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INTRODUCTION 

V^urrent specifications '̂̂  for the design of steel members and 
frames in the U.S. make extensive use of the effective length 
factor, K. The effective length factor is employed in the 
member interaction equations to facilitate the design of 
framed members by transforming an end-restrained compres
sive member to an equivalent pinned-ended member. In frame 
design, the effective length factor can also be regarded as a 
parameter which emanates the stability interaction effect 
among various members of the frame. At present, the effective 
length factor K for a framed member under compression is 
determined from a pair of alignment charts. Although the 
charts provide an easy and a convenient means for designers 
to evaluate the K factor, the models used in the development 
of these charts embody a number of assumptions which are 
not readily realized in actual situations. As a result, the K 
factor so obtained is often inaccurate. For instance, one as
sumption used is that all columns of a story reach a state of 
instability simultaneously. Mathematically, this requires that 
the quantity L^P I El (where L is the length, P is the axial 
force and EI is the flexural rigidity of the member) be equal 
for all columns of the story. If the alignment charts are 
employed to evaluate K factors for columns wherein the term 

varies across the story, significant errors may result. 
Commonly encountered situations in which the quantity 
LVP / EI varies include frames with unequal distribution of 
column axial loads in a story, frames for which the moment 
of inertia of the columns vary across a story, and frames with 
leaner columns. 

Over the years, various papers '̂̂ ^ which address the inade
quacies of the alignment charts for determining the effective 
length factors for framed columns have been published. 
Modifications to rectify certain deficiencies in the chart solu
tions were also reported. Nevertheless, all these approaches 
entail a procedure which continue to make use of the align
ment charts for solutions. In some cases, special charts are 
also required to obtain solutions. In this paper, a simple and 
straightforward approach for determining the effective length 
factors for framed compression members which does not rely 
on the use of the alignment charts nor the use of any special 
charts is presented. The validity of the proposed approach will 
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be demonstrated for frames with different geometries and 
loading conditions. 

THE H: FACTOR 

There are various approaches by which the effective length 
factor K can be determined. An eigenvalue analysis is perhaps 
the most accurate method to evaluate this K factor. For a frame 
subjected to a series of compressive forces piF, P2P, ..., ^,JP 
acting on columns 1 to n, respectively, a stiffness equation of 
the form 

[5; + 5 j fw ; = o (1) 

can be written, where 5/ is the first-order structure stiffness 
matrix, SQ is the geometrical structure stiffness matrix and u 
is the structure displacement vector. In a linear eigenvalue 
analysis, SQ can be expressed as -XS' where X is the eigen
value of the problem linear in P. Thus, Eq. 1 can be written 
in the form 

from which X can be solved from the equation 

detl5,->i5'l = 0 

(2) 

(3) 

Once X is solved, the axial force in each individual column, P-, 
can be calculated and the effective length factor for that 
column can be evaluated from the equation 

-̂Vf (4) 

where K^ is the effective length factor of column /; P-, //, L, 
are the axial (compression) force at buckling (i.e., the critical 
load), the moment of inertia and length of column /, respec
tively, and E is the modulus of elasticity. Equation 4 is 
applicable for isolated columns as well as for framed columns 
in multistory multibay frames. If P- equals zero, K^ is indefi
nite. This is because the effective length factor is defined only 
for members with finite compressive forces. Members which 
are subjected to negligible axial forces should be designed as 
beams which do not require the use of the K factors. 

In evaluating the effective length factors for framed col
umns, it is important for a designer to account for the inter
action effect that exists among the various members of the 
frame. It is a well-known fact that a "strong" column braces 
a "weak" column at buckling. The resuk is that the K factor 
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of the stronger column increases and the K factor of the 
weaker column decreases as the difference in stiffness of the 
two columns increases. This phenomenon is illustrated nu
merically in Fig. 1 and Tables 1, 2 and 3. 

Each of the three frames (Frames A, B, and C) in Fig. 1 
consists of a "strong" column and a "weak" column. For 
Frame A, the "strong" column is the one with the higher 
moment of inertia (i.e., oc/ with a > 1). The theoretical K 
factors of the two columns for different values of a evaluated 
using an eigenvalue analysis are shown in Table 1. When a = 
1, the two columns are identical and so their K factors are the 
same and are equal to 2. As a increases, the right column 
becomes stronger compared to the left column. The result is 
that the K factor of the stronger column increases while the 
K factor of the weaker column decreases. It is worthwhile to 
note that the effective length factor for the weaker column can 
have value less than unity even though the frame is buckled 
in a sway mode. In the context of design, it is possible to 
design the weaker column using K<\ provided that a larger 
value of Â  is used for the design of the stronger column. 

For Frame B, the "weak" column is the one which is 
subjected to a higher axial compressive load (i.e., (JP with 
p > 1). When p = 1, both columns are subjected to the same 
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Table 1. 
Theoretical K Factors for Columns of Frame A 

^ — 'right column ' 'left column 

1 
2 
4 
6 
8 

10 

*^left column 

2.00 
1.64 
1.27 
1.08 
0.96 
0.88 

'^rightcolumn 

2.00 
2.31 
2.54 
2.65 
2.72 
2.78 

Table 2. 
Theoretical K Factors for Columns of Frame B 

P = "left column ' bright column 

1 
2 
4 
6 
8 

10 

f^leftcolumn 

2.00 
1.73 
1.59 
1.53 
1.51 
1.49 

'^rightcolumn 

2.00 
2.45 
3.17 
3.76 
4.26 
4.72 

Table 3. 
Theoretical K Factors for Columns of Frame C 

Y ~ '-left column ' '-right column 

1.0 
1.5 
2.0 
2.5 

*^left column 

2.00 
1.51 
1.16 
0.93 

*^rightcolumn 

2.00 
2.27 
2.31 
2.32 

Fig. 1. Demonstration frames. 

loadings and so ^ = 2 for both columns. However, as P 
increases, the left column is carrying a higher axial load and 
becomes the "weak" column. When buckling occurs, the right 
column, which is the "strong" column, will brace the left 
column. The result is an increase in K for the right column 
and a decrease in K for the left column. Table 2 shows the 
variation of ^ for the two columns as P increases. 

For Frame C, the two columns have different lengths. The 
"strong" column is the shorter column. As can be seen in Table 
3, the phenomenon that the K factor of the stronger column 
increases and the K factor of the weaker column decreases as 
y increases is observed. 

Another commonly encountered situation which involves 
the interaction between a "strong" column and "weak" col
umn is a leaner-column frame shown in Fig. 2. The leaner 
column, which is the "weak" column, provides no lateral 
resistance to the frame at buckling. Consequently, only the 
right column will be effective in resisting the P—A overturning 
moment which develops during buckling. When the load in 
the "weak" column increases, the K factor of the "strong" 
column increases as the P-A moment intensifies. This phe-
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nomenon is depicted in Table 4 in which theoretical values 
for the effective length factor of the "strong" column are 
shown as the applied load on the "weak" column increases. 

The theoretical K factors for the leaner column are not 
shown in the table but they can be determined as follows: 
Recognizing that the leaner column is being "braced" by the 
rigid column, one can develop a simple model for the leaner 
column. The model is shown in Fig. 3. The portion of the 
frame which provides lateral stability to the structure is rep
resented by a translational spring with a spring stiffness of S. 
An eigenvalue analysis of this system yields the solutions. 

{^P)cr = smaller of 
K'EI 

(5) 

SL 

Substituting Eq. 5 for /^' into Eq. 4 gives 

1 

K= larger of I 

V n^EI (6) 

For frames of usual proportions, the quantity n^EI I SL^ nor
mally does not exceed unity and so ^ = 1 often governs. In 
the context of design, a designer can use ^ = 1 for the leaner 
columns provided that accurate values of K are used for the 
rigid columns. In evaluating K factors for the rigid columns, 
the P-A effect generated in the leaner column must be con
sidered to reflect the destabilizing influence of the leaner 
column has on the overall stability of the frame. 

BQ" 
\IIIIIIIIIIIU 

=00 

^A A-

Fig. 2. Leaner-column frame. 
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Table 4. 
Theoretical K Factors for the Rigid Column of the 

Leaner Column Frame 

P - "left column ' "right column 

0 
2 
4 
6 
8 

10 

f^rightcolumn 

2.000 
3.249 
4.139 
4.871 
5.502 
6.077 

Fig. 3. Model for the leaner column. 

For all the cases presented in the preceding discussions, a 
direct use of the alignment chart gives Â  = 2 for all the rigid 
columns. Significant errors are observed for a number of 
cases because the alignment charts were not developed to 
account for the interaction effect that occurs among columns 
having different values of L^P I EL In what follows, a simple 
yet accurate procedure to determine the elastic K factors for 
framed columns will be developed. The procedure makes use 
of the correlation between stability and magnification effects 
on frames. The validity of the proposed procedure will be 
demonstrated by numerical examples. 

DERIVATION OF THE PROPOSED K FACTOR 

When members of a frame are subjected to compressive 
forces, two types of instability effects will arise. Member 
instability (or P-h) effect arises as the axial force in the 
member acts through the lateral displacement of the member 
relative to its chord. Frame instability (or P-A) effect arises 
as the axial force acts through the relative end displacements 
of the member. Both types of instabilities affect the effective 
length factor of the member. Member instability reduces the 
flexural rigidity of the member whereas frame instability 
increases the drift and hence the overturning moment of the 
frame. This increase in moment is often accounted for in 
design by a moment magnification factor. It should be noted 
that a correlation exists between this moment magnification 
effect and the K factor. This correlation will be explored in 
further detail in a later section of this paper. In the meantime, 
a simple formula for calculating K factors for framed columns 
will be derived. The proposed K factor formula accounts for 
both the member and frame instability effects explicitly and 
it gives accurate results for frames which exhibit the strong 
column-weak column phenomenon. 

For the sake of clarity, member instability and frame insta
bility effects will be treated separately in the formulation. 

Member Instability Effect 

In a theoretical context member instability (F-A) effect is 
accounted for by the use of stability functions.^^ For the 
member shown in Fig. 4, the slope-deflection equations relat-
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ing the member-end moments (M ,̂ Mg) and member-end 
rotations (0^, 85) are given by 

EI 

EI 

(7a) 

(7b) 

where EI is the flexural rigidity and L is the length of the 
member, s^ and s^j are stabihty functions which are expressed 
in terms of the axial force P in the member. Expressions for 
these functions are given in Ref. 12 and will not be shown 
here. Simplified forms for these functions will be used in this 
paper. 

If the axial force P in the member is negligible, Eqs. 7a and 
7b reduce to 

Ff 

Ff 

(8a) 

(8b) 

For the case in which the member bends in reverse curva
ture so that 6^ = 9g = G, Eqs. 7a and 7b become 

FI 
(9) 

and Eqs. 8a and 8b become 

M, = Ms = ^ e (10) 

Using Taylor series expansion for (s„ + 5,y), we obtain 

. PL' , 
^ii + ^ij-^ lOEI '" 

Substituting Eq. 11 into Eq. 9, we have 

M^=Ms^ 
6EI 
L 

1 
PL' 
60EI e 

(11) 

(12) 

The approximation sign is used in the above equation because 
only two terms are retained in the Taylor series expansion. 

Upon comparison of Eq. 12 with Eq. 10, it can be con
cluded that when a member bends in reverse curvature, the 
member instability effect reduces the flexural rigidity of the 
member by an amount of 1 - PL' I 60EL 

Similarly, for the case in which the member bends in single 
curvature so that 0^ = -0^ = 0, Eqs. 7a and 7b become 

EI 

and Eqs. 8a and 8b become 

(13) 

(14) 

Again, using Taylor series expansion for i„ - i,, we obtain 

^ii ^ij ^ 6EI (15) 

Retaining the first two terms in the series and substituting the 
result into Eq. 13, we have 

1 
PL' 
12EI 

0 (16) 

Upon comparison of Eq. 16 with Eq. 14, it can be seen that 
the member instability effect for a member bends in single 
curvature reduces the flexural rigidity of the member by an 
amount of (1-PL^/ 12EI). 

Finally, for the case in which one of the member-end 
moment (say, M )̂ is zero, Eq. 7b becomes 

M« = EI 
L 

f 
Sii -

\ 
'̂ ;; 
uj 

e« 

and Eq. 8b becomes 

^4 3£/ „ 

(17) 

(18) 

A Taylor series expansion for the terms in parenthesis in 
Eq. 17 gives 

'' s, 5EI " 

which, upon substitution into Eq. 17 gives 

M«-
3EI 

1 -
PL' 
15EI 0« 

(19) 

(20) 

A comparison between Eq. 20 and Eq. 18 reveals that the 
member instability effect reduces the flexural rigidity of this 
member by a factor of 1 - PL' 115EL 

In the foregoing discussions, it was seen that when M^ / Mg 
= 1, member instability effect would reduce the flexural stiff
ness of the member by a factor of 1 - PL' I 60EI. When 
M^/MB=1, this stiffness reduction factor was I - PL' / 
15EI, and when M^/MB = 0 the factor was I-PL'/ 15EI. 
Assuming that the stiffness reduction factor varies paraboli-
cally from a moment ratio of -1 to 1, a general stiffness 
reduction factor suitable for any moment ratio which can be 

Fig. 4. A beam-column element. 

FOURTH QUARTER /1992 153 



used to account for the member instability effect can be 
written as 

/ • = ! - -

where 

ri=-

5^L 

{3+4.Sm + 4.2m")EI 

(21) 

(22) 

In the above equations, /' is the member instability (P-5) 
stiffness reduction factor, r| is the member stiffness index, P 
is the compressive axial force in the member, EI is the flexural 
rigidity of the member, and m is the ratio of the smaller to 
larger end moments of the member; m is taken as positive if 
the member bends in reverse curvature and it is taken as 
negative if the member bends in single curvature. Theoreti
cally, the end moments used for calculating this moment ratio 
should be the moments developed in the member when the 
frame buckles. Since exact values for these moments are 
difficult to obtain, a simplified procedure will be used to 
obtain approximate values for these moments. In this proce
dure, a small disturbing force equal to a fraction of the story 
gravity loads is applied laterally to the frame. The moments 
developed in the member due to this disturbing force are used 
to calculate the moment ratio in Eq. 22. This procedure is 
demonstrated in an illustrative example in a later section of 
this paper. 

Equation 21 indicates that the effect of member instability 
(i.e., the P-d effect) can be expressed as a function of the 
moment ratio of the member. The use of moment ratio to 
account for the P-5 effect is not uncommon in design prac
tice. For instance, the P-8 moment magnification factor B^ 
used in the current AISC-LRFD Specification' is also ex
pressed as a function of moment ratio of the member under 
consideration. The inclusion of member instability effect in 
the formulation of SLK factor equation is indispensable if the 
interaction effect between member and frame instability is to 
be accounted for. The use of moment ratio implicitly takes 
account of the interaction effect of the various members of 
the frame. If the alignment charts were used, this interaction 
effect was accounted for by the G factors. A drawback for the 
G factors is that they only account for the interaction effect 
of members in the immediate neighborhood of the member 
under investigation. The proposed approach does not suffer 
from this shortcoming because the member-end moments to 
be used in Eq. 22 are determined from a global frame analysis. 

Frame Instability Effect 

In the context of design, frame instability is conveniently 
accounted for by the use of the story stiffness concept. If we 
denote Si^ as the first-order member lateral stiffness and S as 
the story stiffness accounting for the P-A effect. The two 
stiffness are related by the equation 

S = Ir^in, - I (23) 

where r is the member instability reduction factor defined in 
Eq. 21, Z(F / L) is the sum of the axial load to length ratio for 
all members of the story. 

Since the first-order member lateral stiffness s^^ is propor
tional to the member stiffness index r| defined in Eq. 22, Eq. 
23 can be written in the form 

5 = Zr 

or 

Ell 

- E 

V J 

L 
V J 

V / 

5/ 

(24) 

(25) 

where Si is the first-order story stiffness. 
Using Eq. 21 and substituting Hi I A, (where Hi is story 

lateral loads producing A/, and A, is the first-order inter-story 
deflection) for Sj into Eq. 25, we obtain 

5 = 1 
E(P / L) 

5X11 Hi 
5/ (26) 

The terms in brackets is the stiffness reduction factor for the 
story. Inverse of this factor is the moment magnification 
factor, Af 

A, = -
1 

1 -
S(P / L) 

5Zri 
- E fP 

L 
V J 

^ A , ^ 

Hi 

(27) 

The similarity in form between Eq. 27 and Eq. HI-5 of the 
AISC-LRFD Specification' is apparent. In fact, if the member 
instability effect is ignored, the term E(P / L) I 51X[ vanishes 
and Eq. 27 will be reduced to Eq. HI-5. 

Proposed K factor Formula 

Equation 27 is applicable to all members of the story. Suppose 
we are interested in calculating the K factor for the /-th 
member, we can equate Eq. 27 with the member moment 
magnification factor̂ ^ 

{A,\--
1 

(28) 
1 

{Pek\ 

whev^(P,,\ = K'Ei,/{K,L,)\ 
Equating Eqs. 27 and 28, and solving for K^, we obtain 

K^ = V ^K'EI.'^ 4-+A 
5Zr| Hi J 

(29) 

Equation 29 is the proposed K factor formula. In the 
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equation, EI^ and L^ are the flexural rigidity and length of the 
member, respectively. P^ is the axial force in the member, 
Z(F / L) is the sum of the axial force to length ratio of all 
members in a story, IH is the story lateral loads producing 
A/, A/ is the first-order inter-story deflection, and r| is the 
member stiffness index defined in Eq. 22. It is important to 
note that the term IB used in Eq. 29 is not the actual applied 
lateral load. Rather, it is a small disturbing force (taken as a 
fraction of the story gravity loads) to be applied to each story 
of the frame. This disturbing force is applied in a direction 
such that the displaced configuration of the frame will resem
ble its buckled shape. The member-end moments calculated 
using a first-order analysis under the action of this disturbing 
force will be used in Eq. 22 to evaluate the member stiffness 
index. 

The derivation of Eq. 29 takes into account both the P~b 
and JP-A effects that are present in the frame at buckling. As 
a result, the equation is expected to give accurate results for 
design. In applying Eq. 29, the designer must perform a 
first-order frame analysis under a small disturbing force IB 
to determine A; and the member-end moments. The member 
stiffness index r| (Eq. 22) is then calculated for each member. 
Once r\ and A/ are calculated, Eq. 29 can be used to calculate 
K. The procedure will be demonstrated in an illustrative 
example in a following section. 

Before proceeding any further, it is of interest to compare 
Eq. 29 with Eq. 4. In Eq. 4, the term P- is the axial force in 
the column at buckling (i.e., the critical load). Both the F-8 
and P-A effects are implicit in P^. In Eq. 29, Pi is the axial 
force in the column without accounting for the two instability 
effects. These effects are accounted for explicitly by the terms 
in brackets. A relationship between P- and P^ can be obtained 
by equating the two equations giving 

P: -i J 

(30) 

An advantage of using Eq. 29 over Eq. 4 is that all terms 
in Eq. 29 can be obtained readily by inspection or from a 
simple first-order analysis. As will be demonstrated later, 
despite the simplicity in form, Eq. 29 gives sufficiently accu
rate results for design purposes. 

FURTHER STUDIES OF THE PROPOSED 
K FACTOR EQUATION 

As mentioned earlier in this paper, a correlation exists be
tween the K factor and the moment magnification effect. This 
correlation is rather transparent in Eq. 29. Recalling that the 
terms in brackets represent the instability effects associated 
with frame buckling, it is not difficult to infer that as these 
effects intensify, the K factor increases for the member. From 
Eq. 28, it can be seen readily that Ap increases with K. Thus, 
an accurate assessment for K is rather important in a valid 
limit state design of frames subjected to heavy gravity loads. 

In what follows, it will be shown that the proposed K factor 
equation can be reduced to other K factor formulas proposed 
in the past by other researchers. 

Consider the case in which the P-5 effect is negligible, 
we can ignore the member stiffness reduction effect and 
disregard the term i:(P/L)/5Sr| in Eq. 29. Setting 
I(P / L) / SIri = 0 and substituting Eq. HI-5 of the AISC-
LRFD Specification,^ i.e.. 

A^ = -

1 -

\ ^^ I^A; _ ^ 1 
ZPA/ ^^ YHL Ap 

(31) 

into Eq. 29, we obtain 

-̂Vi \--T-
1_ 

A, 
(32) 

Equation 32 was proposed by Cheong-Siat-Moy.^^ In Ref. 13, 
Ap is defined as the ratio of the second-order deflection to the 
first-order deflection of a given story. Thus, the use of Eq. 32 
necessitates a second-order frame analysis. On the contrary, 
the use of the proposed K factor equation (Eq. 29) only 
requires the designer to perform a first-order analysis. 

Now, suppose we use Eq. HI-6 of the AISC-LRFD Speci
fication^ as the P-A moment magnification factor, i.e.. 

Ap = -
1 

1 - -
2Ŝ  

(33) 

Substituting the above equation for A^ into Eq. 32, we obtain 

'ZP^ 
(34) 

Equation 34 was proposed by LeMessurier̂ "^ for the evalu
ation of effective length factors for framed columns. A more 
elaborate formula for K was also proposed by LeMessurier."^ 
However, the application of the LeMessurier's formulas re
quires the use of the aUgnment chart for solutions. The use of 
Eq. 29, on the other hand, is completely independent of the 
alignment chart solutions. 

AN ILLUSTRATIVE EXAMPLE 

To demonstrate the procedure for applying Eq. 29 to deter
mine K factors for columns in sway frames, the frame shown 
in Fig. 5a will be used. To initiate sway in a buckling analysis, 
a small lateral load (a disturbing force) IB equals to 0.1 
percent of the story gravity loads (i.e., IB = 0.1 percent x 
5P = 0.005P) is applied to the frame. This is shown in Fig. 
5b. The value of 0.1 percent was selected purely for concep
tual purpose. In practice, any value can be chosen since the 
quantities A/ / IB and M^ I Mg required for applying Eq. 29 
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Table 5 

Column 

left 
right 

/ 

288 
480 

L 

240 
480 

P 

2P 
2P 

MA 

0.419P 
0.245P 

MB 

0.530P 
0.256P 

m= MA/MB 

0.791 
0.957 

^ 

5.89 
1.49 

P/L 

0.00833P 
0.00625P 

K 

1.35 
0.71 

are not affected by the value of lateral load used. This is 
because in a first-order analysis, all quantities vary linearly 
with the applied load and so the ratio of the quantities will 
remain unchanged. 

It is important to note that the term IB represents a small 
disturbing force. It is not the actual lateral load that the frame 
may be subjected to. In fact, for frames which are subjected 
to a system of lateral loads, these lateral loads should be 
removed in the analysis for the effective length factor K. The 
reason for this is that in a buckling analysis, only the effect of 
axial forces but not the lateral forces should be considered. 
The purpose of applying a small disturbing force to the frame 
is merely to establish an adjacent equilibrium configuration 
for the frame. This adjacent equilibrium configuration will be 
the preferred configuration for the frame when the original 
configuration ceases to be stable once the axial loads in the 
columns reach their critical values. In theory, this adjacent 
equilibrium configuration is the buckled shape of the frame. 
The exact buckled configuration of the frame can be obtained 
from an eigenvalue analysis. In practice, this buckled con-

BucKLED CONFIGURATION 

E=3a000 Ksi 
4 

/ZH=0.005P-

SMALL DISTURBING 
FORCE 

(b) 

•DISPLACED CONFIGURATION 

-BUCKLED CONFIGURATION 

Fig. 5. An unequal leg frame. 

figuration can be approximated by subjecting the frame to a 
small disturbing force as shown in Fig. 5b. The direction of 
this disturbing force is applied from left to right for this 
problem because the structural geometry and loading are such 
that the frame will most likely buckle in that direction. For 
frames which exhibit no preferred direction for buckling (e.g., 
frames which are symmetric in terms of both structural ge
ometry and loading), the direction of this disturbing force is 
unimportant. 

Applying a disturbing force IB of 0.005P to the frame, a 
first-order analysis yields A; = 7.13 x 10~^P. So Aj/IH = 
0.143. The remaining calculations are depicted in tabulated 
form (see Table 5). (Units are in kips and inches). 

For comparison, the theoretical K values obtained from an 
eigenvalue analysis'^ are 1.347 and 0.710 for the left and right 
columns, respectively. Thus, excellent correlation is ob
served. 

If one uses the alignment chart, the K factor are obtained 
as 1.09 for the left column and 1.07 for the right column. The 
errors are rather significant. Using Eq. 34, the K factors are 
calculated to be 1.44 and 0.76 for the left and right columns, 
respectively. 

NUMERICAL EXAMPLES 

A valid K factor formula suitable for design application must 
satisfy the following criteria: 

1. Simple to use 
2. Transparent in form 
3. Versatile in application 
4. Accurate for design purpose 

The proposed formula is simple to apply since it only 
requires the user to perform a first-order analysis; the use of 
special charts are not required. It is transparent in form 
because the two instability effects (P-d and P-A) that have a 
predominant influence on K are explicitly accounted for in 
the equation. In what follows, it will be demonstrated that the 
proposed equation is also applicable to a variety of conditions 
and it gives sufficiently accurate results for design applica
tion. 

Example 1 

The objective of this example is to demonstrate that the 
proposed K factor equation is applicable for frames with 
unequal distribution of column stiffness and gravity loads. 
The demonstration frame is shown in Fig. 6. The frame is a 
simple portal frame and consists of one beam and two col-
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Table 6 

Load Case 

A 

B 

C 

Column 

left 

left 
right 

right 

KFactors 

Eq. 29 

1.42 

2.01 
3.48 

2.46 

Theoretical 

1.46 

1.99 
3.44 

2.38 

Alignment 
Chart 

2.3 

2.3 
2.9 

2.9 

Eq.34 

1.35 

1.91 
3.32 

2.34 

Table 7 

Load Case 

A 
B 

Column 

right 
right 

KFactors 

Eq.29 

3.70 
2.62 

Theoretical 

3.69 
2.64 

Alignment 
Chart 

2.60 
2.60 

Eq.34 

3.68 
2.60 

umns. The flexural rigidity of the right column is three times 
that of the beam and the left column. Three load cases are 
investigated. In Load Case A, a gravity load of 2P is applied 
to the left column only. In Load Case B, the gravity load of 
2P is evenly distributed on the columns. In Load Case C, all 
gravity loads are applied on the right column. As in the 
illustration example shown earlier, a small disturbing force of 

0.1 percent times the total gravity loads acting on the frame 
(i.e., 0.1 percent x2P = 0.002/") was applied laterally to the 
frame to establish an adjacent equilibrium configuration for 
the frame from which the moment ratios were calculated 
using a first order analysis. The K factors for the loaded 
columns evaluated using Eq. 29 are compared with those 
evaluated using an eigenvalue analysis as well as those evalu-

E=29.000 KSi 

1=100 IN^ 

L=12 FT. 
31 

A 

E=29.000 KSI 

1=100 IN^ 

L=12 FT. 

TA- r ^ 

LOAD CASE 

A 

B 

C 

P i P2 

2P 0 

P P 

0 2P 

Fig. 6. Frame for Example 1. 

LOAD CASE 

A 

B 

Pi h 

P P 

0 2P 

Fig. 7. Frame for Example 2. 
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Column 

left 
middle 
right 

/ 

920 
626 
472 

Table 8 

First-story 

138.96 
138.96 
138.96 

352.5 
604.5 
252.0 

m 

0.735 
0.935 
0.878 

87.5 
75.5 
53.3 

P/L 

2.537 
4.350 
1.813 

K 

1.39 
0.87 
1.18 

Second-Story 

Column / m P/L K 

left 
middle 
right 

470 
470 
200 

120 
120 
120 

105.0 
183.4 

78.4 

0.382 
0.947 
0.800 

42.9 
89.2 
32.0 

0.875 
1.528 
0.653 

1.58 
1.21 
1.20 

Table 9 

Story 

first 

second 

Column 

left 
middle 
right 

left 
middle 
right 

KFactors 

Eq.29 

1.39 
0.87 
1.18 

1.58 
1.21 
1.20 

Theoretical 

1.36 
0.86 
1.16 

1.73 
1.31 
1.30 

Alignment 
Chart 

1.19 
1.06 
1.07 

1.25 
1.11 
1.12 

Eq. 34 

1.40 
0.88 
1.18 

1.40 
1.06 
1.05 

105^ 

All 

247.5^ ^1421.1'^ 

10.511 

1.974L 

183, r 

i.m 

78.4^ 

J^5iL 

1.^7^1 

173.5*^ 

E=29.000 KSi 

1=200 IN"^ 

L=10 FT. 

Fig. 8. Frame for Example 3. 

ated using the alignment chart and Eq. 34 in Table 6. (Note 
that K is not defined for the unloaded columns). 

From Table 6, it can be seen that Eq. 29 gives sufficiently 
accurate results for K and that significant errors are incurred 
by using the alignment charts. If the alignment charts are to 
be used, the solutions must be refined by using Eq. 34. 

Example 2 

In this example the ability of the proposed K factor equation 
to evaluate effective length factors for columns in frame with 
leaner columns will be demonstrated. Such a frame is shown 
in Fig. 7. Two load cases are used. In Load Case A, a gravity 
load ofP is applied on each column and in Load Case B, the 
entire gravity load of 2P is applied on the right column. To 
estabhsh an adjacent equilibrium position for the frame, a 
small disturbing force of 0.1 percent x 2P = 0.002F was 
applied laterally to the frame and the moment ratios were 
calculated using a first-order analysis. The K factors for the 
right column evaluated using Eq. 29, the alignment chart, and 
Eq. 34 are compared with the theoretical K factors evaluated 
using an eigenvalue analysis in Table 7. 

Again, the accuracy of Eq. 29 and the inability of the 
alignment chart to give correct values of K are demonstrated. 
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Example 3 

As a final example, Eq. 29 is used to calculate the K factors 
for the six columns of the two-story two-bay frame shown in 
Fig. 8. The small disturbing forces required to establish an 
adjacent equilibrium position for the frame are calculated 
from the equation 0.1 percent x Applied Story Gravity Load. 
This gives a value of 0.367 kips for the top story and 0.842 
kips for the bottom story. Subjecting the frame to these 
disturbing forces, a first-order analysis gives A; / Z// = 
0.00483 for the first story and 0.00792 for the second story. 
The remaining calculations are depicted in tabulated form 
shown in Table 8. (Units are in kips and inches.) 

For purpose of comparison, values of the ̂ factors obtained 
using different approaches are shown in Table 9. 

SUMMARY AND CONCLUSIONS 

A simple and effective formula for evaluating elastic effective 
length factors for framed columns in sway frames was de
rived. The formula takes into consideration the member in
stability and frame instability effects explicitly. As a result, in 
addition to providing the users with a clear physical picture 
of the two destabilizing influences on column stability, the 
formula gives reasonably accurate results for design applica
tion. The explicit consideration of the two instability effects 
also eliminates the need for a second-order analysis. The 
application of the proposed formula only requires the user to 
perform a first-order analysis. No special charts or iterations 
are required for solutions. The formula provides sufficiently 
accurate estimates for K factors of columns in frames with 
unequal distribution of column stiffness, unequal distribution 
of gravity loads and for frames with leaner columns. The 
validity of the proposed K factor equation when applied to 
these cases was demonstrated by numerical examples. 

The applicability of Eq. 29 for determining K factors of 
columns stressed into the inelastic range is currently being 
investigated. The approach makes use of the tangent modulus 
concept and uses the tangent modulus E^ in place of the elastic 
modulus E in determining the various parameters in Eq. 29. 
Detailed discussion for determining this inelastic K factor will 
be addressed in a subsequent paper. 
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