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INTRODUCTION 

Crane columns are used extensively in warehouses and mill 
buildings to support overhead cranes. In addition to carrying 
the dead and live loads of the moving cranes, crane columns 
are required to support the roof structure of the buildings. The 
cross-section of a crane column can be uniform or stepped. 
In the former, a bracket bolted or welded to the face of the 
column is used to support the runway girder as shown in 
Figure la. In the latter, the runway girder rests directly on the 
enlarged segment of the column as shown in Figure lb. In 
earlier years, it was common practice to erect the crane 
column independent of the frame column. The two were then 
connected by batten plates or laces to act as a composite unit 
as shown in Figure lc. In any case, the base of the column 
may be pinned or fixed. If the upper shaft of the column is 
rigidly connected to the roof of the building, resistance to 
in-plane translation is provided by rigid frame action and the 
base of the column can be designed as pinned or fixed. 
However, if the upper shaft of the column is not rigidly 
connected to the roof as for the case when prefabricated roof 
trusses are used, the base of the crane column must be 
designed as rigid so that resistance to sway can be provided 
by cantilever action of the column. 

Crane columns differ from ordinary frame columns in that 
heavy axial loads are present at some intermediate points of 
the columns. These loads are denoted as PL in Figure 1. The 
design of crane columns is complicated by the fact that a 
simple procedure which gives reasonable accurate effective 
length factors (and hence the critical loads) for the columns 
under a variety of geometric, loading and boundary condi
tions is not readily available in design codes. For instance, no 
guidelines are provided in the current AISC LRFD Specifica
tion1 for evaluating crane column effective lengths even 
though their design, which is often based on interaction 
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equations, requires the use of the effective length factor K to 
determine their nominal axial strength Pn. 

A simple but crude approach to evaluate effective lengths 
of crane columns for the frame shown in Figure 2a is to ignore 
the upper shafts of the crane columns and assume that the roof 
beam is connected directly to the crane load points B and F 
at the level of the crane beam (Figure 2b). This approach often 
gives erroneous results especially for cases in which the upper 
shafts of the crane columns are subjected to high axial loads. 
Another approach is to assume that the full lengths, Lv + LL, 
of the crane columns are subjected to the combined axial 
loads of Pv + PL (Figure 2c). Although this approach often 
gives conservative results for uniform crane columns, the 
degree of conservatism may be quite high for cases in which 
the upper shafts of the crane columns are only lightly loaded. 
In addition, the application of the approach for stepped crane 
columns is somewhat awkward since the moments of inertia 
are not constant along the lengths of the columns. 

In this paper, a simple yet reasonably accurate procedure 
for calculating effective length factors for crane columns of 
uniform and nonuniform (stepped) cross-sections with any 

Fig. 1. Uniform and stepped crane columns. 
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values of relative shaft lengths, moments of inertia, loading 
and boundary conditions is presented. The procedure is based 
on the story stiffness concept and it takes into account both 
member and frame instability effects in the formulation. The 
validity of the proposed methodology will be demonstrated 
by numerical examples. 

BACKGROUND 
In theory, the critical load of a column with any boundary 
conditions subjected to any types of axial loads applied 
anywhere on the column can be obtained from an eigenvalue 
analysis.2'3 In an eigenvalue analysis the critical load is ob
tained as the eigenvalue of the characteristic or transcendental 
equation written with respect to the deformed geometry of the 
column. Depending on the complexity of the problem, re
course to numerical methods is often necessary to obtain 
solutions. For columns that are parts of a frame, the buckling 
load of the frame can be obtained from a stability analysis in 
which the stiffness equations of the frame are formulated 
using stability functions or finite elements. The critical load 
is obtained as the load when the stiffness of the frame van
ishes. Mathematically, this critical load is the load that renders 
the determinant of the structure stiffness matrix zero. Once 
the critical load of the frame is obtained, the effective length 
factor of any column in the frame can be calculated from the 
equation 

'->/§ (1) 

where 

K 
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is the effective length factor 
is the column load at buckling 
is the modulus of elasticity 
are the moment of inertia and length of the 
column, respectively. 

Because of the arduousness involved in the solution process, 
the use of a stability or numerical analysis for calculating 
critical loads is seldom undertaken by practitioners in design 
offices. For design purposes, simplified procedures which do 
not require the use of laborious computational techniques but 
capable of giving reasonably accurate results are often pre
ferred. Over the past two decades, a number of simplified 
procedures have been proposed for evaluating effective 
length factors for crane columns. Anderson and Woodward4 

presented transcendental equations for a series of isolated 
stepped crane columns using a combination of pinned, fixed, 
and guided end conditions. The effective length of the crane 
column to be designed is obtained as an approximation of one 
of the idealized cases presented. To facilitate design, Agarwal 
and Stafiej5 developed tables of effective length factors based 
on the Anderson-Woodward transcendental equations. 

Moore6 also presented solutions for effective length factors 
of a special class of stepped crane columns in which the top 
of the column is pinned. The AISE Technical Report No. 137 

provides tables for effective length factors of crane columns 
with fixed bases and pinned tops in terms of three parameters: 
(1) the ratio of the length of the upper shaft to the total length 
of the column; (2) the ratio of the moment of inertia of the 
lower shaft to that of the upper shaft; and (3) the ratio of axial 
force in the upper shaft to the additional axial force applied 
on the lower shaft. Using the same parameters but with a 
somewhat different range, Huang8 presented values for the 
effective length factors of cantilever crane columns in the 
form of graphical charts. Based on a parametric study using 
an in-house stability analysis program, Fraser910 proposed a 
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Fig. 2. Simplified frame models. 
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procedure by which the effective length factors of pin-based 
uniform and stepped crane columns can be calculated. The 
approach proposed by Fraser requires the use of the AISC 
^-factor alignment chart in conjunction with special factors 
and charts presented in References 9 and 10 for solutions. 
Recently, Bendapudi11 presented a rather comprehensive ap
proach for the design of heavily loaded laced mill building 
columns with fixed bases and pinned tops. 

All the procedures mentioned in the preceding paragraph 
have limitations in terms of column geometry (relative 
lengths of the upper shaft and lower shaft, relative values of 
moments of inertia of the upper shaft and the lower shaft), 
loading conditions (relative magnitudes of axial loads on the 
upper shaft and on the lower shaft) and boundary conditions. 
More importantly, most of the studies reported were based on 
isolated member analysis which ignores the interaction effect 
between the left and right columns of the frame. It is a 
well-known fact that a lightly loaded column braces a heavily 
loaded column at buckling.12 This member interaction effect 
should be incorporated in the design of crane columns since 
the overhead crane is in constant motion and thus tends to 
impart different live axial loads on the supporting columns. 
In what follows, a simple methodology which does not re
quire the use of any special nomographs or charts to deter
mine effective length factors for uniform and stepped crane 
columns with any values of relative shaft lengths, moments 
of inertia, loading and boundary conditions will be presented. 
The validity of the proposed method will be demonstrated by 
comparison with theoretical and numerical solutions. 

In applying the proposed method, the following limitations 
must be observed: 

1. At incipient instability, the columns must buckle in the 
sway uninhibited mode. This is an inherent assumption 
used in the story stiffness concept on which the proposed 
method is based. 

2. The columns are single shafted columns (i.e., the cross-
section of the column behaves as a single unit). The 
approach is not applicable for multiple shafted columns 
in which individual shafts do not act in a fully composite 
manner. 

3. The lateral displacements at the immediate load points 
(i.e., points B and F in Figure 2a) of the columns at 
incipient instability should not differ by more than 25 
percent. This value is well within practical limits. Be
cause of the presence of the crane beam, the difference 
in lateral displacements at points B and F will not be 
appreciable. 

^ -FACTOR EQUATION 

In Reference 13, a K-iactor equation capable of accounting 
for the member interaction effect mentioned in the foregoing 
was derived based on the story stiffness concept. It is appli
cable not only for rigidly connected columns, but for columns 

with partial end restraints and leaning columns as well. The 
equation has the form 

V (n2EL\\( p i \ ( p Ar)\ 
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where 

Kt is the effective length factor of the i-th column 
E^ and Lt are the flexural rigidity and length of the 

column, respectively 
Pt is the axial force in the column 
I(P/L) is the sum of the axial force to length ratios of 

all columns in the story 
IB is the sum of all fictitious lateral loads 

producing A7; it is obtained by adding all the 
fictitious lateral loads applied at and above the 
story under consideration 

A, is the first-order interstory deflection caused by 
IH, and r| is a stiffness index given by 

2 
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L 

f£V« ML\ 
\ LJ 

Ms 

ML \ L) -l 

in which 

MsmdML are the numerically smaller and larger end 
moments of the column, respectively. 

These moments are obtained from a first-order analysis when 
the frame is subjected to the fictitious lateral loads of IB. The 
ratio MS/ML is taken as positive if the column bent in reverse 
curvature and it is taken as negative if the column bent in 
single curvature. 

It is important to note that IH is not the actual lateral loads 
that act on the frame. Rather, it is a set of fictitious lateral 
loads obtained as a fraction of the gravity loads applied at the 
joints of the frame. The reason behind subjecting the frame 
to this set of fictitious lateral loads is to create a deflected 
configuration for the frame which closely approximates the 
actual buckled shape of the frame. The magnitude of these 
fictitious loads to be used for the analysis is not important as 
long as they are proportional to the applied gravity loads. This 
is because in a first-order analysis the ratios MS/ML in Equa
tion 3 and Aj/IB in Equation 2 will remain constant regard
less of the load magnitude. While the magnitudes of the 
fictitious lateral loads are quite arbitrary, they must be applied 
in a direction consistent with the anticipated buckled geome
try of the frame. For frames which exhibit no preferred 
direction for buckling (e.g., symmetrical frames subjected to 
symmetrical loadings), the direction of these fictitious lateral 
loads is inconsequential. 

In Reference 13 a number of examples were given to 
explicate the use of Equation 2. The accuracy of the equation 
in determining column effective length factors was demon-

100 ENGINEERING JOURNAL/THIRD QUARTER / 1995 



strated for a variety of frames including cases in which the 
distribution of gravity loads was not constant throughout a 
story and cases in which the flexural rigidities of the columns 
vary significantly across a story as well as cases involving 
leaning columns. The validity of Equation 2 was further 
demonstrated in Reference 14 in which a number of compara
tive studies were performed using multistory multibay 
frames. In the following section, the procedure for using 
Equation 2 to calculate effective length factors for crane 
columns is given. This will be followed by numerical exam
ples to demonstrate the accuracy of the proposed approach. 

PROCEDURE 

In applying the proposed procedure to frames with crane 
columns, the crane columns are considered to be consisted of 
two segments: the lower shafts and the upper shafts. The 
lower shafts will be parts of a "story" of the frame while the 
upper shafts will constitute another story. The fictitious lateral 
loads to be applied to create an approximate buckled configu
ration for the frame are calculated based on the gravity loads 
acting on the frame. A first-order analysis is then performed. 
From the results of this analysis, the moment ratios MS/ML 

of the lower shafts of the crane columns as well as A7 / IH are 
calculated. The effective length factors for the lower shafts of 
the columns are to be evaluated from Equation 2 and the 
effective length factors for the upper shafts of the columns are 
to be calculated using Equation 5. The step-by-step procedure 
for applying the proposed approach is outlined below: 

1. For the frame given in Figure 3a, replace the vertical 
gravity loads by fictitious lateral loads as shown in 
Figure 3b. The fictitious lateral load factor a to be used 
is quite arbitrary. In Reference 13, a was taken as 0.001 
but any convenient values of a can be used. The ficti
tious lateral loads should be applied in such a direction 
as to create a deflected geometry for the frame which 
closely approximates its true buckled configuration. 

2. With the frame subjected to the fictitious lateral loads, 
perform a first-order analysis on the frame. Using results 
from this analysis, calculate the moment ratios MS/ML 

for the lower shafts (i.e., segments AB and FG) of the 
crane columns AC and EG. Also calculate A7 / IB where 
A7 is the average lateral deflections at the intermediate 
load points (i.e., points B and F) of the columns and 
IB is the sum of all fictitious lateral loads that act at and 
above the intermediate load points. 

3. Calculate the stiffness index r\ according to Equation 3. 
Sum the stiffness indices of the two crane columns. 

4. Calculate K factors for the lower shafts of the crane 
columns using Equation 2. 

5. Once the K factors for the lower shafts of the columns 
are known, the K factors for the upper shafts of the 
columns can be calculated using the formula 

Pu (Pv)cr n'EIv/iKvLvf 

PU + PL (Pu + PL)cr K2EIL/(KLLLf 

which, upon rearrangement gives 

(4) 

KV-KL 
(bk\ 
\LV\ 
V ) 

V PL+PUYIU^ 

L 
V J 

(5) 

where 

Ku is the effective length factor of the upper 
shaft 
is the effective length factor of the lower 
shaft 

Lw LL, Iv, IL are the lengths and moments of inertia of the 
upper and lower shafts, respectively 

Pv is the gravity load applied on the upper shaft 
and 
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Fig. 3. Substitute frame for effective length factor computation. 
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PL is the gravity load applied on the lower shaft. 

The sum PL + Pv is thus the total gravity load supported by the 
lower shaft of the crane column. 

NUMERICAL EXAMPLES 

In this section, three examples will be used to illustrate the 
procedure and to demonstrate the validity of the proposed 
approach for calculating effective length factors for uniform 
and stepped crane columns with different loading and bound
ary conditions. 

Example 1 

The effective lengths of the uniform crane columns shown in 
Figure 4a are to be calculated. The frame is an example frame 
used in Reference 9. The upper shafts of the crane columns 
are supporting a roof load of 234 kN each while the lower 
shafts of the crane columns are supporting crane loads of 700 

kN and 200 kN, respectively, on the left and right columns in 
addition to the roof loads. The modulus of elasticity, E\ the 
moment of inertia of the beam, IB; and of the upper and lower 
shafts of the crane columns Iv and IL are given in the figure. 
In reality, moments are induced at points B and F because the 
crane loads are applied at an eccentricity with respect to the 
column axes. Nevertheless, these moments are ignored in 
evaluating effective length factors for the columns. 

To begin the analysis, we shall replace the gravity loads by 
a set of fictitious lateral loads. This is shown in Figure 4b. The 
fictitious lateral load factor used was 0.001. The magnitudes 
of the fictitious lateral loads were thus obtained as the product 
of 0.001 and the gravity loads. The fictitious lateral loads are 
to be applied in the anticipated buckled direction of the frame 
at locations where the gravity loads were. The results of a 
first-order analysis performed on the frame of Figure 4b are 
given as follows: 

(Ms/ML)AB = 0AMs/ML)FG = 0 

(A7)B = 1.414 x 10~3 m, (A7)F = 1.404 x 10~3 m 

so, 

234 kN 
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(a) Frame Subjected to Gravity Loads 

Aj/ZH = [(1.414 x 10"3 + 1.404 x 10~3)/2] /1.368 
= 0.00103 m/kN 

Using Equation 3, we obtain 

y\AB = 1230 kN/m, r|FG = 1230 kN/m, so Zr| = 2460 kN/m 

Also, we have 

Z(P/L) = (934/10) + (434/10) = 136.8 kN/m 

Now, using Equation 2 the effective length factors for the 
lower shafts of the crane columns are calculated as: 
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(b) Frame Subjected to Fictitious Lateral Loads 
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Fig. 4. Pin-based uniform crane columns. 

= 3.76 

Once the effective length factors for the lower shafts have 
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been calculated, the effective length factors for the upper 
shafts can be calculated from Equation 5 as follows: 

KBC ~ KAE* 
(LAR\ 

V J 
. *BC , 

V J 

(hc^ 
AB 

V J 

(19 
v 

= 2.57 

= 25.6 

KFF = KFi 

Hi 234 
2050 x 10" 
2050 x 10"6 

V J 

(1 \ 

LEF . 
V ) 

v[£J[£ 

= 3.76 

= 25.6 

' 1 0 ^ 
2 

V J 
Vf 434 

234 
(2050x10-^ 
2050 x40 H 

V 

For purpose of comparison, the theoretical effective length 
factors calculated using an eigenvalue analysis and those 
reported in Reference 9 are given in Table 1. 

As can be seen, the proposed method gives reasonably 
accurate results. For design, both the lower and upper shafts 
of the crane columns should be checked for compliance with 
the beam-column interaction equation. At first glance, it 
seems that the effective length factors for the upper shafts are 
extraordinarily high. However, it should be noted that the 
design strength of a column is dependent on its effective 
length KL, not just the effective length factor K. The upper 
shafts, being much shorter than the lower shafts, will naturally 
have larger K values according to Equation 4. Nevertheless, 
even if the design strengths (j)^ of the upper shafts are smaller 
than those of the lower shafts, the upper shafts are subjected 
to much smaller axial loads Pu. The result is that the ratio 
Pu /§Pn will be well within reasonable limits. Very often, the 
design of uniform crane columns is controlled by the capacity 
of the lower shafts because of the presence of high axial loads 
in these portions of the columns. 

Example 2 

In this example, the effective length factors of the stepped 
crane columns shown in Figure 5a are to be determined. The 
frame is the same frame used in Reference 10 by Fraser. The 
upper shafts of the crane columns are supporting a roof load 
of 53 kips each. The lower shafts are carrying crane loads of 
300 kips and 140 kips, respectively, on the left and right 
columns in addition to the roof loads. The modulus of elas
ticity, E\ moment of inertia, /; and cross-sectional area, A; are 
given in the figure. The subscripts B, U and L denote the beam, 
the upper shaft and the lower shaft of the crane column, 
respectively. The fictitious lateral loads shown in Figure 5b 

were obtained by multiplying the gravity loads by a fictitious 
lateral load factor a of 0.001. A first-order analysis of the 
frame shown in Figure 5b gives the following results: 

(Ms/ML)AB=09(Ms/ML)FG = 0 

(Aj)B = 0.1086 in., (A7)F = 0.1077 in. 

so, 

A7/£tf= [(0.1086 + 0.1077)/2]/0.546 in/kips 

Using Equation 3, we obtain 

r\AB = 42.03 kips/in. 
r\FG = 42.03 kips/in. 

so 

Er| = 84.06 kips/in. 
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E 
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H 
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(a) Frame Subjected to Gravity Loads 
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(b) Frame Subjected to Fictitious Lateral Loads 

Fig. 5. Pin-based stepped crane columns 
(1 kip = 4.448 kN, lft. = 0.305 m, 

1 in. = 25.4 mmr 1 ksi = 6.895 MPa). 
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Table 1 . 

Segment 

AB 

FG 

BC 

EF 

Method 

2.57 

3.76 

25.6 

25.6 

Theoretical K 

2.50 

3.66 

24.9 

24.9 

Reference 9 

2.55 

3.74 

25.5 

25.5 

Table 2. 

Column 
Segment 

AB 

FG 

BC 

EF 

Present 
Method 

6.55 

8.85 

18.2 

18.2 

Theoretical K 

6.46 

8.74 

18.0 

18.0 

Reference 10 

7.00 

9.47 

19.5 

19.5 

Also, we have 

HP/L) = (353/396) + (193/396) = 1.379 kips/in. 

Using Equation 2 we obtain 

K ^ 
(29,000)(30,000) 

(353)(396)2 
1.379 

5(84.06) 
+ (1.379)(0.198) 

= 6.55 

M 2 * 
KFG~V (V 

,000X30,000)1 1.379 
(193)(396)2 15(84.06) 

= 8.85 

and, using Equation 5, we obtain 

+ (1.379)(0.198) 
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Fig. 6. Fix-based stepped crane columns 
(1 kip = 4.448 kN, lft. = 0.305 m, 

1 in. = 25.4 mm, 1 ksi = 6.895 MPa). 
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The effective length factors calculated above are compared 
with their theoretical values and those obtained in Reference 
10 in Table 2. Good agreement is observed. 

Example 3 

As a third example, the effective length factors of the fix-
based stepped crane columns shown in Figure 6a will be 
determined. The frame is the same as that used in Example 2 
except for the boundary conditions at the bases of the crane 
columns. Also, to simulate the actual operation of the crane, 
five load cases are considered. In Load Case I, all the crane 
loads are assumed to act on the lower shaft of the left crane 
column whereas in Load Case V, all the crane loads are 
assumed to act on the lower shaft of the right crane column. 
Load Cases II, III and IV will represent different crane load 
distributions on the two crane columns when the crane is in 
the quarter, middle, and three-quarter point of the crane beam, 
respectively. Using the lateral load model shown in Figure 6b, 
a first-order analysis was performed on the frame for each 
load case. The results of the analyses together with the calcu-
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Table 3. 

Load 
Case 

1 

II 

III 

IV 

V 

Column 
Shaft 

AB 
FG 

AB 
FG 

AB 
FG 

AB 
FG 

AB 
FG 

MS/ML 

0.167 
-0.163 

0.108 
-0.052 

0.036 
0.036 

-0.052 
0.108 

-0.163 
0.167 

(k/in) 

54.90 
32.63 

49.98 
38.69 

44.53 
44.53 

38.69 
49.98 

32.63 
54.90 

2n 
(k/in) 

87.53 

88.67 

89.06 

88.67 

87.53 

P 
(kips) 

493 
53 

383 
163 

273 
273 

163 
383 

53 
493 

P/L 
(k/in) 

1.245 
0.134 

0.967 
0.412 

0.689 
0.689 

0.412 
0.967 

0.134 
1.245 

KP/L) 
(k/in) 

1.379 

1.379 

1.379 

1.379 

1.379 

A, /ZH 
(in/k) 

.0113 

.0113 

.0113 

.0113 

.0113 

K 

1.44 
4.4 

1.63 
2.51 

1.93 
1.93 

2.51 
1.63 

4.4 
1.44 

lated K factors for the lower shafts of the two crane columns 
are summarized in Table 3. Because of structural symmetry, 
the K factors for column shaft AB in Load Cases I and II 
should be the same as those for column shaft FG in Load 
Cases IV and V. This is indeed the case as depicted in the table. 
From the table, it can also be seen that the proposed approach 
successfully captures the interaction effect between the two 
crane columns: the lightly loaded column is bracing the 
heavily loaded column at buckling. The result is an increase 
in effective length factor for the lightly loaded column and a 
decrease in the effective length factor for the heavily loaded 
column.13 For instance, in Load Case III when both columns 
are subjected to the same axial loads, the effective length 
factors are equal to 1.93 for both column shafts AB and FG. 
However, in Load Case I when all the crane loads are acting 
on column shaft AB, its effective length factor decreases to 
1.44 while the effective length factor of column shaft FG 
increases to 4.4. This interaction effect must be considered in 
design. The column should be proportioned to withstand the 
most severe load case. For this problem, the most severe load 
case is the one which gives the largest value of Pu /(j)^. 

Once the effective length factors of the lower shafts have 
been calculated, the effective length factors of the upper 
shafts can be determined from Equation 5. The results are 
summarized in Table 4. 

In Table 5, the K factors calculated using the present 
approach are compared with the theoretical values obtained 
using an eigenvalue analysis. Because of structural symmetry, 
only Load Cases I, II, and III are shown. As can be seen, the 
effective length factors calculated using the present approach 
compare well with the theoretical values. 

SUMMARY AND CONCLUSIONS 

A simple methodology for calculating effective length factors 
for uniform and stepped crane columns with any values of 
relative shaft lengths, moments of inertia, loading, and 

boundary conditions was presented. The proposed approach 
can be applied easily without resort to using any special 
nomographs and charts for solutions. The only analysis re
quired is a simple first-order analysis from which effective 
length factors of the lower and upper shafts of the crane 
column can be calculated using Equation 2 and Equation 5, 
respectively. Once the effective length factors have been 
calculated, the lower and upper shafts of the column can be 
designed using beam-column interaction equation following 
the usual procedure. Since the approach takes into considera
tion the destabilizing effect of the frame due to both member 
and frame instabilities as well as the interbracing effect due 
to interaction between the strong and weak columns in a story, 
rather accurate results can be obtained. Numerical examples 
were given to demonstrate the validity of the approach. Al
though this paper addresses only the calculation of elastic 
effective length factors, extension of the approach to inelastic 
A'factor evaluation is rather straightforward using the tangent 
modulus concept.15 Because of the ease with which effective 
length factors can be determined, the proposed approach can 
greatly facilitate the design of crane columns. 
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