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ABSTRACT 

Unstiffened seated-beam connections are often used to con­
nect a beam to a column. For many years this connection was 
designed by using tabular methods in the AISC Design Manu­
als, including the most recent LRFD Manual. The manual 
tables are generated based on the required bearing length 
method developed in 1940s. This paper investigates the va­
lidity of this method by examining the formulations of the 
model and analyzing the connection behavior. The interac­
tions between connection components are discussed and 
more rational and accurate models are developed for connec­
tions consisting of a flexible angle and a stiff beam. Through 
comparison of various results, the current LRFD procedures 
are assessed and practical implications of this research are 
summarized. 

INTRODUCTION 

An often used simple connection between a beam and column 
web is the unstiffened seated-beam connection, where the end 
reaction is supported by an unstiffened angle bolted or welded 
to the column as shown in Figure 1. The angle connecting the 
upper portion of the beam to the column, optionally located 
either on the top flange or the upper part of the web of the 
beam, is only for stability considerations. The entire load is 
assumed to be transmitted through the bottom or "seat" angle. 

In both the 4th and 9th edition of the AISC Manual,12 the 
procedure for the design of a seated connection is the so-
called requiredbearing length method developed in 1940s. In 
this procedure, the location of the reaction is assumed to be 
at the center of the effective bearing length N required for 
beam web local yielding (Figure 2). The bending moment on 
the critical section of the angle, assumed at the base of the 
fillet on the outstanding leg (Figure 2), is determined by 
taking the beam reaction times the distance to the critical 
section. The thickness of the seat angle is then determined by 
limiting the flexural stress on this critical section. This proce­
dure is also incorporated in the latest AISC LRFD Manual.3 

Seated connection tests conducted 50 years ago4"6 were 
probably the experimental foundation for the AISC Manual 
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design procedures. Most of the experiments on seated con­
nections reported after 1980s7"11 studied the moment-rotation 
characteristics of the seated connections as semi-rigid con­
nections other than their load-carrying capacity as simple 
connections. Recently reported experiments by Ellifritt et 
al.42"44 addressed stiffened seated connections only, where the 
strength of column web or the welding between seat and 
column often control the behavior of connections. 

Although extensive theoretical analysis on the behavior of 
seated-beam connection can be found in the literature, almost 
all of them focused on the influence of connection flexibility 
on the performance of columns or frames as a whole,12'23 or 
on modeling connection moment-rotation relations,24"27 or 
both topics.28"34 Prior analytical research efforts on the load-
carrying capacity of seated connections were very limited,35"37 

probably because this type of connections has had a very good 
performance record for many years. While the current 
AISC/LRFD procedures, translated from the previous ASD 
procedures,38 have the merit of simple formulations and ap­
pear to be reasonably conservative, experimental research by 
Roeder and Dailey39 raised a number of questions regarding 
the design procedure because it was found that the safety of 
seated connections was not provided by factors suggested in 
the design calculation. 

Fig. 1. Unstiffened seated-beam connection. 
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This paper studies the behavior and load-carrying capacity 
of unstiffened seated beam connections consisting of a flex­
ible angle and a strong beam, where the strength of the seat 
angle itself will control the structural behavior of the connec­
tion (the bolts' related strength are assumed to be adequate). 
Connections involving a thick angle and a weak beam will 
not be the main topic of the present study, because the limit 
states of beam web crippling or local yielding would be more 
critical in that case. 

The first part of this paper briefly reviews the AISC LRFD 
procedures. Focusing on the effects of beam-bottom-flange 
to seat-angle attaching bolts, the second part studies the 
behavior of the connections by analyzing the interactions 
between the seat-angle and the supported-beam, from which 
simplified models for the calculation of the load-carrying 
capacity of the seated connections will be justified. Then, the 
load-carrying capacity of the seated connections, for both 
no-bolt and bolted cases, are determined from a failure 
mechanism analysis that uses a plastic hinge method.40 Fi­
nally, through the comparison of various methods, the validity 
of the LRFD procedures are evaluated and assessed and the 
practical implications of this research emphasized. 

REVIEW OF THE AISC/LRFD PROCEDURES 

The design loads for the AISC/LRFD Manual3 tables are 
based on two possible limit states: (1) excessive bending 
stress on the seat angle, and (2) local web yielding of the 
supported beam. When computing the load-carrying capacity 
of the connection, both limit states must be considered and 
the governing condition is the one which provides the most 
conservative results. 

The basic assumptions used in the procedures are that: (1) 
the critical section is located at the toe of the fillet of the 
outstanding leg; (2) the reaction occurs at the center of the 

W . 2-Sk <e 

critical section 

effective bearing length iV required for the local web yielding 
limit state; (3) the angles fillet radius is 3/8-in. and the beam 
setback is 3/4-in., which is H-in. more than the nominal setback 
to allow for possible mill underrun in beam length. 

The plastic moment of the angles outstanding leg is: 

F 'le^hi 

4 (1) 

The flexural design strength, based on a nominal resistance 
factor of 0.9, is: 

Wn = 0.9Mp = 0.225Fy_angleLl2
a (2) 

The design strength can be expressed in terms of the reaction: 

Thus, the equation for the limit state of flexure is: 

<M? = 
0.225Fy_angleL?a 

The equation for the limit state of local web yielding is: 

F u > 
'•y—beam — tJN+2.5k) 

(3) 

(4) 

(5) 

where 

tyift = magnitude of the reaction corresponding to the 
design flexural strength of the angle 

e = distance from the angle fillet to the location of 
reaction 

ta = angle leg thickness 
L = angle length 
tw = beam web thickness 
Fy-angle = W&& S t r e S S °f a ng l e 

Fy-beam = Y ^ S t r e S S ° f b e a m 

k = distance from outer face of flange to the web toe 
of fillet 

N = beam bearing length 

Three cases are considered, depending on the relative values 
of N, k and the angle leg dimension. 

Case I—Basic Case (2.5fc <N< 3.25 inches) 

The following equation relating the eccentricity ofR and the 
bearing length is obtained by examining the geometry in 
Figure 3(a): 

N 3 , 3 
(6) 

Fig. 2. AISC assumption for bearing stress. 

There are three equations (4, 5 and 6) and three unknowns 
((|)fc/?, N and e), which can be solved to provide the following 
expression for ( ^ and N by assuming the flexural strength 
and web yielding limit states are achieved simultaneously: 
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y-beam 
+ M\o-ta-7

k 0 . 2 2 5 * 7 ^ = 0 (7) 

i V = _ M — 2 M 
tJFy 

(8) 
y-beam 

Case II—N is less than 2.5k 

If the value of N resulting from the solution of Equation 8 is 
less than 2.5/c, the reaction is assumed to be located at one-
fourth of the distance (N + 2.5k) as shown in Figure 3(b). The 
geometrical equation is rewritten as: 

N+2.5k 3 3 
(9) 

Resolving Equations 4, 5 and 9 gives the following quadratic 
i n c ^ : 

(<M?)2 

4^V 
- + <M? 

y-beam 

r3 ^ 

V J 
-0225Fy_mgleLta = 0 (10) 

Case III—N is greater than 3.25 inches 

If the value of N resulting from the solution of Equation 8 is 
greater than 3.25 inches, which is the maximum possible 
bearing length for a 4-in. angle, TV is assumed to be 3.25 
inches, as shown in Figure 3(c). In this case, the governing 
limit state is local web yielding and the resulting maximum 
load capacity is: 

§bR = {?>.25 + 2.5k)twFy_bea (11) 

In summary, the LRFD procedures for computing the maxi­
mum load-carrying capacity of an unstiffened seat angle are 
as follows: 

1. Assume Case I applies, and use Equation 7 and Equation 
8 to compute, respectively, the values of (j)^ and TV; 

2. If N is greater than 2.5A: and less than 3.25 inches, the 
value for c))^ is valid and the solution process stops; 

3. If N is less than 2.5k, Case II applies and Equation 10 
should be used to calculate a new value for ( ^ ; and 

4. If TV from Step (1) is greater than 3.25 inches, Case III 
applies and Equation 11 should be used to calculate a 
new value for tyfft. 

This algorithm was used to generate Table 9-6 found on page 
9-136 of the AISC LRFD Manual of Steel Construction.3 In 
generating the tables, the following approximations for k are 
used for simplicity: 

k = 2.5tw for tw<5A6 

k = 2.75twfortw>5/i6 

(12a) 

(12b) 

Example 1 

Using the LRFD procedures to compute the design strength 
of an unstiffened seated connection. 

Given 

tw = 9/i6-in., ta = V -̂in., L = 8-in. 

Assume 

Beam set back = 3/4-in., angle outstanding leg length = 4 in. 

Use ASTM A36 steel for both the seat angle and the supported 
beam. 

Solution 

From Equation 12b: 

( N + 2 . 5 k ) / 4 + 3 / 4 = t a + 3 / 8 + e 

(b) Case II: N < 2.5k 

3/4--

Calculated N 

N=»3.25 

N/2 

<f 

N lei 

-3/8" 
3 . 2 5 / 2 + 3 / 4 = t a + 3 / 8 + e 

(c) Case III: N > 3.25" 

Fig. 3. LRFD procedures. 
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k = 2.15tw = (2J5)h^r = 1.547 in. 

Substitute tw = 9/i6-in., ta = H-in., L = 8 in., A: = 1.547 in. and 
Fy-beam = Fy-angle mtO E q u a t i o n 7 l 

40.5 
-2.06<|)^-16.2 = 0 

Solving the quadratic equation gives: 

V ? = 90.6 kips 

Using Equation 8: 

<W? 90 6 
N = Z -2.5k = —^^—-(2 .5 ) (1 .547) 

t"wl v—beam (9/16)(36) 

N = 0.608 in. < 2.5A: = (2.5)(1.547) = 3.867 in. 

Since N is less than 2.5&, then Case II applies. 

Substitute tw = 9/i6-in., ta = VHn., L = 8 in., and Fy_beam = 
Fy_angle into Equation 10: 

81 
- 0 . 1 2 5 ^ - 1 6 . 2 = 0 

Solving the quadratic equation yields the following: 

<tvR = 41.6 kips 

INCONSISTENCIES IN THE LRFD PROCEDURES 

The above LRFD procedures are essentially derived from 
prior ASD procedures1'2 developed as early as the 1940s. The 
assumed distribution of forces within the connection appear 
to be highly idealized and somewhat unrealistic. Some incon­
sistencies in the formulations of the procedures are described 
in the forthcoming sections. 

Unrealistic Values of Effective Bearing Length N 

For a particular seat angle size, the load-carrying capacity of 
the connection should not exceed some limit value regardless 
of the supported beam size. However, the resultant design 
strength from the LRFD procedures could increase without 
bound, for a seat angle of a given thickness, should the beam 
web thickness keep increasing. At this point, the LRFD pro­
cedures are inconsistent when applied to connections consist­
ing of a flexible-angle and thick-web-beam. 

If the beam web were made thicker, the effective bearing 
length N required based on the local web yielding limit state 
would decrease. If the beam-web thickness tw is large enough, 
the required bearing length N may become zero, or even a 
negative value. In these cases, the limit state of excessive 
bending stress on the seat angle should be the sole control 
condition, and the equation for the limit state of local web 
yield, 

F u > 
*y-beam — 

•** 
tj?f+2.5k) 

(5) 

should be of no significance. However, if this equation is still 
enforced, as in the LRFD procedures, the resultant value of 
N will become unrealistic, i.e. a very small or even negative 
value. 

Considering the geometric relations: 

or 

N 3 3 r _ T 

— + — = ta + — + e for Case I 

N+2.5k 3 3 . ^ TT 

+ - = t + - + e for Case II 
4 4 a 8 

(6) 

(9) 

The unrealistic bearing length Af would lead to a very small 
value of eccentricity e, which would in turn produce a very 
high design strength fyfft when substituted into the equation 
for the limit state of flexure: 

w«= 
0225Fy_angleLt1

a 
(4) 

The inconsistency is an unsafe factor and will be illustrated 
more clearly in the following example. 

Example 2 

Rework Example 1 to illustrate the inconsistency of an unre­
alistic effective bearing length Af in the LRFD procedures. 

Solution 

Substitute ( ^ = 41.6 kips, Fy_beam = 36 ksi, tw = 9/i6-in. and k = 
1.547 in. into Equation 5: 

36>-
41.6 

(9/16) [N+ (2.5)(1.547)] 

Solve for N: 

41.6 
Af = - -(2.5)(1.547) = -1.813 in. 

(9/16)(36) 

N < 0, unrealistic! 

Because Af is less than zero there is no true bearing between 
the angle and steel beam. Regardless this fact, if we substitute 
N = -1.813 in., k = 1.547 in., ta = Vfe-in. into Equation 9 and 
solve for e: 

-1.813 +(2.5)(1.547) 3 1 3 
4 + 4 = 2 + 8 + * 

e = 0.3886 in., very small! 

Underestimating the eccentricity would lead to a very large 
design strength, therefore the LRFD procedures are unsafe in 
this aspect. (It should be pointed out that the overall LRFD 
procedures usually produce satisfactory and safe designs 
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since, as will be noted later, the procedures are overly conser­
vative in other aspects.) An examination of the total 140 cases 
listed in AISC Table 9-6 on unstiffened seated connections 
reveals that more than one third (38 percent) have unrealistic 
values of effective bearing length N, i.e. half (50 percent) of 
those cases controlled by Case II (N < 2.5k) have negative or 
zero values of beam bearing length N. 

Shear Force Effect on the Yielded Material 

Since the values of eccentricity e (the distance from the toe 
of angle fillet to the location of reaction) are generally of the 
same order of magnitude when compared with the angle 
thickness, the shear force might have a significant reduction 
effect on the plastic moment capacity of the critical section. 
Ignoring the shear force effect, as in the LRFD procedures, 
may lead to an overestimation of the load-carrying capacity 
of the connection when the seat angle is thick. Drucker's yield 
criterion41 for the combined plastic bending moment Mps and 
shear force R< at the critical section has the form: 

'R* 
R» 

<1 (13) 

where 

M0 and Ros= pure plastic bending moment capacity and 
shear force capacity, without coupling of 
seat-angle, respectively. 

Using the Tresca's yield criterion, we have: 

» , "y-angle'^'^a 

Rn* — 

J f 17 
J-*''cry-angle 

(14a) 

(14b) 

Substitute Equations 14a and 14b into Equation 13 and re­
arranging: 

M Vy-angle^ta 
iV1

PS A 1 
16# 

KLXj'y-angle) 
(la) 

This is the plastic moment capacity of the critical section 
considering the reduction effect due to shear force. Using 
Equation la instead of Equation 1, Equation 4 will have the 
following modified form: 

<w«.=-
0.225F^,gleLii 

1 
i6(<My4 

K^a^y-angle ) 
(4a) 

where 

Rs- load-carrying capacity of seat angle including the 
effect of shear force. 

Also, Equations 7 and 10 will be modified to the following 
forms, respectively, 

3> tiFy-angleLlq 

\Ltary_mgie) 
«w?,f+ JMJL. 

?F t 
^1y-beam''w 

•-t.-l.25k 

- 0 . 2 2 5 ^ ^ = 0 

(<W?) 

(7a) 

3 . 6 ^ ^ / A D ̂  _ (^)2 

K^a^y-angle) 
•iM.r+ 

^*y-bearrf\ 
• + (0.375 -a<w?) 

- 0 . 2 2 5 F W , U 2 = 0 (10a) 

The value of §Jls can be determined by an iteration procedure. 

Example 3 

Using the LRFD procedures with the modified equations (7a 
and 10a) to compute the design strength of an unstiffened 
seated connection made with a thick seat angle, and assessing 
the maximum possible reduction effect of shear force on the 
load-carrying capacity of seat angle. 

Given 

tw = 9/i6-in., ta = 1.0 in., L = 6.0 in. 

Assume 

Beam set back = 3/4-in., angle outstanding leg length = 4 in. 

Use A36 steel for both seat angle and supported beam. 

Solution: 

Assume 2.5A:<N< 3.25 in., Case I—Basic Case 

Substitute tw = 9/i6-in., ta = 1.0 in., L = 6.0 in., k = 1.547 in. and 
Fy-beam = Fy-angie = 36 ksi into Equation 7a; 

(<bA)4 (<M?)2 

tyjl, = 105.4 kips 

Using Equation 8: 

105.4 
Af= -(2.5X1.547) 

(9/16)(36) 

tf =1.337 in. < 2.5* =3.867 in. 

Therefore, Case II applies. 

Substitute tw = 9/i6-in., ta = 1 in., L = 6 in., k = 1.547 in. and 
Fy-beam-Py^mgie' 3 6 k s i intoEquation 10a: 

2J99360 + ~ST - °*625( * * ' ) " 4 8 ' 6 = ° 

^ = 82.3 kips 

From LRFD Table 9-6: 
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tyjl = 93 kips 

This example indicates that the overestimation of the load-
carrying capacity is 13 percent by neglecting the effect of 
shear force in the LRFD procedure. 

THE BEHAVIOR OF SEATED 
BEAM CONNECTIONS 

When designing a flexible angle, it is important to understand 
how the angle is being loaded, and how it reacts to this load. 
Figure 4(a) shows a simply supported beam placed on a seat 
angle. Due to loading on the beam, the beam deflects and its 
end rotates (Figure 4(b)). Consequently, the point of contact 
of the reaction R tends to move outward. This increase in 
moment arm increases the bending moment on the seat, 
causing the leg of the angle to deflect downward. As the 
deflected leg takes the same slope as the loaded beam, the 
point of contact moves back, Figure 4(c). Two key issues 
involved in determining the load-carrying capacity of seated 
connections are the location of the critical sections (type of 
failure modes) and the point of reaction R (bearing stress 
distribution). 

The Location of the Critical Sections 

If a seated connection is used without attachment to the beam, 
Figure 5(a), it seems plausible to take the critical section as 
the net section through the upper bolt line,37 i.e. b-b section 
in Figure 5(a), since this section has the smallest net area and 
largest eccentricity. However, if the second-order effect is 
considered, it can be shown that the section at the toe of the 

fillet on the leg which is bolted to the column, i.e. a-a section 
in Figure 5(a), is more critical than the section through the 
upper bolt line. 

Figure 5(b) shows the resultant reaction R acting on a 
deformed angle. Since the reaction force R has to be perpen­
dicular to the deformed surface of seat angle, it creates a 
horizontal component Rsind and a vertical component 
TfcosG. From the figure, it can be seen that: 

Ma_a = ^/fcosG - &#sin6 

MM = e2RcosQ - /J?sinO 

(15a) 

(15b) 

where 

Ma_a and Af^,= bending moment values acting on the seat 
angle at Sections a-a and b-b, respectively. 

By subtracting Equation 15b from Equation 15a and rearrang­
ing: 

Mn_ • M^ = R[(ex - e2)cos0 + (Z - £)sinO] (16) 

Considering the fact that ex ~ e2 and / » k, Equation 16 can 
be simplified as: 

Mn_ -Mb_b~R(l-k)sinQ»0 (16a) 

That is, the bending moment on Section a-a will be much 
higher than that on Section b-b as the rotation angle 0 and 
reaction R increase. Therefore, the critical section should be 
taken at Section a-a. The corresponding failure mode is shown 
in Figure 5(c). 

(a) (b) 
(a) Undeformed configuration 

(b) Reaction R applied on deformed configuration 

(c) 

(c) Failure mode 

Fig. 4. Reaction location for beam on seat angle. Fig. 5. Location of critical section for no-bolt case. 
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The beam should typically be attached to the seat as shown 
in Figure 6(a). Theoretically, the rotation of the beam at the 
end creates a horizontal force that tends to restrain the angle 
pull away from the column. The critical section for flexure is 
therefore taken at or near the base of the fillet on the outstand­
ing leg, i.e. Section b-b in Figure 6(a). As a matter of fact, this 
is one of the basic assumptions used in the AISC LRFD 
procedures as reviewed in the preceding section. However, 
this assumption may not be valid when the entire length of 
the supported beam (not only one of the beam ends) is 
considered. As illustrated in Figure 7, the larger the beam end 
rotation (a), the shorter the net distance between the beam 
ends (because the beam would be deflected and curved) and 
the larger the gap (A/) between the beam end and column face. 
Depending on the span and stiffness of the supported beam, 
the beam end rotation may not necessarily generate a force 
that always restrains the angle pull away from the column. 

In order to estimate the maximum capacity of the seat 
angle, the beam was assumed to be very stiff and the effect of 
beam end rotation was neglected. As a result, the correct 
failure mode would be the one shown in Figure 6(b), where 
the beam end is assumed to be a rigid body moving down­
ward. 

chords of the cantilever and simple beams due to a concen­
trated load P can be written in the following forms, respec­
tively: 

y« =i 

Px 

P4 

y b =< 

where 

P 
l6EJt 

P 

(2x0 - x) for 0 < x < x0 

for x0<x<la 

(Lb-2x0)
2 forO<Jt<Jt0 

(17a) 

(17b) 

16E*/, 
[(Lb - 2x0)

2 - 4(x - x0)
2] for x0 < x < Lb 

ya' and yb = slopes of the deflected chords of the 
cantilever and simple beams, respectively 

The Point of Reaction R 

Consider a simple beam of length Lb supported by cantilever 
beams of length la at both ends as shown in Figure 8. If we 
idealize the outstanding-seat-angle-legs as the cantilever 
beams, this simple model can be utilized to analyze the 
character of the shifting point of reaction R. 

The assumptions embedded in the following derivations 
are: (1) the material is perfectly elastic; (2) the beams are 
initially straight and prismatic, with plane cross-sections re­
maining plane after deformation; and (3) the assumed point 
of contact for R is located where the two deformed surfaces 
are tangent to each other. 

Based on mechanics of material, the slopes of deflected 

beam end rotation a 

I . undeformed 

deflected 
( L - A L ) 

beam end rotation a 

i 

AL 

Fig. 7. Correlation between beam end rotation and net span. 

(a) Undeformed configuration (b) Failure mode 

X Q | 

P-

R=P/2 EbIb 

l a 

•SIMPLE BEAM m 
CANTILEVER BEAM 

L b / 2 

Ea l a -

la 

L b / 2 

Fig. 6. Beam attached to seat angle. 
Fig. 8. Idealized model for evaluating 

shift of reaction point R. 
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Ea and Eb = elastic moduli of the cantilever and simple 
beam, respectively 

Ia and Ib = moment of inertia (with respect to the 
bending axis) of the cantilever and simple 
beams, respectively 

x, JC0, la, and Lb- dimensions as shown in Figure 8. 

From Equation 17a and 17b, it is noted that the conditions for 
single contact point are satisfied automatically, i.e. 

>a'<yb'forx<x0 

>a' = yb'forx = x0 

ia'>yb'fotx>xo 

(18a) 

(18b) 

(18c) 

By substituting Equations 17a and 17b into Equation 18b, we 
can write the following expression and solve for x0: 

P4 _ P 
4EJa 16E& 

(Lb-2x0f 

0<x0--
Lb/2 

1+^EM/iEJJ 
-<L 

Considering the fact that Ib»Ia and Ea = Eb for practical 
seated connections made of steel, the above equation can be 
simplified as: 

0 < JC0 «-pr A/ a
 2 < Ia for concentrated load (19a) 

2 y h'Lh ib' H> 

If the simple beam in Figure 8 is subjected to an evenly 
distributed load w throughout its span Lb instead of the con-

4.0 -i 

3.5 

3.0 

^2.5 

•5̂ 2.0 

1.5 

*1.0 

0.5 

0.0 

• 

' s^ 

' ^^ / / 
/ / 

t / 
1/ 

\y 

s 

Concentrated 
Distr ibuted 

r i 

12 
I 

24 
I 

36 
T " 
48 

I 

60 
I 

72 
1 
84 

—1 
96 

RELATIVE STIFFNESS 
L/ 
'H' 

(in.2) 

centrated load P, then the following expression for x0 can be 
similarly derived: 

0 < JC0 « A/ 77-772 ^ L for distributed load (19b) 

Equations 19a and 19b are plotted in Figure 9 for comparison. 
It can be seen that the point of reaction R (or bearing stress 
distribution pattern) depends on load conditions and relative 
stiffness of seat-angle-leg and supported-beam. When all 
other conditions are identical, the x0 value for concentrated 
load is 22.5 percent more than for the distributed load case. 
When the dimensions of the supported beam (i.e., Ib and Lb) 
are given, then the bearing stress distribution will depend 
mainly on the thickness of the angle leg. If the leg of the angle 
is thin, it will deflect easily. Consequently, the point of contact 
will shift to the end of the beam (i.e. x0 decreases), and the 
triangular distribution of Figure 10(a) is justified. If the leg of 
the angle is stiff, it will deflect less and the point of contact 
will extend farther out along the leg (i.e. x0 increases), and 
thereby the reaction contact moves towards the outer edges 
as in Figure 10(b). 

The Effect Of Beam-Bottom-Flange To Seat-Angle 
Attaching Bolts 

Considering the beam-angle-column subassemblage as 
shown in Figure 11(a), the overall effect of bolting the beam 
to the seat angle is to add redundancy to the connection 
subassemblage. The structural subassemblage, which is stati­
cally determinate before bolting, Figure 11(b), will become 
statically indeterminate when the bolts are installed and prop­
erly tightened, Figure 11(c). For the no-bolt case shown in 
Figure 11(b), a single plastic hinge formed at any location in 
the angle will lead to a sudden collapse of the beam. The 
corresponding load-carrying capacity can be determined us­
ing simple mechanics. For the bolted case shown in Figure 
11 (c), the formation of one plastic hinge in the seat angle does 

5 = 

(a) Flexible angle (b) Thick stiff angle 

Fig. 9. Relationship between relative stiffness 
and location of reaction point R. Fig. 10. Bearing stress distribution patterns. 
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not necessarily result in the failure of the connection. The 
load-capacity needs to be determined by plastic hinge analy­
sis using assumed failure mechanisms. 

The local effects of the beam-bottom-flange to seat-angle 
bolts are different depending on the relative stiffness of the 
seat angle and the supported beam. Figure 12 illustrates the 
effect of the bolts for a connection consisting of a thick angle 
and a weak beam. Figure 12(c) indicates that tightening the 
bolts is equivalent to adding a clockwise moment Mb to the 
no-bolt case, Figure 12(b). This clockwise moment Mb is 
unfavorable to the performance of the connection since it 
increases the bending moment on the seat angle from Mub to 
Mub + Mb. Also, it would increase the bearing reaction con­
centration at the toe of the outstanding angle leg and might 
overstress the beam web in bearing. The limit state of beam 
web crippling or local yield is, therefore, more likely to 
control in this case. Figure 13 is for connections involving a 
flexible angle and a strong beam. Tightening the bolts is 
essentially the same as applying a counter clockwise moment 
Mb to the no-bolt case, Figure 13(b) and (c). This counter 

(a) Beam-angle-column subassembledge 

clockwise moment Mb would improve the performance of the 
connection by reducing the bending moment on the seat angle 
(Mbt = Mub - Mb) and increasing the length of contact for 
proper support of the beam web. Attaching the beam to the 
seat using properly tightened bolts can significantly increase 
the load carrying capacity of seated connections consisting of 
a flexible angle and a strong beam, since the strength of the 
seat angle itself would control the structural behavior of this 
kind of connection and the failure mode of seat angle would 
shift from the one shown in Figure 6(c) to that in Figure 7(b) 
due to bolting. 

THE LOAD-CARRYING CAPACITY OF 
SEATED-BEAM CONNECTIONS 

The preceding section shows that the beam-bottom-flange to 
seat-angle attachment bolts have a significant effect on the 
behavior of seated connections. When the bolts are not in­
stalled and tightened during construction, the load-carrying 
capacity of the connection should be calculated using the 
model shown in Figure 11(b). When the bolts have been 
installed and tightened during construction, then the model 
shown in Figure 11(c) should be used to compute the design 
strength of the connection. The following sections will dem­
onstrate that the load-carrying capacity is dramatically differ­
ent for the no-bolt case and the bolted cases. 

No-Bolt Case 

If the beam is not attached to the seat angle, the load-carrying 
capacity of the connection is directly related to the value of 
eccentricity, which is in turn a function of the relative stiffness 

77777 TSST 

(b) Statically determinate model for no-bolt case 

(a) Configuration before tightening blots (b) Bearing stress pattern 

before tightening bolts 

- S E A T ANGLE 

~30L 

77777 T S ^ 

(c) Statically indeterminate model for bolted case 

Fig. 11. Overall effect of attaching beam to seat angles. 
Fig. 12. Local effect of tightening the bolts 

(thick angle and flexible beam case). 
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parameter at the initial elastic stage as discussed earlier. The 
smaller the parameter 

reduced plastic moment capacity of a rectangular section can 
be written as:40 

h/Ll 
the smaller the eccentricity (see Equation 19 and Figure 9). 
For connections consisting of a flexible angle and a strong 
beam, both the triangular and parabolic bearing stress distri­
butions shown in Figure 14 can be considered as rational 
models under service load conditions. Their eccentricity val­
ues can be estimated using the following equations: 

N 
e = ir + bs--rfor triangular case (20a) 

and 

where 

M„ 
pc _ = 1 -

fR^ 

\*°°J 
(21) 

Mpc = reduced moment capacity due to the 
presence of the compressive force R that 
acts on the critical section 

M0 and Roc = pure plastic bending moment capacity and 
axial load capacity, without coupling of 
seat angle, respectively. 

Substitute Mpc = eR into Equation 21 and rearrange: 

e = -r + bs - -^ for parabolic case (20b) 

However, it should be noted that as the load increases, plasti-
fication would be developed and Equation 19 and Figure 9 no 
longer apply. As the outstanding leg of the angle deflects 
downward due to plastic and elastic deformations, the eccen­
tricity would keep decreasing as the limit load is approached. 
At the same time, we note that the value of eccentricity cannot 
be physically less than that of beam setback minus one half 
of the angle thickness (bs — ta/2). Therefore, if we assume 
that e = bs - ta / 2, then the maximum load-carrying capacity 
can be computed. 

Since the eccentricity e has the same order of magnitude 
when compared with angle thickness, we must therefore 
consider the effect of axial load on the yielding of material 
due to bending. The nondimensionalized expression for the 

r\^ f \ 
R2 + 

M0y 
# - 1 = 0 

where 

**0c — ^y-angle^a 

M0 = 
F Ji1 

ry-angleL^',a 

(22) 

(23) 

(24) 

Substituting Equations 23 and 24 into Equation 22, and using 
e = bs-ta/2, then: 

1 r ^ + 4 ^ 2 ^ Q 

\^y-angle^a) ^y-angle^hz 
(22a) 

where 

R = load-carrying capacity of seat angle including the 
effect of axial force. 

SUM TO JEAT-
ANGIX iXtACBmO BOLTS 

(a) Configuration before tightening bolts (b) Bearing stress pattern 

before tightening bolts 

f^r 
r^ 

Equation 22a can be solved for positive values ofR, then the 
design strength can be obtained by multiplying R by a resis-

CKmCAL SECTION 

(c) Bearing stress after tightening bolts 
(a) Triangular distribution (b) Parabolic distribution 

Fig. 13. Local effect of tightening bolts 
(flexible angle and strong beam case). 

Fig. 14. Bearing stress pattern for flexible 
angle and stiff beam case. 
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Table 1. 
Summary of Load-Carrying Capacity Calculated 

Using Various Theoretical Models* 

Angle 
Length 

(in.) 

6 

8 

Angle 
Thickness 

(in.) 

% 
v2 % 
3/4 
1 

% 
v2 % . 
3/4 
1 

Rational Models 
(kips) 

No-bolt 
Case 

11.8 
22.9 
38.9 
60.4 
N/A 

15.8 
30.6 
51.9 
80.5 
N/A 

Bolted 
Case 

21.7 
37.0 
53.1 
69.4 

102.0 

28.9 
49.3 
70.8 
92.5 

136.0 

LRFD** (kips) 

Fy = 36 

23.5 
36.8 
50.6 
64.6 
93.0 

27.2 
41.6 
56.5 
71.6 

102.0 

* Assume that beam web is thick enough so that the strength 

angle controls; Fy-ang\e - 36 ksi; 

** Values correspond to tw= 9/i6-in. 

Fy=50 

27.7 
44.7 
62.4 
80.4 

117.0 

32.0 
50.3 
69.2 
88.5 

128.0 

of seat 

tance factor of 0.9. The results of selected examples from 
these procedures are listed in Table 1 for comparison 
purposes. 

Bolt-Tightened Case 

The collapse mechanism for a seated connection consisting 
of a flexible angle and a strong beam is shown in Figure 15 
when the beam bottom flange is properly attached to the seat 
angle. Since the distance between the two plastic hinges is the 
same order of magnitude when compared with the angle 
thickness, then the strength reduction effects due to shear 
force and axial load on the plastic moment capacity of the seat 
angle should be considered using Equations 13 and 21, 
respectively. 

fcsie? 

(a) Failure mode 

The work equation for the mechanism shown in Figure 15 
is given by: 

Mpse + Mpfi = R e (25) 

From Equations 13 and 21, respectively, the moment values 
are given as: 

Mps = M0 

Mpc = M0 

'R^ 

1 

v °V 

'R^ 

V*°V J 

(26a) 

(26b) 

Substituting Mps and Mpc from Equations 26a and 26b, and 
using Equations 14b, 23 and 24 for Ros, Roc, and M09 respec­
tively, Equation 25 becomes: 

16 
r # + -

1 

ypy-ongle^a) K^y-angle^1*'a) 

, 4b.-2ta R2+F \R-2 = 0 (27) 

The value of R can be determined by an iteration procedure. 
Then, the design strength can be obtained by multiplying R 
by a resistance factor of 0.9. The results of selected examples 
from this method are listed in Table 1. It should be pointed 
out that these design strengths are determined solely from the 
limit state of plastic collapse of the seat angle. They represent 

(a) Failure mode for bolt-untightened case (b) Failure mode for flexible beam case 

(c) Analytical model 

(b) Analytical model 

Fig. 15. Failure mode for bolt-tightened case. 
Fig. 16. Failure mechanism for bolt-untightened 

or flexible beam case. 
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an upper bound load carrying capacity of seated connection, 
since for the failure mode shown in Figure 15 the beam has 
to be rigid and the beam end rotation equals to zero. In reality, 
the beam can not be truly rigid and some finite beam end 
rotation will always exist. When the beam end rotation is 
significant and can not be neglected, then the model for the 
bolt-untightened case can be modified to consider the effect 
of beam end rotation on the load-carrying capacity of a 
seated-beam connection as discussed in the following section. 

Bolt-Untightened Case 

A situation between the no-bolt and the bolt-tightened cases 
could occur if the bolts connecting the beam bottom flange to 
seat angle are installed but not tightened. For example, if the 
nut is threaded onto the shank of the bolt, but not fully turned 
until contact is achieved between the bottom of the nut and 
the connecting surface, then the failure mode should be like 
the one shown in Figure 16(a). A similar failure mode shown 
in Figure 16(b) applies for the case when the bolts are tight­
ened but the beam is flexible and beam end rotation equals a 
finite value of a. Analytically, both failure modes can share 
the same collapse mechanism for the seat angle as shown in 
Figure 16(c), except that for the bolt-untightened case the 
value of a depends on the position of nuts, while for the 
flexible beam case the beam end rotation a is a function of 
beam stiffness £7, beam span length L and load distribution 
patterns. Again, the effects of shear force and axial load on 
the plastic moment capacity of seat angle must be considered. 

The work equation for the mechanism shown in Figure 
16(c) is given by: 

Mps(Q-a) + MpcQ = R *-f ie (28) 

where 

Mps and Mpc are given by Equations 26a and 26b 
respectively. 

In writing Equation 28, it is tactically assumed that the 
reaction R is close to the beam end so that the effect of rotation 
a on the work done by reaction R can be neglected. 

Similar to the derivation from Equation 25 to Equation 27, 
Equation 28 can be simplified to the following fourth-order 
equation: 

i - a / e 
K^y-angl^a) 

4k-2tn 

R* + 

Fy—angler 
R- (29) 

For the bolt-untightened case shown in Figure 16(a), the 
rotation angle a is a constant as far as the position of nuts are 
known. Therefore, the load-carrying capacity R will be a 
function of only 0 for given seat angle sizes. Given a specific 

Table 2. 
The Comparison of LRFD Design Strength Relative 

to the Results of Plastic Hinge Method* 

Angle length (In.) 

Angle thickness (in.) 

Fy= 36 ksi 

Fy= 50 ksi 

Angle length (In.) 

Angle thickness (in.) 

Fy= 36 ksi 

Fy = 50 ksi 

6 

% 

8.3% 

27.6% 

v2 

-0.5% 

20.8% 

% 

-4.7% 

17.5% 

3/4 

-6.9% 

15.9% 

1 

-8.6% 

14.9% 

8 

% 

-5.9% 

10.7% 

v2 

-15.6% 

2.0% 

% 

-20.2% 

-2.3% 

% 

-22.6% 

-4.3% 

1 

-24.8% 

-5.7% 

*"+" = overestimate;"-" = underestimate. 

value of 6, the value of R can be determined from Equation 
29 by a simple iteration procedure. Thus, the R-Q relationship 
curve can be plotted using this method. 

For the flexible beam case shown in Figure 16(b), the beam 
end rotation a is a linear function R, it can be expressed in the 
following general form: 

a = vF/? (30) 

where 

Y1EI 
for uniformly distributed load on a simple beam 

*F = -i— for a concentrated load at the mid-span of a simple 
beam. 

Substituting a from Equation 30 into Equation 29 and re­
arranging we have: 

y/e 
\Py-angle^a) 

f 

-R5 1 

4k-2t 

K^y-angle^a) 
R4- 1 

\Fy-anglJ-ta) 
R2 

^Ty-angleLla 0 . 
fl + 2 = 0 (31) 

Again, the load-carrying capacity R is a function of 9. Given 
a specific value of 0, the corresponding R can be determined 
from Equation 31 using an iteration procedure. Thus, the 
R-Q relation curve can be plotted. 

THE VALIDITY OF LRFD PROCEDURES AND 
PRACTICAL IMPLICATIONS 

The load-carrying capacity of selected examples calculated 
using various analytical models described in the preceding 
sections are summarized and compared in Tables 1 and 2. All 
the values in the Table 1 include the appropriate resistance 
factors. 
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It can be observed from Table 2 that, based upon the 
strength given by the plastic hinge method, the LRFD method 
overestimates the load-carrying capacity by 15 percent to 28 
percent when L = 6 in. and Fy_beam = 50 ksi. Moreover, the 
LRFD method underestimates the strength by 6 percent to 25 
percent when L = 8 in. and Fy_beam = 36 ksi. Note, however, 
that the strength comparisons are more favorable (within ±10 
percent) for the remaining cases listed in Table 2. Considering 
the inconsistencies and shortcomings of the LRFD proce­
dures discussed previously, it is perhaps surprising that the 
design values generated from these procedures are not signifi­
cantly off when compared with the results obtained using 
more rational and accurate models. 

In the LRFD procedures, the unrealistic (very small or 
negative) value of effective bearing length N or its resultant 
small eccentricity e, together with neglect of the shear force 
effect on the plastic moment capacity will always result in 
overestimating the load-carrying capacity and lead to an 
unsafe design. However, since the LRFD procedures com­
pletely ignore both of the local and overall beneficial effects 
of beam-bottom-flange to seat-angle attaching bolts and em­
ploy an unrealistic and overly conservative failure mecha­
nism, they tend to underestimate the load-carrying capacity 
and lead to an extremely conservative design. The combined 
effect of these opposite factors make the LRFD procedures 
reasonably safe, although accidently in many cases. However, 
the safety is not provided by the factors suggested in the 
design calculations. 

The comparisons made in Tables 1 and 2 are within the 
range of variables listed in the LRFD Manual tables (i.e. 3/g-in. 
< ta < 1 in. and tw < 9/i6-in.). When the dimensions of the 
connection components exceed these ranges (although this 
may not happen very often in practice), the LRFD procedures 
will overestimate the load-carrying capacity more frequently. 
Therefore, it is reasonable to suggest that the design strength 
obtained using the plastic hinge analysis should be incorpo­
rated into the current LRFD procedures as an upper bound 
limiting strength. In other words, whenever the predictions of 
LRFD procedures for load-carrying capacity exceed those 
obtained using a simple plastic hinge analysis, the later should 
be used as design strength. 

Practical Implications 

It is noted from Table 1 that the seated connections of un­
bolted cases generally have load-carrying capacities much 
lower than the design strengths of bolted connections. More­
over, the failure of an unbolted seated connection, Figure 5(c), 
would develop suddenly and without warning, which is gen­
erally not acceptable in engineering practice. Therefore, it is 
very important to install and tighten the beam-bottom-flange 
to seat-angle attaching bolts as soon as possible after the beam 
is placed on the seat-angle during construction. A seated 
connection should not carry any additional load from other 

structural members until the bolts are installed and securely 
tightened. 

From the comparison made in Table 2, it is obvious that 
when L = 6 in. and Fy_beam = 50 ksi the LRFD results are not 
acceptable for safety consideration. This is because seat an­
gles with a short length have less effective area to resist the 
load. In these cases the plastic moment capacity of seat angles 
become more sensitive to the reduction effect of axial load 
and shear force which are not accounted for in the LRFD 
formulations. Since the effects of axial load and shear force 
are, respectively, second and fourth order effects [see Equa­
tions 22a and 4a], their reduction effects would decrease 
rapidly as the angle length increases. This is why for L - 8 in. 
angle length the LRFD results are much more reasonable. 
According to the analysis made above, it is advisable to use 
seat angles with lengths greater than 8 in. whenever possible 
in practice. If a seat angle length less than 6 in. must be used, 
then care should be exercised in sizing the seat angle thick­
ness in order to ensure a safe design. 

CONCLUSION 

It is concluded that the current LRFD procedures for un-
stiffened seated connections are somewhat irrational, al­
though they often produce acceptable results. The LRFD 
procedures employ a highly idealized and somewhat unreal­
istic distribution of forces within the connection, and they 
assume incorrect failure modes which ignore some critical 
behavioral factors. Since some of factors ignored in the LRFD 
procedures are unsafe while others are overly conservative, 
the combined effect of opposite factors may explain why 
seated connections have resulted in satisfactory designs for 
many years without significant problems. However, the cur­
rent LRFD procedures are valid only within a particular 
limited range of connection parameters. 

Improvements in the design procedures of seated connec­
tions may be desirable. It seems more reasonable to check the 
strength of the seat angle and beam web local yielding and 
crippling separately, rather than to account for them together 
as in the current LRFD procedures. Moreover, the level of 
safety can be more accurately controlled if the model that is 
used to predict the strength is rational and behaviorally 
correct. 
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