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ABSTRACT 

Optimization of large space frame steel structures subjected 
to realistic code-specified stress, displacement, and buckling 
constraints is investigated. The basis of design is the Ameri
can Institute of Steel Construction (AISC) Allowable Stress 
Design (ASD) specifications. The types of structures consid
ered are space moment resisting frames with and without 
bracings. The structures are subjected to wind loadings ac
cording to the Uniform Building Code (UBC) in addition to 
dead and live loads. The parallel-vector algorithm developed 
in this research is applied to three highrise building structures 
ranging in size from a 20-story structure with 1,920 members 
to a 60-story structure with 5,760 members, and its parallel 
processing and vectorization performance is evaluated. For 
the largest structure, speedups of 6.4 and 17.8 are achieved 
due to parallel processing (using eight processors) and vec
torization, respectively. When vectorization is combined with 
parallel processing a very significant speedup of 97.1 is 
achieved. 

INTRODUCTION 

Most of the structural optimization algorithms presented in 
the literature are applied to small structures or academic 
examples with simple constraints (Adeli, 1993). The true 
advantage of the optimization technology is realized only 
when it is applied to large structures. High-performance 
multiprocessor computers provide an unprecedented oppor
tunity to apply optimization technology to design of large 
structures with thousands of members subjected to realistic 
code-specified design constraints. The challenge is to develop 
efficient algorithms employing the unique architecture of 
these machines (Adeli and Kamal, 1993). 

The goal of this research is to develop efficient and robust 
parallel-vector algorithms for optimization of large space 
steel structures subjected to the actual design constraints of 
the American Institute of Steel Construction (AISC) Allow
able Stress Design (ASD) specifications (AISC, 1989). Some 
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of the AISC ASD constraints are highly nonlinear and implicit 
functions of design variables, specially in the case of moment-
resisting frames. This can create convergence and stability 
problems and increase the CPU requirement significantly, 
specially for large structures. 

We first formulate an optimality criteria approach for opti
mization of steel structures subjected to stress, displacement, 
and buckling constraints of the AISC ASD specifications. 
Two different scaling procedures are used, one suitable for 
space axial-load structures, and the other suitable for space 
moment-resisting frames. Then, the parallel-vector structural 
optimization algorithm is described briefly. Next, the algo
rithm is applied to minimum weight design of three space 
moment-resisting frames. Finally, the performance of the 
algorithm is evaluated by presenting speedup results for par
allel processing and vectorization. 

AN OPTIMALITY CRITERIA APPROACH 

The general structural optimization problem with design link
ing strategy can be stated in the following form: Find the set 
of design variables, At (cross sectional areas), such that the 
weight of the structure 

Nd Nmi 

1 = 1 OT=1 

is minimized subject to the constraints of the AISC ASD 
specifications to be described shortly. In Eq. (1) 

Nd = number of design variables (groups of members with 
identical cross sections) 

Lim = length of member m belonging to group i 
p, = unit weight of members in group i 
Nmi = number of members in group i 
At = cross sectional area of members in group i 

The displacement and fabricational constraints are: 

rf<ujk<ry, 7=1 iV *=1,. . . ,L (2) 

A\<At<A^ j= l , . . . , AT (3) 

where 

k = loading number 



N = total number of displacement degrees of 
freedom 

L = number of loading conditions 
Af = lower bound on the cross sectional area 
Af = upper bound on the cross sectional area 
ujk = displacement of the 7th degree of freedom due 

to loading condition k 
rf and rf = lower and upper bounds on the displacement of 

the 7th degree of freedom. 

When the beam-column member is under compression, the 
stress constraints are 
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where 

famk = computed compressive stress in member m due to the 
loading condition K 

fbmk= computed bending stress at the point under 
consideration due to loading condition k 

Fbm = allowable bending stress in member m 
Fy = yield stress of the material 

For compression members in unbraced frames, the value of 
Cm is 0.85. Nm is the total number of members in the structure 
which is equal to 

Nm = ^Nm (6) 

We assume full lateral support is provided for horizontal 
members (beams). For columns and inclined members, we 
assume lateral support is provided at the ends of members 
only. The term Fe is defined as 

F=-
\2n2E 

23(KLb/rb)i 
(7) 

where 

Lb = unbraced length in the plane of bending 
rb = radius of gyration in the plane of bending 
E = modulus of elasticity of steel 
K = effective length factor 

The allowable bending stress is computed based on Chapter 
F of the AISC ASD specifications. The allowable compressive 

stress, Fam, is given as a function of the governing slenderness 
ratio for member m, {Kl/r)m, as follows: 

F = 
Lam 

1 -
KL/rfn 

C? 
5 3(KL/r)m_(KL/rfm 

13 8 C 8C3 

for (KL/r)m<Cc 

(8) 

l2nE 
• for (KL/r)m>Cc 

23(KL/rfm 

The coefficient Cr is defined as 

:C=Y 2n2E 
(9) 

The effective length factor, K for braced and unbraced frames 
is found by the approximate equations from the European 
steel design code (Anonymous, 1978, and Dumonteil, 1992). 

Considering only the active constraints, the Lagrangian 
function for displacement constraints is defined as: 

Nd Nmi Nac L 
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where 

Xjk = positive Lagrange multiplier for displacement 
constraint associated with the 7th constrained degree 
of freedom and the Ath loading case 

Nac= number of active displacement constraints 

A displacement constraint is called active when it is in the 
neighborhood of the limiting value within a given tolerance. 
Employing the principle of virtual work, the gradient of the 
7th displacement degree of freedom under the Ath loading 
condition with respect to design variable At can be expressed 
as 
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where 

vtmj = virtual displacements vector of member m belonging 
to group / due to the application of a unit load in the 
direction of the 7th degree of freedom. For a space 
frame, v/myis a 12x1 vector (three displacements and 
three rotations for each node of the member) and for 
a space t r u s s , vimj is a 6xl-vector (three 
displacements for each node). 

Kim = 12x12 (6x6) stiffness matrix of member m belonging 
to group i for a space frame (space truss) 

uimk= 12x1 (6x1) displacement vector of member m 
belonging to group / due to the loading condition k 
for a space frame (space truss). 
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We use two different scaling procedures, one for space truss 
(axial-load) structures and the other for space moment-resist
ing frames. For space truss structures, the member stiffness 
matrix is a function of the cross-sectional area and we use a 
scaling procedure based on a combination of the maximum 
displacement scaling factor (SFD) and stress scaling factors 
for those members whose compressive stress constraints are 
violated (SFS's). Details of this scaling procedure are given 
in Soegiarso and Adeli (1996). For space frames, the member 
stiffness matrix is a function of not only the cross-sectional 
area but also the moments of inertias !„ and Iy and the torsion 
constant J. Therefore, a different scaling procedure is devised, 
as explained in Soegiarso and Adeli (1997). 

PARALLEL-VECTOR ALGORITHM 

The impact of vectorization on structural optimization has 
been discussed in Soegiarso and Adeli (1994a). Through the 
judicious use of the vectorization techniques the speedup of 
the vectorized algorithm can reach the range 15-19. In this 
research, we developed a parallel-vector multi-constraint dis
crete optimization algorithm for optimization of large space 
frame steel structures. Due to space limitation, however, the 
algorithm itself will not be presented in this article. 

In OC-based structural optimization algorithms, most of 
the computer processing time is spent in assembling the 
structure stiffness matrix, computing the gradients, and solv-
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ing for the nodal displacements. Most tasks in these steps are 
executed in a DO loop. Parallelization at a DO loop is called 
Microtasking (Cray, 1991, Saleh and Adeli, 1994). The chal
lenge is to develop algorithms where the outer DO loops can 
be partitioned and distributed to all processors evenly and the 
inner DO loops can be vectorized. In developing an efficient 
microtasked program it is necessary to understand how the 
values in the DO loop are stored. Basically, we have two kinds 
of storage. The first type is global storage (shared memory) 
where the data can be used and modified in any subroutine 
and passed through the Common blocks argument. The sec
ond type is the local storage (private memory) where the data 
are used and modified in a subroutine only. In this case, the 
data can not be passed to another subroutine. When the data 
stored in the shared memory are modified by different pro
cessors, a racing condition may be encountered resulting in 
erroneous results (Adeli and Kamal, 1993). To avoid undesir
able results we employ the directives Guard and Endguard 
provided by the Cray FORTRAN compiler in a guarded 
region. In this region only one processor at a time can update 
the same location. 
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Fig. la. Example 1 (20-story space moment-resisting frame). Fig. lb. Example 1 (20-story space moment-resisting frame). 
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APPLICATIONS 

The parallel-vector algorithm developed in this research has 
been implemented in FORTRAN on the Cray YMP8/864 
supercomputer with eight processors. The algorithm has been 
used for minimum weight design of three space moment-re
sisting steel frames, The basis of design is the AISC ASD 
specifications (AISC, 1989). The data for the example struc
tures are summarized in Table 1. 

Example 1. 20-story space moment-resisting frame 

This example is a 20-story space moment-resisting frame 
with a square plan shown in Figure la. The structure has an 
aspect ratio of 2.4. It has 756 nodes and 1,920 members 
divided into 100 groups of members. A wide-flange (W) 
shape is selected for each group. The groups are organized as 
follows: Columns of each story are divided into three groups, 
that is, a group of corner columns, a group of outer columns, 
and a group of inner columns. The beams of each floor are 
divided into two groups, outer beams and inner beams. The 
loading on the structure consists of dead load (D) of 2.78 kPa 
(58 psf), Live Load (L) of 2.38 kPa (50 psf) and Roof Live 
Load (Lr) of 2.38 MPa (50 psf). The horizontal loads in the 
X-direction at each node on the sides AC and BD are obtained 
from the Uniform Building Code (UBC, 1991) wind loading 
using the equation 

dp = CeCqqJ[ 

where 

dP = design wind pressure 
= combined height, exposure gust factor coefficient 
= pressure coefficient 
= wind stagnation pressure 
= importance factor 

The value of Cq for inward face is 0.8 and for the leeward face 
is 0.5. Assuming a basic wind speed of 70 mph (113 km/h), 
the value of qs is 0.6 kPa (12.6 psf) and the importance factor 
is assumed to be one. The values of Ce are taken from the UBC 
(1991) assuming exposure B. The lower and upper bounds of 
the cross-sectional areas in this example are 24.5 cm2 (3.80 
in.2) and 683 cm2 (106 in.2). The material is assumed to be 
steel with modulus of elasticity of 199.9X103 MPa (29,000 
ksi) and the unit weight of material 0.077 N/cm3 (0.284 
lb/in3). The displacement constraints are given as ± 29.26 cm 
(11.52 in.) in the X-direction for nodes on the top level (equal 
to 0.004//). The maximum number of iterations is set to 10. 
Figure 2 shows the convergence history. A minimum weight 
of 10.6 MN (2,395 kips) is found after 6 iterations. This 
translates into 0.57 kPa (12.0 lbs/ft2) when the weight is 
divided by the total floor area provided by the structure. 

4 6 8 
Number of iterations 

12 
4 6 8 
Number of iterations 

Fig. 2. Convergence history for Example 1 
(20-story space moment-resisting frame). 

Fig. 3. Convergence history for Example 2 
(40-story space moment-resisting frame). 
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Table 1. 
Performance of the Parallel-Vector Algorithm 

(1) 
Type of 

structure 

Space 
frame 

(2) 
Example 

1 

2 

3 

(3) 
NDOF 

4,536 

8,856 

13,176 

(4) 
No. of 

members 

1,920 

3,840 

5,760 

(5) 
Aspect 

ratio 

2.4 

4.8 

7.2 

(6) 
CPU time 

for 
vectorized 
code using 

eight 
processors 
(seconds) 

149.46 

781.23 

1,735.00 

(7) 
MFLPOS* 

130.1 

134.6 

137.3 

(8) 
Speedup 

due to 
parallel-

ization on 
eight 

processors 

6.10 

6.25 

6.37 

(9) 
Speedup 

due to 
vector-
ization 
only* 

18.10 

17.90 

17.80 

(10) 
Speedup 

due to 
vector-

ization & 
parallel-
ization 

92.70 

95.60 

97.10 

*on a single processor 

Example 2. 40-story space moment-resisting frame 

This example is a 40-story space moment-resisting frame 
consisting of 1,476 nodes and 3,840 members. The plan of 
this structure is the same as that of Example 1 (Figure la). Its 
elevation is similar to that of Example 1 with the same 
uniform story height of 3.66 m (12 ft) but total height of 146.4 
m (480 ft) giving the structure an aspect ratio of 4.8. The 

members are divided into 200 groups of members. A W shape 
is selected for each group. The groups are organized similar 
to Example 1. The loadings on the structure and the material 
properties are the same as those of Example 1. The lower and 
upper bounds of the cross-sectional areas in this example are 
24.5 cm2 (3.80 in.2) and 1,606 cm2 (249 in.2). The displace
ment constraints are given as ± 58.52 cm (23.04 in.) in the 

200 

4 6 8 
Number of iterations 

10 
2 3 4 5 

Number of processors 

Fig. 4. Convergence history for Example 3 
(60-story space moment-resisting frame). 

Fig. 5. Speedups due to parallel processing 
only for Example 1. 
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X-direction for nodes on the top level (equal to 0.004/f). The 
maximum number of iterations is set to 10. Figure 3 shows 
the convergence history. A minimum weight of 23.9 MN 
(5,372 kips) is found after 7 iterations. This translates into 
0.64 kPa (13.4 lbs/ft2) when the weight is divided by the total 
floor area provided by the structure. 

Example 3. 60-story space moment-resisting frame 

This example is a 60-story moment-resisting frame consisting 
of 2,196 nodes and 5,760 members. The plan of this structure 
is the same as that of Example 1 (Figure la). Its elevation is 
similar to that of Example 1 with the same uniform story 
height of 3.66 m (12 ft) but total height of 219.4 m (720 ft) 
giving the structure an aspect ratio of 7.2. The members are 
divided into 300 groups of members. A W shape is selected 
for each group. The groups are organized similar to Examples 
1 and 2. The loadings on the structure, the material properties 
and the lower and upper bounds of the cross-sectional areas 
are the same as those of Example 1. The displacement con
straints are given as ± 87.78 cm (34.56 in.) in the X-direction 
for nodes on the top level (equal to 0.004//) Figure 4 shows 
the convergence history. A minimum weight of 61.6 MN 
(13,862 kips) is found after 8 iterations. This translates into 
1.11 kPa (23.10 lbs/ft2) when the weight is divided by the total 
floor area provided by the structure 

PERFORMANCE EVALUATION 

The performance of the parallel-vector optimization algo
rithm is evaluated in this section in terms of speedup and 
MFLOPS on Cray YMP8/864 supercomputer with eight proc
essors. The computation time is dominated by three steps: 
evaluation and assembly of stiffness matrices, solution of the 
resulting linear equations for nodal displacements, and calcu
lation of the displacement gradients. Therefore, speedup 
curves are presented for these steps as well as the complete 
optimization process. 

Performance results in terms of millions of floating opera
tions per second (MFLOPS) and speedup are summarized in 
Table 1. The MFLOPS numbers in this table are for a proces
sor only and represent the vectorization efficiency of the 
algorithm. Figures 5 to 7 present the speedup results for 
Examples 1 to 3 respectively, due to parallel processing (rela
tive to the vectorized code running on one processor only). 
Figure 8 shows the speed due to both vectorization and 
parallel processing for the four examples. 

One clear trend can be observed in Figures 5 to 8 and 
Table 1: parallelization efficiency improves with the increase 
in the size of the structures. The same trend is observed for 
speedup due to vectorization but to a smaller extent. For the 
largest structure we achieved a speedup of 6.4 due to parallel 
processing (using eight processors) only and a speedup of 

1 «• 
CD 

Ideal speedup 
Evaluation and assembly of stiffness matrices 
Solution of nodal displacements 
Calculation of the gradients 
Complete optimization process 

2 3 4 5 

Number of processors 
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Speedup 
Evaluation and assembly of stiffness matrices 
Solution of nodal displacements 
Calculation of the gradients 
Complete optimization process 

2 3 4 5 
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Fig. 6. Speedups due to parallel processing 
only for Example 2. 

Fig. 7. Speedups due to parallel processing 
only for Example 3. 
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17.8 due to vectorization only. When vectorization is com
bined with parallel processing a combined speedup of 97.1 is 
achieved. Note that this number is somewhat smaller than the 
product of the previous two numbers (6.4 x 17.8 = 113.9) 
because parallel processing degrades vectorization. Judicious 
integration of parallel processing and vectorization is neces
sary to avoid substantial degradation in vectorization. This is 
particularly important in light of the fact that speedup due to 
vectorization is substantially more than speedup due to par
allel processing for a shared memory machine with a few 
processors. 

CONCLUDING 

We are living in an increasingly automated society. This 
innovative research demonstrates how design of large steel 
structures with thousands of members can be automated. The 
economic consequences of such large scale automation in 
terms of both reducing the time of design and cost of the 
structure are enormous. The work presented in this paper was 
done on a supercomputer with multiprocessing capability. It 
is only a matter of time that practicing engineers will find such 
computing capability on their desktops. Today, it takes 
months to design a superhighrise building structure. This 
research lays the foundation to reduce that time to only a few 
days. 
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