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INTRODUCTION 

Although the incidence of floor vibration problems appears 
to be on the rise/'^ the use of mechanical damping devices to 
control vibrations is limited. In a recent survey of vibration 
control methods, Murray^ reports that passive-mechanical 
damping methods, including viscous damping, visco-elastic 
damping, and tuned-mass dampers, have often gone untried 
outside the laboratory or have had marginal impact in actual 
buildings. This is particularly unfortunate because mechani
cal dampers can sometimes control floor vibrations more 
cheaply than structural stiffening, and are often the only 
viable means of vibration control in existing structures. 

This paper details the successful implementation of a 
tuned-mass damping system to reduce the steady-state vibra
tions of the longspan, cantilevered, composite floor system at 
the Terrace on the Park Building in New York City. The 
experience with this implementation suggests that tuned mass 
dampers (TMDs) can be successfully employed to control 
steady-state vibration problems of other composite floor sys
tems. The potential for general application of TMDs in com
posite floor systems is discussed, and areas for further 
research are suggested. 

BACKGROUND 
The Terrace on the Park Building was designed by The Port 
Authority of New York and New Jersey as its exhibition 
building for the 1964 Worlds Fair (Fig. 1). The building 
features elliptical promenade and roughly-rectangular ball
room levels, both suspended six floors above the ground on 
four steel supercolumns. The columns support a cross-shaped 
pattern of floor-girders and an elliptical ring girder, which in 
turn support a radial set of cantilevered floorbeams (Fig. 2). 
The floorbeams span between the floor and ring girders, and 
cantilever from the ring girder to the face of the building 
(Fig. 3). The ballroom sub-floor is a reinforced concrete 
deck-formed slab, resting on top of and periodically welded 
to the floor-beams. 
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At the close of the Fair, the Authority turned over the 
building to the New York City Department of Parks and 
Recreation, which leased it to a private caterer to generate 
income for the city. The caterer partitioned the ballroom level 
symmetrically into four dining/dancing halls at the corners of 
the building, each served by an existing, central kitchen area. 
Individual halls were arranged with dining tables near the 
kitchen (and the center of the building); bandstands and dance 
floors were located at the tip of the cantilevered floors (Figs. 
2 and 3). 

As soon as the building's cantilevered main floors were 
used as dining and dance halls, guests complained about the 
structure's vibrations. Preliminary vibration tests performed 
during dance events showed that the floor accelerations and 
displacements sometimes reached 0.07G* and 0.13 inches, 
respectively. Observations of sloshing waves in cocktail 
glasses and chandeliers that bounced to the beat of the band 
gave credence to these measurements. Observations made 
and complaints logged aside, the measured vibration—as 
interpreted by the modified Reiher-Meister scale"̂  or more 
recent work by Allen ̂ —are generally recognized as unaccept
able for dining/dance floors. Floor displacements of 0.13 
inches are considered "Strongly Perceptible," as measured on 
the modified Reiher-Meister scale; Allen's recommendations 

* A "G" is equal to the acceleration of a body in a vacuum due to the force of gravity. 
One G = 32.2 ft/second." 

Fig. 1. Terrace on the Park Building—general view. 
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limit acceptable floor accelerations in combined dining/danc
ing environments to about 0.03G. 

Preliminary free vibration tests of the structure found the 
first natural frequency of a typical quadrant of the ballroom 
level floor (corresponding to one dining/dance hall) to be 
about 2.3 Hz. This very low frequency is well below the 
recommended levels for floors whose vibrations are control
led by structural stiffness,̂ '̂  and corresponds closely to the 
beat of many dances.^ 

Besides the low frequency of the ballroom-level floors, 
their vibrations were being exacerbated by the location of the 
dance floors, which maximized the amount of vibrations that 
dancers were causing (Figs. 3 and 5). Moving the location of 
the dance floors toward the center of the building clearly 
would reduce the structure's vibrations. This remedy was 
completely unacceptable to the caterer, who made the sensi
ble point that, located between the kitchen and dining areas, 
the dance floors would block movement between the two and 
obstruct the exits. 

In 1988, after studying various structural stiffening 
schemes they could not afford to construct, the Parks Depart
ment decided to explore solving the vibration problem with 
mechanical damping devices. The tuned mass damper (TMD) 
solution was developed by Weidlinger Associates and Profes
sor Vaicaitis after we performed a detailed study of the 
structure's dynamic characteristics, the forcing function shak
ing it, and an assessment of various nonstructural remedies. 

DYNAMIC CHARACTERISTICS OF THE 
STRUCTURE 

First, we began analytical studies of the building's floor 
system to determine its dynamic characteristics. A prelimi
nary calculation of the first resonant frequency of the longest 
cantilevered floorbeams (shown on Fig. 3), was performed, 
using an equation by Murray and Hendrick:^ 

f=K{gEIJWL'f\{m) (1) 
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Fig. 2. Ballroom (6th floor) plan. 

where: 
/ = the frequency of vibration of the floor 
K=di coefficient depending on ratio of overhang to back-

span [tabulated in Ref. 6] 
g = 386.4 in/s' 
E = modulus of elasticity 
If = transformed moment of inertia 
W = weight supported by tee beam 
L = length of cantilever 

Assuming composite action of the floorbeam and concrete 
deck, Eq. 1 agreed with the earlier rough measurements taken 
at the structure, which showed that the floor's first natural 
frequency of vibration was about 2.3 Hz. Although for most 
of their length, the bottom flanges of the floorbeams are in 
compression, the composite floorbeam assumption made 
sense because the deck was significantly reinforced, its steel 
underside was frequently welded to the floorbeams, and the 
ratio of live load to dead load was very small, reducing the 
tendency for the concrete to crack and act independent of the 
floorbeams. 

Next, a detailed, finite element model of a typical floor 
quadrant (corresponding to one dining/dance hall) was cre
ated, to determine the fundamental floor frequency more 
accurately, compute the associated mode shape, and see if 
higher floor frequencies and mode shapes were being excited. 
The floorbeams were modeled with composite bending prop
erties and the concrete deck was modeled with plate elements. 
The mass included all the structural loads, nonstructural loads 
such as windows, mullions, partitions, and hung ceilings, and 
about 15 percent of the 100 psf, code-prescribed live load. 

Free vibration analysis of this model showed that the 
reinforced concrete deck and ring girder tied the floor to
gether, making an entire quadrant of the ballroom level vi
brate as a unit. The fundamental mode shape described a 
continuously defomied floor, with maximum deflection at the 
extreme cantilevered comer, and monotomically decreasing 
in deformations toward the ring and floor girders. The first 
frequency of the floor system was predicted at 2.22 Hz. The 
second resonant floor frequency was found at 3.9 Hz. 

While the structure was being examined analytically, we 
also measured the natural frequencies of each floor quadrant 
(corresponding to one dining/dance hall) of the actual struc
ture, the mode-shape associated with the first natural fre-
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Fig. 3. Section through ballroom floor 
(Section 1 on Fig. 2). 
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Table 1. 
Experimentaliy Determined Floor Frequencies and 

Damping 

Quadrant 
(Dining/Dance Hall) 

Rose 
Paradise 
Crystal 
Regency 

Computer model 

Fundamental 
Frequency 

(Hz) 

2.23 
2.31 
2.27 
2.46 

2.22 

Second 
Frequency 

(Hz) 

3.75 

3.75 

3.91 

Damping 
% of Critical 

2.8 
3.0 
3.0 
3.6 

— 

y2(0, of the tip of the floor are essentially sinusoidal functions 
in time. Their maximums are related by: 

quency, and the damping in the first mode. Using a variable 
speed, largemass shaker, our prediction of the floor's resonant 
frequencies was confirmed. By simultaneously recording ac
celerations at a number of locations along the floor, we also 
confirmed the computer model's prediction of the first mode 
shape. Using the half power method,^ the damping in the first 
mode was determined. The measured frequencies and experi
mentally obtained damping values for each floor quadrant are 
given in Table 1. The floors were typically covered with 
wood, and supported a lightweight steel-panel building-enve
lope system from the bottom flanges of the floor-beams. 

The most important empirical data was obtained during 
actual dancing. Spectral transforms of the acceleration time-
histories obtained during dancing showed that each floor 
quadrant was vibrating almost exclusively at its first mode 
(Fig. 4). This result substantially simplified our later analyses 
and helped us determine an appropriate damping method. 

The peak root mean square (RMS) acceleration we meas
ured at the extreme cantilevered comer of a dining/dance hall 
was 0.06 G, recorded during a rock and roll dance. Assuming 
the floor to be vibrating in its first mode, we used this 
measured peak acceleration to determine the maximum floor 
displacement at the same location. With the floor vibrating in 
its first mode, both the displacement, V2(0, and acceleration. 

IV2maxl = iV.maxI / « " (2) 

where: 
0) = the frequency of vibration of the floor, in radians per 

second 
l>'2maxl = the maximum tip displacement at this frequency 
Iv2max' = the measured RMS floor acceleration 

This gave an estimated maximum floor displacement of 
about 0.11 inches corresponding to the measured 0.06G peak 
RMS acceleration. 

ASSESSMENT OF MECHANICAL VIBRATION 
CONTROL SYSTEMS 

The decision to employ tuned mass dampers was influenced 
by the functional layout and geometry of the structure; the 
client's budget; the fact that the floors were being excited 
primarily at their first resonant frequencies; the large ampli
tudes of floor motion; and the light structural floor damping. 

Simple Passive Dampers 

Simple passive dampers, including viscous, friction, and 
visco-elastic systems, rely on a damper mounted between a 
vibrating structure and a stationary object to dissipate vibra
tion energy as heat. As the two systems move relative to each 
other, the simple passive damper is stretched and compressed, 
reducing the vibrations of the structure by increasing its 
effecting damping. At the Terrace, there was no non-moving 
element nearby to attach a damper to, so these systems were 
rejected. 

Tuned Mass Dampers 

Tuned mass dampers (TMDs) work by fastening a mass-block 
to a structural component (such as a floor) via a spring 
(Fig. 3). This system is set up so that, when the floor vibrates 
at a resonant frequency (which could be caused by dancing, 
for example), it induces analogous movement of the mass 
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Fig. 4. Typical spectral response (floor excited hy dancing). 

Fig. 5. Floor deflection in first mode shape 
(Section 1 in Fig. 2). 

where: 
F^(t) = idealized, periodic forcing function on dance floor 
Y^ = deflection of tip of floor in first mode 
Y^-= deflection of floor under forcing function 
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block and spring. By the conservation of energy, the TMD 
motion in turn reduces the amplitude of the floor's vibration. 
A damping device (dashpot) is usually connected in parallel 
with the spring between the mass-block and floor, increasing 
the TMD's effectiveness over a range of frequencies and 
taking a small amount of mechanical energy out of the system 
as heat. 

Because each TMD is "tuned" to a particular resonant 
frequency, individual TMDs need to be installed for each 
excited floor frequency. Because they rely only on floor 
vibrations to operate, they do not need to be fastened to a 
nearby stationary object. By the same token, TMDs are most 
effective when located where the floor's amplitudes are the 
greatest. 

TMDs were considered the only viable passive damping 
system to employ at the Terrace because they did not require 
fastening to a nearby stationary object. They were also par
ticularly well suited to the Terrace because there was only one 
floor frequency per ballroom to damp, reducing the required 
number of TMDs, and the TMDs could be installed at loca
tions where the floor amplitudes were largest (Fig. 5), maxi
mizing their efficiency. 

Active Mass Dampers 

Active mass dampers, which are computer controlled and can 
also be configured to work without relying on the relative 
motion between the floor and a stationary object, were also 
considered. These systems, currently the subject of much 
research for controlling wind and earthquake induced vibra
tions,^ are a generally attractive solution to vibration prob
lems because they are so effective. These systems were re
jected for the Terrace on the basis of their high installation 
cost, and their need for regular continuing maintenance, 
which could not be ensured over the life of the structure. 

DESIGN OF THE TUNED MASS DAMPERS 

The TMD design process began by creating an "equivalent-
displacement" one-degree-of-freedom system, representing 
the dynamic behavior of one point of a typical floor quadrant 
when vibrating in its first mode. The one-mode model was 
justified by the experimental data taken in each floor quad
rant, which (as noted above) showed that the ballroom floors 
were vibrating almost exclusively in their first mode. A TMD 
was then added to this model, creating a two degree of 
freedom system. The performance of this system, repre
senting an actual floor quadrant and TMD, was used to 
optimize each TMD's mass, spring stiffness, and damping. 

Equivalent Displacement, One Degree of 
Freedom Floor Model 

Figure 5 shows, for a typical quadrant, the line of maximum 
floor deflection in the first mode (cut at section 1 in Fig. 2). 
This characteristic mode shape and its associated frequency 
provided the basis for the equivalent, one degree of freedom 

(1 DOF) floor-vibration model shown in Fig. 6. To calibrate 
the 1 DOF system, we required that its free vibrations have 
the same period as a typical floor quadrant's, vibrating in its 
first mode. This requirement is stated mathematically by: 

^JiicTTrnj) = o^f (3) 

where k2 and ^2 are as defined in Fig. 6 and COŷi is the first 
resonant frequency of the floor, in radians per second 
(rad/sec). 

The calibration for mass and stiffness was completed by 
dictating that the maximum dynamic displacement of the 
1 DOF system would be the same as the tip of the floor 
constrained to vibrate in its first mode shape, while being 
forced by a periodic, concentrated load at its tip; i.e., y2m•^ix 
(Fig. 6) = y^^^^ (Fig. 5). Using the free-vibration computer 
model, the 1 DOF system's mass, ^2, was found by: 

nio-u I d^, (kips x secVin) (4) 

where u is the mass-normalized generalized mass of the first 
mode of the floor system, and 4 is the associated modal 
displacement at the tip of the floor. (This equation is derived 
in Appendix A.) 

As calculated by Eq. 4, m2 is called the "equivalent-dis
placement generalized floor mass." Using this value for ^2, 
k2 was found from Eq. 3. 

We also computed k2 and ^2 from our experimental data. 
First, we assumed the floor would respond only in its first 
mode when shaken by a harmonic forcing function of a 

Fig. 6. I DOF floor model, 
where: 

m2 = displacement normalized generalized mass of floor system 
in first mode 

k2 = displacement normalized generalized stiffness of floor 
system in first mode 

C2 = damping in first mode 
^2(0 = idealized, periodic, dance-floor equivalent forcing 

function 
yi-yf- deflection of tip of floor in first mode 
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Table 2. 
Stiffness and Mass of 1 DOF Floor Models 

Equations 4, 3, 6 
(Computer) 

Equations 12, 10 
(Experimental) 

k2 
(kips/in.) 

197 

205 

7772 

(kips) 

389 

406 

C2 

(kips*s/in.) 

.874 
(Determined from 

choice of ^ ) 

.912 
(Determined by ^ ) 

C2 
(% Of Critical) 

3.1% 
(Chosen to match 
experimental data) 

3.1% 

frequency equal to the floor's first resonant frequency 
[F(t) = F„ sin(cOyir), where cô i is the first resonant frequency of 
the floor quadrant (rad/sec) and t = time (sec)]. In this case, 
the floor behaves as a one degree of freedom system, whose 
steady-state response is given by : 

y.it) = K sin(co^r + h) I (l^k,) (Ref. 7) (5) 

where: 
/;, = the amplitude of the forcing function driving the floor 

at its cantilevered tip 
y2 = the peak floor response measured at the same location 
ccy, = the resonant frequency of the floor 
h = a. phase angle 
k2 = the equivalent displacement generalized stiffness of 

the floor 
^ = the measured damping of the floor, expressed as a 

percent of the floor's critical damping, c,* 

from which: 

\y,^J = FJ(2l^k2l (in.) 

and: 

k2 = FJ(2Qy2rr,J\ (kips/iu.) 

( 8 ) 

( 9 ) 

and jTij is then found from Eq. 3. 

The damping included in the 1 DOF model (C) was 3.1 
percent, corresponding to the average of the four experimen
tally determined values given in Table 1. This is a bit lower 
than what would be expected based on published values."̂ "̂  
Using Eqs. 6 and 7, the absolute floor damping, C2, was found 
to be 0.874 kip-seconds/in. 

k2, Co and ^2, computed both analytically and experimen
tally, are given in Table 2. The computer generated values 
were used in the subsequent analysis and design work. 

The 1 DOF system's forcing function, /^(O, was also 
calibrated to approximate the effect of dancing on the actual 

* For the 1 DOF floor model, ^ and c\. are related by: 

^ = f2/cv (Ref. 7) 

where 

c^. - 2V(/:2 / m^) (kip*sec/in.) 

(6) 

(7) 

Structural floor. The function was assumed to be sinusoidal 
(which is arguably a fair approximation for dancing^), i.e.: 

F2(0 = /;.sin(co0, (kips) (10) 

The force amplitude (/;,) was adjusted so that at frequencies 
(co) close to the beat of previously measured dancing at the 
Terrace, the maximum steady-state acceleration of the 1 DOF 
model would match the RMS peak acceleration at the tip of 
the actual floor during an instrumented dance event. 

Two Degree of Freedom, FIoor-TMD Model 

After the equivalent-displacement 1 DOF system was devel
oped, tuned mass dampers were added, creating a two degree 
of freedom (2 DOF) system (Fig. 7). Using this system, the 
TMD parameters of mass (mj), stiffness (/:,), and damping 
(c,), were optimized to reduce the dynamic displacement of 
the floor (3̂ 2)' ̂ ^^ to the forcing function ^2(0, representing 
dancers on the real structural floor. 

FoW 
TMD 

FLOOR 

Fig. 7. 2 DOFfloor-TMD model. 
where: 

m 1 = mass of TMD 
k\ - TMD spring stiffness 
c\ - TMD damping 
y^ - displacement of TMD 
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Table 3. 
Summary of TMD Parameters* 

Quantity 

Mass, m^ (kips) 

Damping, c^ 
(kips*s/in.) 

Spring stiffness, /ci 
(kips/in.) 

Trial Optimum 
Value 

18.0 
(Controlled by 20 kip 
floor beann capacity) 

0.19 
Equation 13 

8.3 
Equations 12, 11 

Initial Construction 
Value 

19.0 

0.19 

8.8 

Final Tuned 
Value 

18.4 

0.15 

8.8 
(Cannot be field 

adjusted) 

* Values are presented for the Rose floor quadrant, whose measured natural frequency without TMDs installed was 
2.23 Hz. Results for other quadrants are similar. 

The TMDs needed to minimize the floor's vibrations with
out using so much mass that the existing floorbeams would 
be overstressed. Although to a point TMDs become more 
effective with increased mass/^ calculations showed that the 
floorbeams supporting the TMDs would be overstressed with 
masses greater than about 20 kips located at tips. Therefore, 
18 kips became our trial-optimal TMD mass. This corre
sponds to a mass ratio (m^ I m^ of about 4.6 percent. 

Because each actual ballroom floor was responding pri
marily in its first mode shape, the TMDs needed to be oper
ating near the associated resonant frequency to maximize the 
amount of energy shifted from the vibrating floor to them
selves. Various approaches to optimizing a TMD's natural 
frequency have been reported. ̂ '̂̂  As a start point, we used 
the approach outlined by Reed,̂ ^ in which the natural fre
quency of the TMD attached to a fixed base is denoted (Oi. 
Then: 

CO, = ^{kx I m^), (rad/sec) (11) 

where k^ and m^ are the spring-stiffness and mass, respec
tively, of the TMD. 

And Reed's optimum value for CO, is given by: 

CO 1 ,optimum = 1 / [1 -I- (m, / m2)], (rad/sec) (12) 

where ^2 is the equivalent-displacement generalized floor 
mass defined above. 

With mj and ^2, determined, COi„̂ ,̂>„„̂  was found by Eq. 12, 
and /:, was determined by Eq. 11. We also used Reed's method 
for obtaining a trial value of optimum damping, c,: 

C\,optimum = V2mi/:2 / [1 + (w, / ^2)], (kip X sec/in.) (13) 

The trial-optimum values, /:,, c,, and m,, computed using 
Eqs. 11 through 13, are summarized in Table 3. 

Starting with the maximum safe mass and predicted-opti
mum values for c, and /:,, the 2 DOF model of the floor-TMD 
system (Fig. 7) was analyzed. The system's equations of 
motion are: 

0 ^1 [yi 

/ 

H-
( 

0 
Flit) 

C,+C2 yi 
J V J 

-k, k\+k2 yi 
V J 

• F^ sin(co t) 
kips (14) 

Where co is the frequency of the forcing function (rad/sec). 
These equations were used to: check the validity of the 

TMD parameters given in Eqs. 12 and 13; predict the reduc
tion in floor acceleration caused by the TMDs; and estimate 
the maximum accelerations and relative displacements of the 
TMD mass (m,). Because Eq. 14 cannot be solved modally 
(due to the high damping in the system), they were integrated 
numerically with the Runge-Kutta fourth order method.'^ For 
values of CO between 1 and 8 Hz, time histories were produced 
and maximum values of 2̂̂  yi^ ^^^ y2~y\ were recorded. 

Because it was our experience that TMDs needed to be 
adjusted in the field, we designed the actual TMDs to be 
"tuned" for frequency and damping after installation. This 
was done by varying the TMDs' mass (m,) with 200 pound 
steel plates, and adjusting its damping (c,) with variable 
energy dissipation dashpots. Two types of variable energy 
dissipation viscous dashpots were tested at the Carleton Lab 
of Columbia University's Engineering School (Fig. 8), and 
found to need a minimum stroke (in the form of enough 
relative floor-TMD mass movement) of about 0.05 inches to 
be effective. In practice, the relative motion between the 
TMD and floor {y2~y\ in Fig. 7) is reduced with increasing 
TMD mass {m^) and increased damping (cj). To obtain a 
desired stroke, it was found by manipulating m^ and c, in 
Eq. 14 that the TMDs performed better if their damping was 
slightly decreased than if their mass was reduced. Thus, 
ensuring the stroke of the TMDs was large enough effectively 
put an upper bound on their damping. 

The TMD stiffness, /:,, was limited by the properties of 
commercially available springs. The spring stiffness, of 
course, could not be modified in the field, which did not pose 
much of a problem because the natural frequency of the 
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TMDs was controlled by adjusting their mass, as described 
above. 

The TMD parameters, ^z,, c,, and A,, which were used for 
their initial construction, are given in Table 3. These values 
were adjusted from the trial-optimum values as required by 
the constraints on spring stiffness, damping, and mass noted 
above. The corresponding predicted performance of the 
TMDs is shown in Fig. 9. Each point on the graph represents 
maximum steady state floor displacement corresponding to 
the calibrated forcing function operating at frequency co. The 
curve predicted that the TMDs would reduce dance-induced 
floor vibration by a maximum of 70 percent, corresponding 
to dancing at about 2.2 Hz. 

PERFORMANCE OF THE AS-BUILT SYSTEM 

In 1991, one TMD was installed in the comer closet of each 
dining/dance hall (Fig. 3). A typical system is shown in 
Fig. 10. Each TMD was tuned for optimum frequency and 
damping by using a variable-speed, large mass shaker to 
excite the floor at a range of frequencies while monitoring 
both floor and TMD accelerations. During an actual dance 
event, floor accelerations were monitored first with the damp
ers locked into place, then free to move. The final, "tuned" 
TMD parameters are summarized for one floor quadrant in 
Table 3. Results for other quadrants are similar. The results of 
the shaker and dance-event tests are given in Figs. 11 and 12 
respectively. Our measurements of TMD performance during 
dance events showed that the TMDs reduced ballroom floor 
vibrations by at least 60 percent. The difference between the 

Fig. 8. Viscous dashpot work per stroke at various energy 
absorption settings. 

("Kinechek^'and "Cushioneer'refer to the manufacturer's 
proprietary names of tested models. The energy absorbed by the 

dashpots per stroke is adjustable. Different "presef curves 
correspond to different dashpot settings.) 

predicted 70 percent reduction and the 60 percent in-situ 
performance is ascribed to the difference between the actual 
and analytical forcing functions (dancers and a sine-wave, 
respectively), and the floor's vibrations in its second mode 
shape, which the TMDs were not designed to reduce. No floor 
vibration complaints have been reported to us since the TMDs 
were installed. 

The cost of constructing the four TMDs was $220,000. This 
is less than 15 percent of the estimated construction cost of 
structural stiffening (with new columns between the ballroom 
floors and the ground) recommended for the Terrace in 
1987.'" 

SUMMARY—CONCLUSIONS 

The TMD implementation described in this paper demon
strates their successful use in substantially reducing the vibra
tions of an existing composite floor system. The critical 
reasons for the success of the system are: its tunability, which 
helped ensure that the theoretically predicted performance 
could be approximated by the actual as-built system; and the 
cost of the system, which was about an order of magnitude 
less than the cost of recommended structural corrective 
measures. 

Although the methods used to analyze the case-study floor 
system and design its TMDs are very general, and can be 
applied in principle to many composite floor systems, the 
effective use of TMDs in structures with higher damping 
values and lower maximum floor displacements may prove 
troublesome. It has been claimed that it is generally difficult 
to make TMDs useful in structures with high natural damping. 
The adjustable viscous dashpots used in this case-study per
form marginally at small strokes, suggesting they would not 
perform adequately in floors whose amplitudes are small. 
However, other types of damping, which are field tunable and 
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Fig. 9. Maximum, steady-state floor amplitudes at tip of floor, 
as predicted by Eg. 14. (TMD parameters correspond to 
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may perform well at small amplitudes, have been used in 
TMD applications,'^ and warrant further study. It should also 
be noted that, although floor frequency itself should not 
impact the viability of TMDs, most composite floors have 
frequencies much higher than the fundamental floor fre
quency at the Terrace. This may affect the choice of hardware 
in other installations, including the types of springs and 
dashpots used. 

The success of the field-tuned case-study system presented 
in this paper, and the small number of mechanical damping 
systems installed in actual buildings today, suggest that damp
ing systems are not being used as often as they possibly should 
be. Increased use of passive damping systems requires that 
structural engineers better understand their overall perform
ance, and the limitations of their actual components (such as 
dashpots). With this in mind, further research in the perform
ance of passive damping devices in actual floor systems is 
recommended in the following areas: 

• In-depth studies of TMD dashpots, including linear vis
cous and Coulomb friction types. 

• Analysis of tuned-in-the-field TMD effectiveness in 
floor systems with smaller dynamic displacements. 

• Analysis of tuned-in-the-field TMD effectiveness in re
ducing transient vibrations. 

• Comparison of the effectiveness of TMDs and other 
passive and active damping systems, in controlling both 
transient and steady-state vibrations, in terms of both 
performance and cost. 

APPENDIX A—DERIVATION OF EQ. 4 

Applying free vibration analysis techniques to a finite ele
ment model of the floor system, the following quantities can 
be computed:'^ 

cOj = the first resonant floor frequency 
~S= the associated mode-shape column vector 
M = the mass matrix of the floor system 
K = the stiffness matrix of the floor system 
u = the generalized mass of the first mode = ~S^M3 
z - the generalized stiffness of the first mode = ~3^K^ 

Leaving damping aside for simplicity, if the floor is moving 
in only its first mode, forced by the function F{t), at a 
particular node, n, then it can be shown^'^ that the floor 
movement at any point is described by the equations: 

ua + za = dj^„ (0 

x = la 

(Al) 

(A2) 

-BUILDING ENVELOPE 

FREQUENCY (Hz) 

Fig. 11. Peak RMS floor response at tip of floor, 
subject to sinusoidal forcing function. 

Test of actual floor system with field-tuned 
TMD (Crystal Quadrant). 

TMD LOCKED IN PLACE TMD OPERATING 

Fig. 10. TMD elevation. 
Fig. 12. Measured floor acceleration at tip of floor due to 

dancing with field-tuned TMD. 
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Where a is called the generalized coordinate of the first mode, 
and X is the vector of nodal coordinates from the finite element 
formulation. 

The equation of motion of the 1 DOF, equivalent displace
ment model (Fig. 6) is: 

m^2 + k^i = ̂ (0 (A3) 

By definition of the 1 DOF model, k2 / m2 = z / u. By 
specifying that y2 = x„ when F{t) • 
to: 

:/„(r), these constraints lead 

uy2^zy2 = dX{t) = d^F{t) 

(A4) 

(A5) 

Dividing this by d^, and comparing to Eq. A3 yields ^2 = 
u I d^. Noting that, in the case of the Terrace, d^ - 4, and 
making this substitution yields Eq. 4. 
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