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INTRODUCTION 

The "leaning" column has existed as an element in steel 
structures from the time steel frames were first constructed. 
The simplest form of a leaning column is a pin-ended column 
which has no lateral stability of its own; thus, it relies on other 
parts of the structure to provide for its lateral stability and the 
lateral resistance for the entire frame. The impact of leaning 
columns on the lateral stability of the unbraced frames to 
which they are attached must be accounted for in design. This 
paper will look at practical ways to account for leaning 
columns through the use of ^-factors in both LRFD1 and 
ASD2 design. 

STRUCTURAL FRAMING 

The framing plan for a low-rise building is shown in Figure 
1. In the long direction, lateral load is resisted by the rigid 
frames along column lines A and D, from line 2 to line 5. In 
the short direction, lateral load is resisted by the braced frames 
along column lines 1 and 6, between lines B and C. If the rigid 
frames are taken without consideration for the remainder of 
the structure, each would be designed to resist the gravity load 
applied to its columns plus one-half of the total lateral load. 
Columns which are not a part of the two rigid frames would 
be designed to carry their part of the gravity load. These 
gravity-only columns are not part of the lateral-load-resisting 
structure and are the ones referred to as leaning columns. 

If these leaning columns were considered part of an 
unbraced framing system, a conventional analysis would 
appear to show that they have an infinitely long effective 
length, K = a, and thus be impossible to design. If, on the 
other hand, they are assumed to be laterally supported at their 
ends, they could be considered simple pin-ended columns and 
be designed with an effective length equal to their actual 
length, K = 1. For this situation to be at all reasonable, 
something must provide the required lateral restraint. 

The decision as to where stability comes from in a particu
lar design is critically important. An ASCE committee has 
found that there are many approaches being taken and as
sumptions being made in the analysis of steel building frames3 
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but these assumptions may not be fully incorporated through
out all phases of a design. Heavy masonry walls may have 
easily provided lateral stiffness for structures built at one time 
but today's light curtain walls normally should not be counted 
upon for that purpose. Beam connections which may provide 
lateral resistance should be designed for that purpose from the 
start in order to insure that all framing components are ade
quate to meet the strength and stiffness needs. Partially 
restrained connections are permitted in both LRFD and ASD 
specifications and may reasonably be counted on to provide 
the needed stiffness. If the rigid frame is to provide the lateral 
stability, then it too must be properly sized to provide all of 
the restraint that it will be called upon to give. 

METHODS OF ANALYSIS 

Although the LRFD and ASD specifications permit a first-
order analysis for design purposes, they do require that the 
second-order effects be accounted for. A first-order analysis 
is formulated around the undeflected geometry of the struc
ture. This is the normal approach taken to structural analysis 
through such well known methods as moment distribution, 
slope deflection, or the stiffness method. A second-order 
analysis is formulated around the deflected geometry of the 
structure and will normally include an iterative or approxi-
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Fig. 1. Low-rise building framing plan. 
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mate solution. There are many references available for both 
first-order and second-order analyses.4'5 

Two different second-order effects will impact on the 
design of a single column. The first, illustrated in Figure 2a 
for a column in which the ends are prevented from displacing, 
is the result of the deflection along the length of the column. 
It can be seen that the moments along the column will be 
increased due to the column deflection, by an amount P8. This 
increase in moment due to member deflection is referred to 
as the member effect. 

The column in Figure 2b is part of a structure which is 
permitted to sway laterally an amount A. As a result, the 
moment required in the end of the column to maintain equi
librium in the displaced configuration is given as PA. This 
member moment is referred to as the structure effect, since 
the lateral displacement of the column ends is a function of 
the properties of all of the members of the structure partici
pating in sway resistance. 

The deflections, 8 and A, shown in Figure 2 are second-
order deflections, resulting from the applied loads plus the 
second-order forces. Although requiring a second-order 
analysis, both of these effects appear to be straightforward for 
the individual column of Figure 2. However, when columns 
are combined to form frames, the interaction of all of the 
members of the frame significantly increases the complexity 
of the problem. The addition of columns which do not par
ticipate in lateral resistance but which do carry gravity load 
brings further complexity to the problem. 

This can most readily be seen with reference to the struc
tures shown in Figure 3. The frame in Figure 3a is composed 
of two identical columns carrying the same load, Pa. If the 
columns behaved elastically, their capacity would be deter
mined using Euler's equation with K = 2, thus Pa = 
n2EI/4L2. The addition of the lateral load, H, in the frame of 
Figure 3b, means that the ability of the columns to carry axial 
load will be reduced to Pb, since now each column must also 
resist an applied moment of approximately HL12. This re
duced capacity is normally accounted for through the use of 
an interaction equation provided by the design specification, 
LRFDHl-laandHl-lborASDHl-l,Hl-2,andHl-3.Now 
an additional column, EF, which carries a load Q, is added to 
the previous frame as shown in Figure 3c. With column EF 
pinned at each end, it is seen that the original columns AB and 
CD are still called upon to resist all of the lateral load, H. If 
the column EF has no impact on columns AB and CD, as 
would appear from a first-order analysis, they would continue 
to carry the gravity load, Pb. However, if the addition of 
column EF, with its load <2, does have an impact on the ability 
of other columns to carry load, then their load must be 
appropriately reduced to Pc. Column EF is a leaning column. 
It would be designed with an effective length factor K = 1 and 
would rely upon columns AB and CD to keep its upper end 
from moving laterally. 

EFFECTIVE LENGTH 

The normal approach to finding the axial load capacity of a 
column involves the determination of the effective length 
factor, K. Through the use of ^-factors, the actual critical 
buckling load of the column, which could be determined 
through a buckling analysis using the second-order equations 
of equilibrium, is related to that predicted by the Euler buck
ling equation so that 

P„ = 
KZEI 

(1) 

Perhaps the most commonly used approach to the determina
tion of K-iactors is the nomograph found in the Commentary 
to the Specifications,1'2 and shown in Figure 4 for unbraced 
frames. The equation upon which the nomograph is based is 
given here as Equation 2.5 

GAGB(n/Kf- 36 n/K 

6(GA + Gfi) tar(K/K) 
(2) 

The assumptions used in the development of the 
nomograph are detailed in the Commentaries. Two of the 
most important assumptions are 1) that all members behave 
elastically and 2) that all columns in a story buckle simulta
neously. This latter assumption is critical since it eliminates 
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Fig. 2. Second-order effects. 
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the possibility that any column in an unbraced frame might 
contribute to the lateral sway resistance of any other column. 
If the nomograph is used for column EF of Figure 3c, the 
pinned ends yield GA = GB = a which, in turn, yields K = a. 
By this approach, the critical load would be undefined, a 
particular problem for the designer. 

Since the behavior of columns in actual structures would 
seem to show that columns like column EF do, in fact, have 
some axial capacity, it is important to find a model that will 
reasonably predict the capacity of a frame including these 
leaning columns. Numerous approaches intended to account 
for the effect of leaning columns have been presented in the 
literature. These approaches offer a wide range of mathemati
cal complexity and practical usefulness. Three approaches 
that have been presented in the literature for including the 
leaning column will be discussed along with some simplified 
equations that are included in the Commentary of the second 
edition of the LRFD Specification. In addition, an equation 
similar to that used to develop the nomograph will be devel
oped to include the leaning column. As always, the designer 
is called upon to decide on the appropriate approach to use in 
a particular design situation. 

Modified Nomograph Equation 

The derivation of Equation 2 is readily found in numerous 
references, including Reference 5. Following the same pro
cedures and assumptions, with the addition of the leaning 
column as shown in Figure 5, a new equation may be devel
oped. Viewing the structure in its displaced equilibrium con-
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Fig. 4. Unbraced frame nomograph.1 

figuration, the leaning column and the restraining column are 
separated as shown in Figure 5b and c. The load Q on the 
leaning column EF must be balanced by the horizontal force, 
QA/L, at F, for equilibrium of the leaning column. This force 
must then be applied as a load at B on the restraining column 
AB. 

Equations of equilibrium at the joints of column AB and 
the sway equilibrium equation can be written for the structure 
in the displaced configuration. Member-end moment equa
tions are then written using the slope deflection method, 
incorporating the stability functions necessary to account for 
the influence of axial load on column AB.5 Combining these 
equations and setting the determinate of the coefficients equal 
to 0.0 will yield the buckling condition equation. 

GAGB(n/K)2- 36 

6(GA + G5) 
i+fi- tan(7c//Ql P 

\ 

6tan(n/2K)Q Q 

(GA + GB)(n/2K)P + P~ 
(3) 

If the leaning column load is 0.0, Equation 3 reduces to 
Equation 2. Since neither of these equations can be solved 
explicitly, an iterative approach may be used or, in the case 
of the frame without leaning columns, the nomograph already 
discussed may be used. 

The Yura Approach6 

This is perhaps the easiest approach to develop since it relies 
on a straightforward interpretation of the physical problem. 
For the unbraced frame shown in Figure 6, equilibrium will 
be established for the structure in the undeflected configura
tion and again in the deflected configuration. The first-order, 
undeflected equilibrium configuration forces are shown in 
Figure 6a. If the frame is permitted to displace an amount A, 
equilibrium in this displaced configuration will be as shown 
in Figure 6b. In order for column EF to be in equilibrium, a 
lateral force, QA /L&s shown at F is required. This force must 
be equilibrated by an equal and opposite force shown at B. 
Thus, when column AB buckles, it buckles with a moment of 
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Fig. 5. Frame model for buckling with leaning column. 
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(PA + QA) at its base. It is observed that this is the same 
moment that would result if the individual column AB were 
to buckle under the axial load of (P + Q). The assumption that 
the buckling load is (P + Q) is only slightly conservative for 
the individual column AB, since the deflected shape due to 
an axial load and a lateral load differ only slightly. In order to 
insure sufficient lateral resistance to buckling for column EF, 
column AB must be designed to carry a fictitious load 
( P + 0 . ? 

In order to compare this approach to others presented in the 
literature, it is helpful to convert it to an effective length 
approach. If column AB is to be designed to carry the load P 
but have the capacity (P + 0 , a modified effective length 
factor will be required. K0 is defined as the effective length 
factor that would be determined from the nomograph of 
Figure 4, which does not account for the leaning column. In 
this case K0 = 2. Kn is defined as the effective length factor 
which will account for the leaning column. Thus, based on 
the buckling load being (P + 0 

(P + Q) = 
n2EI 

(4) 

If the column is to be designed to carry the actual applied load, 
P, with the leaning column accounted for through Kn, then 

P = 
n2EI 

(5) 

Solving Equations 4 and 5 for their corresponding K values 
and taking the ratio K2

n/K
2
0 yields 

P + Q 

which may be solved for Kn as 

Kn-KB<^ 

(6) 
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Fig. 6. Equilibrium forces for Yura derivation. 

If column AB from Figure 6a were designed to carry the load 
P using the effective length factor Kn, it would provide 
sufficient lateral restraint to permit column EF to be designed 
to carry the load Q using K = 1.0. 

For frames with more than one leaning column and more 
than one restraining column, P and Q will be replaced by 
EP and £ 0 It should also be noted that this approach main
tains the assumption that all restraining columns in a story 
buckle in a sidesway mode simultaneously. 

Lim & McNamara Approach7 

Another approach that will account for the leaning column 
was proposed by Lim and McNamara for columns of 
unbraced tube buildings. Their development is also based on 
the assumption that all columns in the restraining frame 
buckle in a sidesway mode simultaneously; however, they 
developed the sway buckling equation through the use of 
stability functions and an eigenvalue solution. 

The resulting effective length factor, accounting for the 
leaning column is given in their paper as 

K=KjlT^Fn/E (8) 

where Kn and K0 are as defined earlier, n = E<2 / ^P and E0 and 
En are the eigenvalue solutions for a frame without leaning 
columns, E0, and with leaning columns, En. Figure 7 shows the 
relationship between E0 / Fn and n as a function of end condi
tions for five different columns. Since normal column end 
conditions fall somewhere between fixed and pinned, it can 
be seen that taking E0 /En- 1.0 should provide a ^-factor on 
the conservative side by at most 2 percent. Substituting for n 
and using F0 / En = 1.0, the Lim & McNamara approach gives 
the same ^-factor as the modified Yura approach where 
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LeMessurier Approach8 

A more complex, yet still very practical approach was pre
sented by LeMessurier for frames with and without leaning 
columns. The basic equations were developed for a single 
cantilever column and then extended to the general frame. 
Where the two previous approaches determined a constant 
value for a story by which the nomograph value of K0 was 
modified, this approach determines a constant value for a 
story which then multiplies the individual column moment of 
inertia divided by the column load, / / / / } , for each column, i. 
Thus, the contribution of each column to the lateral resistance 
is accounted for individually. The effective length factor for 
each column that participates in resisting sidesway buckling 
is given by 

where 

h 2 ZP + Z0 + Z(QP) 

6(GA + Gg) + 36 

2(GA + GB) + GAGB + 3 

c - ^ - i 

(10) 

(11) 

(12) 

CL = 0 for leaning columns 
K0 = the column effective length based on the 

nomograph 
GA, GB - column end conditions as defined for use with 

the nomograph 
P{ = load on column, i 
It = moment of inertia for column, i 
IP = load on the restraining columns in a story 
IQ = lrfad on the leaning columns in a story 
I(CLP) = sum of (CLP) for each column in the story 
E(P/) = sum of (p/) for each column participating in 

lateral sway resistance 

Commentary Equations 

Although use of Equation 10 is not particularly complex, 
there have been some suggested simplifications which may 
be useful to the designer. Two modified LeMessurier equa
tions are presented in the second edition of the Commentary 
to the LRFD Specification. The first simplification is to 
assume that there is no reduction in column stiffness due to 
the presence of axial load. This is accomplished by taking 
CL = 0 for all columns. This leads to P = rc2 /K2

0. Substitution 
of these values into Equation 10 yields: 

^Ljjp+ZL 
Pi ZCrc2//^) 

(13) 

,sp+se 
Pi Z( / /A$ 

(14) 

For a structure in which only one column can be considered 
to provide lateral stability, the summation in the denominator 
is unnecessary and Equation 14 reduces to 

K.-K.W^ (14) 

which is the same equation that resulted from the modified 
Yura and Lim & McNamara approaches, Equations 7 and 9 
respectively. 

For the development of the second simplified equation, 
stiffness reduction due to axial load is included as though all 
columns were cantilevers with a buckled shape in the form of 
a half sine curve as shown in Figure 2b, thus CL = 0.216. Since 
the leaning columns have no lateral stability of their own, 
CL - 0.0 for all leaning columns. The equation given in this 
paper as Equation 10 is just one form of the effective length 
factor equation given by LeMessurier. Another form that uses 
the ratio of lateral displacement of a story to the lateral load 
as a measure of lateral stiffness is also available through the 
same derivation.8 This equation is given as 

Pi L3 IB 
(15) 

wher elB = the total lateral load supported by the level under 
consideration, Aoh is the corresponding lateral displacement 
of the level and lPTis the total load on the given story. In order 
to account for CL = 0 on the leaning columns, the load on these 
leaning columns must be subtracted from the total load on the 
story so that (LPT+ ICLPT) = (IPT+ 0216(IPT -IQ)). Making 
this substitution and factoring out IPT yields 

tf = 
Pi n 

3 **T 
IB 

1 + 
0216(IPT-IQ) 

IPT 
(16) 

The bracketed term in Equation 16 is simplified in the com
mentary equation as 

Pi L3 K^^^IPr^1 1 
IB 10.85+ 0.15X2/IPT 

(17) 

which reduces to 

This simplification is not really necessary since, in the origi
nal form, the equation is no more complex. A plot of the 
bracketed terms and their square roots is shown in Figure 8. 
It can easily be seen that the simplified terms vary from the 
original terms as derived from the LeMessurier equations, 
particularly when the leaning column loads are relatively 
small. 

EXAMPLES 

The following three examples will show how these 
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approaches may be used successfully to evaluate columns in 
unbraced frames, including leaning columns. 

Example 1 

The unbraced frame with leaning columns as shown in Figure 
9 is to be checked for strength and stability. Fy - 36 ksi. This 
is the same frame as used in Yura's presentation,6 modified 
with a load factor of 1.43 to permit a check by LRFD. The 
frame is assumed to be braced out of the plane. 

Yura Approach: 

Since sway will likely control the design of column AB, try 
a W 12x30. Due to symmetry, one-half of the load on the 
leaning columns will be assigned to a single column, AB. 

EP=57kips 
£<2 = 150 kips 
(£P + £ 0 = (57 + 150) = 207 kips. 

G 238/16 
top 586/(35(2)) 

= 1.78 

Note: to account for the pin-ended beam, the length is modi
fied by the factor 2. 

Gbot=\0 
K=2.l from the nomograph of Figure 4. 
K = 1.0 for out of plane buckling 
KL/rx = 2.1(16)(12) / 5.21 = 77.4 
KL/ry= 1.0(16)(12)/ 1.52= 126.3 

For strength in the y-axis, 7i^ — 1.42 < 1.5 thus, use LRFD 
E2-2. Fcr =15.54 ksi, Pu = 116 kips > 57 kips thus, the strength 
is adequate. 

For stability about the x-axis, Xc = 0.868 < 1.5 therefore 
from LRFD E2-2, Fcr = 26.26 ksi, Pu = 196.2 kips < 207 kips, 
thus the column will not be sufficient to provide stability. 

Lim & McNamara Approach 

Again, a W 12x30 will be considered for column AB. Using 
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the ratio ofZjg/EP = n = 150 / 57 = 2.63. As before, K0 = 2.1 
so Kn = 2.1V1 +2.63 = 4.0. As already shown, the column 
will be adequate for strength. Now, checking for stability, KL/ 
rx = 4.0(16)(12) / 5.21 = 147.4, Xc = 1.65 and Fcr = 11.55 ksi. 
Thus, Pu = 86.3 kips > 57 kips applied load which shows that 
the column is also adequate for stability. 

LeMessurier Approach 

Since the W 12x30 column was shown to be adequate, it will 
again be checked. Using the values obtained above, for col
umn AB, 

Kn = 2.l 

P = 
6(1.78+ 10)+ 36 

2(1.78+ 10) +(1.78)(10)+ 3 
= 2.40 

C,= 
2.40(2.1)2 

n2 -1=0.0724 

/, 2 207+ 0.0724(57) 
Kn51% 2.4tt ~ 1 5 - 2 3 

£ . = 3.9 

Thus, with Kn = 3.9 < 4.0 from above, the Wl2x30 will be 
sufficient to provide lateral restraint. 

The difference between the Yura and Lim & McNamara 
approaches has to do with the use of the effective load or the 
effective length. With the effective load approach, the column 
is designed with the shorter effective length given through use 
of K0 and the larger load given by (P + Q). With the effective 
length approach, the load is maintained as ij; however, the 
effective length given through Kn is larger. Figure 10 shows 
a plot of the elastic and inelastic strength equations from the 
LRFD Specification. In addition, the slenderness parameters 
for the two design approaches are shown. If column design 
were controlled by the upper, elastic, equation in the figure, 
LRFD E2-3, Yura's approach would have shown that the 
W 12x30 was adequate. 

Modified Nomograph Equation 

An iterative solution of Equation 3 with GA, G5, Q and P as 
given above yields Kn = 3.879. As can be seen, this value 
compares quite well with the values already obtained and the 
column will be adequate. 
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Fig. 8. Comparison of Equation 16 and Equation 17. Fig. 9. Frame for Example 1. 
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Commentary Equations 
For the first simplified equation, Equation 14, Kn = 4.0, as 
would be expected from the derivation shown above, since 
there is only one restraining column. 

The use of the second simplified equation, Equation 16, 
requires an analysis of the structure to determine the ratio of 
lateral displacement to load. Since the analysis carried out for 
the previous approaches assumed that the pin connection at 
the base was not a true pin but one which resulted in GB = 10, 
this must be included in the analysis. With this provision 
accounted for as shown in Figure 11, an arbitrary lateral load 
of 5 kips results in a deflection Aoh - 2.3715 in. Thus Equation 
16 results in: 

Ki=A 29,000(238) 207 2.3715 
(16(12))3 57 5 

1 + 
0.216(207-57) 

207 

= 4.379 

and using Equation 17, Kt = 4.313. Even with these somewhat 
larger K values, the W 12x30 will provide sufficient strength 
and stiffness. Thus, all five approaches yield similar results. 

EXAMPLE 2 

The frame shown in Figure 12 was used by Cheong-Siat-
Moy9 to show that Yura's approach would not work and by 
de Buen10 to present his new approach. The truss is assumed 
to provide sufficient rotational restraint at the top to permit 
that end of column AB to be treated as a fixed end while the 
bottom of the column is pinned, thus from the nomograph, 
K0 = 2.0. Recognizing that Yura's approach will yield a larger 
column than required and that LeMessurier's approach will 
give the correct results, as shown by the two previously cited 

McNamara 

1.0-

references, the Lim & McNamara approach will be compared 
to the LeMessurier approach, For this example, Fy - 36 ksi 
will be used. 

Lim & McNamara 

With one-half of the leaning column load resisted by the 
single restraining column, n = 990 / 330 = 3.0. Thus, 

Kn = 2.0Vl+3.0 = 2.0V^0 = 4.0 

Using Kn = 4.0, KL/rx = 4.0(20)(12)/5.58 = 172.0, Xc = 
1.93 > 1.5, thus from LRFD E2-3, Fcr = 8.48 ksi, thus Pu = 287 
kips < 330 kips. 

LeMessurier 

For a fixed-pinned column, P = 3.0 and CL =0.216 so that 
Equation 10 yields: 

Kl = -
^ 4(330) +0.216(330) _ D 8 7 

330 37; 

Kn = 3.72 as shown in References 9 and 10. 

Using Kn = 3.72, KLIrx= 3.72(20)(12) / 5.58 = 160.0, Xc = 
1.79 > 1.5, thus from LRFD E2-3, Fcr = 9.85 ksi, thus Pu = 334 
kips > 330 kips. 

Although the Lim & McNamara approach does not show 
the W12xl36 to be adequate, it requires a column only one 
size larger than the other method. 

35 ' 

5 k 

16' 

GBLC 

Fig, 11. Model for lateral displacement computation. 

330k 330k 330k 330k 330k 330k 330k 330k 

f T T T ff ff 

20' 

B 

W12x136 

Fig. 10. LRFD column strength. Fig. 12. Frame for Example 2. 
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Modified Nomograph Equation 

Using G values consistent with a fixed end and a pinned end 
along with QIP = 3.0, an iterative solution of Equation 3 
results in Kn = 3.718. Again, the result is similar to the 
previously obtained values, particularly that from the LeMes-
surier approach. 

Commentary Equations 

As was shown for Example 1, where only one column pro
vides lateral support the results from Lim & McNamara and 
the simplified equation, Equation 14, are identical, Kn = 4.0. 
The LeMessurier analysis, Equation 10, assumed that the 
columns were fixed at the upper end and had true pins at the 
lower end. This results in CL =0.216 which is the assumption 
for the second simplified equation, Equation 16. With the 
lateral displacement calculated for a cantilever beam with a 
5-kip load, Aoh = 0.6407 in. This yields Kn = 3.724 from 
Equation 16 and Kn = 3.698 from Equation 17. The results 
from Equation 16 are identical to the previously calculated 
value using the complete LeMessurier approach as would be 
expected. 

EXAMPLE 3 

An interesting problem was originally proposed by Zweig11 

and later discussed by Yura. The structure, a portion of which 
is shown in Figure 13, is a large, unbraced one-story industrial 
building. Deep roof trusses with infinitely large stiffness 
compared to the columns, frame in each direction. In order to 
equalize sway restraint in each direction, alternate columns 
have their'strong axes turned 90°. The nomograph approach 
with Gtop = 0 and Gbot = 10 yields K0 = 1.65. Without consid
ering leaning columns, KL = 1.65(20) = 33 ft and a W12x65 
will be required to carry Pu = 234 kips, using steel with Fy = 
36 ksi. Each column in the building would be a W12x65. If 
the strong-axis column is used to brace the weak-axis column, 
there should be some savings available. Each of the 
approaches previously discussed will be used to check a 
Wl2x53 column to determine whether this smaller column 
would be adequate. Throughout this example, the columns 
will be taken as pairs, one strong-axis and one weak-axis 
column. 

Yura Approach 

Using K0 = 1.65, the capacity of the W12x53 for sway 
buckling about the x-axis, column 1, and the y-axis, column 
2, will be added. The combined capacity must be equal to or 
greater than the total load 2(234) = 468 kips. For KL/rx = 
1.65(20)(12) / 5.23 = 75.7, Xc = 0.849 < 1.5, thus Fcr = 26.6 
ksi and Pu = 353 kips. For KL/ry= 1.65(20)(12)/2.48 = 
159.7, Xc = 1.79 > 1.5, thus Fcr = 9.40 ksi and Pu = 125 kips. 
The combined capacity is 353 + 125 = 478 kips which is 
greater than the 468 kips combined load. Thus, the W12x53 
will be acceptable for the columns. 

Lim & McNamara Approach 

If column 1 is taken as the restraining column and column 2 
as the leaning column, n = 234/234 = 1.0. Thus, for col
umn 2, K = 1.0 and KL = 1.0(20) = 20 ft. For the W12x53 
buckling about the y-axis, Pu = 292 kips > 234 kips. For 
column l,Ktt= 1.65VT+T= 2.33 and KL = 2.33(20) = 46.6 
ft. For buckling about the x-axis, Pu - 261 kips > 234 kips. 
Thus, the W 12x5 3 is adequate for both columns in each 
direction. 

LeMessurier Approach 

With Gtop = 0 and Gbot = 10 for both columns 1 and 2, p = 4.17 
and K0 = 1.65. CL = [4 .17(1 .65) 2 /TC 2 - 1] = 0.15. For the 

W12X53, Ix = 425 in.4 and I2 = 95.8 in.4 Thus, from Equa
tion 10 

% = ^7* 
468 + 2(0.15)(234) 

234 4.17(425 + 95.8) 
= 0.01045/, 

which yields Kx = 2.11 and K2 = 1.0. Thus, for column 2, KL I 
ry 1.0(20)(12) / 2.48 = 96.8, Xc = 1.09 < 1.5, thus Fcr= 21.9 ksi 
and Pu = 292 kips > 234 kips. For column 1, KLIrx = 
2.11(20)(12) / 5.23 = 96.8, Xc = 1.09 which is the same as for 
column 2 so Pu = 292 kips. This shows that the Wl2x53 
column is adequate for both carrying the load and providing 
lateral restraint. 

Modified Nomograph Equation 

In this case, with end stiffness and load ratio as for the other 
approaches, Equation 3 yields Kn = 2.267. It is clear that this 
approach does not account for the difference in columns as 
found with the LeMessurier approach; however, it is satisfac
tory when compared to the Lim & McNamara approach. 

Commentary Equations 

For the first simplified Equation, Equation 14, K0 = 1.65 for 
both columns. Thus, 

Kx = 2.108 and K2= 1.001 

As was the case in Example 1, the application of second 

234 k 234 k 234 k 234 k 

I H I H 
Fig. 13. Frame for Example 3. 
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simplified equation requires the analysis of the structure with 
a connection stiffness at the base that will result in GB = 10. 
With a 5-kip lateral load, the resulting lateral deflection, Aoh = 
1.1986 in. Thus, from Equation 16, 

Kx = 2.162 and K2= 1.026 

while Equation 17 yields 

^ = 2.136 and K2= 1.014 

A check of the W12x53 column with these larger effective 
length factors shows that the column still provides the re
quired strength and stiffness 

CONCLUSIONS 

It should be clear that the leaning column is a consideration 
that results from the structural framing, not from the use of 
ASD or LRFD. It is also clear, from Example 3, that account
ing for the total lateral resistance in a frame may lead to 
reduced column sizes with their accompanying savings. 

Although the Yura approach does, for some conditions, 
give what appears to be overly conservative results, it can 
readily be modified to yield the Lim & McNamara approach, 
Equations 7 and 9, which provides sufficiently accurate re
sults for design. This was shown, particularly in Example 2, 
even for those cases reported in the literature for which the 
Yura approach is overly conservative. 

The equations proposed by LeMessurier are generally rec
ognized as the most accurate of those presented. In addition, 
the LeMessurier equations are not difficult to use nor do they 
require the graphic analysis for CL or (5 that was presented in 
the original work. The determination of Ka may be accom
plished through the nomograph, as is normally done, or by an 
iterative solution of the controlling equation, Equation 2. 
Thus, it is not unrealistic to use the LeMessurier equations for 
effective length factors in normal engineering practice. 

It was also shown that through an iterative solution of 
Equation 3, a more accurate value of Kn may be obtained than 
that from Equation 2. In this case, the leaning column loads 
are accounted for; however, the other limitations of the no
mograph solution are still present. 

It is suggested that different stages of design might benefit 
from the use of different levels of accuracy in determination 
of effective length. Although the LeMessurier approach is not 
overly complicated to use, designers wishing to use an even 

simpler approach may find that the Lim & McNamara equa
tion for Kn provides a sufficiently accurate way to account for 
leaning columns, particularly in preliminary stages of design. 
Lim & McNamara could be quite appropriate for preliminary 
design while LeMessurier would be more appropriate for 
final design. Although simplified equations are presented in 
the Commentary to the second edition of the LRFD Specifi
cation, there is really no need to use them. Once the effective 
length factors have been determined, design by either ASD or 
LRFD may proceed. 
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