifications (AISC,
AASHTO).  This higher buckling moment is the main rea-
son why the ideal top flange brace requirement is 1.56 times
greater (2.49 versus 1.6 kips/in.) than the uniform moment
case.

Figure 8 shows the effects of load and brace position on
the buckling strength of laterally braced beams.  If the load
is at the top flange, the effectiveness of a top flange brace is
greatly reduced.  For example, for a brace stiffness of 
2.5 kips/in., the beam would buckle between the ends and
the midspan brace at a centroid load close to 50 kips.  If the
load is at the top flange, the beam will buckle at a load of
28 kips.  For top flange loading, the ideal top flange brace
would have to be increased to 6.2 kips/in. to force buckling

between the braces.  The load position effect must be con-
sidered in the brace design requirements.  This effect is
even more important if the lateral brace is attached at the
centroid.  The results shown in Figure 8 indicate that a cen-
troid brace is almost totally ineffective for top flange load-
ing.  This is not due to cross section distortion since a
stiffener was used at the brace point.  The top flange load-
ing causes the center of twist at buckling to shift to a posi-
tion close to mid-depth for most practical unbraced lengths,
as shown in Figure 5.  Since there is virtually no lateral dis-
placement near the centroid for top flange loading, a lateral
brace at the centroid will not brace the beam.  Because of
cross-section distortion and top flange loading effects, lat-
eral braces at the centroid are not recommended.  Lateral
braces must be placed near the top flange of simply sup-
ported and overhanging spans.  Design recommendations
will be developed only for the top flange lateral bracing sit-
uation.  Torsional bracing near the centroid or even the bot-
tom flange can be effective as discussed later.

The load position effect discussed above assumes that the
load remains vertical during buckling and passes through
the plane of the web.  In the laboratory, a top flange loading
condition is achieved by loading through a knife-edge at the
middle of the flange.  In actual structures the load is applied
to the beams through secondary members or the slab itself.
Loading through the deck can provide a beneficial “restor-
ing” effect illustrated in Figure 9.  As the beam tries to
buckle, the contact point shifts from mid-flange to the
flange tip resulting in a restoring torque that increases the
buckling capacity.  Unfortunately, cross-section distortion
severely limits the benefits of tipping.  Lindner and Schmidt
(1982) developed a solution for the tipping effect, which
considers the flange-web distortion.  Test data (Lindner and
Schmidt, 1982; Raju, Webb, and Yura, 1992) indicate that a
cross member merely resting (not positively attached) on
the top flange can significantly increase the lateral buckling
capacity.  The restoring solution is sensitive to the initial

Fig. 7. Midspan load at centroid. Fig. 8. Effect of brace and load position.
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shape of the cross section and location of the load point on
the flange.  Because of these difficulties, it is recommended
that the restoring effect not be considered in design. 

When a beam is bent in double curvature, the compres-
sion flange switches from the top flange to the bottom
flange at the inflection point.  Beams with compression in
both the top and bottom flanges along the span have more
severe bracing requirements than beams with compression
on just one side as illustrated by the comparison of the cases
given in Figure 10.  The solid lines are finite element solu-
tions for a 20-ft long W16×26 beam subjected to equal but
opposite end moments and with lateral bracing at the
midspan inflection point.  For no bracing the buckling
moment is 1,350 kip-in.  A brace attached to one flange is
ineffective for reverse curvature because twist at midspan is
not prevented.  If lateral bracing is attached to both flanges,
the buckling moment increases nonlinearly as the brace
stiffness increases to 24 kips/in., the ideal value shown by
the black dot.  Greater brace stiffness has no effect because
buckling occurs between the brace points.  The ideal brace
stiffness for a beam with a concentrated midspan load is 2.6
kips/in. at Mcr = 2,920 kip-in. as shown by the dashed lines.

For the two load cases the moment diagrams between brace
points are similar, maximum moment at one end and zero
moment at the other end.  In design, a Cb value of 1.75 is
used for these cases which corresponds to an expected max-
imum moment of 2,810 kip-in.  The double curvature case
reached a maximum moment 25 percent higher because of
warping restraint provided at midspan by the adjacent ten-
sion flange.  In the concentrated load case, no such restraint
is available since the compression flanges of both unbraced
segments are adjacent to each other.  On the other hand, the
brace stiffness at each flange must be 9.2 times the ideal
value of the concentrated load case to achieve the 25 per-
cent increase.  Since warping restraint is usually ignored in
design Mcr = 2,810 kip-in. is the maximum design moment.
At this moment level, the double curvature case requires a
brace stiffness of 5.6 kips/in. which is about twice that
required for the concentrated load case.  The results in Fig-
ure 10 show that not only is it incorrect to assume that an
inflection point is a brace point but also that bracing
requirements for beams with inflection points are greater
than cases of single curvature.  For other cases of double
curvature, such as uniformly loaded beams with end
restraint (moments), the observations are similar.  

Up to this point, only beams with a single midspan lateral
brace have been discussed.  The bracing effect of a beam
with multiple braces is shown in Figure 11.  The response
of a beam with three equally spaced braces is shown by the
solid line.  When the lateral brace stiffness, βL, is less than
0.14 kips/in., the beam will buckle in a single wave.  In this
region a small increase in brace stiffness greatly increases
the buckling load.  For 0.14 < βL < 1.14, the buckled shape
switches to two waves and the relative effectiveness of the
lateral brace is reduced.  For 1.4 < βL < 2.75, the buckled
shape is three waves.  The ideal brace stiffness is 2.75
kips/in. at which the unbraced length can be considered 10
ft.  For the 20-ft span with a single brace at midspan dis-
cussed previously which is shown by the dashed line, a

Fig. 9. Tipping effect.

Fig. 10. Beams with inflection points.

Fig. 11. Multiple lateral bracing.
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brace stiffness of only 1.6 kips/in. was required to reduce
the unbraced length to 10 ft.  Thus the number of lateral
braces along the span affects the brace requirements. Simi-
lar behavior has been derived for columns (Timoshenko and
Gere, 1961) where changing from one brace to three braces
required an increase in ideal column brace stiffness of 1.71,
which is the same as that shown in Figure 11 for beams,
2.75/1.6 = 1.72.   

Yura and Phillips (1992) report the results of a test pro-
gram on the lateral and torsional bracing of beams for com-
parison with the theoretical studies presented above. Some
typical test results show good correlation with the finite ele-
ment solutions in Figure 12.  Since the theoretical results
were reliable, significant variables from the theory were
included in the development of the design recommenda-
tions given in the following section.  In summary, moment
gradient, brace location, load location, brace stiffness and
number of braces affect the buckling strength of laterally
braced beams.  The effect of cross-section distortion can be
effectively eliminated by placing the lateral brace near the
top flange.  

Lateral Brace Design

In the previous section it was shown that the buckling load
increases as the brace stiffness increases until full bracing
causes the beam to buckle between braces. In many
instances the relationship between bracing stiffness and
buckling load is nonlinear as evidenced by the response
shown in Figure 11 for multiple braces.  A general design
equation has been developed for braced beams, which gives
good correlation with exact solutions for the entire range of
zero bracing to full bracing (Yura et al., 1992). That braced
beam equation is applicable to both continuous and discrete
bracing systems, but it is fairly complicated.  In most design
situations full bracing is assumed or desired, that is, buck-
ling between the brace points is assumed. For full bracing,

a simpler design alternative based on Winter’s approach
was developed (Yura et al., 1992) and is presented below.

For elastic beams under uniform moment, the Winter
ideal lateral brace stiffness required to force buckling
between the braces is 

βi = NiPf/Lb

where 
Pf = π2EIyc/Lb

2

Iyc = out-of-plane moment of inertia of the compression
flange which is Iy/2 for doubly symmetric cross sec-
tions 

Ni = coefficient depending on the number of braces n
within the span, as given in Table 1 (Winter, 1960)
or approximated by Ni = 4 - (2/n).  

The Cb factor given in design specifications for nonuni-
form moment diagrams can be used to estimate the
increased brace requirements for other loading cases.  For
example, for a simply supported beam with a load and brace
at midspan shown in Figure 7, the full bracing stiffness
required is 1.56 times greater than the uniform moment
case. The value of Cb equal to 1.75 for this loading case pro-
vides a conservative estimate of the increase. An additional
modifying factor Cd = 1 + (MS/ML)2 is required when there
are inflection points along the span (double curvature),
where MS and ML are the maximum moments causing com-
pression in the top and bottom flanges as shown in 
Figure 13.  The moment ratio must be equal to or less than
one, so Cd varies between 1 and 2.  In double curvature
cases lateral braces must be attached to both flanges.  Top
flange loading increases the brace requirements even when
bracing is provided at the load point.  The magnitude of the
increase is affected by the number of braces along the span
as given by the modifying factor CL = 1 + (1.2/n).  For one
brace CL = 2.2, however, for many braces top flange load-
ing has no effect on brace requirements, i.e., CL = 1.0.

In summary, a modified Winter’s ideal bracing stiffness
can be defined as follows:

Fig. 12. Lateral bracing tests. Fig. 13. Double curvature.
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For the W12x14 beams laterally braced at midspan
shown in Figure 12, Lb = 144 in., Ni = 2, Cb = 1.75, CL = 1
+ 1.2/1 = 2.2, and Pf = π2 (29,000) (2.32/2)/(144)2 = 
16.01 kips.  Therefore, the lateral brace stiffness, βi* is
0.856 kips/in. which is shown by the * in Figure 12.  Equa-
tion 1 compares very favorably with the test results and
with the finite element results.  For design, the ideal stiff-
ness given by Equation 1 must be doubled for beams with
initial out-of-straightness so brace forces can be maintained
at reasonable levels as discussed earlier. The brace force
requirement for beams follows directly from the column 
Fbr = 0.01P for discrete braces given earlier.  The column
load P is replaced by the equivalent compressive beam
flange force, either (CbPf) or Mf/h, where Mf is the maxi-
mum beam moment and h is the distance between flange
centroids.  The Mf/h estimate of the flange force is applica-
ble for both the elastic and inelastic regions. For relative
bracing the force requirement for beams is 0.004P (adjusted
by CL and Cd), which follows directly from the relative

brace requirements for columns (Yura, 1995).  The lateral
brace design recommendations, given in Chart 1, are based
on an initial out-of-straightness of adjacent brace points of
Lb/500. For discrete braces the combined values of Ni and
CL vary between 4.0 and 4.8 for all values of n, so Equation
2 can be simplified for all situations to βL* = 10Mf/hLb for
single curvature and βL* = 20Mf/hLb for double curvature.
For relative bracing Equation 2 becomes 4Mf/hLb for single
curvature and CL= 2.0.

Some adjustments to the design requirements are neces-
sary to account for the different design code methodologies,
i.e. allowable stress design, load factor design, etc.  In
AASHTO-LFD and AISC-LRFD, Mf is the factored
moment and in Allowable Stress Design, Mf is based on
service loads.  The CbPf form of Equation 2 can be used
directly for all specifications because it is based on geo-
metric properties of the beam, i.e. βL ≥ βL* where βL is the
brace stiffness provided.  The brace strength requirements,
Equations 3 and 4, can also be used directly since the design
strengths or resistances given in each code are consistent
with the appropriate factored or service loads.  Only the
Mf/h form of Equation 2, which relies on the applied load
level used in the structural analysis must be altered as fol-
lows:

AISC-LRFD: βL≥βL*/φ where φ = 0.75 is recommended
AISC-ASD:  βL ≥ 2βL* where 2 is a safety factor ≡

(load factor = 1.5)/φ
AASHTO-LFD:  βL ≥ βL* no change

The discrete and relative lateral bracing requirements are
illustrated in the following two design examples.

Lateral Brace Design Examples  

Two different lateral bracing systems are used to stabilize
five composite steel plate girders during bridge construc-
tion: a discrete bracing system in Example 1 and relative
bracing in Example 2.  The AASHTO-Load Factor Design
Specification is used.  Each brace shown dashed in Exam-
ple 1 controls the lateral movement of one point along the
span, whereas the diagonals in the top flange truss system
shown in Example 2 control the relative lateral displace-
ment of two adjacent points.  Relative systems require less
than 1/2 the brace force and from 1/2 to 1/4 of the stiffness for
discrete systems.  In both examples, a tension type struc-
tural system was used but the bracing formulas are also
applicable to compression systems such as K-braces.  In
Example 1 the full bracing requirements for strength and
stiffness given by Equations 2 and 3 are based on each
brace stabilizing five girders.  Since the moment diagram
gives compression in one flange, Cd for double curvature is
not considered, i.e. Cd = 1.0.  

In both examples, stiffness controls the brace area, not
the strength requirement.  In Example 1 the stiffness crite-

Chart 1. Lateral Bracing Design Requirements

Stiffness:

βL* = 2Ni(CbPf)CLCd/Lb or 2Ni (Mf/h)CLCD/Lb (2)

where 
Ni = 4 - (2/n) or the coefficient in Table 1 for discrete

bracing; = 1.0 for relative bracing 
CbPf = Cbπ2EIyc/Lb

2; or = (Mf/h) where Mf is the maximum
beam moment

CL = 1 + (1.2/n) for top flange loading; = 1.0 for other
loading

Cd = 1 + (MS/ML)2 for double curvature;  =  1.0 for sin-
gle curvature

n = number of braces

Strength:
Discrete bracing: Fbr = 0.01CLCdMf/h (3)
Relative bracing: Fbr = 0.004CLCdMf/h (4)

Table 1. Brace Coefficient 
Number 

 of Braces 
 Brace  

Coefficient 

1 2 

2 3  

3 3.41 

4 3.63 

Many 4.0 
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rion required a brace area 3.7 times greater than the strength
formula.  Even if the brace was designed for 2 percent of the
compression flange force (a commonly used bracing rule),
the brace system would be inadequate.  It is important to
recognize that both stiffness and strength must be adequate
for a satisfactory bracing system.

TORSIONAL BRACING OF BEAMS

Examples of torsional bracing systems were shown in Fig-
ure 3.  Twist can be prevented by attaching a deck to the top
flange of a simply supported beam, by floor beams attached
near the bottom tension flange of through girders or by
diaphragms located near the centroid of the stringer.  Twist
can also be restrained by cross frames that prevent the rela-
tive movement of the top and bottom flanges.  The effec-
tiveness of torsional braces attached at different locations
on the cross section will be presented.

Behavior

The finite element solution for a simply supported beam
with a top flange torsional brace attached at midspan is
shown in Figure 14.  The buckling strength-brace stiffness
relationships are non-linear and quite different from the top
flange lateral bracing linear response given in Figure 6 for
the same beam and loading.  For top flange lateral bracing
a stiffener has no effect.  A torsional brace can only increase
the buckling capacity about fifty percent above the
unbraced case if no stiffener is used.  Local cross-section
distortion at midspan reduces the brace effectiveness.  If a
web stiffener is used with the torsional brace attached to the
compression flange, then the buckling strength will increase
until buckling occurs between the braces at 3.3 times the
unbraced capacity.  The ideal or full bracing requires a stiff-
ness of 1,580 in.-k/radian for a 4 × 1/4 stiffener and 3,700 in.-
k/radian for a 2.67 × 1/4 stiffener.  Tong and Chen (1988)
developed a closed form solution for ideal torsional brace
stiffness neglecting cross-section distortion that is given by

the solid dot at 1,450 in-k/radian in Figure 14.  The differ-
ence between the Tong and Chen solution and the BASP
results is due to web distortion.  Their solution would
require a 6 × 3/8 stiffener to reach the maximum buckling
load.  If the Tong and Chen ideal stiffness (1,450 in.-
k/radian) is used with a 2.67 × 1/4 stiffener, the buckling load
is reduced by 14 percent; no stiffener gives a 51 percent
reduction.

Figure 15 shows that torsional bracing on the tension
flange (dashed line) is just as effective as compression
flange bracing (solid line), even with no stiffener.  If the
beam has no stiffeners, splitting bracing equally between
the two flanges gives a greater capacity than placing all the
bracing on just one flange.  The dot-dash curve is the solu-
tion if transverse stiffeners prevent web distortion.  The dis-
tortion does not have to be gross to affect strength, as shown
in Figure 16 for a total torsional brace stiffness of 3,000 in.-
k/radian.  If the W16×26 section has transverse stiffeners,
the buckled cross section at midspan has no distortion as
shown by the heavy solid lines and Mcr = 1,582 kip-in.  If
no stiffeners are used, the buckling load drops to 1,133 kip-
in., a 28 percent decrease, yet there is only slight distortion
as shown by the dashed shape.  The overall angle of twist

Fig. 14. Torsional brace at midspan. Fig. 16. Effect of cross-section distortion.

Fig. 15. Effect of torsional brace location.
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for the braced beam is much smaller than the twist in the
unbraced case (dot-dash curve).  

The effect of load position on torsionally braced beams is
not very significant, as shown in Figure 17.  The difference
in load between the curves for top flange and centroid load-
ing for braced beams is almost equal to the difference in
strength for the unbraced beams (zero brace stiffness).  The
ideal brace stiffness for top flange loading is only 18 per-
cent greater than for centroidal loading. For lateral bracing
(see Figure 8), the ideal brace stiffness for top flange load-
ing is 2.5 times that for centroidal loading.

Figure 18 summarizes the behavior of a 40-ft span with
three equal torsional braces spaced 10-ft apart.  The beam
was stiffened at each brace point to control the distortion.
The response is non-linear and follows the pattern dis-
cussed earlier for a single brace.  For brace stiffness less
than 1,400 in.-k/radian, the stringer buckled into a single
wave.  Only in the stiffness range of 1,400-1,600 in.-
k/radian did multi-wave buckled shapes appear.  The ideal
brace stiffness at each location was slightly greater than
1,600 in.-k/radian.  This behavior is very different than the
multiple lateral bracing case for the same beam shown in
Figure 11.  For multiple lateral bracing the beam buckled

into two waves when the moment reached 600 kip-in. and
then into three waves at Mcr = 1,280 kip-in.  For torsional
bracing, the single wave controlled up to Mcr = 1,520 kip-
in.  Since the maximum moment of 1,600 kip-in. corre-
sponds to buckling between the braces, it can be assumed,
for design purposes, that torsionally braced beams buckle in
a single wave until the brace stiffness is sufficient to force
buckling between the braces.  The figure also shows that a
single torsional brace at midspan of a 20-ft span (unbraced
length = 10 ft) requires about the same ideal brace stiffness
as three braces spaced at 10 ft.  In the lateral brace case the
three brace system requires 1.7 times the ideal stiffness of
the single brace system, as shown in Figure 11.

Tests have been conducted on torsionally braced beams
with various stiffener details which are presented elsewhere
(Yura and Phillips, 1992).  The tests show good agreement
with the finite element solutions.    

Buckling Strength of Torsionally Braced Beams   

Taylor and Ojalvo (1966) give the following exact equation
for the critical moment of a doubly symmetric beam under
uniform moment with continuous torsional bracing 

where
Mo = buckling capacity of the unbraced beam, kip-in. 
β
_

b = attached torsional brace stiffness (in.-k/rad per in.
length)  

Equation 5, which assumes no cross section distortion, is
shown by the dot-dash line in Figure 19.  The solid lines are
finite element results for a W16×26 section with no stiffen-
ers and spans of 10 ft, 20 ft, and 30 ft under uniform
moment with braces attached to the compression flange.
Cross-section distortion causes the poor correlation
between Equation 5 and the BASP results.  Milner (1977)
showed that cross-section distortion could be handled by

Fig. 17. Effect of load position.

Fig. 18. Multiple torsional braces.

M M EIcr o b y= +2 β (5)

Fig. 19. Approximate buckling formula.



using an effective brace stiffness, βT, which has been
expanded (Yura et al., 1992) to include the effect of stiffen-
ers and other factors as follows:   

where βb is the stiffness of the attached brace, βsec is the
cross-section web stiffness and βg is the girder system stiff-
ness.  The effective brace stiffness is less than the smallest
of βb, βsec or βg.

The torsional brace stiffness, βb, of some common tor-
sional brace systems is given in Figures 20 and 21.  The
choice between the two cases shown in Figure 20 is based
on the deck details.  If the distance between the flanges of
adjacent girders is maintained constant by a floor slab or
decking, then all the girders must sway in the same direc-
tion and the diaphragm stiffness is 6EIb/S.  On the other
hand, if adjacent compression flanges can separate as
shown for the through girders, then the diaphragm stiffness
will be 2EIb/S. The torsional bracing stiffnesses shown in
Figure 20 assume that the connection between the girder
and the brace can support a bracing moment Mbr.  If par-
tially restrained connections are used, their flexibility
should also be included in Equation 6.  Elastic truss analy-
ses were used to derive the stiffness of the cross frame sys-
tems shown in Figure 21.  If the diagonals of an X-system
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Fig. 20. Torsional bracing stiffness.

Fig. 21. Stiffness formulas for twin girder cross frames.

1 1 1 1

 T  b   g

 =   +   +  
β β β βsec

(6)



are designed for tension only, then horizontal members are
required in the system.  In the K-brace system a top hori-
zontal is not required. 

In cross frames and diaphragms the brace moments Mbr

are reacted by vertical forces on the main girders as shown
in Figure 22.  These forces increase some main girder
moments and decrease others.  The effect is greater for the
twin girder system B compared to the interconnected sys-
tem A.  The vertical couple causes a differential displace-
ment in adjacent girders which reduces the torsional
stiffness of the cross frame system.  For a brace only at
midspan in a twin girder system the contribution of the in-
plane girder flexibility to the brace system stiffness is

where 
Ix = strong axis moment of inertia of one girder, in.4

L = the span length, in.  
As the number of girders increase, the effect of girder

stiffness will be less significant.  In multi-girder systems,
the factor 12 in Equation 7 can be conservatively changed
to 24 (ng - 1)2/ng where ng is the number of girders.  For
example, in a six-girder system the factor becomes 100 or
more than eight times the twin girder value of 12.  Helwig,
Yura, and Frank (1993) have shown that for twin girders the
strong axis stiffness factor βg is significant and Equation 7
can be used even when there is more than one brace along
the span.

Cross-section distortion can be approximated by consid-
ering the flexibility of the web, including full depth stiffen-
ers if any, as follows:

where  
tw = thickness of web, in.
h = distance between flange centroids, in.

ts = thickness of stiffener, in.
bs = width of stiffener, in. 
N = contact length of the torsional brace as shown in

Figure 23, in. 
For continuous bracing use an effective unit width (1 in.)

instead of (N + 1.5h) in Equation 8 and β
_

b in place of βb in
Equation 6 to get β

_
T.  The dashed lines in Figure 19 based

on Equations 5 and 6 show good agreement with the finite
element solutions.  For the 10-ft and 20-ft spans, the finite
element analyses and Equation 6 are almost identical.
Other cases with discrete braces and different size stiffeners
also show good agreement.  

In general, stiffeners or connection details such as clip
angles can be used to control distortion.  For decks and
through girders, the stiffener must be attached to the flange
that is braced.  Diaphragms are usually W shapes or chan-
nel sections connected to the web of the stringer or girders
through clip angles, shear tabs or stiffeners.  When full
depth stiffeners or connection details are used to control
distortion, the stiffener size that gives the desired stiffness
can be determined from Equation 8.  For partial depth stiff-
ening illustrated in Figure 24, the stiffnesses of the various
sections of the web (βi = βc, βs, or βt) can be evaluated sep-
arately using Equation 9 with hi = hc, hs, or ht, 

and then combined as follows:  

The portion of the web within hb can be considered infi-
nitely stiff.  The unstiffened depths, hc and ht, are measured
from the flange centroid.  For rolled sections, if the

ENGINEERING JOURNAL / FIRST QUARTER / 2001 / 21

Fig. 23. Effective web width.Fig. 22. Beam load from braces.
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diaphragm connection extends over at least one-half the
beam depth, then cross-section distortion will not be signif-
icant because the webs are fairly stocky compared to built-
up sections.  The depth of the diaphragm, hs, can be less
than one-half the girder depth as long as it provides the nec-
essary stiffness to reach the required moment. Cross frames
without web stiffeners should have a depth hs of at least 3/4
of the beam depth to minimize distortion.  The location of a
diaphragm or cross frame on the cross section is not very
important; i.e. it does not have to be located close to the
compression flange.    The stiffeners or connection angles
do not have to be welded to the flanges when diaphragms
are used. For cross frames, βs should be taken as infinity, as
only ht and hc will affect distortion.  If stiffeners are
required for flange connected torsional braces on rolled
beams, they should extend at least 3/4 depth to be fully effec-
tive. 

Equation 5 was developed for doubly-symmetric sec-
tions.  The torsional bracing effect for singly-symmetric
sections can be approximated by replacing Iy in Equation 5
with Ieff defined as follows:

where Iyc and Iyt are the lateral moment of inertia of the
compression flange and tension flange respectively, and c
and t are the distances from the neutral bending axis to the
centroid of the compression and tension flanges respec-
tively, as shown in Figure 25(a).  For a doubly symmetric
section, c = t and Equation 11 reduces to Iy.  A comparison
between the BASP solutions and Equations 5 and 11 for
three different girders with torsional braces is shown in Fig-
ure 25(b).  The curves for the W16×26 section show very
good agreement.  In the other two cases, one of the flanges
of the W16×26 section was increased to 10 × ½. In one case
the small flange is in tension and in the other case, the com-
pression flange is the smallest.  In all cases Equation 11 is
in good agreement with the theoretical buckling load given
by the finite element analyses.

Equation 5 shows that the buckling load increases with-
out limit as the continuous torsional brace stiffness
increases. When enough bracing is provided, yielding will
control the beam strength so Mcr cannot exceed My, the
yield or plastic strength of the section. It was found that
Equation 5 for continuous bracing could be adapted for dis-
crete torsional braces by summing the stiffness of each
brace along the span and dividing by the beam length to get
an equivalent continuous brace stiffness.  In this case Mcr

will be limited to Mbp, the moment corresponding to buck-
ling between the brace points.  By adjusting Equation 5 for
top flange loading and other loading conditions, the follow-
ing general formula can be used for the buckling strength of
torsionally braced beams: 

where 
Cbu and Cbb = two limiting Cb factors corresponding to an
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Fig. 24.  Partially stiffened webs.

Fig. 25. Singly-symmetric girders.
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unbraced beam (very weak braces) and an
effectively braced beam (buckling between
the braces) 

CT = top flange loading modification factor; CT =
1.2 for top flange loading and CT = 1.0 for
centroidal loading 

βT = equivalent effective continuous torsional
brace stiffness (in.-k/radian/in. length) from
Equation 6.  The following two cases illus-
trate the accuracy of Equation 12. 

For the case of an unbraced beam with a concentrated
load at the midspan as shown in Figure 26, Cbu = 1.35
(Galambos, 1988).  Usually designers conservatively use 
Cb = 1.0 for this case.  For the beam assumed braced at mid-
span, Cbb = 1.75 for a straight-line moment diagram with
zero moment at one end of the unbraced length.  These two
values of Cb are used with any value of brace torsional stiff-
ness in Equation 12. For accuracy at small values of brace
stiffness the unbraced buckling capacity CbuMo should also
consider top flange loading effects.  Equation 12 shows
excellent agreement with the finite element solutions.  With
no stiffener, βsec from Equation 8 is 114 in.-k/radian, so the
effective brace stiffness βT from Equation 6 cannot be
greater than 114 regardless of the brace stiffness magnitude
at midspan.  Equations 6, 8 and 12 predict the buckling very
accurately for all values of attached bracing, even at very
low values of bracing stiffness.  A 4 × 1/4 stiffener increased
βsec from 114 to 11,000 in.-k/radian.  This makes the effec-
tive brace stiffness very close to the applied stiffness, βb.
With a 4 × 1/4 stiffener, the effective stiffness is 138 in.-
k/radian if the attached brace stiffness is 140 in.-k/radian.
The bracing equations can be used to determine the required
stiffener size to reduce the effect of distortion to some tol-
erance level, say 5 percent.

In Figure 27 the approximate buckling strength, Equa-
tion 12, and the theoretical solution are compared for the
case of a concentrated midspan load at the centroid with

three equally spaced braces along the span. Stiffeners at the
three brace points prevent cross-section distortion so β

_
T =

(3βb/288 in.). Two horizontal cutoffs for Equation 12 corre-
sponding to the theoretical moment at buckling between the
braces are shown. The K = 1.0 limit assumes that the criti-
cal unbraced length, which is adjacent to the midspan load,
is not restrained by the more lightly loaded end spans.  To
account for the effect of the end span restraint, an effective
length factor K = 0.88 was calculated using the procedure
given in the SSRC Guide (Galambos, 1988).  Figure 27
shows that it is impractical to rely on side span end restraint
in determining the buckling load between braces.  An infi-
nitely stiff brace is required to reach a moment correspon-
ding to K = 0.88.  If a K factor of 1 is used in the buckling
strength formula, the comparison between Equation 12 and
the finite element analysis is good.  Equation 12 should not
be used with K factors less than 1.0; the results will be
unconservative at moments approaching the full bracing
case. Similar results were obtained for laterally braced
beams (Yura et al., 1992).

Torsional Brace Design  

There are two basic torsional bracing systems shown in Fig-
ures 20 and 21: bending members represented by
diaphragms, decks or floor beams; and trusses for the cross
frames.  The two systems can be correlated by noting that
Mbr = Fbrhb, where hb is the depth of the cross frame.  The
term “brace forces” used hereinafter refers to both Mbr and
Fbr. Equation 12 gives the relationship between brace stiff-
ness and Mcr for an ideally straight beam.  For beams with
an initial twist, θo, it is assumed that the brace design
requirements are affected in a similar manner as that devel-
oped for lateral bracing of beams with initial out-of-
straightness. The required brace stiffness β

_
∗
T, which must be

at least twice the ideal stiffness to keep brace forces small,
can be obtained by rearranging Equation 12: 

ENGINEERING JOURNAL / FIRST QUARTER / 2001 / 23

Fig. 26. Effect of stiffener. Fig. 27. Multiple discrete braces.



For discrete braces β∗
T = β

_
∗
T L/n.  The torsional brace

strength requirement is Mbr = β*
T θo.  An initial twist, θo =

0.002Lb/h is recommended. This value is consistent with the
initial lateral displacement of 0.002Lb used in the develop-
ment of the lateral bracing requirements.   Equation 13 can
be conservatively simplified by neglecting the CbuMo term
which will be small compared to Mcr at full bracing and by
taking the maximum CT, which is 1.2 for top flange loading.
The simplified stiffness and brace force requirements are
given in Chart 2.

The torsional brace requirements, Equations 14 and 15,
must be adjusted for the different design specifications as

discussed earlier for the lateral brace requirements:
AISC-LRFD: βT ≥ β∗

T/φ where φ = 0.75;Mbr—no change
AISC-ASD: βT ≥ 3β∗

T where 3 = (1.5)2/φ; Mallow≥1.5Mbr

AASHTO-LFD:βT ≥ β∗
T no change; Mbr—no change

Torsional Brace Design Examples

In Example 3 a diaphragm torsional bracing system is
designed by the AASHTO-LFD specification to stabilize
the five steel girders during construction as described in
Examples 1 and 2 for lateral bracing.  The strength crite-
rion, Equation 15, is initially assumed to control the size of
the diaphragm. Both yielding and buckling of the
diaphragm are checked and a C10×15.3 section has suffi-
cient strength to brace the girders. It appears that a smaller
channel section could be used but stiffness must also be
checked. The stiffness of the C10×15.3 section, 195,500
in.-k/radian, is much greater than required, but the connec-
tion to the web of the girder and the in-plane girder flexi-
bility also affect the stiffness.  In this example, the in-plane
girder stiffness is very large and its affect on the brace sys-
tem stiffness is only 2 percent.  In most practical designs,
except for twin girders, this effect can be ignored.  If a full
depth connection stiffener is used, a 3/8 × 31/2 - in. plate is
required.  The weld design between the channel and the
stiffener, which is not shown, must transmit the bracing
moment of 143 kip-in. If a smaller diaphragm is used, the
stiffener size will increase. 

The 40-in. deep cross frame design in Example 4
required a brace force of 3.6 kips from Equation 15.  The
factored girder moment of 1,211 kip-ft. gives an approxi-
mate compression force in the girder of 1,211 × 12/49 = 296
kips.  Thus, the brace force is 1.2 percent of the equivalent
girder force in this case.  The framing details provide suffi-
cient stiffness.  The 3-in. unstiffened web at the top and bot-
tom flanges was small enough to keep βsec well above the
required value.  For illustration purposes, a 30-in. deep
cross frame attached near the compression flange is also
considered.  In this case, the cross frame itself provides a
large stiffness, but the 14-in. unstiffened web is too flexible.
Cross-section distortion reduces the system stiffness to
16,900 in.-k/radian, which is less than the required value.  If
this same cross frame was placed at the girder midheight,
the two 7-in. unstiffened web zones top and bottom would
be stiff enough to satisfy the brace requirements.  For a
fixed depth of cross frame, attachment at the mid-depth pro-
vides more effective brace stiffness than attachment close to
either flange. 

CLOSING REMARKS AND LIMITATIONS

Two general structural systems are available for bracing
beams, lateral systems and torsional systems. Torsional
bracing is less sensitive than lateral bracing to conditions
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Chart 2. Torsional Bracing Design Requirements

Stiffness:

Strength:

where    
Mf = maximum beam moment
Ieff = Iyc + (t/c)Iyt; = Iy for doubly symmetric sections

(see Figure 25 )
Cbb = moment diagram modification factor for the full

bracing condition
L = span length
Lb = unbraced length
n = number of intermediate braces along the span

The available effective stiffness of the brace system βT is
calculated as follows:

where 
hi = hc, hs or ht

N = bearing length (see Figure 23)
βb = stiffness of attached brace (see Figs. 20 and 21);
βg = 24(ng - 1)2S2EIx/(L3ng) (18)   

where ng is the number of  interconnected girders 
(see Fig. 22)
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such as top flange loading, brace location, and number of
braces, but more affected by cross-section distortion.  The
bracing recommendations can be used in the inelastic buck-
ling range up to Mp if the Mf form of the lateral brace stiff-
ness equation is used (Ales and Yura, 1993).

The recommendations do not address the bracing
requirements for moment redistribution or ductility in seis-
mic design.  The bracing formulations will be accurate for
design situations in which the buckling strength does not
rely on effective lengths less than one.  Lateral restraint pro-
vided by lightly loaded side spans should, in general, not be
considered because the brace requirements would be much
larger than the recommendations herein.  Also, laboratory
observations in the author’s experience (usually unplanned
failures of test setups) show that brace forces can be very
large when local flange or web buckling occurs prior to lat-
eral instability.  After local buckling, the cross section is
unsymmetrical and vertical loads develop very significant
out of plane load components.  The bracing recommenda-
tions do not address such situations.

In the 1999 AISC-LRFD Specification (AISC, 1999),
stability bracing requirements are specified for the first time
for frames, columns, and beams.  The research and recom-
mendations presented in this paper provide a background
and commentary for the beam bracing provisions that were
adopted in that Specification.   
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