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INTRODUCTION 

With the continuing trend of constructing taller and slender 
buildings with higher strength materials and lighter structural 
systems, modern tall steel buildings are wind sensitive struc­
tures that are prone to serviceability problems. Two important 
serviceability limit states for tall building design are lateral 
deformations and motion perceptions under wind loads. Ex­
cessive lateral deformations have been found to cause win­
dows to rack, non-structural partitions to crack and cladding 
to collapse. Exorbitant oscillations induced by turbulent wind 
have been known to cause occupant discomfort and even 
shatter windows.1'2 The functions of tall buildings may be 
disrupted due to inadequate design for serviceability. Indeed, 
the design of tall slender buildings is generally governed by 
serviceability stiffness criteria rather than by ultimate 
strength safety requirements. 

Stiffness design is the most challenging and difficult task 
in tall building design. When presented with a tall building to 
design, the structural engineer must select a suitable lateral 
load resisting system to resist wind and earthquake loads. Of 
the two lateral loads, the action of wind loads frequently 
determines the design of tall buildings. Common lateral load 
resisting systems for tall steel buildings are rigid frames, 
frames with shear trusses, outrigger trusses, tubular frames, 
and super diagonalized trusses. Often times, several prelimi­
nary structural alternatives are initially devised, and the 
choice of preliminary selection is then decided based on the 
engineer's experience, intuition and some approximate cal­
culations. Once the topology of the lateral load resisting 
system is defined, the major effort is to size the structural 
members to satisfy both static and dynamic serviceability 
performance requirements. Since tall building structures usu­
ally consist of thousands of members and are very complex 
in nature, structural engineers are faced with the problem of 
how to distribute efficiently material throughout the structure 
to limit the static wind drifts and the dynamic wind vibrations. 
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The problem can become quite complex if a large scale three 
dimensional asymmetrical building structure exhibiting tor­
sional swaying needs to be considered with multiple stiffness 
constraints under multiple loading conditions. Out of the 
many given structural members, one needs to determine 
which members are critical and to what extent the member 
sizes should be adjusted. Moreover, any modification of 
member sizes requires the structure to be reanalyzed. This 
traditional iterative resizing process is often tedious and time 
consuming. 

With the emergence of structural optimization technology, 
the aforementioned resizing design process can be made in 
an automatic fashion and thus saving much design time. 
Structural optimization is nothing but a numerical tool that 
replaces the conventional trial-and-error design approach by 
a systematic goal-oriented design process. In such an optimi­
zation procedure, the numeric intensive tasks of the analysis-
design cycle are formalized and the optimal member sizes are 
automatically sought while specified design constraints are 
simultaneously satisfied. In recent years, several design pro­
fessionals3"6 have developed ad hoc optimization software for 
sizing members of tall steel building frameworks to satisfy 
static wind drift. Although their methods are quite efficient, 
they are useful only for building structures with single dis­
placement constraint problems. A number of researchers have 
developed formal optimization techniques for large-scale 
structures.7"9 However, their efforts focus mostly on the opti­
mization theory with little practical applications to realistic 
tall building structures. 

Although it has long been recognized that structural opti­
mization techniques have much to offer in engineering prac­
tice, the application of such technology for large scale build­
ing frameworks has been quite limited to date. Not until 
recently, the author has successfully developed an efficient 
optimization technique for the sizing design of tall practical 
building frameworks subject to multiple drift constraints and 
the use of discrete standard steel sections.10,11 In this paper, 
the author intends to extend the optimization technology to 
include both static wind drift and dynamic natural period 
constraints. The design optimization problem is first explic­
itly defined and then the details of the optimization technique 
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are developed. Two design examples are presented in the 
paper. The first example is a simple design problem that is 
used to illustrate the algorithm of the optimization technique. 
The second example is a full-scale, 50-story practical build­
ing structure through which the effectiveness and practicality 
of the automated optimal resizing technique are illustrated. 

OPTIMAL DESIGN FORMULATION 

Unlike the conventional design method, the formal optimiza­
tion approach requires the designer to define explicitly a set 
of design variables, an objective function to be optimized and 
some explicit design constraints. In fact, a proper formulation 
of the optimal design problem is a key to good solutions. A 
good problem formulation should not only represent properly 
the current design problem but should also maintain a high 
level of accuracy during the evolution process of the design 
solution. Formulation details of the stiffness design of tall 
buildings are discussed as follows. 

Design Variables and Objective 

For a skeletal framework with a prescribed geometric layout, 
the design variables are the six basic cross sectional properties 
of each member, i.e., the axial area (A), two shear areas (Ay, 
Az) and three moments of inertia (Ix, IY, /z)- I

n this regard, a 
structure with N structural members should be theoretically 
described by 67V design variables. However, since commer­
cially available standard steel sections are to be used for the 
design, section properties such as Ay, Az, Ix, IY, Iz can be 
accurately related to the cross sectional area A by certain 
functions through regressional analysis.10 Linear relation­
ships between reciprocal section properties are herein 
adopted and expressed as 

(la) 

(lb) 

(lc) 

(Id) 

(le) 

where 

C and C'= regressional constants derived under the 
assumption that the cross-section maintains 
within a constant shape group as it changes size 

Figure 1 shows graphically the linear reciprocal relationships 
between the strong moment of inertia Iz and cross sectional 
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area A for W14, W24, W30 and W36 wide-flange sections 
from the AISC-LRFD design manual.12 Using the regres­
sional relationships, Equation 1, the six basic design variables 
(i.e., A, Ay, Az, Ix, IY, Iz) can be reduced to one cross sectional 
area variable (i.e., A) for each member. 

If the topology of a building structural system is prede­
fined, the design objective for a steel framework having / = 1, 
2,..., N members can be expressed as 

jT WjAj —» minimum (2) 

where 

A,- = the cross section area for member / 
Wj = the corresponding material weight/cost coefficient per 

unit cross section area 

Stiffness Design Constraints 

A constraint is defined as a restriction that must be satisfied 
for a design to be acceptable or feasible. There are normally 
two types of serviceability performance constraints to be 
considered in tall building design.13"16 The first type of con-
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Fig. 1. Regressional relationships between 
strong moment of inertia Iz and cross-section 

area Afar selected AISC W-shapes. 
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straints concerns with the static lateral deformations under 
wind loads. The second type deals with the dynamic wind 
motion perception. 

1. Static Wind Drift. 

Excessive magnitudes of lateral wind deflections may cause 
objectionable damage to nonstructural components or in­
crease the chance of building instability. The static service­
ability of a building can be secured by carefully controlling 
lateral deflections within certain allowable limits. Typically, 
two kinds of lateral deflections need be considered. One is the 
overall building drift, defined as the total lateral deflection at 
the roof top divided by the building height, H. Another is the 
interstory drift, which is the differential lateral translation of 
two adjacent floor levels per story height, h. While the overall 
building drift represents the average lateral translation of a 
building under wind effects, nonstructural damage is more 
dependent on interstory drift. The normally accepted range of 
drift ratio limits for buildings appears to be Hso to Hso, with 
^oo being typical.13 

Consider a general 3D steel building framework having 
i = 1, 2,. . . , Nmembers (or member fabrication groups),) = 1, 
2,. . . , M storys, k = 1,2,..., S column lines under / = 1,2,..., 
L lateral loading conditions. The drift constraints can be 
expressed as 

Mxmx MyftiY Mzmz 

Gly Ely Ely 
dx (4) 

where 

E,G 

Fx, FY, FZ, 

= length of member * 
= axial and shear elastic material moduli 
= axial and shear areas for the cross-section 
= torsional and flexural moments of inertia for 

the cross-section 

Mx, My, Mz = member forces and moments due to the 
actual wind loads 

mx, mY, mz = member forces and moments due to a unit 
virtual load applied at the location of and in 
the sense of 8 

Given a particular section type for each member, one can 
substitute the regressional relationships Equation 1 into Equa­
tion 4 to express instantaneously the displacement 8 as ex­
plicit functions of the sizing variable At alone as 

5(A,) = X - + c (5) 

dw = - <d« 

(k = 1, 2, . . . , S); (j = 1, 2, . . . , M); (/ = 1, 2,. . . , L) (3a) 

where the virtual strain energy coefficients, c, and the correc­
tion factors c[ are respectively given by 

Ci = ffek± MymyCIY+ MzmzCIZ 

VkMl 

IT 
<du

H PY/YCAY* FzfzCAz+ MxmxCa 
dx (6a) 

(k= 1,2, . . . , £ ) ; ( / = 1 , 2 , ...,L) (3b) 

Equation 3a defines interstory drift ratio dkjl, where 8 ^ and 
8*/-iz a r e t n e lateral translations on a column line k at two 
adjacent/ and) - 1 floor levels under lateral loading condition 
/, hp is the y'th story height and d? is the allowable yth story 
drift limit; Equation 3b defines the overall building drift ratio 
dmb where 8^M/is the lateral translation on column line k at 
the top floor level M under lateral loading condition /, H is 
the building height and d% is the allowable overall building 
drift limit. Note that the drift constraints Equation 3 are 
expressed in implicit form. In order to facilitate numerical 
solution of the design optimization problem, the drift con­
straints Equation 3 must be first expressed explicitly in terms 
of the design variables. 

By the principle of virtual work, a displacement of interest 
8 can be expressed as 

o ^ f'jFxfx , FYfY t Fzfz 
Jo{EA GAY GA7 

Ci •t\ 
MymyC'jY + MzmzClz 

G 
dx (6b) 

As both the interstory drift constraints Equation 3 a and the 
overall drift constraints Equation 3b are similar to each other, 
they can be simplified collectively into one single type of 
constraints for convenience of future discussion. The sub­
script (kj, I) in the drift constraints Equation 3 can be changed 
to a single subscript d to represent the dth constraint in a 
collective set of Nd drift constraints, where Nd is the total 
number of interstory and overall building drift constraints for 
an M-story framework having concern for drift control of S 
column lines under L lateral loading conditions. Using the 
explicit displacement expression Equation 5, the drift con­
straints Equation 3 can be expressed in terms of the design 
variable A, as 
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1 = 1 

: + eir] <du
d(d=h2,...,Nd) (7) W- •±m+ F* Fl M\ M\ M\ 

EIZ 0 I £A GAy GAZ G/x £/y 
dx (10) 

where for interstory drifts, 

_Cikjl Cikj-U, ,_Cikjl Cikj-U 

and for overall building drifts, 

CikMl / CikMl 
id TJ > Wd r r 

(8a, b) 

(8c, d) 

2. Wind-Induced Vibrations 

It is widely accepted that wind-induced acceleration has 
become the standard for evaluation of motion perception in 
buildings.1516 Semi-empirical formulas have been derived 
from numerous wind tunnel studies to predict the acceleration 
responses of buildings in an urban environment. These for­
mulas are expressed in terms of the wind velocity, the build­
ing's shape, damping ratio, mass and fundamental natural 
periods.217 Wind-induced accelerations can be reduced by 
changing the building shape to maintain better aerodynamic 
stability, but unfortunately this is often beyond the control of 
the engineer. In practice, the mass of a building is hardly 
variant and it has not been common to design damping into a 
structural system. A common approach to suppress wind-in­
duced vibrations remains to limit the natural periods.18 

Using the Rayleigh method, the fundamental circular fre­
quency of vibration CO for an undamped structure can be found 
by equating the maximum kinetic energy of the system at zero 
displacement to the work done by the inertia forces as the 
system moves from zero to maximum displacement as follow: 

—(02§TM§ (kinetic energy) 

= ^TF (work done by inertia forces) 

§TF §TK§ 

§TM§ <t)rM(t) ' M* 

(9a) 

(9b) 

where 

M,M*= structure mass matrix and generalized mass 
K9K* = structure stiffness matrix and generalized stiffness 
(|> = the computed mode shape under the inertia force 

matrix F 

where 

Fx, FYi Fz, 
MX9 MY, Mz = internal member forces and moments due to 

the external inertia loading condition, F 

Using again the linear regression section relationships Equa­
tion 1, the total internal work Equation 10 can be expressed 
as explicit functions of the sizing variables At alone as 

W(A,) = X 
N (e \ 

V ' J 1 = 1 

WT (ID 

where 

T = the fundamental mode of vibration 
eiT and eix' = are respectively given by 

wf^ •ifiC„+lfiCn 

F?CAr + I§CAZ + AfiCB dx (12a) 

*'n=f 
MyC'jy + M\C'lZ 

F$C'AY+F}C'Ay +M2
XCIX 

dx (12b) 

By definition, the natural period T is inversely related to the 
circular frequency co as 

2TC 

CO 
(13) 

To limit the natural period T, one can increase co by increasing 
the structure stiffness according to Equations 9 and 13. If one 
assumes temporarily constant initial inertia force F such that 
the internal member forces and moments are invariant, an 
increase in the structure stiffness can be achieved by increas­
ing member sizes and thus reducing the internal work W. 
Assuming that the initial mode shape ty0, inertia force F and 
structure mass M are invariant, one can limit the natural 
period T by the following explicit equivalent design con­
straint on internal work as 

Initially, if the structure has circular frequency co0 and mode 
shape <|)0, the inertia force F can be obtained as oojAf(|>0. For an 
undamped skeletal framework, the external work done by 
inertia force F is equal to the total internal work ^represented 
by the total sum of internal strain energy for all members as 

W(A,) = X l + el <W" (14) 

where the allowable work limit W*7 can be shown equal to 
(F/TofiWo) in which 
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7^ = targeted natural period 
T0 = initial natural period 
W0 = initial strain energy for the framework having the 

original member sizes 

Under the influence of dynamic wind loads, tall buildings 
vibrate in the along wind, across wind and torsional directions. 
Normally, there is one natural period to be limited respec­
tively in each of these three wind sensitive directions, i.e. two 
translational and one torsional mode of vibrations. While 
slight modifications on the Rayleigh method are needed to 
obtain a higher mode shape and frequency,19 the same form 
of explicit strain energy constraints as given in Equation 14 
can be expressed for (T = 1, 2,..., Ay multiple natural period 
constraints as 

/ 
WX(A,) = £ 

A, n < W ? ( T = l , 2 , . . . , A y (15) 

where 

Nx = total number of natural period constraints 

Recognizing the fact that the explicit lateral drift Equation 7 
and equivalent period constraint Equation 15 are very much 
alike, one can express collectively the stiffness design opti­
mization problem in terms of sizing variables A, as follows: 

Minimize: 

IWA (16a) 

subject to: 

N 

&(A,) = X 
1 = 1 

(e- } 
— +e' 
A,- " 

<gf(5=l,2,...,7V5) 

A\ < A,- < A? (i= 1, 2, ...,A0 

(16b) 

(16c) 

Equation 16b denotes the stiffness constraints, where the 
constraint gs with subscript s=l,2, ...,Nd represents the static 
drift constraint in which gf = dd as given in Equation 7; the 
constraint gs with subscript s = Nd + 1,..., Nd + NT, represents 
the period constraint in which gv

s = W^ as given in Equation 
15. In the case of having a set of multiple drift and period 
constraints, the value Ns represents the total number of stiff­
ness design constraints, i.e. equal to Nd + Nx. Equation 16c 
specifies each design variable A, to be selected from its lower 
bound size Af and upper bound size Af. 

OPTIMIZATION TECHNIQUE 

Upon formulating the design optimization problem for serv­
iceability requirements of tall steel building framework, the 
next task is to apply a suitable method to solve the problem. 

A rigorously derived Optimality Criteria (OC) method, which 
has been shown computationally very efficient for large-scale 
structures is employed.10,11 The OC method first involves the 
derivation of a set of necessary optimality criteria for the 
design. Then, a recursive algorithm is applied to resize the 
structure to satisfy the optimality conditions and thus indi­
rectly optimize the structure. The basic essence of the OC 
technique is herein presented in this paper. Further details of 
the technique can be found in references 10 and 11. 

Optimality Criteria 

In classical optimization theory, the necessary optimality 
criteria for the constrained optimal design problem (Equa­
tion 16) can be obtained indirectly by first converting the 
constrained problem to an unconstrained Lagrangian function 
and then solving for the stationary condition of the La­
grangian function. Temporarily omitting the sizing con­
straints Equation 16c, the unconstrained Lagrangian function 
can be formulated as,21"24 

N Ns |~ AT 

1 = 1 s=\ I / = 1 

• + e'it (17) 

The first part of the Lagrangian function describes the struc­
ture weight, whereas the second part involves the design 
constraints multiplied by their corresponding Lagrange mul­
tipliers, Xs. For minimization problems, the Lagrange multi­
pliers must be positive for active constraints (i.e. gs = gf) or 
equal to zero for inactive constraints (i.e. gs < gf). Differen­
tiating the Lagrangian function Equation 17 with respect to 
the design variables A,- and setting the derivative to zero, one 
can obtain the following necessary conditions at the optimum 
as 

^ + I>J ' - e ^ 

A2 

V ' J 

= 0 ( i = 1,2, ...,AT) (18) 

which can be rearranged to 

I** wAi 
l ( / = 1,2 iV) (19) 

The optimality criteria for the optimal design problem Equa­
tion 16 are shown in Equation 19, which have a significant 
physical meaning for design. Each Lagrangian multiplier, \s, 
can be interpreted as a sensitivity weighting factor which 
measures the importance of the corresponding 5th constraint 
to the optimal design. The larger the value of Xs, the more 
influential is the constraint to the optimum design. When a 
constraint does not affect the design, the corresponding \ 
diminishes to zero. The expression eis/w^[ in Equation 19 
represents the strain energy per unit weight/cost, which is so 
called the strain energy density, for member i with respect to 
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the sth constraint. Therefore, the optimality conditions Equa­
tion 19 specify that each member must contribute the same 
weighted amount of strain energy densities at the optimum. 
For the case of only one stiffness constraint, Xs becomes a 
constant and the strain energy density, eis/w$, for each 
member is uniform or, in fact, equal to 1 / Xs. 

Recursive Resizing Algorithm 

Equations 19 are stationary conditions, equal to unity at the 
optimum, that can be used to derive a linear recursive relation 
for the active sizing variables A,- as follows, 

AT --A! 1 + 
s=l "A2 - l 

Jv 

(i= 1,2, . . . , # -£ ) (20) 

where 

Tl = step-size parameter that controls convergence of 
the recursive process 

v and 
v + 1 = successive iterations 
2; = number of inactive members which are assigned 

to either their limiting sizes or fixed discrete sizes 

In order to apply Equation 20 to find the new sizing variables 
A] + l, the current values of the Lagrange multipliers Xv

s must 
first be determined. Considering the change of (gv

t
+l - gv

t) in 
the rth constraint due to the change of (A] + l - AJ) in the 
(N - ^) active sizing variables, the Ns Lagrange multipliers 
for the corresponding constraints can be expressed as a set of 
Ns simultaneous equations 

N-$ 

S^S 
c-iVW.s 

wtf 

N-Z, 

4 i=\^i 

• T I ^ - £ ) ( * = 1, 2, ...,AQ 

Equations 20 and 21 together form an iterative algorithm to 
solve for the continuous design optimization problem posed 
in Equation 16. Given a set of sizing variables AJ, the set of 
unknown Lagrange multipliers Xv

s is then determined by solv­
ing the linear simultaneous Equation 21. With the current 
values of Xv

s, the new set of sizing variables AJ +1 can then be 
sized using Equation 20. Such an iterative algorithm can be 
programmed to repeatedly solve for the sizing variables and 
the associated Lagrange multipliers until their convergence 
occurs. At convergence, the optimality criteria (Equation 19) 
are satisfied such that the optimal member sizes are obtained 
and the importance of each constraint to the optimal design 
are also determined by the final values of Xs. Note that the 
optimization technique developed herein allows for simulta­
neous consideration of multiple sets of serviceability con­
straints involving the top building drift together with inter-
story drifts and the translational periods as well as the 
rotational periods. 

Once the continuous optimal solution is obtained, one 
needs to finalize the design with discrete standard sections. A 
pseudo-discrete OC technique20 is herein adopted to achieve 
a smooth transition from the continuous variable design to the 
optimal final design using discrete standard sections. The 
essence of the pseudo-discrete OC technique is to maintain 
the least changes in the structure cost while members are 
progressively assigned standard section sizes. Details of the 
pseudo-discrete OC technique can be found in references 11 
and 20. 

Design Procedure 

The procedure to implement the optimal design method for 
limiting lateral drifts and natural periods of tall steel building 
frameworks is listed as follows: 

1) Analyze the structure under service wind loads and 
virtual loads. 

2) Design members to satisfy strength requirements in 
accordance with a steel design standard and adopt the 
strength-based member size as the minimum size 
bound for each member. 

3) Establish the explicit drift constraint Equation 7. 
4) Perform an eigenvalue analysis to find the initial natu­

ral periods (T0) and corresponding mode shapes ((j)0) for 
the framework. 

5) Compute an inertia force F = cô M(|)0 for each vibration 
mode and analyze statically the framework under iner­
tia force, i.e. F = K§. 

6) Compute the explicit equivalent period constraints 
Equation 15. 

7) Combine both explicit drift and period constraints, and 
establish size bounds for members to form the explicit 
design optimization problem. 

8) Apply the recursive optimization algorithm Equations 20 
and 21 until optimal member sizes are obtained. 

9) If the structure is statically indeterminate, return to 
step (1) to repeat the design process until the structure 
weight converges; otherwise, go to step 10. 

10) Apply a pseudo-discrete section selection procedure to 
finalize the optimal design with discrete standard sec­
tion sizes and terminate with the optimal building 
structure. 

ILLUSTRATIVE EXAMPLES 

Example 1: A 3-Bar Truss 

A simple truss involving two diagonal members in two or­
thogonal directions and a common vertical column is shown 
in Figure 2. The purpose of this simple truss example is to 
illustrate the application of the optimization technique for 
minimum weight design involving multiple stiffness con­
straints. The truss is loaded at its top node by two lateral point 
loads taken as two separate loading conditions in the X and 
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Member 

1 

2 

3 

Analys 

Actual Load 

fix 

0 

5.774 

-11.547 

Hy 

14.142 

-10.000 

0 

Table 1. 
is Results of the 3-Bar Truss 

Virtual Load 

fix 

0 

0.5774 

-1.1547 

fly 

1.4142 

-1.000 

0 

Weight 
Coeff. 

iv/=p/L/ 

14.142 

10.000 

20.000 

Energy Coeff. 

e-ix 

0 

0.3333 

2.6667 

6/y 

2.8284 

1.0000 

0 

Y orthogonal directions. The design objective is to minimize 
the structure weight subject to the two top drift constraints 
corresponding to the two respective X and Y direction loads. 
The structural geometry, material properties, and the two drift 
ratio limits at the top node are shown in Figure 2. Member 
sizes are assumed to be unbounded and nondimensional units 
of measurement are used for ease of illustration. 

To facilitate the presentation, a subscript i denotes the 
member number, subscript x represents information pertain­
ing to the X-direction load case and subscript v corresponds 
to the Y-direction load case. Results of the analysis of the 
statically determinate truss is shown in Table 1. 

To commence the optimization process, an initial set of 
member sizes (A? = A°2 = A° = 1) is arbitrarily selected. 
Employing a step-size parameter r\ = 2, the set of simultane­
ous equation Equations 21 can be established to solve for the 
two Lagrange multipliers Xx and Xy, associated with the X and 
Y drift constraints. Once the current values of Xx and Xy are 
determined, the member sizes A, can then be resized using the 
recursive relations Equations 20. Table 2 shows the results of 
the iterative design optimization process. Further details of 
the optimization technique for the solution of this example 
are given in Appendix A. 

Li = 10V2 
L, = 10 
L2 = 20 

E=100 
Density = 1 

The design process converges to the optimal structure 
weight of 1497.1 after ten iterations, where both the X and Y 
drift ratios are found reaching their limit of 0.01. By inspec­
tion, the 45° diagonal in the Y direction is structurally less 
efficient to resist lateral load than the 30° diagonal in the 
X-direction. Therefore, the truss is more vulnerable under the 
Y-direction load and the design is influenced more by the 
Y-direction drift. Such an intuition is evidently shown in 
Table 2, where the corresponding Lagrange multiplier has a 
larger value of Xy = 83481 than the value of Xx = 66225 for 
the X-direction drift. At the optimum of the design problem 
with multiple constraints, Table 3 shows that the weighted 
sum of the virtual energy densities for each member is equal 
to unity so as to satisfy the optimality criteria Equations 19 
for the multiple drift constraint problem as shown in Table 3. 

Example 2: A 50-story Building 

A 50-story 7-bay by 10-bay practical building framework 
with 5400 members which is shown in Figure 3 and studied 

Story height = 12 ft 

Typical bay width = 15 ft 

Columns: 

Typical: W14 shapes 

Core: 2W14 shapes 

1 column/2 storys 

Diagonals: 

W14 shapes 

1 diagonal/2 storys 

Beams: 
W24 shapes 
1 beam/2 storys 

Total members = 5400 

Strength constraints = 5400 

No. of critical column lines = 3 

Drift constraints = 3x2x50 = 300 

Period constraints = 3 

Interstory drift limit =1/400 

Period limit = 7.5 sec k: 
Fig. 2. Three-bar truss example. Fig. 3. 3D model of a 50-story framework. 
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Table 2. 
Iterative Optimization History for the 3-Bar Truss 

Iteration 
V 

0 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

^1 

1.000 

2.082 

3.928 

7.584 

13.682 

22.865 

32.949 

39.354 

40.807 

40.861 

40.861 

Al 

1.000 

1.667 

3.486 

6.361 

11.633 

18.933 

26.807 

31.448 

32.453 

32.489 

32.489 

4i 
1.000 

2.004 

3.830 

7.202 

12.634 

19.921 

26.491 

29.371 

29.712 

29.715 

29.715 

A 
0.30000 

0.15305 

0.07918 

0.04226 

0.02397 

0.01515 

0.01131 

0.01014 

0.01000 

0.01000 

0.01000 

9y 

0.38284 

0.19581 

0.10070 

0.05302 

0.02927 

0.01765 

0.01232 

0.01037 

0.01001 

0.01000 

0.01000 

Simultaneous Equation 21 

L.H.S. 

3.6667E-03 

3.3333E-04 

4.6570E-04 

7.1933E-05 

6.5900E-05 

7.8678E-06 

9.9481 E-06 

1.2949E-06 

1.8337E-06 

2.1174E-07 

4.6611E-07 

4.9113E-08 

1.9703E-07 

1.7304E-08 

1.4390E-07 

1.0717E-08 

1.3881 E-07 

9.7521 E-09 

1.3875E-07 

9.7198E-09 

1.3875E-07 

9.7197E-09 

3.3333E-04 

6.6568E-03 

7.1933E-05 

8.4232E-04 

7.8678E-06 

1.1697E-04 

1.2949E-06 

1.6853E-05 

2.1174E-07 

2.8438E-06 

4.9113E-08 

6.2058E-07 

1.7304E-08 

2.1006E-07 

1.0717E-08 

1.2497E-07 

9.7521 E-09 

1.1251 E-07 

9.7198E-09 

1.1208E-07 

9.7197E-09 

1.1208E-07 

R.H.S. 

0.8800 

1.1285 

0.4392 

0.5674 

0.2176 

0.2821 

0.1068 

0.1390 

0.0519 

0.0678 

0.0254 

0.0330 

0.0139 

0.0169 

0.0104 

0.0111 

0.0100 

0.0100 

0.0100 

0.0100 

0.0100 

0.0100 

« 
K 

225.6 

158.2 

850.2 

601.1 

3037.7 

2207.4 

9758.8 

7500.7 

25781.6 

21923.7 

49395.6 

49196.0 

64078.1 

75385.4 

66200.2 

83154.5 

66225.4 

83480.6 

66225.4 

83481.0 

66225.4 

83481.0 

Structure 
Weight 

44.14 

86.20 

167.01 

314.92 

562.51 

911.11 

1263.85 

1458.46 

1495.86 

1497.06 

1497.06 

in reference 11 for optimal static drift design is herein con­
sidered. The purpose of this example is to illustrate the 
effectiveness and practical application of the design automat­
ic optimal sizing technique for large-scale 3D tall building 
frameworks subject to both static drift and dynamic natural 
period constraints. For a bay width of 4.57 m (15 ft) and a 
story height of 3.66 m (12 ft), the framework has a height-to-
width aspect ratio of 5.7 in the X-direction and 4.0 in the 
Y-direction. Details of the framework are shown in its eleva­
tion and plan views in Figures 4 and 5. As illustrated in these 
figures, one corner of the building is cut off at a 45° angle and 
the core is eccentrically located in the Y-direction (i.e., shifted 
towards the south exterior face). These features create a 
built-in asymmetry that causes natural twisting of the frame­
work under lateral loadings. The framework consists of exte­
rior moment frames and a braced core. All beams and columns 
are rigidly connected while the diagonal braces are simply 
connected. As shown in Figure 4, two-story K-bracing mod­
ules are used on both the south and north faces of the core 
while single-story knee-bracing is used in the west and east 
faces of the core to ensure accessibility to the elevators in the 
core. 

American AISC standard sections are used to size the 

members as follows: beams are W24 shapes; diagonals are 
W14 shapes; and columns are also W14 shapes except that 
the cruciform columns in the core (see Figure 5) use pairs of 
two W14 shapes oriented perpendicular to each other. To 
satisfy practical construction requirements, beams that are 
grouped together on each floor as shown in Figure 5 are 
specified to have the same section over two adjacent storys, 
while columns in each line are grouped together as having a 
common section over two adjacent storys, as are diagonals in 
each span. To establish the minimum size boundary for each 
member, member strength design is carried out after each 
response analysis process in accordance with the AISC LRFD 
design standard.12 To account for serviceability lateral sway­
ing and twisting of Hoo is applied on all the columns at the 
most distant column lines A, B and C. For the control of 
dynamic wind-induced vibration, two lateral sway periods 
about the two orthogonal X and Y directions of the buildings 
are limited to 7.5 seconds respectively. 

To study the practical application of the optimal design 
technique, three separate runs are conducted for this frame­
work. The first run is to determine only member-by-member 
strength design for the structure. The second run considers the 
stiffness optimization subject to lateral drift constraints alone 
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Table 3. 
Optimality Criteria for the 3-Bar Truss 

?ix = 66225.4 Xy= 83481.0 

Member / 

1 

2 

3 

Sur 

Optimal Aj 

40.861 

32.489 

29.715 

Tl = 

Virtual Strain Energy 

A 

0 

1.026x1 (T3 

8.974X10-3 

0.01000 

e/y 

A 

6.922x10"3 

3.078x10"3 

0 

0.01000 

Virtual Strain Energy Density 

0 

3.158x10"6 

1.510x1 cr5 

eiy 

1.198x1 CT5 

9.474x10"6 

0 

Optimality 
Condition 

K-^ + K-% 
Wiaj yw-A; 

0.000 + 1.000 = 1.000 

0.209 + 0.791 = 1.000 

1.000 + 0.000 = 1.000 

while using strength-based sizes as the minimum size bounds. 
The last run is similar to the second run; but it includes both 
the static drift and the period constraints. For the last two 
stiffness design runs, a pseudo-discrete OC resizing tech­
nique20 is applied upon convergence of the continuous opti­
mization solution to finalize the design using discrete stand­
ard sections. 

Rapid and steady convergence to the optimal design is 
found for all three design runs on this large-scale framework 
example. The history of the design process for the three runs 
of the framework is shown in Figure 6. For the first case where 
the structure is designed for strength alone, the structure 
results in a weight of 3848.8 tons. The optimal results of the 
other two stiffness design runs clearly indicate that the design 

Critical column line 

for drift control 

of this framework is governed by lateral stiffness criteria 
rather than member strength requirements. An increase in 
structure weight to 5133.0 tons is found when only lateral drift 
constraints are considered. When both lateral drift and period 
constraints are involved in the design, an additional slight 
increase in structure weight to 5414.0 tons is found for the 
framework. Such a result indicates that the period constraints 
are more active to the design, or in other words, they control 
the design somewhat more than the drift constraints. As 
shown in Figure 6, all three runs exhibit stable and rapid 

a 

.2 EI 

Kej Plan 

13.7 m 
(45 ft) 

I3-7 m I 18.3 m 
32 m (45 It) (60 ft) 

(105 ft - . . I V 
182.3 m' 

91.4 in R + + 
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1111 1111 J/TM 
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E-E 
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P-P 

Fig. 4. Plan view of 50-story framework example. 
Fig. 5. Front and side elevations of 

50-story framework example. 
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convergence. Such a quick convergence can be explained by 
the fact that the internal member force distribution is quite 
insensitive to changes in member sizes for building frame­
works. Such a peculiar behavior of building frameworks 
results in good quality approximations of the explicit energy 
based stiffness constraints with consequent rapid conver­
gence to the optimal design. 

Figure 7 shows the deflected profiles of the framework in 
the two respective X and Y directions after completion of the 
design optimization process involving both lateral drift and 
period constraints. While the X-direction lateral response is 
controlled by drift constraints, the design in the Y-direction is 
governed by the corresponding sway period constraints. For 
the X-direction drift, the interstory drift ratios of the south­
east and north-east corner column lines B and C above 
approximately the 10th floor are found active and are shown 
having a slope parallel to the drift ratio limit of Hoc A slight 
difference in lateral deflection of about 2.5 cm is found 
between the column line B and the column line C in the upper 
portion of the building, indicating a twisting rotation of 2.5 
cm in 45.7 m or about Visoo radian. Such a result seems to 
indicate that for the optimal design of an asymmetric frame­
work, the lateral load resisting system will be sized by the OC 
procedure such as to distribute its stiffness so that little or no 
building torsion occurs. For the Y-direction lateral response, 
while lateral drifts are not active and no building twisting is 
shown, the sway period is found active with a value close to 
its limit of 7.5 sec. This result indicates that the optimal design 
technique may not necessarily end with a fully constrained 
design having all the constraints to reach their limits. Indeed, 
the automatic resizing technique will seek for the best re­

sponse of the structure within the given set of design con­
straints such that the optimal objective for the design is 
achieved. As a result, the optimal design achieved may pro­
vide insights to engineers for further design improvements. 
Moreover, the design results obtained are often found to 
match closely our engineering intuition concerning the struc­
tural behaviour of building frameworks. 

CONCLUDING REMARKS 

An automatic resizing technique for the optimal stiffness 
design of tall steel building frameworks is presented in this 
paper. Based on the results presented in this paper, the follow­
ing conclusions can be made: 

1) Economy: Not only the most economical design is 
achieved by the optimal resizing technique while satis­
fying all design constraint requirements, but there is also 
a considerable saving in designer time and cost. 

2) Effectiveness: Rapid and steady convergence is gener­
ally found since the formulation of the design problem 
using the energy approach has exploited to advantage 
the peculiar behavior of building framework, that the 
member force distributions for such structures are some­
what insensitive to changes in member sizes. 

3) Practicality: The results of the three dimensional 50-
story building example have demonstrated the practical 
application of the optimal design technique. The tech­
nique developed holds much promise for a powerful tool 
for the design of large-scale tall steel building frame­
works encountered in professional practice. 

6000 
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£ 4000 ^ 

3000 

Drift and period optimization 
5414.02 

5132.98 

Minimum strength optimization 
- A * * 3848.84 

1 1 1 1 — — i 

2 3 4 5 6 
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X-Direction Drift 

BC 

Y-Direction Drift 
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Fig. 6. Design history of 50-story framework example. Fig. 7. Deflected profile for 50-story framework example. 
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APPENDIX A 

This appendix describes further details of the OC optimiza­
tion technique for the solution of the optimal drift design of 
the simple 3-bar truss example as shown in Figure 2. Given 
that the truss structure is statically determinate, member 
forces can be calculated independently of the member sizes 
and are listed in Table 1. Using the assumed values of the 
material density, the modulus of elasticity and member 
lengths shown in Figure 2, the strain energy coefficients in 
Equation 7 are calculated as 

rn£ 

e7 = 

rFfL^ 

0 • 0 • 10V2" 1 
100 10 

= 0 

5.774 • 0.5774 • 10 1 
100 10 

= 0.03333 
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esx = '&? 1 -11.547 •-1 .1547*20 1 
h 100 10 

= 0.26667 

e.v = 

«2v 

«3v = 

^ / L A 1 14.142* 14.142* 10V2~ 1 

E 

'2y 

100 

1 - 1 0 * - 1 * 1 0 1 
• — = • — = 0 1 

h 100 10 

10 
: 0.28284 

v J '3v 

1 _ 0 * 0 * 2 0 t 1 = 

A 100 # 10 

Note that since the structure is a truss, the correction coeffi­
cient terms e' in Equation 7 are equal to zero. Therefore, the 
X and Y drift constraints can be written as 

_ elx | gfr + e3x _ Q.Q3333 { 0.26667 ^ Q Q1 

Ax A2 A3 A2 A3 

_ g t y | g2v | e3y_ 0.028284 | 0.1 
A2 A2 A3 A! A2 

Using an initial set of member sizes A? = A2 = A3 = 1, the X 
and Y drift ratios can be obtained respectively as g® = 0.3000 
and gy - 0.38284, which are found to violate the drift ratio 
limit of 0.01, indicating that the current design is too flexible. 

With the current values of member sizes, the simultaneous 
linear equations for the two Lagrange multipliers Xx and Xy 
associated with the X and Y drift constraints can then be 
established. For the initial set of member sizes (A? = A° = A3 
= 1), the summation terms on the left hand side of the 
Equation 21 can be written as 

.ft**? 
=0+ 

0.03333 • 0.03333 0.26667 • 0.26667 

A, 

^ix"iy 

10 • l3 

3.6667xl0~3 

0.03333 • 0.1 

2 0 * l3 

3 

I 

= 0 + -
10* l3 + 0 = 3.3333x10^ 

w& 
/v 

^iy^iy 

* w A X 

: Q + 0 . 1 * 0 . 0 3 3 3 3 + Q = 3 3 3 3 3 x l ^ 
10* r 

0.28284 • 0.28284 0.1*0.1 
1(W2~* l3 

= 6.6568X10"3 

10* l3 

Employing a step-size parameter r\ = 2, the right hand side of 
Equation 21 is obtained as 

]T - | - y\{du
x -d°x) = 0.3 - 2(0.01 - 0.3) = 0.880 

X To " ^ " <#) = 0.382843 - 2(0.01 - 0.382843) 

= 1.1285 

Therefore, the simultaneous equations Equation 21 in terms 
of X°x and A,° can be expressed as 

3.6667X10"3 3.3333X10"4" 
3.3333X10"4 6.6568xl(T3 

0.8800 
1.1285 

Solving the above simultaneous equation, the Lagrange mul­
tipliers are found such that 

A° = 225.62 and A°= 158.23. 

Having obtained Xx and A£, a new set of member sizes can be 
found from the recursive relationships of Equation 20 as 

A\=A° 

= 1 

r 

1 + 1 
11 

>4( 
V 

(* „ ^ 

3 J 

^ C /CO m ^ 

lOV^T* l2 

+ 158.23* - « ^ - l T 
10V2 • l2 J 

= 2.082 

r f, \-\ 
A\ = A\ 

= \\ 

Tl 

' + « 

D 

0 03333 0 1 T 
225 .62• ; " ?? + 158.23 • - f ^ - x - 1 

10 • l2 10 • l2 J 

= 1.667 

V .(•> \ - \ 

1±2 = MX'. 

= l[ 

'['i 
V 

^ Mi / 
0 

0.26667 
225-62*^bTF4 

K Q ^ T . ^ 1 
1 5 8^*20.1 2 _ 1J 

= 2.004 

After obtaining the new set of member sizes as in the forego­
ing, the OC process is repeated in an iterative fashion until 
convergence of both member sizes and Lagrange multipliers 
occurs. The iteration history of the OC optimization process 
for the truss design is tabulated in Table 2. 
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