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INTRODUCTION 

A common practice in industrial buildings is to weld a 
channel, open side down, to the top flange of a standard rolled 
beam for use as a crane runway. In many cases, it is not 
possible to brace a crane runway laterally between columns, 
so the channel provides additional lateral stiffness. 

There are several interesting structural questions associ
ated with the practice, like, what should be the welding 
pattern? How are the residual stresses affected? What if the 
channel has a yield strength different from the beam? How
ever, the primary question addressed in this paper is, how does 
one check such a beam for lateral-torsional buckling? 

The AISC Specification provides formulas for lateral-tor
sional buckling of monosymmetric sections, but these are 
derived for three-plate sections, as shown in Figure 1(a). 
Some of these equations require the calculation of section 
properties that are not readily available from handbooks, like 
the warping constant, nor do they apply to the real section as 
shown in Figure 1(b). 

The purpose of this research was to develop an analytical 
solution to the problem of lateral-torsional buckling of a 
rolled beam with channel cap in terms that are readily avail
able from standard section property tables. A program of 
full-scale testing was carried out to verify the analytical 
solution. It should be noted here that the solution proposed in 
this paper applies only to light- to medium-duty cranes, those 
classified as A, B, or C by the Crane Manufacturers Associa
tion of America (CM A A). 

ANALYTICAL SOLUTION FOR 
ELASTIC BUCKLING 

According to Clark and Hill (1960), Galambos (1968 & 
1988), and Johnston (1976), the elastic nominal moment 
(Mn) of a monosymmetric beam, including the section of a 
rolled beam with a channel cap, can be expressed by the 
following equations: 
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K= effective length factors (AssumeKx = Ky = Kz= 1.0) 

To evaluate the elastic nominal moment (Mn) according to 
Equations 1, 2, and 3, one has to determine the coefficient of 
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Fig. 1. Common monosymmetric sections: (a) 3-plate 
section, (b) rolled beam with channel cap. 
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monosymmetry (fy, the warping constant (CJ, and the tor
sional constant (J). 

For a monosymmetric section made of three dissimilar 
plates, Equations 2 and 3 can be simplified into 

^ = 2.25 

B, = 25 

(L 
- 1 Vf (7) 

(8) 

In this way, the need to calculate the warping constant is 
avoided. Equations 7 and 8 are identical to the equations in 
the footnote on page 6-114 of the AISC-LRFD Specification 
(1993). 

However, these equations are correct only for the three-
plate section; they are conservative for the section which is 
the subject of this paper. For the beam-and-channel section, 
one should calculate Px, Cwc, and J according to Equations 4, 
5 and 6, but this can be a daunting task for routine design 
office use. It would be better to have models for these three 
items which make use of known properties, or easy-to-find 
properties, that are still reasonably accurate. 

PROPOSED MODELS 

The (3, Model 

According to Kitipornchai and Trahair (1980), Px for a section 
with a lipped top flange is given by 

2 x 

$x = 0.9h 
2 ^ 

-1 1 - 1 + 
2D (9) 

Recognizing that (Iy/Ixf is a very small number, and letting 
h = D, this equation can be reduced to 

P, = 0.9 
2L, 

1 D + -
D, 

(10) 

Using the forty-five sections shown in the AISC Manual 
(AISC, 1989) as a data base, it was found that Equation 11 
gave a very close approximation of Equation 9 

(3, = 0.87(7?-1) D + Y ( i i ) 

where 

R=2Jr 

The solution (Kitipornchai and Trahair) and the proposed 
model are plotted in Figure 2. It can be seen that the approxi
mate model (Equation 11) is accurate within ± 4 percent. 

The Cwc Model 

The authors used a computer program originally written in 
BASIC language by Dr. T. V. Galambos, to calculate the exact 
values of warping constants (Cwc) of a beam with a channel 
cap. The results for the forty-five sections shown in the AISC 
manuals (AISC 1989 and AISC 1993) are plotted in Figure 3. 
By applying a multiple linear regression technique to the data, 
the following curve was found to be a good fit. 

C =C 
^ w / ~ ^ w 

0.79+1.79 (12) 
w J 

where 

0.2 < -f- < 0.95 

The resulting curve is superimposed on the data of Figure 3. 
The model as given by Equation 12 requires no calculation of 
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Fig. 2. The accuracy of the Px model. 
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Fig. 3. The warping constant model as a 
function of beam and channel area. 
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section properties and uses only Cw and the ratio Ac /Aw as the 
independent variables. These variables A c , A w , and Cw are 
given in the AISC Manual of Steel Construction. In Figure 4, 
it can be observed that the model gives results with errors of 
- 3 percent to +5 percent in most sections. [It should be noted 
that Equation 12 is slightly different from the formula pub
lished by Lue and Ellifritt (Lue, 1993) previously. This equa
tion is more accurate, while retaining the simplicity of the one 
published in 1993.] 

The/Model 

The torsional constant (J) can be expressed by 

t2 = flange thickness of the wide flange 

All the variables shown are listed in the AISC manual. 
Again, the model is applied to the forty-five sections in the 

AISC Manual and the results are plotted in Figure 5. It can be 
seen that the model overestimates the value of / by +2.1 
percent to +8.2 percent. 

APPROXIMATE DESIGN USING 
THE PROPOSED M O D E L S 

The proposed models based on the previous discussions can 
be summarized by the following equations. 

•/=J^=il^ (13) Mn = -^-^Mpj{Bl+^\+B2 + B\^ (16) 

where 
where 

bt and tt = wid th and th ickness , respect ively of each 
element of the cross-section 

n = number of plate elements 

A further modification of Equation 13 has been done for the 
need of the practical designer. The modified formula of J is 
calculated based on the section properties and dimensions of 
wide flanges and channel caps as listed in AISC manual. The 
proposed J is given by the following equations. 

J = iibit^ = Jw+jc + hf(tl + t2)
3^hf^1 + ti) (14) 
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(19) 

(20) 

= Jw + Jc + bftlt2(tl + t2) 

where 

(15) 

Jw and Jc = torsional constants for the wide flange and the 
channel, respectively 

bf = flange width of the wide flange 
f i = web thickness of the channel 

/ = /w + / c + flf1f2(f1 + f2) (21) 

The forty-five AISC sections are used to examine the differ
ences between the exact nominal moments (Mn) and the ones 
based on the proposed models. 

The curves of nominal moment (Mn) versus unbraced 
length (Lb) were examined by using the proposed models. A 
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Fig. 4. The accuracy of the warping constant model. Fig. 5. The accuracy of the torsion constant model. 
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straight line, which is adopted by the current LRFD method, 
is used for the inelastic nominal moment between the plastic 
moment (Mp) and the limiting moment (Mr). The results of the 
twenty-eight sections in the AISC-LRFD Manual are re
corded in Table 1. It can be seen that the model gives errors 
of-2.5 percent to +1.8 percent. 

The proposed formulation, shown in Equations 16 through 
21, makes use of only dimensions and properties readily 
available from the AISC Manual and produces results only 
±2.5 percent from the exact solution. 

Bear in mind that the foregoing is only an elastic solution 
and the increased lateral strength of adding a channel cap may 
mean that lateral-torsional buckling will be inelastic. How
ever, the inelastic transition curve will still be affected by the 
elastic curve. In this research, the AISC-LRFD approach of 
using a straight line inelastic transition curve between Mp and 
Mr was followed. 

Experimental Study 

Full-scale tests were performed on the beams shown in Ta
ble 3. The testing apparatus is shown in Figure 6. The beams 
were tested with a single concentrated load applied to the top 
flange through a ball joint either at mid-span or at the one 
third-point. A gravity load simulator, as shown in Figure 6, 
was used to ensure that the load would remain vertical during 
lateral buckling of the beam. An independent stand held two 
LVDT's for measuring both vertical and horizontal displace
ments. The ends of the beams rested on rollers and could 
rotate about both horizontal and vertical axes, but were re
strained from torsional rotation about a longitudinal axis. 

les t Specimen 

Load Point 

r— Loading Yoke 

Table 1. 
Percent Error in Proposed Elastic Buckling 

Moment Model for Combination Beam 
and Channel Sections Shown in 
the AISC-LRFD Manual (1993) 

Beam 

920x223 (36x150) 

840x210 (33x141) 

610x125 (24x84) 

920x223 (36x150) 

840x176 (33x118) 

760x173 (30x116) 

840x210 (33x131) 

610x101 (24x68) 

530x101 (21x68) 

530x92 (21x62) 

760x147 (30x99) 

690x140 (27x94) 

840x176 (33x118) 

760x173 (30x116) 

690x125 (27x84) 

610x125 (24x84) 

460x74 (18x50) 

760x147 (30x99) 

610x101 (24x68) 

530x101 (21x68) 

360x44 (14x30) 

530x92 (21x62) 

410x53 (16x36) 

310x39 (12x26) 

460x74 (18x50) 

360x44 (14x30) 

310x39 (12x26) 

410x53 (16x36) 

Channel 

380x50 (15x33.9) 

380x50 (15x33.9) 

310x31 (12x20.7) 

460x64 (18x42.7) 

380x50 (15x33.9) 

380x50 (15x33.9) 

460x64 (18x42.7) 

310x31 (12x20.7) 

310x31 (12x20.7) 

310x31 (12x20.7) 

380x50 (15x33.9) 

380x50 (15x33.9) 

460x64 (18x42.7) 

460x64 (18x42.7) 

380x50 (15x33.9) 

380x50 (15x33.9) 

310x31 (12x20.7) 

460x64 (18x42.7) 

380x50 (15x33.9) 

380x50 (15x33.9) 

250x23 (10x15.3) 

380x50 (15x33.9) 

310x31 (12x20.7) 

250x23 (10x15.3) 

380x50 (15x33.9) 

310x31 (12x20.7) 

310x31 (12x20.7) 

380x50 (15x33.9) 

AQ / Ayy 

0.225 

0.239 

0.247 

0.285 

0.287 

0.291 

0.303 

0.303 

0.305 

0.333 

0.342 

0.360 

0.363 

0.368 

0.402 

0.403 

0.414 

0.433 

0.496 

0.498 

0.507 

0.544 

0.575 

0.587 

0.678 

0.688 

0.796 

0.940 

% Error 

-0.8 to-0.1 

-0.9 to -0.2 

-1.8 to -0.7 

-1.4 to-0.4 

-1.1 to-0.3 

-1.3 to-0.4 

-1.3 to-0.7 

-2.1 to-1.0 

-1.9 to -0.5 

-2.0 to-0.5 

-1.4 to-0.4 

-1.2 to-0.5 

-1.3 to-0.5 

-1.2 to-0.5 

-1.2 to-0.3 

-1.2 to-0.5 

-2.0 to-0.8 

-1.0 to-0.2 

-1.1 to-0.2 

-0.6 to+0.1 

-1.2 to+0.2 

-0.5 to+0.1 

-0.4 to+1.4 

-2.5 to-0.8 

+0.1 to+0.6 

-0.4 to+0.6 

-1.6 to-1.3 

+0.4 to+1.8 

Notes: Ac = Area of Channel Aw = Area of Beam 
Fy= 350 MPa (50 ksi) 
Unbraced Length = 19 to 23 m (60 to 70 ft.) 
Mni = Theoretical Nominal Moment 
Mri2 = Nominal Moment by Proposed Model 
% Error = (Mn2 - Mn\)/Mn\ * 100 

Fig. 6. Experimental loading apparatus. 

In selecting the beam and channel sizes to be tested, an 
attempt was made to devise combined specimens that repre
sented low, intermediate and high values of the area ratios 
(See Table 1 for representative values of Ac/Aw). 

In order to get the most out of the material, each beam was 
tested twice: once without the channel cap and once with it. 
In the first test, the beam was made long enough to ensure 
buckling in the elastic range. Then it was unloaded, taken 
down and a channel was welded to the top flange. The 
composite beam was then put back in the fixture and tested 
again. In the second stage, failure was either by inelastic 
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Table 2. 
Beam Test Results (without Channels) 

Test No. 

W-1 

W-2 

W-3 

W-4 

W-5 

W-6 

W-7 

W-8 

Beam 

310x28 

310x33 

250x22 

310x28 

310x28 

250x22 

200x9.7 

200x9.7 

(W12x19) 

(W12x22) 

(W10x15) 

(W12x19) 

(W12x19) 

(W10x15) 

(M8x6.5) 

(M8x6.5) 

Span 
m(ft) 

7.3 (24) 

5.5(18) 

5.5(18) 

5.5(18) 

3.7(12) 

3.7(12) 

3.7(12) 

3.7(12) 

Notes: 
Pu is the elastic buckling load from test 
Pe is the theoretical elastic buckling load, based on Cb 

Load @ 

V2-pt. 

V3-pt. 

V3-pt. 

V3-pt. 

V2-pt. 

V2-pt. 

V2-pt. 

V2-pt. 

= 1 

Pu 
kN(k) 

15.6(3.50) 

46.7(10.5) 

18.6(4.20) 

44.8(10.0) 

70.3(15.8) 

40.0 (9.00) 

8.0(1.80) 

6.7(1.50) 

Pe 
kN(k) 

10.8(2.44) 

32.4 (7.29) 

15.1 (3.40) 

23.5 (5.28) 

56.9(12.8) 

36.3(8.15) 

4.8(1.08) 

4.8(1.08) 

Pu/Pe 

1.43 

1.44 

1.24 

1.89 

1.23 

1.10 

1.67 

1.39 

buckling or yielding and plastic hinge formation at the load 
point. Because of the limitations in our laboratory, it was 
difficult to get lengths of combined specimens long enough 
to produce elastic behavior. The results of all tests are shown 
in Tables 2 and 3 and graphically in Figures 7 and 8. Tensile 
coupons were taken from each member and those results are 
shown in Table 4. 

Figure 9 shows a beam being loaded. Note the end fixtures 
that prevent rotation about the longitudinal axis but allows 
rotation about the x and y axes. Figure 10 shows a beam with 
channel cap after buckling. Note that the load at mid-span is 
applied uniformly across the flange, rather than at a ball-joint 
as in Figure 9. This was to see if the loading device had any 
restraining effect on lateral-torsional buckling. 

Evaluation of Test Results 

In Figures 7 and 8, the test results are plotted against the 
theoretical solution described in the early pages of this paper. 
Note that all rolled beams without a channel cap buckled 

elastically, while most of those with a channel cap either 
buckled inelastically or formed a plastic hinge. 

Note the test load/predicted load in Table 2. The predicted 
load was calculated using a moment diagram modifier, (called 
Cb in AISC) of 1.0. The Pu/Pe values then should be somewhat 
representative of the proper Cb values. The loading was done 
with a single concentrated load at either the mid-span or V3 

point. Calculated Cb values vary from 1.32 to 1.41. With a 
couple of exceptions, most tests fall into this range. The 
average for all tests is 1.42. 

The Pu/Pe values for the tests with channel, however, are 
much lower, ranging from 0.93 to 1.23 with an average of 
1.10. This indicates that the current formula for Cb in the 1993 
AISC-LRFD Specification is accurate enough for bisymmet-
ric sections, but overestimates the value of the moment coef
ficient for monosymmetric sections. 

Nethercot and Rockey (1971) proposed a moment modifier 
that was dependent on where on a cross section the load was 
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Fig. 7. Tests of rolled beams without channels. Fig. 8. Tests of beams with channel caps. 
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Table 3. 
Test Results, Beam with Channel Cap 

Test No. 

WC-1 

WC-1 A 

WC-2 

WC-2A 

WC-3 

WC-4 

WC-5 

WC-6 

WC-7 

WC-8 

Beam 

310x28 

310x28 

310x33 

310x33 

250x22 

310x28 

310x28 

250x22 

200x9.7 

200x9.7 

(W12x19) 

(W12x19) 

(W12x22) 

(W12x22) 

(W10x15) 

(W12x19) 

(W12x19) 

(W10x15) 

(M8x6.5) 

(M8x6.5) 

Notes: 
Pe in this table is either the plastic ber 
The "A" subscript refers to those tests 
opposed to a ball joint. 

Channel 

150x12 

150x12 

150x12 

150x12 

150x12 

150x12 

150x12 

150x12 

100x8 

100x8 

(C6x8.2) 

(C6x8.2) 

(C6x8.2) 

(C6x8.2) 

(C6x8.2) 

(C6x8.2) 

(C6x8.2) 

(C6x8.2) 

(C4x5.4) 

(C4x5.4) 

Span 
m(ft) 

7.3 (24) 

5.5(18) 

5.5(18) 

5.5(18) 

5.5(18) 

5.5(18) 

3.7(12) 

3.7(12) 

3.7(12) 

3.7(12) 

Load @ 

v2 

v2 

v3 
v3 
V3 

v3 

v2 

v2 

v2 

v2 

Pu 
kN(k) 

53.8(12.0) 

84.5(19.0) 

136(30.5) 

173(39.0) 

102(22.9) 

158(35.5) 

220 (49.5) 

145(32.5) 

44.5(10.0) 

40.0 (9.0) 

Pe 
kN(k) 

57.8(12.9) 

N/A 

148(33.3) 

N/A 

81.8(18.4) 

128(28.8) 

222 (49.9) 

125(28.2) 

36.3(8.16) 

36.3(8.16) 

Pu/Pe 

0.93 

0.93 

1.23 

1.23 

0.99 

1.15 

1.23 

1.10 

iding load or the inelastic buckling load, based on the LRFD straight line transition, 
in which the load was applied through a flat surface in contact with the entire compression flange, as 

applied. It consisted of two terms A and B, and Cb was 

computed as: 

Cb = A /B if load is applied to top flange 

Cb = A if load is applied at centroid 

Cb = A • B if load is applied to bottom flange 

They derived values for A and B for the case of a concentrated 

load at the mid-span of a doubly symmetric section. While 

this does not exactly fit the beams described in this paper, it 

seems to offer a plausible explanation for the values of 

R/PP from Table 3. 

A SUGGESTED DESIGN PROCEDURE 

The standard unbraced length vs. moment capacity curve for 

doubly symmetric sections as published in AISC is shown in 

Figure 11. It is completely defined by Mp, Mr, Lp, Lr and the 

elastic buckling curve, all of which are easily calculated for 

rolled shapes whose properties are found in tables. 

For monosymmetric sections, everything about the curve 

becomes more complicated. Mr is the smaller of FLSXC and 

Fy Sxt; some vital section properties have to be calculated, with 

Fig. 9. Channel-capped beam under load. 
Note the end restraints against rotation 

and the top-flange, ball-joint load. Fig. 10. Test beam after loading, showing buckled shape. 
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Table 4. 
Mechanical Properties of Test Specimens 

Beams 

310x28 (W12x19) 

310x33 (W12x22) 

250x22 (W10x15) 

200x9.7 (M8x6.5) 

Fy 

432 MPa (62.1 ksi) 

431 (64.0) 

370 (53.3) 

278 (40.0) 

Channels 

150x12(06x8.2) 

150x12(06x8.2) 

150x12(06x8.2) 

100x8(04x5.4) 

Fy 

435 MPa (62.6 ksi) 
334 (48.0) 
350 (50.3) 
316(45.4) 

no small effort; Lr cannot be determined directly, but is the 
result of an iterative process. 

One can help things a bit by initializing the curve, dividing 
Mn by Mp and changing the horizontal axis from Lb to X = 
^Mp/Me, where Me is the elastic lateral-torsional buckling 
moment. Using the forms of $x, Cwc, and J presented in this 
paper (Equations 11, 12, and 13), and developing curves for 
all 48 combination sections from AISC LRFD (pp. 1-106, 
107) and AISC ASD (pp. 1-83, 85), it was found that, with 
small error, "one curve fits all." There is a narrow band 
between Lp and Lr, but the elastic curves were practically 
identical. This led to the approximate curve shown in Fig
ure 12. 

This eliminates the iteration to find Lr, but also obscures 
the unbraced length a bit. With this curve, you will have to 
calculate Me for a given unbraced length, determine A,, then 
Mn is either Mp, Me, or 

Mn = M-(M-Mr) 
( A-0.49 ^ 

1.15-0.49 
(22) 

DESIGN EXAMPLE 

There are two design examples attached to this report. The 
beam, channel cap, and span are the same as the example in 
the AISC Steel Design Guide Series #7—Industrial Build
ings: Roofs to Column Anchorage, (p. 52). It is a W27X94 

with a Cl5x33.9 cap on a 30-foot simple span. It is assumed 
that the entire span length is unbraced laterally. 

The first example makes use of the curve-fit properties of 
P-,, CWC, and J (Equations 11, 12, and 13) of this report. This 
provides, of course, only an elastic buckling solution. For the 
inelastic case, it is assumed that the AISC straight-line tran
sition between Lp and Lr is appropriate. 

In calculating M„ there is a fundamental question that must 
be addressed: What residual stress is appropriate? The Speci
fication requires 10 ksi for rolled sections and 16.5 for welded 
shapes, but does not say what to use if you weld two rolled 
shapes together. The welding of a channel to the top flange of 
a crane beam is usually intermittent—it only being required 
to transmit horizontal shear, which is low. A 2- or 3-in. weld 
every 4 feet is usually adequate. In the author's opinion, this 
is not a great amount of heat input to the beam and it seems 
reasonable to use 10 ksi for the residual stresses in the Mr 

calculation. 
The determination of Lr in Example 1 is still troublesome. 

There is no way to calculate it directly: It must be iterated, 
until the unbraced length used in the elastic buckling formu
lation produces anMe = Mr. That length is then Lr. 

Example 2 uses the generalized approach discussed which 
plots Mn/Mp against VMp /Me. This has the advantage of 
eliminating the annoying iterations for Lr, but the disadvan
tage of somewhat camouflaging the unbraced length. 

The procedure is: calculate Me as described herein for 

M. 

Unbraced Length, 1̂  

0.75 
UnMp 

0.49 

A =^vyM e 

1.15 

Fig. 11. Nominal moment capacity curve according 
to AISC-LRFD Specification. 

Fig. 12. Generalized M-X curve for rolled beams 
with channel cap (A36 steel). 
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whatever unbraced length you have, then calculate X. If X is 
between 1.15 and 0.49, use the straight line transition shown 
in Equation 22; if it is less than 0.49, Mn = Mp; if it is greater 
than 1.15, Mn = Me. Note that the results of the two examples 
differ by only 1 percent. 

SUMMARY AND CONCLUSIONS 

A mathematical model was developed to predict the elastic 
buckling capacity of a hot-rolled wide flange beam with a 
channel cap, using only those section properties that can be 
found in steel manuals. The cumbersome calculation of a 
warping constant has been reduced to a simple function of 
handbook properties. 

Full scale tests were made on beams without channels. 
These specimens were chosen with unbraced lengths and 
cross-sections designed to ensure elastic buckling. The aver
age of test load/calculated load was 1.42. After testing, chan
nels were welded to the top flanges of all these beams and 
tested again. This time the average test/calculated load 
was 1.10. 

The calculated buckling loads assumed Cb = 1, so the 
test/calculated values roughly correspond to the correct Cb 

values. Because the shear center and centroid do not coincide 
in the monosymmetric shapes, the Cb indicated is somewhat 
lower than would be calculated by the current AISC Specifi
cation. This suggests that, in the absence of more testing, it 
might be appropriate to take Cb as 1.0 for monosymmetric 
sections. 

ADDITIONAL COMMENTS 

Another aspect of this problem, (not a part of the research 
reported herein) is the restraining effect of the crane runway 
on the other side of the aisle. The maximum wheel load occurs 
when the trolley and lifted load is all the way to one side. 
Because most cranes have double-flanged wheels, the runway 
beam on the other side, being very lightly loaded, will add its 
buckling resistance in the same way a stable column supports 
a "leaning" column. This was not a part of the University of 
Florida research. In fact, this author knows of no physical tests 
of this phenomenon, but it makes one wonder if lateral-tor-
sional buckling of a crane runway beam can really occur in a 
normally-proportioned girder, given the lateral support from 
the other side. 
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E = 
G = 
Lb = 

D = 
DL = 
Cw = 
C = 

Ac = 
Aw = 
J = 

*yw """ 

he = 

fc = 
K = 
Mp = 
Me = 
Mn = 
Mr = 

X = 

NOMENCLATURE 

Young's Modulus—200 MPa (29,000 ksi) 
Shear Modulus—80 MPa (11,300 ksi) 
Unbraced Length mm (in.) 
Moments of inertia about x and y, axis, respectively, 
mm4 (in.4) 
Moment of inertia of compression flange about 
y-axis 
Depth of Rolled Beam, mm (in.) 
Depth of Lip on Channel Cap, mm (in.) 
Warping Constant of Rolled Beam, mm6 (in.6) 
Warping Constant of Rolled Beam with Channel 
Cap 
Area of Channel, mm2 (in.2) 
Area of Rolled Beam, mm2 (in.2) 
Torsional Constant, mm4 (in.4) 
Moment of inertia of rolled beam about y-axis, mm4 

(in.4) 
Moment of inertia of channel about its local x-axis, 
mm4, (in.4) 
Monosymmetry Parameter 
Effective Length Factors 
Plastic Moment 
Elastic Buckling Moment 
Nominal Moment Capacity 
(Fy-Fr)S„ 

M, 

APPENDIX 

Example 1 

W27X94: Aw = 27.7 in.2, 7 ^ = 1 2 4 in.4 Cw = 21,300 in.6 

Cl5x33.9:A c = 9.96in.2, Ixc= 315in.4 bf=DL = 3.4in. 
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(This is the example used by Fisher in the AISC Steel Design 
Guide Series #7, Industrial Buildings, p. 53) 

L* = 30ft 

Warping Constant, Cwc (from Equation 12) 

C =C 
WC ^ W 0.79+1.79 

= 21,300 0.79 +1.79-y H I 
T 

= 39,690 in.6 (1.066 x 1013 mm6) 

Monosymmetry Parameter, px (from Equation 11) 

Iyc = % + IM = ^ + 315 = 377 in.4 (1.57 x 108 mm4) 
2 

Ac 377 
/, 439 

= 0.859 

R = 2x0.859 =1.718 

% = 0.%l(R-\)(D + DL/2) 

= 0.87(1.718 - 1) 
f 34^ 
26.92 + ^ 

v l J 

= 17.88 in. (454 mm) 

Torsion Constant, J (from Equation 15) 

J=Jw + Jc + bftxt2(ti + t2) 

bf= flange width = 9.99 in. (255 mm) 

tx = flange thk = 0.745 in. (19 mm) 

t2 = channel web thk = 0.40 in. (10 mm) 

£ = 1 . 0 

J = 4.03 + 1.02 + 9.99 x 0.745 x 0.40 (0.745 + 0.40) 

= 8.46 in.4 (3.52 x10 s mm) 

n$ [El; 2 . 5 2 7 0 [ T 
Bl ~ 2KLy GJ~ L \ J 

2.527 
360 

x 17.88 = 0.9042 

fi,= 
n2£C„, 25.56C„ 
L2GJ L2J 

25.56x39,690 
(360)2x 8.459 

= 0.925 

Me = ^ [<Elpj(Bx + Vl+B 2 + B 2 ) } 

= ̂ V v ( B 1 + V T T ^ f ) 

= ^ p V439 x 8.46 (o.904 + Vl +0.925+ (0.904)2) 

= 24,530 in-k or 2044 ft-k (2773 kN-m) 

Mr = FlSxcoxFySxt 

= ( 3 6 - 1 0 ) f > 

= 945 ft-k (1282 kN-m) or 

| | x 268 = 804 ft-k (1091 kN-m) 

Lr = 51.6 ft (15.8 m) (from iteration) 

Mp = | | x 357 = 1071 ft-k (1453 kN-m) 

^ W 9 . 9 6 + ?07x0.745"=4-65in(118mm) 

3 O 0 ^ = 3 O ^ 5 = 1 9 4 

" -4F7 \2<36 

Mn = Mp-(Mp-Mr) %-c 
KLr~hj 

= 1071-(1071-804) 
( 30 -19.4 A 

51.6-19.4 

= 983 ft-kips (1334 kN-m) 

Example 2 

Using Me from Example 1, calculate X 

X = -4 1071 
2044 

= .724 

0.49 < A, < 1.15, .-. use Equation 22 

Mn = Mp-(Mp-Mr) 
f X-0.49 A 

1.15-0.49 

= 1071-(1071-804) 

= 976 ft-k (1324 kN-m) 

^0.724-0.49^ 
1.15-0.49 
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