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It is the intent of this informal note to provide some his
torical background on the formulae giving effective-length 
factors, or K-factors, in the simple cases where such for
mulae are applicable. 

It has been known for a long time that, within a frame, a 
column may have an effective length larger or smaller than 
its actual length, that is, a K-factor smaller or greater than 
one. This is a subject of much concern to structural engi
neers, and as such, it has received a lot of attention. How
ever, it is difficult enough not to have been introduced to 
the AISC Specification until the sixth edition of the Man
ual (1963). Earlier specifications, as late as the revision 
of 1949 included in the fifth edition (1955), did not men
tion the "KLIr" ratio of a column, but instead its "//r" 
(which was not to exceed 120 for primary members). Mo
ment amplification in beam-columns was also not men
tioned at that time. Forty years later, Chapter C, "Frames 
and Other Structures," covers two and a half pages of the 
LRFD Specification and thirteen pages are devoted to its 
commentary (AISC, 1994). 

1. THE "EXACT" FORMULAE FOR 
CONTINUOUS FRAMES 

Building frames fall into two general classes, "braced 
frames" in which sidesway is prevented by braces or lat
eral supports, and "unbraced frames" in which it is resisted 
by the frame's own bending stiffness. 

Two "exact" equations may be derived with the help 
of not less than nine rather restrictive assumptions. These 
assumptions are listed in the AISC LRFD Commentary 
(1994), and are discussed by McGuire (1968), who also 
gives the derivations of these equations. There is no in
dication in the literature about the authorship of either of 
these formulae, which are: 
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for braced frames and trusses, and: 

Pierre Dumonteil is a structural engineer, Englewood, CO. 

GAGB f 36 

6(GA + GB) 
K 

tan 
77 

K 

(2) 

for unbraced frames. 
The formulae make use of the restraint factors GA and 

GB at the two ends of the column section being considered. 
An end restraint factor G is defined as 
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Stiff beams, relative to the column, lead to small values of 
G, and, conversely, flexible beams give large G's. 

Solving for K in either one of these equations with a 
calculator is no easy task. Imagine doing it with a slide 
rule. Fortunately, Julian and Lawrence developed the two 
well-known alignment charts found in the AISC Manuals 
for the past three decades. For a braced frame or a truss, 
the effective length factor is never larger than unity and 
using K = 1 is always on the safe side. 

The problem is much more difficult to solve for an un
braced frame. The Commentary to Chapter C provides 
guidance in that respect, and the reader is strongly urged to 
refer to it. However, the alignment chart remains a useful 
tool within its range of validity. 

2. THE FRENCH "CM 66" FORMULAE 

Today's structural engineer uses a personal computer to 
run a variety of programs, and especially spreadsheets. 
With the spreadsheet application in mind, two simple for
mulae were presented (Dumonteil, 1992) to serve as the 
equivalent of the alignment charts in digital calculations. 
These two equations were originally listed in the French 
steel code or "CM 66 Rules" approved in December 1966. 
In the French text, they are given in two different forms: 
one using factors akin to the G-factors, and another one, 
also described in the 1992 paper, using flexural springs. 
The European Recommendations of 1978, the predeces
sor to Eurocode 3, list essentially the same formulae. Nei
ther the CM 66 Rules nor the European Recommendations 
give the origin of these two formulae. 

For braced frames or trusses, with sidesway effectively 
prevented, the effective length factor K is given by the 
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rather simple approximation: 

3GAGB + 1.4(GA + GB) + 0.64 
3GAGB + 2(GA + G*) + 1.28 l } 

This formula underestimates K by not more than 0.5% and 
overestimates it by less than 1.5%. 

For unbraced frames, K is approximated within 2% by 
the expression: 

„ _ I1.6GAGB + 4.0(GA + GB) + IJ , . , 
K'yJ GA + GB + 7.5 ( 5 ) 

3. DONNELL'S APPROXIMATION FOR BRACED 
FRAMES 

While the 1992 paper presenting Formulae (4) and (5) 
stated that their origin was unknown, it mentioned that 
Donnell was thought to have published an approximation 
for braced frames. Although we were not able to obtain 
a copy of the original article by L. H. Donnell, Rondal 
(1988) states that it is found in a "Reissner Anniversary 
Volume," however without giving a date. We found this 
Anniversary Volume mentioned in unrelated books, and 
its date of publication seems to be 1949. 

After some manipulation of Donnell's formula as re
ported by Rondal to use the AISC parameters G and K, 
it takes the following form: 

K = /GAGZ? + 0 . 4 3 ( G A + GZO + 0.17" 
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Such is the formula presented by Dumonteil and Valley in 
their discussion (1995) of a paper dealing with effective 
lengths. Its accuracy ranges from -0 .4 to 1.3%. 

4. NEWMARK'S WORK ON BRACED FRAMES 

Following our mention of Donnell's work, Prof. Jostein 
Hellesland sent the writer a copy of an article published 
by N.M. Newmark in 1949. In this paper, Newmark de
scribes work done in 1944 under the sponsorship of the 
Consolidated Vultee Aircraft Corporation. 

Manipulating Newmark's notations to introduce the G-
factors, Prof. Hellesland writes Newmark's formula in the 
following form: 

= / (GA+4/7T2)(Gfl +4/772) 

V (GA + 8/7r2)(Gfi + 8/TT2)
 U) 

While the accuracy of Equation (7) is remarkable, it could 
still be slightly improved if the term 4/ir2( = 0.405) is re
placed with 0.41, and Newmark's formula becomes: 

= l(GA + 0Al)(GB + 0.41) 
V(G A +0.82)(G B + 0.82) l } 

Equation (8) underestimates K by not more than 0.1% and 
overestimates it by less than 1.5%. 

From a physical standpoint, all three Equations (4), (6), 
and (8) applicable to braced frames and trusses are equally 
acceptable. Mathematically speaking, the improved New-
mark formula is slightly more accurate. 

There is no evidence in the literature that either Donnell 
or Newmark would have published similar solutions for 
the unbraced frame problem, for which the CM 66 formula 
is a good approximation. 
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