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ABSTRACT 

A multi-constraint optimality criteria discrete optimization 
algorithm is presented for minimum weight design of large 
steel truss structures subjected to stress, displacement, and 
buckling constraints. The structures are subjected to actual 
constraints of AISC Allowable Stress Design (ASD) and Load 
Resistance Factor Design (LRFD) specifications. A design 
linking strategy is used to reduce the number of design 
variables. An efficient integer mapping strategy is presented 
for mapping the computed cross-sectional areas to the avail
able standard wide flange (W) shapes. The algorithm has been 
applied to minimum weight design of two structures: a 52-
story structure with 848 members and an 80-story structure 
with 5860 members. This research also sheds some light on 
the comparison of the AISC ASD and LRFD specifications. 
For the examples presented, designs based on the LRFD 
specifications resulted in weight savings of 5 to 9 percent. 

INTRODUCTION 

A number of papers have been published recently on the 
subject of optimization of large truss structures assuming 
continuous design variables (for example, Hsu and Adeli, 
1991, Adeli and Cheng, 1993, Soegiarso and Adeli, 1994). 
This paper is concerned with optimization of large steel truss 
structures consisting of a few thousand members using stan
dard cross sections such as wide flange (W) shapes included 
in the American Institute of Steel Construction (AISC) manu
als (AISC, 1989,1994). Recently Chan (1992) and Chan and 
Grierson (1993) presented a discrete optimization algorithm 
for minimum weight design of two dimensional steel frames 
subjected to drift constraints only. 

In this paper, a multi-constraint optimality criteria discrete 
optimization algorithm is presented for minimum weight 
design of structures subjected to stress, displacement or mul
tiple drift, and buckling constraints. The structures are sub
jected to actual constraints of the AISC Allowable Stress 
Design (ASD) and Load and Resistance Factor Design 
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(LRFD) specifications (AISC, 1989,1994). A design linking 
strategy is used to incorporate the fact that in practice the same 
shape is used for members with similar physical and loading 
conditions. 

Cross-sectional areas of members are normally used as 
design variables. When buckling constraints are considered 
two additional difficulties are encountered. First, the radius 
of gyration of the cross-section appears in the buckling con
straint. In order to avoid doubling the number of design 
variables, various researchers have tried to relate the radius 
of gyration to the cross-sectional area approximately (for 
example, Adeli and Balasubramanyam, 1988, John and 
Ramakrishnan, 1990, Chan, 1992). Second, buckling con
straints are nonlinear and implicit functions of design vari
ables. This can create convergence difficulties. 

Our discrete optimization algorithm includes an efficient 
integer mapping strategy for mapping the computed cross-
sectional areas to the available W shapes. This strategy in
cludes the creation of a tree network and an integer search 
method. 

The algorithm has been applied to minimum weight design 
of two highrise and super highrise truss structures: a 52-story 
structure with 848 members and an 80-story structure with 
5,860 members 

AN OPTIMALITY CRITERIA APPROACH 

In this section, we present an optimality criteria approach for 
optimization of steel structures subjected to stress, displace
ment, and buckling constraints based on the AISC ASD or 
LRFD specifications. The algorithm is general, but we limit 
the scope of the paper to axial-load space structures. The 
general structural optimization problem with design linking 
strategy can be stated in the following form: Find the set of 
design variables, At (cross-sectional areas), such that the 
weight of the structure 

Nd Nmi 

W=^A^Lim (1) 
i = 1 m = 1 

is minimized subject to the displacement, fabricational, stress 
and buckling constraints to be described shortly. In Equa
tion 1, 
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Nd = the number of design variables (groups of members 
with identical cross sections) 

Lim = the length of member m belonging to group i 
p, = the unit weight of members in group i, 
Nmi = the number of members in group U and 
At = the cross-sectional area of members in group L 

The displacement and fabricational constraints are 

\rf<ujk<ryj=h...,Nk=h...,L 

1 or 
lrj<usk<r^s=h...,Nsk=l,...,L 

A^<Ai<A?J=h...,Nd 

(2) 

(3) 

where 

k = is the loading number 
TV = the total number of displacement degrees of 

freedom 
Ns = the number of interstory drift constraints 
L = the number of loading conditions 
Af = the lower bound on the cross-sectional area 
Af = the upper bound on cross-sectional area 
ujk = the displacement of the yth degree of freedom 

due to loading condition k, 
rfandrf= the lower and upper bounds on the 

displacement of theyth degree of freedom 
rj and rf = the lower and upper bounds on the interstory 

drift, and 
usk - the maximum interstory drift at the sth floor. 

A) Stress and buckling constraints based on the 
AISC ASD specifications 

Using positive values for tensile stresses and negative values 
for compressive stresses, the stress constraints according to 
the AISC ASD specifications can be expressed as 

-F f l m<Gm ,<0.6Fv m = 1,2, . . . ,#„ (4) 

where 

omk = the stress in member m due to the loading condition k 
Fy = the yield stress of the steel 
Nm = the total number of members in the structure equal to 

(5) 

and 

Fam = is the allowable axial compressive stress given as a 
function of the slenderness ratio Lm/rm, (AISC, 
1989) 

F = 
* am lf+ 

, (Lm/rJ 

3(Lm/rm) (L 

8CC 

Fy 

12KE 

23(Lm/rJ 

forLm/rm<Cc (6) 

for Lm/rm>Cr 

B) Stress and buckling constraints based on the 
AISC LRFD specifications 

-Fcm<am,<0.9Fv m= 1,2, ...,#„ (7) 

where Fcm is the critical compressive strength given by (AISC, 
1994) 

F = 1 

(0.658x0*y for A, 

(8) 

0.877 
yi \Fy f 0 r ^ >1.5 

Considering only the active constraints, the Lagrangian func
tion for displacement constraints is defined as 

Nd Nmi Nac L 

L(h> A,) = X P.' A X L'« + S X M«/* - 0) (9) 
1=1 m=\ j=\k=\ 

where 

Xjk = the positive Lagrange multiplier for displacement 
constraint associated with they'th constrained degree 
of freedom and the &th loading case, and 

Nac = the number of active displacement constraints. 

A displacement constraint is called active when it is in the 
neighborhood of the limiting value within a given tolerance. 

In order to obtain the optimality condition, we differentiate 
the Lagrangian function with respect to design variable At. 

y = l * = l 

(10) 

Employing the principle of virtual load, the gradient of they'th 
displacement degree of freedom under the Ath loading condi
tion with respect to design variables At can be expressed as 

_ dujk _ 1 ̂  T 
(11) 

where 

vimj = the 6x1 vector of virtual displacements for member 
m belonging to group i due to the application of a 
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unit load in the direction of thejth degree of freedom 
(three displacements for each node of the member) 

Kim = the 6x6 stiffness matrix of member m belonging to 
group /, and 

uimk = the 6x 1 displacement vector of member m belonging 
to group i due to the loading condition k. 

After substituting the displacement constraint gradient, Equa
tion 11, into Equation 10, rearranging terms and considering 
only the yth active displacement constraint under the Ath 
loading condition, we find the Lagrange multipliers (Khot 
andBerke, 1987): 

A** — w (12) 

Substituting Equations 11 and 12 into Equation 10 and re
arranging the terms we obtain 

\AuP+1 — (Aup 

f, 

c=\\J J 

2JyitJ)c KimUi* 

PAXAni 

I = 1,2, . . . ,#, (13) 

where 

p = the iteration number, and 

C = — determines the step size. 
n 

In this work a value of 0.5 is initially used for £ in each 
iteration. If the weight of the structure is increased at the end 
of the iteration, a new value is used for £ equal to one half of 
the previous value. If the weight is decreased, the same £ = 
0.5 is used in the following iteration. A lower limit of 0.01 is 
used for £. When £ is reduced to this value, in the next iteration 
£ is again initialized to 0.5. The idea behind a variable £ 
coefficient is to dampen the convergence oscillations. 

For stress constraints, the cross-sectional areas are updated 
from the stress ratio relationship in the following form: 

A) For the case of AISC ASD specifications 

\Am)p + i — \Am)i 
<\FamovQ.60Fy 

B) For the case of AISC LRFD specifications 

Gmk 
(Am)p + 1 — (Am), fp\KmOT0.90R 

(14) 

(15) 

In the multi-constraint optimization process, we first deter
mine whether the most critical constraint (the most violated 
constraint) is a displacement constraint or a stress constraint. 

If a displacement constraint is the critical constraint each 
member is first resized according to Equation 13. Then, the 
maximum ratio of the calculated displacement to the allow
able displacement for various constraint degrees of freedom 
(SFS) is found. If this ratio is not equal to one within a given 
tolerance then the design variables are scaled by this ratio. 
After the resizing and scaling, those members whose stress 
constraints are still violated are scaled again according to 
Equation 14 or Equation 15. 

If a stress constraint is the critical constraint all the mem
bers are scaled according to Equation 14 or Equation 15. In 
the case of highrise and super highrise building structures the 
maximum interstory drifts are often the critical constraints. 
Thus, a resizing of the members according to Equation 13 is 
performed in each iteration followed by two aforementioned 
scaling operations. 

For large truss structures with slender members the allow
able compressive stress (the nominal compressive strength in 
the case of design on the basis of the LRFD specification) is 
much smaller than the allowable tensile stress (the nominal 
tensile strength in the case of design on the basis of the LRFD 
specifications). 

Furthermore, the constraints for compressive strength are 
nonlinear functions of the radii of gyration and implicit func
tions of design variables (cross-sectional areas). Scaling the 
members under compression may create a convergence prob
lem. When the number of members whose compression con
straints are violated is large, an "overshooting" problem may 
deteriorate the convergence performance of the algorithm. 

rind gradients or 
displacements 

Find the optimality 
coefficients 

Calculate t 
weight 

Resize the members 

Map BFind disp. and stres^ 
design variables [scaling factors 
Scale remaining 
members Find displacements 

and stresses 

IFind disp. and stresd 
|scalihg factors 

Scale 
design variables 

Find displacements 
and stresses 

57 
JMap design variable^ 
|to W shapes 

Find structure 
stiffness matrix 

IFind allowable 
[compressive stresse 

IFind structure 
stiffness matrix 

7ind displacements 
and stresses 

Fig. 1. Multi-constraint optimality criteria discrete optimization. 
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That is after scaling of the members, they become substan
tially stiffer resulting in a lateral drift substantially less than 
the allowable value. This can create a loop with a very slow 
convergence before we continue to calculate the Lagrange 
multipliers corresponding to active displacement constraints. 
To circumvent this problem, the scaling factor for the most 
violated displacement constraint (SFD) in the iteration is 
adjusted by a factor of y whose value depends on the number 
of members whose compressive stress constraints are violated 
(Afc). The reason for introducing this parameter is to reduce 
the number of required structural analyses which is of para
mount importance for the efficiency of the algorithm for 
optimization of large truss structures. We found that by using 
Y = SFD(0.9)(l - Nc /Nm), the required number of structural 
analyses is reduced substantially. 

There are seven loops in our multi-constraint optimality 
criteria approach for discrete optimization of large truss struc
tures, as shown schematically in Figure 1. The first loop is the 
main loop where the number of optimization iterations is 
controlled. In the second loop the maximum scaling factor is 
obtained from the initial values for the cross-sections. In the 
third loop the design variables are estimated by satisfying the 
displacement constraints only, assuming continuous vari
ables, and a new scaling factor is computed. 

In the fourth loop the continuous design variables are 
mapped to the available discrete standard cross-sections from 
the AISC W sections database following a strategy to be 
discussed in the next section. The maximum displacement 
scaling factor (SFD) and scaling factors for those members 
whose compressive stress constraints are violated (SFS's) are 
obtained. In the fifth loop all the members whose compressive 
stress constraints are violated are scaled by SFS's and the 
remaining members are scaled by y. Then, all the members 
are mapped again to the discrete standard cross-sections from 
the AISC W sections database. This process is repeated in 
loop 5 until all compression members satisfy the stress and 
buckling constraints. 

The sixth loop is to calculate the weight of the structure and 
resize the members according to Equation 13. If the weight 
of the structure in the current iteration is less than the weight 
in the previous iteration or the step size parameter £ is less 
than 0.01, the optimality coefficients are calculated and the 
members are resized in the loop 7. Otherwise, the resizing 
procedure in loop 6 is repeated using a value of C, = C, / 2. 

MAPPING TO STANDARD CROSS SECTIONS 

In practical design of steel structures, only a finite number of 
shapes are available such as those given in the AISC manuals 
(AISC, 1986 & 1989). We create a database containing the 
properties of the commonly used wide flange (W) shapes 
from these manuals in the ascending order of the cross-sec
tional areas. In loops 4 and 5 of the discrete optimization 
algorithm (Figure 1) a W shape is selected for each group of 
the members. For a large truss structure with a few thousand 

members (and a couple of hundreds different types of design 
variables, the number of searches to select the right W shapes 
from the database can reach tens of thousands. Thus, an 
efficient strategy needs to be devised to map the computed 
cross-sectional areas to the existing W shapes from the data
base. 

In this research, an integer search method is developed to 
map the computed cross-sectional areas (A,) to the areas of 
actual W shapes in the database (A,). The integer search 
method is similar to the interval halving method (Adeli and 
Al-Rijleh, 1987). In the interval halving method, logical 
(if-then) operations are used to find the search path. In the 
integer search method, we use division operations to find the 
search path. The CPU time required for a division operation 
is a fraction of the CPU time required for a logical operation. 
Hence, the integer search method developed in this research 
is more efficient than the interval halving method. 

Let us consider a 3-layer tree network with eight cross-
sectional areas as target output as shown in Figure 2a. Each 
node in this network has an upper and a lower branch. The 
&th node in they'th layer is assigned an area Akj equal to the 
largest cross-sectional area of the all the "child" nodes in the 
upper branch. 

In the interval halving method, the search is performed as 
follows: If the computed cross-sectional area is less than or 
equal to A{ 0, the search path follows the upper branch, other
wise it follows the lower branch. If the computed cross-
sectional area is less than A{ 0 then the next step is to find out 
whether the computed cross-sectional area is less than or 
equal to A u . If true, the search path follows the upper branch, 
otherwise it follows the lower branch. If the computed cross-
sectional area is greater than Ax A then the search path follows 
the lower branch. If the computed cross-sectional area is less 
than or equal to A22 the target output is A3 3; otherwise, it is 

In our integer search method, we assign a weight WkJ to 
the Mi node in the yth layer of the tree network (layers are 
numbered from left to right, and nodes in each layer are 
numbered from top to bottom). These weights are stored in a 
two dimensional array as shown in Figure 2b. The search is 
performed by finding the address (row number) of the weight 
in the successive layer that can lead to the right output. The 
address of the weight in the next layer is determined by the 
integer value resulting from division of the computed cross-
sectional area by the weight of the current node. For instance, 
the address of the weight of the node in layer one on the 
solution path is determined by dividing the computed cross-
sectional area by Wuo. The integer value of this division plus 
one equals to the address of the weight in layer one. If, for 
instance, the result of this division plus one is one, then the 
corresponding weight Wul is stored in the first row and the 
second column of the array W. The next step is to find the 
address of the weight of the node on the search path in layer 
2. This is obtained by dividing the computed cross-sectional 
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area by Whl. If, for instance, the result of this division plus 
one is two, then the corresponding weight in layer two is 
W2>2 and is stored in the second row and third column of the 
array W. If the result of the division is, say, 3, then the weight 
W2,2 is stored in the third row and the third column of the array 
W. Finally, the computed cross-sectional area is divided by 
W2t2- The result of this division determines the address of the 
target output. If the result of this division plus one is three, 
then the output is A3. If the result of the division plus one is 
four, then the output is A4. The problem now is how to 
determine the weight of each node and how to store them in 
a two dimensional array that can lead to the right target output. 

In Figure 2a the cross-sectional area of the first node of 
each layer j is assigned as the weight of that node, that is, 
WXJ = AUj. If the computed cross-sectional area is less than 
Wltj then the search path follows the upper branch. Otherwise, 
the search path follows the lower branch. Let us consider the 
weight of the 1st node in the 1st layer, Whl. If the computed 
cross-sectional area (At) is less than Wltl then the search path 
follows the upper branch. The address of the weight Wh2 in 
the next layer is 

Layer 3 

Fig. 2a. A three-layer tree network. 

r 
1 + 

V 

At 

Wlt L i>7 J 

^ 

/ 
where the notation [ J indicates the integer of the real num
ber inside the semi-brackets. If the computed cross-sectional 
area (Af) is larger than Whl then the search path follows the 
lower branch. The address of the weight W22 in the next layer 
is 

/ 
1 + 

V 

Ac 
W i ; 

L 1,7-J 

Thus, the number of addresses for the weight W22 may be 
more than one. This number depends on the largest cross-
sectional area of all the "child" nodes in the lower branch, that 
is A4 3. Let us assume 

then W22 is stored in both rows 2 and 3 and column 3 of the 
array W as shown in Figure 2b. Thus, 3 is the maximum 
address number for W22. The maximum address number for 
weight Wkj is called Lkj. 

Now, let us find the weights of other nodes. For instance, 
let us find the weight of the 2nd node of layer 1, W2>1. From 
Figure 2a, the path from W2l follows the upper branch if the 
computed cross-sectional area is greater than A4 3 and less than 
or equal to A6 3. Therefore, these two areas are important in 
determining the weight W2)1. When the computed cross-sec
tional area is slightly greater than A43 and is divided by W2)1, 
the result of this division plus one has to be equal to the 
address of W32. When the computed cross-sectional area is 

^ Column number 

1 1 
2 

1 3 

4 

1 5 

1 6 1 1 7 1 
8 J 

1 1 2 3 

1 Weight (Wk,j) 

Layer 0 

1 Wl ,0 

Layer 1 

w u 
w2 /1 

Layer 2 

W 
1,2 

W2,2 

W2 ,2 

W3,2 

W 4 ,2 

4 
Output 

Layer 3 

As 
A 2 , 3 

A ™ 
\ 3 

5,3 

\ * 
A 1 

7,3 | kZ \ 
Fig. 2b. Storage scheme for the weights and outputs. 
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slightly greater than A6 3 and is divided by W21, the result of 
this division plus one has to be equal to the address of W4>2. 
In order to satisfy these two conditions, the weight W21 is 
determined in three steps as follows: First, A43 is divided by 
the maximum address number of W ^ C ^ ) which is 3 in our 
example. The result of this division is called s. The weight of 
W21 has to be less than s. Second, we compute the integer 

7=1 + ^6,3 

S 

Finally, the weight is computed as W2tl = A63/I. The maxi
mum address number of the weight W3a in the next layer is 

L32 — 1 + 
Wo 

Now, we generalize the concepts presented in the previous 
paragraphs. Let us assume 2n W shape are available in the 
database where n is an integer. A tree network with n layers 
is created for the W shapes as shown in Figure 3. Each node 
is assigned an area from the W shape database according to 
the following equations: 

AkJ = Ai i = 2n-j-1 + (k-l)x2n-j,k=l,2jJ=h...,n (16) 

The next step is to assign a weight WkJ to the Ath node in the 
y'th layer of the tree network and find the maximum address 

Layer n 

Layer n-1 

Layer 1 

Layer 0 

number of the weights in the next layer (LkJ+1). Each weight 
is stored in an array as shown in Figure 2b. For instance, if 
Lza is equal to 3, then W2>2 is stored in rows 2 and 3 and column 
3 of array W. 

The weights (WkJ) and the maximum address numbers of 
the weights in the successive layers (Lkj+l) are determined in 
three steps. The first step is to assign the weights of the first 
node of layers 1 to n - 1 and find the maximum address 
number of the weights in the next layer as follows: 

^ 2 , 7+1 "~ 

wu = Au 7 = 1, . . . ,w- l 

A,/fi = l 7 = 1 , . . . , n - l 

AA T4,y+2 
+ 1 ; = ! , . . . , n-1 

(17) 

(18) 

(19) 

The second step is to compute the weights of the nodes in 
layers 1 to n - 2 and the maximum address numbers of the 
weights in the successive layers 2 to n - 1. The weights are 
determined by the following rules: 

A4k_4 j+2 . 

s = j A; = 2,2/ 7=1 , . . . , n-2 

A 
1= tu 

WKJ = -
•kj 

^2i '•k-lj+l ' 

7+1 

14/c-2,j+2 

Wi 

Lqi %j+l ' 

Kj 

Mk,j+2 

w, k,j 

k = 2,2j j=l,...,n-2 

k = 2,2i j=l,...,n-2 

+ 1 k=2,2j 7=1 , . . . , n-2 

+ 1 Jt = 2,2'' 7=1 , . . . , n-2 

(20) 

(21) 

(22) 

(23) 

(24) 

The third step is to compute the weights of the nodes in layer 
n - 1 and the maximum address numbers of the outputs in 
layer n. 

s= 2k'2J+1 k = 2,2j 7 = 1 , . . . , n - 1 
•^2*-2,i+l 

A 

Wk<J 

^2k-\, 7+1" 

thd 

7+1 

12fe-l, /fl 

k = 2,2! 7=1 , . . . , n - 1 

Wi kj 

k = 2,2j 7=1 , . . . , n - 1 

+ 1 k=2,2j 7=1 , . . . , n - 1 

^2k,j+l — 

12fe,;+l 

Wi 
+ 1 k=2,2i 7 = 1 , . . . , « - 1 

(25) 

(26) 

(27) 

(28) 

(29) 
kj 

Fig. 3. A tree network for mapping to standard sections 

Then the mapping of the input layer to the output layer is done 
as follows: 
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/o = 0 

*J = 
*L ,+!./-: 

7 = l, . . . , /t 

A, = A, 

(30) 

(31) 

(32) 

We compared the integer search method presented in this 
article with the interval halving approach (Adeli and Al-
Rijleh, 1987) on the Cray YMP8/864 and found the new 
approach to be about 30 times faster than the interval halving 
method. 

APPLICATIONS 

We present two examples in this section. 

Example 1 52-story highrise building 

The 848-member space truss structure shown in Figures 4a to 
4c is created to model the exterior envelope structure of a 
52-story highrise building (mega structure). Fifty-four design 
variables are used to represent the cross-sectional areas of 
fifty-four groups of members in this structure, as identified in 
Figure 4b. The groups are organized as follows: Each four 
floors is divided into four groups: a group of outer column 
members, a group of inner column members, a group of 
diagonal members and a group of horizontal members. 

The loading on the structure consists of horizontal loads 
acting on the exterior nodes of the space structure at every 
four floors (14.63 m or 48 feet height). The horizontal loads 
in the Y direction at each node on the sides AB and CD are 

diagonal member 
• outer column 

£ oucer column 
r— inner column 1 D 

horizontal member 

3.048 m (10') 
H 

4x15.24 m (4x50') 
1 f -

1.048 m (10") 

15.24 m (50*) 

15.24 m (50') 

^ ± 3.048 m (10') 

3.048 m (10') 
- H . 

obtained from the Uniform Building Code (UBC, 1994) wind 
loading using the equation 

dp = CeCqq} 

where 

dp = the design wind pressure 
Ce = the combined height, exposure, and gust factor 

coefficient 
Cq = the pressure coefficient 
qs = the wind stagnation pressure, and 
/ = the importance factor. 

The value of Cq for inward face is 0.8 and for the leeward face 
is 0.5. Assuming a basic wind speed of 70 mph (113 km/h), 
the value of qs is 0.6 kPa (12.6 psf) and the importance factor 
is assumed to be one. The values of Ce are taken from the UBC 
(1994) assuming exposure C (generally open area). The lower 
and upper bounds of the cross-sectional areas in this example 

1.71 m/5.6') 33.528 m (110') 33.528 m (110') 1.71 m (5.6') 

26 x 7.315 m 

horizontal member 

diagori 

D A A A A A A A C 
3.048 m (10') 33.528 m (110 *) 33.528 m (110') 3.048 m (10') 

al member 

outer column 

inner column 

Fig. 4a. Plan of 52-story highrise building structure. Fig. 4b. Front view of the 52-stofy highrise building structure. 
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are 6 cm2 and 1600 cm2. This structure is designed according 
to the AISC ASD specifications (AISC, 1989). The material 
is assumed to be steel with modulus of elasticity of 199.9xl03 

MPa (29,000 ksi) and the unit weight of material 0.077 N/cm3 

(0.284 lb/in3). 
Two cases of displacement constraints are considered. In 

the first case, the displacement constraints are specified at the 
top of the structure as ±78.1 cm (28.8 in.) in the Y-direction 
for the nodes on the top floor only (equal to 0.004//, where H 
is the height of the structure). In the second case, interstory 
drifts are limited to 5.85 cm (2.3 in.). Figure 5 shows the 
convergence histories for the cases of continuous variables 
optimization and discrete optimization using standard W 
shapes presented in this article. When the displacement con
straints are given only for the nodes on the top floor, minimum 
weight of 107.2 MN (24,108 kips) is found assuming continu
ous variables. When W shapes are chosen on the basis of 
rounding up these values, and after performing additional 
optimization (scaling procedure) iteratively in order to satisfy 
the design constraints, a minimum weight of 123.3 MN 

1.71 m (5.6') 33.528 m (110') 1.71 m (5.6*) f -H 

3.048 m (10*) 33.528 m (110 ') 3.048 m (10') 

26 x 7.315 m 

(27,724 kips) is found. The discrete optimization algorithm 
presented in this article yielded a minimum weight of 112.0 
MN (25,186 kips) directly after 8 iterations. When the inter
story drift constraints are imposed, a minimum weight of 
117.6 MN (26,460 kips) is obtained which is about 5 percent 
higher than the weight when the displacement constraints are 
given for the nodes on the top floor only. 

Example 2 80-story super highrise building structure 

The 80-story super highrise building structure shown in Fig
ure 6 has 1,160 nodes. This structure consists of two different 
sections as shown in Figures 6a to 6c. We have used two 
slightly different models of the space structure in order to 
study the effect of the transition zone between the two sec
tions in the overall efficiency of the structure. The model 
shown in Figure 6c has a gradual transition zone (Exam
ple 2a). We have also considered another modified version of 
this structure where all the inclined members of the transition 
zone are removed (Example 2b), not shown in Figure 6. 
Example 2a shown in Figure 6c has 160 additional inclined 
members going from the 41st floor to the 48th floor. It has 
5,860 members grouped into 231 design variables. Example 
2b has 5,700 members grouped into 227 design variables. The 
groups are organized as follows: for section one, each two 
floors is divided into seven groups i.e., a group of outer 
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Continuous variables 

• New discrete optimization algorithm 
with W shapes and drift constaints at the 
top of the structure only 

• New discrete optimization algorithm 
with W shapes and interstory dr i f t 
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Continuous variables rounded up to 
standard W shapes with drift constraints 
at the top of the structure only 

I 
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Fig. 4c. Side view of the 52-story highrise building structure. 
Fig. 5. Convergence histories for the 52-story 

highrise building structure. 
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column members, a group of inner column members, a group 
of outer vertical diagonal members, a group of inner vertical 
diagonal members, a group of outer horizontal members, a 
group of inner horizontal members and a group of horizontal 
diagonal members. For section two, each two floors is divided 
into four groups that is, column members, vertical diagonal 
members, horizontal members and horizontal diagonal mem
bers. 

The loading on section one consists of dead load (D) of 
68.9 kN (15.5 kips) at each inner node and 10.14 kN (2.28 
kips) at each outer node, live load (L) of 61.4 kN (13.80 kips) 
at each inner node and 12.54 kN (2.82 kips) at each outer node 
and roof live load (Lr) of 61.4 kN (13.80 kips) at each inner 
node and 12.54 kN (2.82 kips) at each outer node of the top 
level of the structure. The loading on section two consists of 
vertical dead loads of 58.7 kN (13.2 kips) at each node, live 
loads of 51.2 kN (11.5 kips) at each node and roof live loads 
of 51.2 kN (11.5 kips) at each node of the top level of the 
structure. This structure is subjected to horizontal wind loads 
in the Y-direction acting on each node on the sides AB and 
DC similar to Example 1. 

This structure is subjected to both AISC ASD and LRFD 
specifications, material properties are the same as the pre

vious example. For the ASD specifications, only one case of 
loading is considered, that is, D + L + W. For the LRFD 
specifications, three cases of loadings are considered IAD, 
12D + 1.6L + 0.5Lr and 12D + 1.3 W+ 0.5L +0.5Lr. The lower 
and upper bounds for the cross-sectional areas of this example 
are 6.0 cm2 and 3000 cm2. 

Two cases of displacement constraints are considered for 
the ASD specifications. In the first case, the displacement 
constraints are specified at the top of the structure as ±118.3 
cm (46.6 in.) in the Y-direction for the nodes on the top floor 
only (equal to 0.004//, where / / is the height of the structure). 
In the second case, interstory drifts are limited to 1.46 cm 
(0.576 in.) (equal to 0.004/z, where h is the story height). For 
the LRFD specifications, the displacement constraints are 
specified at the top of the structure as ±153.8 cm (60.6 in.) 
(equal to 0.0052//), and interstory drift is limited to 1.90 cm 
(0.749 in.). Since the drift is primarily due to the wind loading, 
the ASD drift limitation of 0.004// (or 0.004/z) is multiplied 
by 1.30 (the load factor for wind loading in the AISC LRFD 
specifications) to obtain the LRFD drift limitation. 

Figure 7 shows the convergence history for two different 
models of the structure with 227 and 231 design variables. 
For the ASD specifications, a minimum weight of 50.72 MN 
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80th floor 

Section 1 

41st floor 

Fig. 6a. Perspective view of 80-story 
super highrise building structure. 
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Fig. 6b. Plan of the 80-story super highrise building structure. 
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(11,403 kips) is found for Example 2b (with 227 design 
variables) when drift is limited at the top of the structure only. 
For the same model, but including the interstory drift con
straints, a minimum weight of 54.81 MN (12,331 kips) is 
found which is about 8 percent higher than the previous value. 
A minimum weight of 43.53 MN (9,787 kips) is obtained for 
Example 2a in Figure 6c (with 231 design variables). Using 
the LRFD specifications and limiting the drift at the top of the 
structure only, a minimum weight of 48.23 MN (10,842 kips) 
is found for Example 2b and a minimum weight of 40.96 MN 
(9,208 kips) is obtained for Example 2a. 

FINAL COMMENTS 

The multi-constraint discrete optimization algorithm pre
sented in this paper has been implemented in FORTRAN on 
a Cray YMP/864 supercomputer. The code has been fully 
vectorized using the techniques described in Soegiarso and 
Adeli (1994). The efficiently vectorized code performs 16-19 
times faster than the nonvectorized code. 

The optimization convergence histories for large truss 
structures presented in Figures 4 and 6 demonstrate consis
tently good performance and fast convergence. We also com
pared the integer search method developed in this research 

with the interval-halving approach (Adeli and Al-Rijleh, 
1987). We found the former to be about 30 times faster than 
the latter. This is primarily due to the fact that the main 
operation is our integer search method requires much less 
time than the logical operation required in the interval halving 
approach. 

We note that in the examples presented in this article, 
designs based on the LRFD specifications result in weight 
savings compared with designs based on the ASD specifica
tions in the range of 5 to 9 percent. 

We also studied the effect of the inclined members in the 
transition zone of a super highrise structure when the floor 
plan is reduced substantially. In Example 2b this transition is 
sudden versus gradual transition in Example 2a. Despite the 
fact that the number of design variables in Example 2a is 
increased to 231 from 227 for Example 2b its minimum 
weight is about 14 percent (15 percent) less than the minimum 
weight for Example 2a based on the AISC ASD specifications 
(based on the AISC LRFD specifications). 

In this article, we presented an effective and robust method 
for automated design and optimization of large steel truss 
structures subjected to the actual AISC ASD and LRFD codes. 
Optimization of large structures can result in substantial 
structural efficiency in design of steel structures thus making 
steel structures more competitive in the market place. In a 
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follow-up paper, we will present the extension of this work to 
optimization of large space frame steel structures. 
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APPENDIX II. NOTATION 

The following symbols are used in this paper 

A,- = 
Af = 
A} = 

A-kj = 

A,. = 

F, = 
F = 

A am 

Fan = 

gijk = 

k = 
Kim = 
L = 
Ejm = 
n = 
AT = 
Nac = 
Nc = 

Nd = 
Nm = 
Nmi = 
Ns = 
n = 

cross-sectional area of member i 
lower bound for the cross-sectional area A, 
upper bound for the cross-sectional area A, 
cross-sectional area at node k in layer j of the tree 
network 
output cross-sectional area of node / from W shapes 
database 
specific yield stress 
allowable compressive stress from the AISC ASD 
specifications 
critical compressive strength from the AISC LRFD 
specifications 
gradient of the yth displacement degree of freedom 
under the fcth loading condition 
number of loading condition 
stiffness matrix of member m belonging to group / 
number of loading conditions 
length of member m belonging to group / 
total number of layers in the tree network 
number of degrees of freedom 
number of active displacement constraints 
number of elements whose stress constraints are 
violated 
number of design variables 
total number of members in the structure 
number of members belonging to group i 
the number of interstory drift constraints 
governing radius gyration for member i 
lower bound for displacement constraint at the yth 
degree of freedom 
upper bound for displacement constraint at the yth 
degree of freedom 
the upper bound on the interstory drift at the 5th floor 
upper bound on the interstory drift at the 5th floor 
the maximum interstory drift on the 5th floor 
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uimk = displacement vector of member m belonging to 
group i due to the loading condition k 

ujk - displacement of the jth degree of freedom due to 
loading condition k 

vimj = virtual displacement vector of member m belonging 
to group i due to the application of a unit load in the 
direction of theyth degree of freedom 

WkJ= weight of the fcth node in layer j of the tree network 

W = weight of the structure 
Xjk = positive Lagrange multiplier for displacement 

constraint associated with thejth constrained degree 
of freedom and the &th loading case 

£ = step size 
pt = unit weight of member / 
cmk = stress in member m due to the loading condition k 

94 ENGINEERING JOURNAL / THIRD QUARTER / 1996 


