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INTRODUCTION 

Many stability evaluation methods have been proposed over 
the last thirty years. The SSRC9 lists five specific methods of 
analyzing steel frames for stability: the effective-length con
cept; second-order, inelastic analysis; the PA method; the 
Merchant-Rankine formula; and the moment amplification 
method. The SSRC recommends evaluating frame stability 
separately from individual member analysis, while the AISC1 

includes stability evaluation in the individual member selec
tion process. 

The AISC1 requires that second-order effects be considered 
in the design of frames and that in unbraced frames the 
effective length factor, K, be not less than unity. The frame 
stability provisions of the AISC Specifications are based on 
the effective length concept, using the moment amplification 
method to account for second-order effects. It should be noted 
that the AISC does not prohibit the use of methods other than 
the effective length concept. 

The effective length concept typically is implemented 
through the determination of column effective length factors, 
K, using an alignment chart. The sidesway uninhibited align
ment chart1 provides AT factors for use in evaluating the lateral 
stability of the frame at the individual member level. The 
alignment chart is based on the assumption all columns in a 
story are equally critical and equally add to the lateral resis
tance of the frame. 

A method for evaluating frames in which all members do 
not equally contribute to a frame's lateral resistance has been 
proposed by Yura.10 However, it has been shown34 Yura's 
method is overconservative in frames in which the stability is 
provided by columns carrying a small portion of the story 
gravity load. One reason for this conservatism is the applica
tion of inelastic buckling allowable stresses where elastic 
buckling is clearly applicable. 

A method of stability design using a frame stiffness analy
sis has been proposed by Schilling7'8 and de Buen.4 In the 
frame stiffness approach, stability is verified through a com
parison of the gravity loads to the frame's lateral stiffness. The 
approach has many advantages: it is easy to understand, easy 
to implement and uses information the designer already 
should have at hand. It also eliminates the potential overcon-
servatisms of Yura's10 method. 
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The purpose of this paper is to assemble information pre
sented in earlier research in order to propose a complete and 
practical method of implementing the frame stiffness ap
proach; in addition, a new method of dirqctly calculating 
correction factors is proposed. Included are discussions on 
second-order effects, inelastic behavior, and individual mem
ber analysis. 

ELASTIC BUCKLING OF FRAMES 

The frame stiffness approach to stability design is based in 
the recognition that the first order lateral stiffness of a frame 
is reduced by two second-order geometric effects,4'7 desig
nated as PA and PS. These second-order effects are due to 
vertical load interaction with lateral story displacement, A, as 
shown in Figures la and lb, and with the displacements due 
to column curvature between the column's ends, 8, as shown 
in Figure lb. 

As shown in Figure la, leaner columns (those that provide 
no lateral stiffness to a frame) reduce frame stiffness through 
the application of an additional lateral force to the frame: the 
additional force is a function of the vertical load, P, and lateral 
displacement, A. As shown in Figure lb, the effective 
stiffnesses of stability columns (those that provide lateral 
stiffness to a frame) are reduced by the introduction of P-delta 
generated flexure. 

Consider the individual stability column shown in Figure 
2. Ignoring shear and axial deformations, the interstory de
flection due to the applied lateral load Vc can be calculated as 
shown by Le Messurier:6 

Q=MnGnh/6EI 

db = MbGbh/6EI 

Vrh = M„ + Mh 

Vh2 Mnh 

(i) 

(2) 

(3) 

(4) 

Ga and Gb are as defined in the AISC1, SSRC9 and elsewhere. 
Combining Equations (1), (2), (3) and (4): 

Ma_Gb + 3 

Mb Ga + 3 

Mh = aVh 

(5) 

(6) 
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where: 

a = 
G„ + 3 

Ga + Gb + 6 

The equations for moment, curvature and deflection are: 

M(x) = Vc(ah-x) 

aVrGbh
2 

6EI 

r 
Q(x) = | J J JM(x)dx = \^rT\J(oc/z-x)dx 

V 

ew = | f 7 ] ( a A x - f + ^ 

Vc + PA/h 

STABUZING FRAME 

(a) Leaner Column 

(7) 

(8) 

(9) 

(10) 

(11) 

Av(x) = JQ(x)dx = 
ahx2 x3 aGbh

2x) 

Vh3 

Av{h) = ^ - (13) 

Where Â , is the lateral deflection induced by the load Vc and: 

P = 
6(Ga + G,) + 36 

2(Ga + Gb) + GaGb + 3'' 
1 

a aGb j _ 
(14) 

The lateral deflection caused by the application of a vertical 
load to the deformed column, as shown in Figure 3a, is 
calculated as follows: the P-delta effects are considered as 
having two separate components: the first, PA, being the 
application of a shear load PA I h, or VPA, as shown in Figure 
3b; and the second, PS, being the application of an axial force 
P to the deformed shape as shown in Figure 3c. 

Deflection due to shear load VPA is proportional to the lateral 
load deflection, from Equation (13): 

ka- 6EI/Gah 

*L.i-C-

kb= 6EI/Gbh 

(a) (b) (c) 

Fig 2. First order deflection of a stability column. 

M = Vch + PA 
MOMENT DIAGRAMS 

(b) Stability Column (a) 

PA/h 

Fig. 1. Second order behavior of columns. Fig. 3. P-delta effects on a stability column. 
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PAV 

vPA = -
v J 

Vrh
3 

pE/ 
PVch

2 

$EI 

APA(h) = 
VPJ? py.h5 

$EI (p£7)2 

(15) 

(16) 

Mps(x) •• 

rPV^ 

KEIJ 
\ih 3

 a/**2 x3 aGbh
2x h2x 

2 + 6 

e«(jc) = 
PV 

v (£ / ) :
y 

(22b) 

Where APA is the lateral deflection induced by VPA. 
Deflection due to P8 loading (reference Figures 2c and 3c) 

is a function of the column's end restraint. From Equations 
(12) and (13): 

b(x) = Av(x)-Av(h)\ 
x_ 

EI 
ahx1 jf_ aGJih 

2 " 6 + 6 

MPb(x) = MbP,-Pb(x) 

Vch
2x 

$EI 
(17) 

(18) 

8(x) is the deflection of the column from an imaginary chord 
linking its ends, MPh(x) is the internal moment, and Mbn is the 
reaction at end ' b \ resulting from the application of an axial 
load to the deformed shape. Neglecting axial deformation, the 
total energy, U, stored in the axially loaded system is: 

f/ = 2 J MP^~didx + 2MbP*QbPb + 2MaP^aPh (19a) 

Where d$/dx = MPb(x) I EI and 6n = MnGnh 16EL By statics, 
Mbpb must equal Map6 therefore: 

U- 2EI 
V 

/ {Mm-Ph{x)fdx + 

M2
bPJiGb 

YIEl 

MbPShGa 

YIEl 
(19b) 

Reactions MaPi and Mm must be such they minimize the total 
energy in the system, i.e., dU I dMbn = 0. Solving Equation 
(19b) forx = h and differentiating: 

Mu 

\xPVch
l 

EI 
(20) 

where: 

a aGb 

6 + 12 
J__J_ 
2p 24 

1 + 
(Ga+Gb) 

(21) 

The deflection due to P8 can be calculated from Equations 
(17), (18) and (20): 

MP&(X): 
\xPVch

3 

EI 

rpvy 
EI 

ahx2 x3 aGbh
2x h2x 

2 ~ 6 + 6 p 
(22a) 

\yh3x-
ahx3 xA aGtfx2 tfx2 \i-Gbh

A 

6 + 2 4 

AP&(x) = 

12 + 2p + ' 6 

'PV^ 

(23) 

v ^ y 

liAV _ ahx4 _S aGbh
2x3 tfx3 \iGbh

4x 
2 24 + 120 12 + 6p + 6 

Ap&(h): 
yPVch

5 

' (Elf 

(24) 

(25) 

Where AP&(h) is the lateral deflection induced by the applica
tion of the axial force, P, to the deformed column, and: 

7 2 24 36 6(3 6 120 U j 

From Equations (16) and (25) the total P-deltadeflection 
wouldthenbe: 

kp-delta = APA(/Z) + APb(h) = + Y 
PVti 

(EI)2 (27) 

Express Rcl as the first-order lateral stiffness of the column, 
RC2 as the effective second-order lateral stiffness, and CPI h 
as the loss of stiffness due to vertical loading, where C is a 
constant for an individual column with given end restraint 
conditions: 

Av 

Rc2 + 
V. 

Av + AP_della 

CP 
R*-Rci- h 

c- (Ki-Kd-
fy.hv 

KP J 0W, t e + Av)(A„) 

(28) 

(29) 

(30) 

(31) 

From Equations (13) and (27): 

(y.h 

p 
v J 

l PVh5 

(Elf 

+ 
(Elf p£/ 

v / 

fyh3^ 

p£/ 
V J) 

(32) 

Simplifying Equation (32): 
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iri+y 1 + P2Y 

P3 p 
w\ i 

EI 

(\ 

P2 + PY 
(ph , 2 \ 

£ / 

(33) 

+ 1 

As shown in Equation 33, thefactorCisreduced by increas
ing axial load and/or story height. However, increasing axial 
loads also result in incremental increases in deflections, as 
calculated in P-delta iterations. The increasing deflections 
directly increase the C factor, as shown in Figure 4. The C 
factor consistently approaches a value which can be directly 
calculated using Equation 33 with no axial load, i.e. P = 0: 

C = 
1±£Y_ 

w Ox/r 2\ 

EI 

- = 1 + P 2 Y (34) 

+ 1 

Where: 

0C: 

P = 

Ga + 3 

'Ga + Gb + 6 

1 

a aGb 

2 + 6 " i 
V J 

(7) 

(14) 

1 a aGb 

6 + 12 ~2p 24 

1 + 

2 "24"* 36 

6 

6(3 6 
1 

120 

(21) 

(26) 

Le Messurier6 has given a similar amplification factor, Q, 
which he deemed a "clarification factor." CL varies between 
0 and 0.216 and is added to unity to obtain a factor analogous 
to the C factor proposed herein. Le Messurier has provided 
approximate and "exact" (based on Euler buckling equations) 
solutions for CL. Use of C = 1 + CL, using the "exact" solution, 
gives solutions that are within 1.5 percent of those calculated 
using C = 1 + P2y. Schilling also discusses the derivation 
alternatives, buckling equations versus P-delta deflections, 
for what he called the "correction factor."7 

Equation 34 gives values for the coefficient C ranging from 
1 to 1.2. The use of C = 1.2 as a constant has been suggested 
by Shilling and others.4'6'711 A constant C is reasonable for 
preliminary designs, but is unnecessarily conservative for 
computerized structural analyses. Also, blanket use of C = 1.2 
may significantly impact the design of all the columns in a 
frame as it affects the approximate second-order amplifica
tion factor, as shown in the discussion on individual members. 

o 

P-25 kips 

1.2 

1.1 

1.0 

\ w 

1 — 
1 

ryh 

— 

P-
P-

- P-

P-

265 kips 
200 kips 
100 kips 

50 kips I 

Condition Shown- 1 
E-29000 ksi 1 
1-127 in.4 1 
h-100 inches 1 
Ga-1x1011 1 
tat 

(Exe imple 1) 

0 0.9 

"o 
£ 0.8 
CD 

8 °7 

0.6 

0.0 
0 1 2 3 4 5 6 

P-delta Iteration 

Fig. 4. Effect of P-delta iterations on second order defelctions. 

FRAME BEHAVIOR 
Since all columns in a story must equally deflect, the desta-
bilization of a frame must be the sum of the effects on all 
columns in a story. Expressing Rn as first-order lateral stiff
ness of a story under consideration, R2 as effective second-or
der lateral stiffness, UPLI h as the sum of leaner column 
gravity loads divided by their story heights, and ZCP5 / h as 
the sum of stability column gravity loads times the individual 
C factors divided by their story heights; the general form of 
the second-order lateral stiffness equation for a frame in the 
elastic range is: 

R0 = R„ h (35) 

Bifurcation occurs when the frame laterally deflects without 
being subject to lateral loads; it happens when the gravity 
loads reduce the frame's effective second order lateral stiff
ness to zero: 

Ro = R„ 
CPc 

= 0 (36) 

The subscript "cr" denotes critical loading. 
In frames subject to lateral loads, gross deflection will 

occur as the second-order lateral stiffness becomes small and 
failure results from increasing PA moments.2 
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Expressing Ru as the required stiffness to prevent sidesway 
buckling for an imposed set of gravity loads: 

(FcX 

CP, 
* ^ - Z T - X ^ = ° 

*.=r •2# 

(37) 

(38) 

The SSRC9 shows many columns still buckle at less than pure 
elastic buckling loads when axial stress is 40 percent of yield. 
This reduction in elastic buckling strength dissipates as axial 
stress is decreased. The AISC1 imposes an additional factor 
of safety of (0.877)"1, or 1.14, for elastic buckling in order to 
account for this inelastic reduction in strength. Since the 
inelastic reduction of elastic buckling loads does not apply to 
pure elastic buckling, only the stability column term of the 
frame stiffness requirement need include the additional factor 
of safety: 

R„ I T + 1 1 4 I C P 
h 

The requirement for stability would be: 

$Rn>Ru 

(39) 

(40) 

Thus it is possible for the designer to show a frame has 
adequate stiffness to resist sidesway buckling for a given set 
of gravity loads. The frame stiffness approach allows the 
designer to take full advantage of live load reductions and the 
variability of moving loads (e.g., cranes) in the sidesway 
buckling analysis. 

The need for lateral stiffness beyond this stability require
ment will be demonstrated in the discussion of individual 
members. 

INELASTIC BUCKLING OF FRAMES 

As noted by Yura10 and others, significant axial stress de
creases the lateral stiffness of columns. Schilling8 proposed 
the use of an effective moment of inertia, Ieff, in the calculation 
of frame lateral stiffness. The individual member properties 
of the columns in the frame must be modified in order to 
account for this inelastic softening: 

EISr^EJ^EI, eff (41) 

Where Et is the tangent modulus and Sr is a stiffness reduction 
factor. 

AISC1 provides stiffness reduction factors, Fcr% indastic / 
Pcr, elastic m a t c a n be used to adjust the modulus of elasticity of 
columns for the frame analysis. The axial stress used for the 
determination of stiffness reduction is based on the ultimate 
axial load, Pu, divided by the cross sectional area times the 
reduction factor, (|)A.5 The stiffness reduction factor is calcu
lated as follows: 

(^ )e l 
(42) 

p Pu . 0.877-For — > ^ ^ Fv\ 
6A 2.25 y 

f * \ 

Xc -

l og 
$AE 

t 

_ Pu ^ 0.877 _ 
F 0 r ^ < - 2 ^ F -

log(0.658) 

A|(0.658)^ 

0.877 

S=l 

(43) 

(44) 

(45) 

The stiffness reduction curves using Equations 44 and 45 are 
shown in Figure 5. Structural analyses of frames with col
umns stressed in the inelastic range can become arduous as 
there will be different lateral stiffnesses for each load combi
nation. Fortunately, however, most frames subject to lateral 
loads are not axially stressed into the inelastic range, unless 
lateral stiffness is provided by bracing, in which case the 
stiffness reduction of the columns is moot. 

J \3e st 

c 

eel — • 

r - 0.39" 72 

\< \ 
i © \ 
i « — \ — 
1 <o \ 
!o-s \ 1 '-" -* \ 
l i s _V 

V - G r. 50 S teel 

1 \ 
8 88 § 

Axial Stress, Pu /0A, ksi 

Fig. 5. Stiffness reduction curves. 
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ANALYSIS OF INDIVIDUAL MEMBERS 

Members should be analyzed following the procedures given 
in the AISC Specification.1 Following SSRC9 recommenda
tions, the effective length factor for individual columns need 
not exceed unity, once the stability of the story has been 
verified using Equation 40. The story has been demonstrated 
to be stable, therefore the columns need to be evaluated for 
buckling between story levels. The use of an effective length 
factor of less than unity in an unbraced frame is currently in 
violation of the AISC Specification.1 The required flexural 
strength, MM, should be in accordance with AISC Equation 
HI-2 restated here as Equation 46: 

Mu = BxMnt + B2Mlt (46) 

Where Mnt is the required member flexural strength for grav
ity loads assuming no lateral translation, and Mlt is the re
quired member flexural strength as a result of lateral transla
tion. The second-order moment amplification factor, #2, is the 
ratio of the second-order deflection to the first-order 
deflection:6 

B, 
Ai 

(47) 

Where A} is the first order lateral deflection, and A2 is the 
second order lateral deflection: 

A - V - V 
2 R2 Rn-K 

Combining Equations 47 and 48 gives: 

V 
R„ — R„ R„ 

(48) 

A, 
*rt " W 1 

V_ Rn-Ru l-(Ru/Rn) 
R„ 

(49) 

o 

o o 

Determination of B2 in this manner is consistent with the 
proposed method of Kanchanalai and Lu.11 

It is at this level of the analysis where overestimation of the 
required frame stiffness, Ru, can significantly impact the 
design of all the members in the frame. Such an overestima
tion can result from the use of approximate C factors and the 
neglect of moving load effects and live load reductions. 

The moment amplification method addresses only second-
order effects in rigid frame columns, whereas the stability 
equations contained herein are applicable to both braced and 
unbraced frames. As noted in the AISC Commentary,1 the 
designer should consider the amplification effects of gravity 
loads on braced frame. If the required lateral stiffness, Ru, 
exceeds 10 percent of the provided lateral stiffness, Rn, then 
lateral load amplification effects cannot be considered negli
gible and should not be ignored. 

The effect of Equation 49 is that the designer cannot 
provide a marginally stable (Ru -^Rn) laterally loaded frame. 
As the actual frame stiffness approaches the stiffness re
quired, the deflections and bending moments are greatly 
amplified. The frame stability problem becomes a matter of 
drift control. 

As shown in Example 1, the individual member analyses 
for stability columns may not govern. The size of these 
columns often will be driven by Equation 40, and the stress 
ratios for these columns may be low. 

While the stress ratio of the typical stability column may 
not have much meaning, the benefit to analyzing members in 
this fashion is a more accurate analysis of the frame as a 
whole, and of columns that are either subject to far greater 
loads or are more slender than their peers. 

EXAMPLE 1 

Consider the statically determinate frame consisting of a 
cantilevered column, a leaner column and a simple beam; the 
frame is loaded with two point loads, Px and P2 as shown in 
Figure 6, for a total factored load of 265 kips. Considering 
strong-axis buckling only (in the plane of the frame), verify 
the adequacy of the cantilevered column for the three frame 
cases: 

Case A represents the loading condition: P{ = 265 kips, 
P2 = 0 kips. The cantilevered column is a W8x35 (A = 10.3 
in.2, Ix = 111 in.4, ASTM A36 steel.) Checking stability 
criteria: 

265 kips 
§AR 0.85xl0.3in.2x36ksi 

= 0.8408 

^log(0.8408)X 

log(0.658) 
= 0.6437 

(50) 

(51) 

Fig. 6. Example 1. 
A|(0.658)H 0.64372 x 0.658° W ~ 

Sr = \„^— = TT^^ = 0.3972 
0.877 0.877 

(52) 
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R.= 
3EISr_ 3 x 29000 ksi x 127 in.2 x 0.3972 

~h3 (100 in.)3 

= 4.39 kips/in. 

* + 3 
a = = 1 

00 + O + 6 

"-T-f^o-T-3 

2 + ' 6 

(53) 

(54) 

(55) 

y 

1 1 J_ 1x0 
6 + 12 2 x 3 24 

1 + 
> + 0 

= 0 

Q_ 1 1 x 0 1 0 x 0 1 
Y " 2 ~ 2 4 ~ 36 + 3 x 6 + 6 + 120 

C= 1 + 0.02222 x 3 2 = 1.2 

(56) 

: 0.02222 (57) 

(58) 

R - V ^ L V 1.14CP5 1.14 x 1.2 x 265 kips 
R«~Lh+L h ~ ioo in. 

= 3.63 kips/in. (59) 

§Rn = 0.85 x 4.39 kips / in. 

= 3.73 kips / in. > 3.63 kips / in. o.k. (60) 

Frame lateral stability has been verified, check the column 
using an effective length factor of one: 

Kh 

K™J 
i 

1.0x100 in. f 

~ 3.51 in. X7C V 
36 ksi 

29000 ksi 
7=0.3195 (61) 

Fcr = (0.658X<)FV = 34.49 ksi (62) 

Pn = 10.3 in.2 x 34.49 ksi = 355 kips (63) 

<\>Pn = 0.85 x 355 kips = 302 kips > 265 kips o.k. (64) 

The W8x35 is adequate for the applied load. Although there 
are no lateral loads on this frame, it is worth noting that the 
second order moment amplification factor using Equation 49 
would be: 

*--hi 
1 

1 _ ^ 1 - ^ 1 * . 4.39 

:5.78 (65) 

By comparison, the AISC1 second order moment amplifica
tion factor would be: 

B7 = 
1 

1 - -
265 kips 

= 1.32 (Hl-5) (66) 

11.06 kips/in. x 100 in. 

Where 11.06 kips/in. is the elastic stiffness of the frame; or: 

B, 
1 

265 kips 
= 1.41 (Hl-6) (67) 

1 -
908 kips 

Where 908 kips = AFy/X
2
c = 10.3 in.2 x 36 ksi * (2 x 0.3195)2. 

The amplification factors given in Equations 65, 66, and 
67 emphasize the difference in using the three approaches to 
determine second-order effects. 

Case B represents the loading condition: Px = 132.5 kips 
and P2 = 132.5 kips. The cantilevered column is a W8x21 
(A = 6.16 in.2, Ix = 75.3 in.4, ASTM A36 steel.) Checking 
stability criteria: 

Pu I (|)AFV = 0.703; Sr = 0.675; Rn = 4.42 kips/in.; as calcu
lated for Case A, C = 1.2; Ru = 3.14 kips/in.; §Rn = 3.76 kips/in. 
> Ru o.k. Checking column adequacy: Xc. = 0.3213; Fcr = 
34.48 ksi, (()Pn = 180 kips > Pu o.k. 

The column size required using Yura's method10 is the same 
as for Case A, i.e., W8x35. 

Case C represents the loading condition: Px = 0 kips, P2 = 
265 kips. The cantilevered column is a W8xl5 (A = 4.44 in.2, 
Ix = 48.0 in.4, ASTM A36 steel.) Checking stability criteria: Pu I 
§A = 0 ksi; Sr = 1; Rn = 4.18 kips/in.; as calculated for Case A, 
C = 1.2; Ru = 2.65 kips/in.; §Rn = 3.55 kips/in. > Ru o.k. 

Once again the column size required using Yura's method10 

is the same as for Case A, i.e., W8x35. 

EXAMPLE 2 

Consider the statically determinate frame shown in Figure 7, 
the frame consists of six columns supporting a roof and crane. 
The frame supports factored roof loads of 150 kips at interior 
columns and 75 kips at exterior columns. For Load Combi
nation 1 the frame supports a factored crane load of 150 kips 
applied to an individual interior column, in addition to the 
roof loads. For Load Combination 2 the frame is subject to a 
10 kip factored lateral load, a factored crane load of 100 kips 
applied to an individual interior column, and the previously 
described roof loads. Verify the adequacy of W8x48 A36 
columns, assuming the columns are laterally supported in the 
weak axis (out of the plane of the frame) and limiting drift to 
/i/ 120. 

For Load Combination 1, exterior columns without crane 
load: 

Pu I §AFy = 75 kips/(0.85xl4.1 in.2 x 36 ksi) 
= 0.174 < 0.3898 

/. Sr= l,Gfe = °o 
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Ga = (LS,IC /Lc) I (Ug /Lg) = (1 x 184 / 15) / (2370 / 20) = 
0.1035, a = 0, P = (0/3 + (0.1035 + 3)/6 - 1/6)"1 = 2.852, ji = 
0, y= 0.02222, C= 1 + (2.852)2 x 0.02222 = 1.18. 

For Load Combination 1, interior columns without crane 
load: 

Pul$AFy = 0.348 < 0.3898 

.-. Sr= 1, Gb = oo, Ga = 0.0518, a = 0, p = 2.924, JLX = 0, y= 
0.02222, C= 1.19. 

For Load Combination 1, interior column with crane load: 
PJ$AFy = 0.695, Xs = (log(0.695)/log(0.658))05 = 0.932, 
Sr = 0.689, Gb = °°, Gfl = (0.689 x 184/15) / (2 x 2370/20) = 
0.0357, a = 0, p = 2.947, î = 0, y = 0.02222, C = 1 + (2.947)2 

x 0.0222= 1.19. 
For Load Combination 1, the lateral stiffness required for 

stability is: 

(K)L 1.14x 
(1.18 x 150 kips) + (1.19 x 750 kips) 

180 in. 

= 6.77 kips/in. (68) 

For Load Combination 2, the only change in C factor is due 
to the lower crane load. For Load Combination 2, interior 
column with crane load: Pu I §AFy = 0.579, ls = 1.143, Sr = 
0.862, Gb = °°,Ga = 0.0446, a = 0, p = 2.935, JLL = 0, y = 
0.02222, C= 1.19. 

V t W24x84 t W24x84 f W24x84 f W24x84 t W24x84 t 

A \ A A 
CRANE 
LOAD 
(MOBILE) A A A 

MOMENT CONNECTION, TYP. 

TYPICAL BAY WIDTH- 20 FEET 
TYPICAL BAY HEIGHT- 15 FEET 

Determine the required frame stiffness based on the drift 
limitation criteria for Load Combination 2: 

(* J i*2=U4x 
(1.18 x 150 kips) + (1.19 x 700 kips) 

180 in. 

= 6.40 kips/in. 

(A2)max = 
180 in. 

120 120 

B2V V 

= 1.5 in. 

(^n)min (K) nun xvw 

(A2)max=1.5in.= 
10 kips 

(*„), 

(#*)min-6.40kips/in. 

10 kips , „ ,> , . 
nun- 1 5 i ^ +6.40 kips/in. 

= 13.07 kips/in. 

(69) 

(70a) 

(70b) 

(71) 

(72a) 

(K)u 

((2 x 2.852)+(3 x 2.924)+(0.862 x 2.935))x29000 ksixl84 iri! 
(180 in.)3 

(K)LC2= 15.56 kips/in. 

10 kips 
{AI)LC2 15.56 kips/ in. - 6.40 kips/ in. 

= 1.092 in. < 1.5 in. o.k. 

Similarly, for Load Combination 1: 

(Rn)La = 15.10 kips /in. 

(72b) 

(72c) 

(73) 

(74) 

(<K)LCI = 0.85 x 15.1 = 12.84 kips / in. > Ru o.k. (75) 

Story drift is in an acceptable range for Load Combination 2, 
and stability is verified for Load Combination 1. Columns are 
then checked using an effective length of one. For Load 
Combination 1, evaluate the worst case column: 

LOADING CONDITIONS-

LOAD COMBINATION 1 LOAD COMBINATION 2 

F> - 75 KIPS 
F? -150 KIPS 
V - 0 KIPS 
CRANE - 150 KIPS 

PE - 75 KIPS 
F? -150 KIPS 
V - 10 KIPS 
CRANE - 100 KIPS 

Fig. 7. Example 2. 

K = 

1.0x180 in. f 
3.61 inches x 71 V 2 

m 
mkr-°™ 

Fcr = ( 0 . 6 5 8 ^ = 31.58 ksi 

Pn= 14.1 in.2 x 31.5 8 ksi = 445 kips 

(76) 

(77) 

(78) 
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§Pn = 0.85 x 445 kips = 378 > 300 kips o.k. (79) 

The column is adequate for Load Combination 1. Check 
columns for Load Combination 2: 

Mlt = 
S${l-a)Vh 0.862 x 2.935 x 10 kips x 180 in. 

1S» 2 x 2.852 + 3 x 2.924 + 0.862 x 2.935 

Bo 

= 268 in.-kips 

1 1 

1 - (K\ LCI 1 
6.40 
15.56 

= 1.699 

(K)LC2 

Mu = 1.699 x 268 in.-kips = 455 in.-kips 

(80) 

(81) 

(82) 

K + 9 
Wn 

250 kips 8 
378 kips 9 

455 in.-kips 
1433 in.-kips 

: 0.944 < 1.0 o.k. (83) 

The W8x48 columns are adequate for both load combina
tions. An approximate method of determining lateral stiffness 
has been used in this example, however, any method of 
determining frame stiffness which accounts for inelastic be
havior would be acceptable. 

CONCLUSION 

The frame stiffness approach is an accurate method of veri
fying the stability of frames, braced or unbraced. The ap
proach is simple and linear where columns are elastic or 
where bracing provides lateral stiffness. Conditions where 
inelasticity complicates the analysis can be handled with 
somewhat more effort. The analysis can be easily accom
plished by hand calculations or by computer analysis. 

The stability analysis accurately accounts for the variabil
ity of column stiffnesses and of load distribution. The method 
provides an improved estimation of second-order effects and 
allows for a more accurate assessment of column capacities 
without resorting to a second-order inelastic analysis. 

ACKNOWLEDGMENTS 

The author wishes to thank Martin Muska of Engineering 
Alignment Systems, Inc. for his helpful suggestions, encour
agement, and support. 

REFERENCES 
1. Load & Resistance Factor Design, 1st edition, AISC, 

Chicago, 1986. 
2. Arnold, P., Adams P. R, and Lu, L., "Strength and Behav

ior of an Inelastic Hybrid Frame," Journal of Structural 
Engineering, ASCE, Vol. 94, No. 1, January 1968. 

3. Cheong-Siat-Moy, E, "K-Factor Paradox." Journal of 
Structural Engineering, ASCE, Vol. 112, No. 8, August 
1986. 

4. De Buen, O., "Column Design in Steel Frames Under 
Gravity Loads," Journal of Structural Engineering, 
ASCE, Vol. 118, No. 10, October 1992. 

5. Harichandran, R. S., "Stiffness Reduction Factor for 
LRFD of Columns," Engineering Journal, Vol. 28, No. 3, 
1991. 

6. Le Messurier, W. J., "A Practical Method of Second Order 
Analysis, Part 2—Rigid Frames," Engineering Journal, 
Vol. 14, No. 2, 1977. 

7. Schilling, C. G., "Buckling of One-Story Frames," Engi
neering Journal, Vol. 20, No. 2, 1983. 

8. Schilling C. G., "Discussion of Buckling of One-Story 
Frames," Engineering Journal, Vol. 21, No. 4, 1984. 

9. Guide to Stability Design Criteria for Metal Structures. 
Structural Stability Research Council, 4th edition, John 
Wiley & Sons, 1988. 

10. Yura, J.A., "The Effective Length of Columns in Un
braced Frames." Engineering Journal, Vol. 8, No. 2, 
1971. 

11. Kanchanalai, T., and Lu, L. W., "Analysis and Design of 
Framed Columns Under Minor Axis Bending," Engineer
ing Journal, Vol. 16, No. 2, 1979. 

20 ENGINEERING JOURNAL / FIRST QUARTER / 1995 


