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INTRODUCTION 

Ihe AISC Load and Resistance Factor Design Specifica­
tion,' states, "In structures designed on the basis of elastic 
analysis, M^^ may be determined from a second-order elas­
tic analysis using factored loads." At the present time, a 
designer who wishes to use this type of analysis has many 
choices of methods, all of which may be termed "second-
order elastic." This paper compares and contrasts several of 
the current most commonly used methods (B1/B2 
approaches and a number of P-Delta approaches) to matrix 
analysis approaches based on stability function and geometric 
stiffness formulations. The matrix approaches are compre­
hensive in that they account for both P-d and P-A effects and 
place essentially no constraints on the manner in which the 
structure is modeled for analysis. As these approaches 
increasingly become available in commercial software, they 
will provide a powerful facility for the analysis and design 
of ordinary as well as irregular and complex three-
dimensional structures. 

In the last twenty to twenty-five years, a large amount of 
research has been devoted to the nonlinear elastic and inelas­
tic analysis of frame structures. In parallel with the devel­
opment of more sophisticated analysis methods, the speed, 
memory capacity, and advanced graphics capabilities of per­
sonal and workstation computers continue to increase each 
year. The capabilities of these new machines have made it 
possible to employ analysis and design techniques that in the 
recent past were generally impractical for most engineering 
firms. As an example, for certain types of building systems, 
it is now commonplace to perform a three-dimensional lin­
ear elastic analysis which accounts for the interaction 
between shear walls and various other types of structural 
framing. With each new generation of personal computers 
and workstations, there are fewer and fewer constraints on 
analysis technique and size of the analysis model. 

At a research level, the current technology for direct anal­
ysis of second-order elastic effects is well developed. This 
technology provides advantages over hand methods which 
amplify the loads or member forces from linear elastic 
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analysis, especially for the analysis and design of complex 
structural systems. Furthermore, the current AISC LRFD 
Specification' gives explicit permission for the engineer to 
compute load effects from a direct second-order elastic anal­
ysis. Second-order elastic analysis is the "preferred" method 
in the Canadian Limit States Design Specification.^ How­
ever, this type of analysis has yet to gain wide acceptance 
among the design community, and to the knowledge of the 
authors, at most only a few of the current commercial pro­
grams provide a "comprehensive" second-order elastic anal­
ysis capability (i.e., one in which both member curvature, 
P-6, and chord rotation, P-A, effects are accounted for in a 
general fashion). Conversely, research papers sometimes do 
not address important practical aspects of applying compre­
hensive procedures in an actual design setting. 

The goals of this paper are: (1) to highlight the advantages 
and limitations of some of the more comprehensive 
approaches for second-order elastic analysis of frame struc­
tures, (2) to outline the type of analysis/design procedure per­
ceived by the authors to be necessary for these types of anal­
ysis to be applied optimally in a practical design setting, and 
(3) to indicate the computer-aided design software capabili­
ties needed to support this type of procedure. Of course, any 
type of second-order analysis involves more computational 
effort than conventional linear elastic analysis. However, the 
authors believe that comprehensive matrix analysis provides 
the greatest promise for achieving both simplicity and gen­
erality in the calculation of second-order forces for frame 
design. By providing a complete summary of what the use 
of comprehensive second-order elastic analysis might entail, 
the authors hope to demonstrate that comprehensive second-
order elastic analysis can be as efficient, and in certain 
respects, simpler to perform than other more approximate 
second-order methods. 

The authors also hope to stimulate discussion on how 
second-order elastic analysis methods may best be adapted 
to design practice and applied in the context of current and 
future design specifications. Capabilities for handling aspects 
such as flexible joints, semi-rigid connections, and structural 
walls should be included in any analysis/design software 
which claims to be comprehensive. The scope of this paper 
is limited to rigid-jointed frames with or without leaned col­
umns in order to focus on the aspects of handling second-
order effects in frame members. 
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The next section provides basic definitions and fundamen­
tal background material on "state-of-the-art" matrix methods 
as well as conventional approaches for calculation of second-
order elastic load effects. The third section of the paper 
attempts to summarize the advantages of comprehensive 
second-order elastic matrix analysis. The fourth and fifth 
sections address a number of analysis and design related 
issues which should be considered in the use of any type of 
second-order elastic analysis, and particularly for compre­
hensive matrix analysis approaches. The sixth section lists 
two possible step-by-step analysis/design procedures based 
on comprehensive second-order elastic analysis. Conclusions 
are provided in the final section. 

FUNDAMENTAL BACKGROUND 

Types of Analysis 

To clarify the terms used, several types of analysis will be 
reviewed briefly. Figure 1 contains schematic representations 
of load-displacement diagrams obtained for a frame by each 
type. The elastic critical load is calculated by an eigenvalue 
analysis. This load may be used as a basis for calculating 
effective length factors as well as estimating moment amplifi­
cation effects.̂ '"̂  Linear elastic (first-order elastic) analysis 
is of course the current staple of the profession. One of its 
distinguishing characteristics is that equilibrium is formu­
lated on the undeflected geometry. Although this type of anal­
ysis provides a simple estimate of the distribution of forces 
in the structural system, it does not provide any information 
on the strength or stability of the frame. 

In geometric nonlinear or second-order elastic analysis, 
equilibrium is formulated on the deformed configuration of 
the structure. When derived on a consistent mechanics basis. 

Load Elastic critical load (eigenvalue analysis) 

this type of analysis includes both P-A (chord rotation) and 
P-d (member curvature) effects. The P-A effect reduces the 
element flexural stiffness against sidesway. The PS effect 
reduces the element flexural stiffness in both sidesway and 
non-sidesway modes of deformation. These two effects are 
illustrated for an arbitrary beam-column subjected to side­
sway in Fig. 2. Actually, few programs can model the P-d 
effects precisely unless the members are subdivided into a 
number of elements (particularly if the members have some 
initial out-of-straightness). Second-order elastic analysis 
accounts for elastic stability effects, but it does not provide 
any direct information with regard to the actual inelastic 
strength and stability of the frame. Therefore, in any design 
based on this type of analysis, these aspects must be 
accounted for in the Specification equations for member 
proportioning. 

Material nonlinear or first-order inelastic analysis includes 
the effects of member yielding in some way (typically by 
a plastic hinge type of model), and full nonlinear or second-
order inelastic analysis includes both geometric and mate­
rial nonlinear effects, as the name implies. Second-order 
inelastic analysis is the only method which attempts to be 
completely rigorous in the solution of the frame performance. 
However, since the technology for performing second-order 
inelastic analysis is not readily available for design office use 
at the present time (1990), the LRFD equations for beam-
column design are based on the use of the maximum second-
order elastic moments within the span of the member (includ­
ing both P-A and P-d effects). 

A wide range of analysis approaches may be found in the 
literature which involve different simplifications of the struc­
tural response and account primarily for P-A effects. Many 

Deflection 

Influence of gravity loads on 
the sidesway stiffness (member 
chord rotation effect) 

Influence of axial force on the 
flexural stiffness of individual 
members (member curvature effect) 

Fig. 1. Types of analysis. Fig. 2. Second-order effects in building frames. 
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of the P-A methods are geared toward use with linear elastic 
computer programs. In Ref. 5, Gaiotti and Smith review a 
number of these methods and categorize them in terms of 
their ease of use, the types of calculations involved (hand 
or computerized), and their range of applicability for dif­
ferent types of structures. In most practical designs, the P-d 
effects are small (on the order of about two to four percent 
of the total member forces) and may justifiably be neglected 
in the overall frame analysis. However, in extreme cases, the 
amplification of moments and deflections due to P-d effects 
can be as large as twenty percent of those due to the P-A 
effects^ and should therefore be considered in the analysis. 

Second-order matrix analysis programs that account com­
prehensively for both P-A and P-d effects in general types 
of structures are certain to become more readily available 
in the near future. What may be surprising to many engi­
neers is that these procedures may be formulated in such 
a way that the solution effort required to do a comprehen­
sive analysis is comparable to that of a conventional P-A type 
of analysis. Nevertheless, there are complications involved 
with using any type of second-order elastic analysis in design. 
In this paper, the authors will focus on how these complica­
tions may be alleviated when comprehensive matrix analy­
sis procedures are used. 

Matrix Analysis Approaches 
For Second-Order Elastic Analysis 

Two basic methods are commonly employed for the matrix 
formulation of second-order elastic frame elements: the sta­
bility function approach and the finite element (or geomet­
ric stiffness) approach. The fundamental difference between 
these two methods is that the stability function procedure 
is based directly on the governing differential equations of 
an initially straight, elastic beam-column. Conversely, the 
geometric stiffness approach is based commonly on an 
assumed cubic polynomial variation of the transverse dis­
placements along the element length. Therefore, the stabil­
ity function approach provides an "exact" solution for the 
second-order elastic behavior (assuming small strains and 
neglecting effects of bowing on member "axial" deforma­
tion), whereas the geometric stiffness method involves an 
approximation of the small strain, large rotation, large dis­
placement response. 

For either approach, the element stiffness equations may 
be expressed as 

[K]{u} + {R} = {F} (1) 

where [K] is the element stiffness matrix, {w} is the element 
nodal displacement vector, {̂ } are element fixed-end 
forces, and {F} are the nodal forces at the element ends. 
The degrees of freedom of the two-dimensional element are 
standard and are shown in Ref. 6. For this case, if the stabil­
ity function approach is employed, the stiffness matrix may 
be written as 

FJ 
[K] = -

L 

'A/I 0 
12c{)i/L' 

sym. 

0 
6(t)2/L 
4<|)3 

-A/I 
0 
0 

A/I 

0 
-12<j)i/L^ 
-6<\>2lL 

0 
12(f),/L^ 

0 
6(\>2 IL 

0 
-6(J)2/L 

(2) 

and the fixed-end force vector corresponding to a uniformly 
distributed lateral load w is 

{Ff] = {0 wL/2 (WL2/12)(|)5 0 wL/2 -(wL^/l2)(i>sy (3) 

The terms (\>i through <i)^ in the above equations are related 
to the elastic beam-column stability functions^ and are 
described in Ref. 6. All these terms are functions of L\JP/EI, 
where P is the absolute value of the axial force in the mem­
ber. Different functions must be used for cj), through ^^ for 
the tension and compression cases. This results in compli­
cations for situations in which the element forces change sign 
during the loading process. Also, these functions are indeter­
minate when P is exactly equal to zero, in which case, the 
values for (j)j through ^^ should be taken as 1.0. That is, the 
stiffness matrix and fixed-end force vector commonly 
employed for first-order elastic analysis are recovered if the 
axial force is zero. 

If the finite element approach is employed for the two-
dimensional formulation, the resulting element stiffness [K] 
may be subdivided into two separate matrices. The first 
matrix is often referred to as the elastic or small-displacement 
stiffness matrix [KJ. This matrix is equivalent to Eq. 2 if 
all the terms (|), through (\>^ are set equal to 1.0. The sec­
ond matrix is referred to as the geometric stiffness and may 
be written as 

[KJ = P 

0 0 
6/5L 

sym. 

0 
1/10 

2L/15 

0 
0 
0 
0 

0 
-6 /5L 
-1/10 

0 
6/5L 

0 
1/10 

- L / 3 0 
0 

-1/10 
2L/15 

(4) 

where P is taken as negative in compression. The fixed-end 
force vector obtained by the finite element approach is 
equivalent to Eq. 3 with (f)5 equal to one. That is, the fixed-
end forces obtained by this method are unaffected by the 
amount of axial force in the element. 

Since the finite element approach involves some approxi­
mation of the analytical second-order elastic response, its 
range of applicability must be understood. Figure 3 is a plot 
of the error in the finite element stiffness terms as a func­
tion of P/Pg. Based on this figure, it can be stated that if 
P/P, is less than about 0.4 (where P, = ip-EI/l}), the largest 
error in any of the terms of {[KJ -h [KJ) is less than one 
percent.^'^ That is, if it is desired to use the geometric stiff­
ness approach for cases in which PIP^ exceeds 0.4, the cor­
responding members must be subdivided into two or more 
elements to limit the error in stiffness to less than one 
percent. 
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For an axially loaded strut with full rotational and lateral 
restraint at its ends, the elastic critical load is 4/^.. If a 
member is assumed to be loaded at this extreme and it is 
subdivided into three equal length finite elements, then the 
P/P^ for each element is only 4/9 = 0.44. Therefore, it 
should be rarely necessary to use more than three elements 
per member to model the second-order elastic stiffness. '̂̂  
Of course, for overall frame analysis, one element per mem­
ber is desirable from an efficiency as well as a modeling 
viewpoint. In many types of frames, P/P^ is less than 0.4 in 
all the members and this is possible. For instance, it would 
be extremely rare for a beam-column in an unbraced frame 
to support a design axial load greater than 0.4/J. Even if the 
loads at elastic buckling of the frame were considered, a 
member's effective length factor from a system buckling anal­
ysis would have to be less than K = 1.58 for P/P^ to be 
greater than this value. Also, when P/P^ is greater than 0.4, 
the finite element matrices still represent the P-A effect in 
an exact manner. The approximations are associated only 
with the P-b amplification. 

It is important to note however that the fixed-end moments 
of Eq. 3 are somewhat more sensitive to values of P/P^.. 
Figure 4 is a plot of the error in the finite element fixed-end 
forces as a function of P/P^ for one, two, and three elements 
per member. If one element is used for the member, the value 
of (j)5 is 1.073 at P/P^ = 0.4, and therefore the error in the 
finite element fixed-end moments is approximately seven 
percent. These results demonstrate that if accurate second-
order elastic moments are desired in members subjected to 
transverse loading, either the stability function approach must 
be employed or the member must be discretized into a num­
ber of finite elements. Of course, the "exact" stability func-

Table 1. 
Advantages to the Stability Function and 

Finite Element Approaches 
Stability Function Approach: 

1. Represents P-d effects exactly for members with small 
deformations. 

2. Accounts for axial force effects on the values of fixed-
end forces. 

Finite Element Approach: 
1. Only one function needs to be employed for each of 

the terms of the element matrices. Tension, compres­
sion, and zero axial force are represented by the same 
matrix terms. 

2. More easily extended to general three-dimensional 
analysis. 

tion approach is based on the assumption of small deforma­
tions (i.e., sin(^) — 6 and cos(^) = 1 are assumed, where 
6 is the rotation relative to the member chord at any cross-
section along the member length). 

The main advantages of the stability function and finite 
element approaches are summarized in Table 1. One main 
advantage of the finite element approach is that it may be 
extended to three-dimensional frame analysis in a more 
straightforward manner than the stability function approach. 
Torsional stability functions are derived and presented in 
Ref. 10, but few researchers have attempted to utilize these 
functions for matrix analysis. There are two primary difficul­
ties in extension to three-dimensional analysis: the represen­
tation of the torsional response, including the effects of warp­
ing in open thin-walled cross-sections, and the correct 
representation of the effects of moderately large three-

12EI/L 

10.0 

Fig. 3. Accuracy of stiffness matrix terms—finite elemem 
procedure. 

Fig. 4. Accuracy of fixed-end forces for a uniformly distributed 
transverse loading^inite element procedure. 
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dimensional rotations. In Ref. 11, Yang reviews the existing 
literature before 1984 and discusses a number of alternative 
finite element formulations which address these aspects. 
Recent work regarding large rotations has been performed 
by a number of investigators including Rankin and Bro-
gan.'^ There is evidence that the proper handling of large 
three-dimensional rotations may have a noticeable effect on 
the solution of problems involving moderate rotations (as in 
the case of building frames). Accurate finite element based 
analysis of torsional rotations and member lateral-torsional 
effects generally requires the use of multiple elements per 
member. 

The inclusion of member lateral-torsional stability effects 
in the overall three-dimensional analysis of frameworks is 
currently an area where additional research is needed. In 
some types of building structures, these effects may be 
noticeable but small, and thus they might be treated in an 
approximate way or neglected for overall frame analysis. For 
example, Ref. 13 indicates that in tests of isolated beam-
columns subjected to equal end moments that cause single 
curvature about the strong-axis, and in which almost full rota­
tional restraint about the weak axis is achieved at the mem­
ber ends, it is usually possible to reach the inelastic strength 
predicted based on the assumption of in-plane behavior. 
Often, structural members may be designed such that elas­
tic or inelastic lateral-torsional instability does not occur prior 
to factored design loads being reached. Furthermore, many 
three-dimensional systems are primarily composed of a num­
ber of separate but interacting two-dimensional frames. 

The second-order effects associated with torsional defor­
mation of the members are most likely small compared to 
the P-A and P-d effects. However, the representation of the 
elastic torsional stiffness of the members may be of greater 
significance. Most of the matrix analysis programs currently 
available for three-dimensional analysis do not consider the 
effects of warping on the torsional stiffness. That is, the elas­
tic torsional stiffness of the element is taken as GJ/L, based 
on the assumption of uniform torsion. 

ADVANTAGES OF SECOND-ORDER 
MATRIX ANALYSIS 

The most important advantage of second-order elastic matrix 
analysis approaches is their generality. Since these procedures 
can accurately represent the second-order amplification of 
forces and displacements for arbitrary structural configura­
tions and loadings, they can serve as a powerful tool for design 
of the irregular and complex three-dimensional structures that 
are sometimes encountered. For example, two-dimensional 
idealizations of a structure's primary lateral resisting systems, 
coupled with standard approximate methods of accounting for 
second-order effects due to gravity loads, work well for many 
regular structures. However, they tend to break down for 
asymmetrical buildings where torsional and other three-
dimensional effects may have a significant influence. 

The difficulty in accounting for the geometric nonlinear 
effects in such structures is exemplified when one considers 
the details of how to apply the current LRFD B^/B2 
approach. First, this approach only amplifies the moments, 
whereas second-order elastic analysis provides the complete 
amplified load effects. Second, for such buildings, the B2 
factor can be cumbersome to calculate, and the procedure 
used to perform this important task at each floor can be 
ambiguous. For example, it may be unclear whether to use 
the major or the minor axis effective length factor when com­
puting LP^ for columns whose webs are skewed with 
respect to the principal directions of the wind load (see 
Fig. 5). Alternately, the engineer may be uncertain as to the 
value of Â /j which should be used if torsional deformation 
of the structural system occurs. The use of a second-order 
elastic analysis eliminates the need for the engineer to make 
intricate decisions about the use of approximate techniques 
and formulas. With a comprehensive matrix analysis 
approach, the computation of second-order load effects is 
relegated to the computer, and the number of tedious hand 
calculations and analysis decisions is reduced. 

Although the P-A effects in two- and three-dimensional 
building structures can be handled properly and efficiently 
by a number of procedures,^' '"̂ "'̂  many of the P-A tech­
niques are dependent upon the idealization of the floors as 
rigid diaphragms. The comprehensive analysis methods dis­
cussed in this paper can be used with or without a rigid floor 
model. Although the rigid floor assumption is often applica­
ble, it may be important to model the flexibility of the floor 
diaphragm in certain types of buildings (or in certain floors 
of a complex building structure). Currently, a number of 
frame modeling packages allow the definition of flexible 
floors.'^ If the engineer desires to employ this level of 
sophistication in the structural model, the analysis capabili­
ties described can accommodate this behavior. Also, the com­
prehensive matrix approaches discussed here account for 

WIND 

Fig. 5. Floor plan with columns skewed with respect to 
principal wind directions. 
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P-6 effects in a simple and direct way in the model of each 
element. 

SECOND-ORDER ANALYSIS ISSUES 

The main issues which must be addressed for the efficient 
and effective use of any type of second-order elastic analy­
sis in design can be summarized as: (1) reduction of com­
putational effort, (2) alleviation of solution complexity, and 
(3) calculation of second-order effects in preliminary analy­
sis. Each of these issues is discussed below with an empha­
sis on how they may be addressed when comprehensive 
matrix analysis is used. 

Computational Effort of the Analysis 

In the linear elastic LRFD analysis procedure, only two anal­
yses (the NT and the LT cases) need to be performed to con­
sider all the necessary load combinations for design. If a 
matrix analysis is employed, all the nominal load types can 
be included as multiple right-hand side vectors in the global 
solution of the NT and LT analyses. Then, the member forces 
for design can be obtained by superposition using factored 
combinations of the nominal effects from each load type with 
appropriate amplification by ^i and B2 terms. 

Neither the comprehensive matrix analysis approaches dis­
cussed in this paper nor the simpler P-A analysis 
procedures^' '"̂ "'̂  can match the computational efficiency of 
this linear elastic approach. In other words, since the second-
order behavior is nonlinear, there is no avoiding the fact that 
the use of any type of second-order elastic analysis will 
require some extra computational effort. Since superposi­
tion is in general not valid, this extra effort depends in part 
on the number of separate load combinations considered in 
the design. In general, a separate analysis is required for each 
load combination. However, in some cases only a few con­
trolling load combinations may need to be analyzed and the 
extra effort associated with this aspect would be small. 

Also, the computational effort depends heavily on the effi­
ciency of the nonlinear global solution techniques employed. 
The following sub-section outlines what the authors believe 
to be one of the most efficient nonlinear solution techniques 
for comprehensive second-order elastic analysis of building 
frames. This is followed by a sub-section that describes a 
way by which a limited use of superposition may be 
employed with second-order elastic analysis. 

One-Increment Newton-Raphson Solution Procedure 

Compared to linear elastic analysis, there is little extra com­
putational effort involved with the calculation of the stabil­
ity function terms of the element stiffness matrices if the sta­
bility function approach is used, or of the additional 
geometric stiffness matrices [K^] if a finite element 
approach is employed. Ho\yever, the solution for second-
order elastic forces and displacements in highly nonlinear 
structures can require significant additional computer time. 

The second-order forces in the structure depend nonlinearly 
on the displacements. Therefore, in the general case, the 
global forces and displacements must be solved for iteratively 
(using, for example, a Newton-Raphson algorithm''^) to 
guarantee the satisfaction of equilibrium in the deformed con­
figuration. For severely nonlinear problems, the loading must 
often be applied in small increments to achieve reasonably 
fast convergence of the iterative steps within each increment. 

Fortunately, in most building structures, the nonlinearity 
associated with second-order elastic effects is not severe. For 
example, the effects of member bowing* and large rotations 
of the member chord on the member axial deformation are 
often considered negligible.^°'^' It can be shown that for 
structural steel frames, if the story sway displacements are 
restricted to less than L/400, the relative vertical displace­
ments of the beam-column ends due to chord rotation and 
member curvature effects are roughly 3 orders of magnitude 
less than the member axial deformations associated with the 
uniaxial yield strain, e^L. Even if the story sway displace­
ments are only restricted to L/200, the relative displacements 
due to chord rotation and member curvature effects are still 
two orders of magnitude less than e^L. If these effects are 
disregarded, then the resulting behavior usually allows for 
fast convergence of the Newton-Raphson algorithm. In the 
absence of these effects, the nonlinear terms of the frame 
element incremental force-displacement relationships (der­
ived either by the stability function or the geometric stiff­
ness approach) are associated only with changes in the mem­
ber axial force during the increment.^^ Thus, if there is no 
change in the member axial force during an increment, the 
force-displacement relationships are completely linear. 

In the experience of the authors, if axial deflections asso­
ciated with member bowing and large chord rotations are 
neglected, a one-increment Newton-Raphson procedure is 
very efficient for building type structures. For the formula­
tion and implementation discussed in Ref. 22, the nonlinear 
solution usually converges in either one or two iterations. 
The significance of this aspect is that the second-order analy­
sis for any one of the load combinations would require only 
about one to two times the computational effort of a linear 
elastic NT-LT analysis. Also, the time required for this com­
prehensive analysis would be comparable to that required 
for an iterative P-A method'^ (which is not as easily gener­
alized for three-dimensional analysis, and which does not 
accurately model the P-6 effects). An example solution for 
a 10-story planar frame, generated using the STAND pro­
gram,̂ "̂  is shown in Fig. 6. A 10-increment "predictor-
corrector" solution is shown which depicts the nature of the 
nonlinearity in the structure. For this example, the one-
increment Newton-Raphson algorithm converges to the 
equilibrium solution in two iterations. 

* The member bowing effect is defined as the longitudinal shortening of a member 
due to bending action. 
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Superposition 

Probably the most serious factor which influences the com­
putational effort of second-order elastic analysis is the lack 
of the general ability to use superposition. Theoretically, a 
separate nonlinear analysis must be performed for each fac­
tored load combination considered in the design. Thus, com­
prehensive matrix approaches provide a rigorous solution of 
the elastic structural response at the expense of having to 
execute and manage the results from possibly a large num­
ber of separate analyses. 

Fortunately, superposition may still be employed in a 

W12x22 

W14x22 

do 

do 

W14x26 

do 

W14x30 

3 @ 20 ft 

Spacing: 20 ft 

Roof Load 

Live (Lr) 30 psf 
Dead (D) 40 psf 

Floor Load 

Live (L) 40 psf 
Dead(D) 55 psf 

Exterior wall (at each floor level): 
9.5 k on exterior columns 

Wind(W) 20 psf 

Factored Load: 
1.2D + 1.3W + 0.5L + 0.5Lr 

1.0 

0.8 

0.6 

^ 0.4 

0.2 

0.0 

Fig. 6a. Ten-story planar frame example. 

Linear Elastic 

Predictor-Corrector Incremental 
Solution (10 increments) 

Newton-Raphson Solution (2 iterations) 

0.0 1.0 2.0 3.0 4.0 

Peak Lateral Displacement 

5.0 

Fig. 6b. Comparison of 10-step incremental and one-increment 
Newton-Raphson iterative solution techniques for the 
ten-story planar frame. 

limited sense if the gravity loading is applied to the struc­
ture first and then held constant during the application of 
lateral load, and if it is assumed that: (1) changes in the axial 
forces in frame members during the application of lateral 
loads do not significantly affect the structure stiffness,* and 
(2) the effects of member bowing and large rotation of the 
member chords are negligible. These conditions are neces­
sary to linearize the solution of the system response to lateral 
loads.^^ That is, if the gravity load is applied first and the 
above assumptions are employed, the lateral load analysis 
is a linear analysis for which superposition is valid. 

Even when the above simplifying conditions are satisfied, 
a separate nonlinear analysis must be performed for each 
of the factored levels of gravity load considered in the design. 
Also, if any patterned gravity loads need to be considered 
in the overall system analysis, a separate nonlinear analysis 
would be required for the combinations with these loadings. 
As an example, the designer might decide to check the fol­
lowing load combinations: 

1.4D 
\.2D + 1.6L -h 0.5L, 
\.2D + 0.5L + 0.5L, + \.?>W 
\.2D + 0.5L + \.5E 

(5) 

In this scenario, the second-order amplification associated 
with gravity load is different and a separate nonlinear anal­
ysis would be required for all four of these combinations. 

However, if wind and earthquake loads from multiple 
directions must be considered, the satisfaction of the condi­
tions mentioned in the above paragraph allows for efficient 
analysis of lateral load effects from each of the directions. 
A particular factored gravity load combination can be applied 
in an initial step, and iterations can be carried out to achieve 
an equilibrium solution for this step. Then, as a second step, 
all the appropriate lateral load cases may be applied start­
ing from the gravity loaded state of the structure. As a result 
of the simplifying assumptions discussed above: (1) the global 
behavior is linear during these lateral load increments, and 
(2) the second-order elastic structure stiffness matrix deter­
mined at the end of the gravity load portion of the analysis 
may be used directly to solve for the response to all the lateral 
loads. No iterations are required in the lateral load step, and 
in fact, since the structural behavior is incrementally linear, 
all the lateral loads which must be combined with this par­
ticular gravity load combination can be handled as a multi­
ple right-hand side vector in the global equation solution. 
The second-order structural stiffness only needs to be decom­
posed once, and then back-substitution can be performed for 
all the lateral load cases to be combined with this particular 

* This assumption implies that the additional P-b effects in the frame members due 
to changes in the member axial forces associated with lateral loading are small. The 
story F-A effect is not changed due to variations in the member axial forces asso­
ciated with lateral loading. Therefore, the P-A effects are still represented exactly-
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gravity loading case. In short, this procedure is a general­
ization of procedures suggested by a number of researchers 
in the last several years.'̂ '̂ '̂ '̂ '̂ ^ 

Solution Complexity 

An engineer who wishes to analyze the nonlinear response 
of a general structure is typically faced with multiple deci­
sions regarding numerical parameters such as increment size, 
convergence tolerance, global solution techniques, etc. These 
parameters often have subtle implications depending on the 
analysis program that is being used and they are often sub­
ject to misinterpretation by engineers who do not use the 
program regularly. In summary, it can be said that a sub­
stantial amount of knowledge and numerical expertise is 
required to utilize a general nonlinear finite element analy­
sis package. 

For comprehensive matrix procedures to be applied 
optimally in design practice, the engineer should not need 
to be distracted by details of how to perform the nonlinear 
analysis. The engineer must have an understanding of the 
analysis process, but decisions about the detailed procedural 
aspects of the analysis should not be required when at all 
possible. This is a definite advantage of the one-increment 
Newton-Raphson procedure discussed in the previous sec­
tion. The only analysis parameters which must be specified 
for the Newton-Raphson algorithm are the tolerances used 
to test for convergence, and the maximum number of itera­
tions allowed, which is essentially a check for divergence. 
For practical analysis of building frames, a convergence toler­
ance of 0.001 is sufficient for use with ordinary convergence 
tests^^ and a maximum number of iterations of 10 is reason­
able. In can be concluded that the one-increment Newton-
Raphson solution procedure employed with these simple 
parameters is nearly as straightforward and simple to per­
form as linear elastic analysis. 

Preliminary Analysis 

For preliminary analysis of the structural system, the assumed 
member sizes may not be appropriate for the design. There­
fore, if second-order effects are accounted for rigorously (as 
is done by using a second-order elastic matrix analysis), these 
effects may be unrealistically large or small. It is thus bet­
ter simply to estimate the second-order amplification at 
preliminary stages. This is more appropriate as well from 
a standpoint of computational efficiency. A comprehensive 
matrix analysis approach is strictly appropriate only as the 
member sizes approach the final design solution in a series 
of analysis/design iterations. Approaches for obtaining esti­
mates of second-order effects include the use of the LRFD 
Equation Hl-5 for Bj with an expected or "target" design 
value for A /̂, as well as other methods for obtaining "tar­
get" system amplification factors.̂ '̂ '̂̂ ^ 

APPLICATION OF SECOND-ORDER ELASTIC 
MATRIX ANALYSIS IN DESIGN 

If second-order elastic analysis is to be used optimally in 
design, the engineer must carefully consider a number of 
aspects related to the modeling, analysis, and design proce­
dures. These aspects include: (1) calculation of maximum 
second-order elastic moments within the members, (2) cal­
culation of member effective length factors, (3) efficient 
modeling of gravity columns, i.e., leaned columns, in the 
analysis of the lateral framing system, (4) performance of 
live load reduction with forces obtained from second-order 
elastic analysis, and (5) specification of initial imperfections, 
specifically story out-of-plumbness. Another aspect which 
the authors believe is essential for the effective use of com­
prehensive analysis/design procedures is (6) the availability 
of advanced graphical user-interfaces for depiction of the 
structural behavior and the analysis/design process. The first 
two topics above are primarily member analysis/design con­
siderations, whereas the next three topics are more concerned 
with aspects of the overall structural system. The last topic 
is associated with software development. All of these aspects 
are discussed below. 

ASPECTS AT THE MEMBER LEVEL 

Calculation of Maximum Second-Order 
Elastic Moments Within Members 

Even in members which are loaded only by end moments, 
the maximum second-order elastic moment within the span 
of the member (defined as M,̂  in Chapter H of the LRFD 
Specification) can be greater than the member end moments 
due to P-d effects. This behavior is illustrated by Fig. 7. As 
the axial force becomes large or the member becomes more 
slender, it is more likely that M^ does not occur at the end 
of the member. However, in many practical situations, the 
maximum second-order elastic moment does occur at the 
member end (this is evidenced by the LRFD 5, parameter 
often being equal to 1.0). 

M ' f% 

/ ^ 

first-order 

second-order 

For small axial force, the 
maximum moment is at 
the member end 

first-order 

second-order 

For large axial force, the 
maximum moment is within 
the member span 

Fig. 7. Effect of axial force on the location of the maximum 
second-order elastic moment M„. 
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Although the member stiffness as calculated by the matrix 
approaches may represent the P-d effects adequately (see the 
discussion in the second section of this paper), one problem 
of these approaches is that the analysis provides the mem­
ber forces only at the element ends. Therefore, additional 
calculations are necessary to determine the location and mag­
nitude of M .̂ These calculations may be easily appended 
to the structural analysis and do not need to be performed 
by hand. 

There are a number of ways to compute this maximum 
moment. For example, these values can be obtained directly 
from the fundamental differential equation solution for an 
isolated member. That is, M^ can be obtained on the same 
basis as the matrix terms of the stability function approach 
discussed previously. The reader is referred to Refs. 4 and 6 
for details. Essentially, if a one-increment Newton-Raphson 
solution procedure is employed, the second-order matrix 
analysis gives the end forces on any particular member as 
shown in Fig. 8a. Then, a free-body diagram may be con­
structed for each isolated member using these end forces and 
any loads applied directly to the member. If the applied forces 
are transformed to local axes oriented with the member chord 
(Fig. 8b), there is no difference between the behavior of this 
isolated member and the behavior of a simply supported 
beam-column with the same applied forces. 

Another procedure that can be used to determine M^, 
which is consistent with the finite element approach, is to 
use cubic Hermitian interpolation for the member transverse 
displacements in calculation of the P-d moments within the 
span. However, the cubic Hermitian interpolation functions 
only approximate the true transverse displacements asso­
ciated with the P-d moments along the member length. 

For practical design, the authors recommend the foUow-

Pcose - Vsine 

Psin6 + VcosG 

(a) Element end forces 
obtained from the analysis 

(b) Element end forces oriented 
with the rotated element chord 

ing simple and approximate approach for calculation of M^ 
within end-loaded members: 

1. Obtain the member end forces from the second-order 
elastic analysis and consider the isolated member with 
the end forces oriented with the chord. This is shown 
in Fig. 8b for the case in which only end forces are 
applied. 

2. Approximate equations can be derived, as shown by 
Chen and Lui,^ which give an adequate estimate of 
the maximum second-order bending moment along the 
span for particular loading cases on an isolated mem­
ber. It turns out that, for members loaded only by end 
forces, these approximate equations are the same as 
the equations given in the LRFD Specification for the 
5, factor (but using ^ = 1 for calculation of P^ 
instead of K less than one). Therefore, for these types 
of members, the end moments from the analysis may 
be amplified using the 5, equation to obtain the max­
imum second-order elastic moment for design.* 

If one element is employed for second-order analysis of trans­
versely loaded members, the governing differential equation 
solution should be used to calculate member internal forces. 
These solutions may be programmed for second-order elas­
tic analysis on a case-by-case basis. 

Effective Length Factors 

For buildings which are not restrained against sidesway, the 
LRFD Specification requires the calculation and use of effec­
tive length factors greater than unity when computing the 
nominal axial resistance of a member P^. This is the case 
even when second-order elastic analysis is used to determine 
the load effects.̂ "̂ '̂ '̂̂ ^ If K is taken as unity, as proposed for 
conventional P-A analysis/design, the present AISC inter­
action equations, both in Allowable Stress Design^^ and in 
LRFD, are unconservative if the member is relatively slen­
der and has a relatively high axial load.̂ "̂ '̂ '̂̂ '̂̂ ^ Among the 
different forms of equations considered during the develop­
ment of the LRFD equations for beam-column design, equa­
tions which include a K factor were reported to give the best 
fit to "exact" solutions of the beam-column strength for a 
wide range of cases."̂ '"̂ '̂ ^ 

Figures 9a and 9b illustrate the unconservative nature of 
assuming K equal to one for the LRFD design of a simple 
portal frame. In Fig. 9a. the LRFD curves for ^ = 1.0 and 
2.0 are compared to the "exact" solutions for the beam-
column strength reported by Kanchanalai.^' The exact solu­
tions for strong- and weak-axis bending action are shown 
by the solid lines in the figure, and the specification curves 
are illustrated by the dotted lines. The exact solutions are 
based on W8x31 columns, a yield stress of i; = 3 6 ksi, an 

Fig. 8. Beam-column end forces. 
* The B^ equation with A' = 1 is valid only for cases in which P < P^. If P > 

P^,, the use of the analytical solution^'^ is recommended. 
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elastic modulus of E = 29,000 ksi, a peak compressive 
residual stress of 0.3/;., and initially perfect geometry. Fig­
ure 9b compares the specification curves to the "exact" 
strengths when the effects of initial geometric imperfections 
are included. These curves are generated by adjusting the 
curves from Fig. 9a as explained in Refs. 3 and 4. For the 
frame shown in the figure, this adjustment accounts approx­
imately for the effect of an initial out-of-plumbness of L/750. 

1.0 r 

p 

P., 

0.6 

0.4 U 

Strong axis" 
Weak axis 

(Kanchanalai, 1977) 

G A = 0 
G B = 00 
LVr =40 

LRFD (K= 1.0) 

LRFD (K = 2.0) 

Fig. 9a. General effect of using K = 1 with the LRFD beam-
column interaction equations^rame with initially 
perfect geometry. 

1.0, 

P_ 

P. 

LRFD (K = 1.0) 

G A = 0 
G B = 00 
Ux =40 

0.6 L 

0.4 \ 

0.2 ; 

Strong axis 
Weak axis 

v.. 
I- Kanchanalai, adjusted 

H • lb CO Y LRFD (K = 2.0) 

0.0 ^ X, 
0.0 0.2 0.4 0.6 0.8 1.0 

HL,/2Mp 

Fig. 9b. General effect of using K = J with the LRFD beam-
column interaction equations—comparison of 
specification equations with strengths including 
imperfection effects. 

Direct second-order elastic analysis eliminates the need 
for moment amplification formulas, some of which involve 
a K factor. However, it is important to emphasize that gen­
erally speaking, there is no type of second-order elastic anal­
ysis which eliminates the need to consider the effective length 
factor in the determination of axial resistance for design by 
the current ASD and LRFD provisions. Current develop­
ments in the Canadian Limit States Design Specifications 
have resulted in an approach that does not involve a K fac­
tor in the beam-column design expressions." With regard to 
this issue in conventional P-A analysis, coupled with Allow­
able Stress Design, the SSRC Guide'^ states: 

When the magnitude of the first term [the axial term 
of the interaction equations] is less than some critical 
value, classical (bifurcation) buckling of the frame does 
not govern and the effective length of the column need 
not be used. This critical value can be conservatively 
estimated 'dsf/F^, = 0.85, where F^, is evaluated using 
an effective length. 

It is not certain what the limit on PiJ^Pf, should be for the 
use of this philosophy with the LRFD provisions. The design 
summaries in this paper therefore presume that for unbraced 
frames, effective length factors generally greater than one 
are to be used in the calculation of P,^. 

ASPECTS AT THE SYSTEM LEVEL 

Modeling of Gravity Columns 

In current practice, when first-order analysis is employed, 
it is common to model the lateral system of the structure with­
out including the beams and columns that constitute the 
gravity framing. The gravity loads included in the analysis 
are only those which come from the floor areas tributary to 
the columns of the lateral system as well as from partitions, 
walls, and cladding supported by the lateral system. In many 
buildings, a significant percentage of the gravity load is not 
carried by the lateral framing system. 

If it is desired to perform a second-order elastic analysis 
of the structural system, the destabilizing effects of the gravity 
columns must be included. The loads in the gravity columns 
cannot simply be lumped with the loads applied to the lateral 
system columns, since in general, this results in an over-
conservative design of the lateral system columns."^" 
Wilson''' describes a useful procedure by which the P-A 
effects of the full gravity loads supported at each floor level 
may be considered in a matrix analysis approach. Other tech­
niques similar to Wilson's have been discussed in Refs. 5, 
14, 16, and 17. Wilson's procedure requires that the floors 
be modeled as rigid diaphragms and that the floor degrees 
of freedom be placed at the centroid of the floor. Further­
more, the total P-A effect at each story is approximated by 
assuming that the support of the floor gravity loads is dis­
tributed uniformly over the floor slab. This can result in some 

142 ENGINEERING JOURNAL/AMERICAN INSTITUTE OF STEEL CONSTRUCTION 



error in the representation of P-A effects on the torsional 
response of the building. For example, if the lateral resist­
ing system is composed of a central core and framing on the 
exterior wall of the building with long floor spans between 
the central core and the exterior wall, then much of the sup­
port for the gravity load in the floor will be along the perim­
eter of the frame. In this case, Wilson's assumption can be 
somewhat unconservative. Fortunately, most tall buildings 
are relatively stiff in torsion, and the P-A torsional effect is 
small. 

An alternative procedure is described here which the 
authors believe to be more accurate, more direct to imple­
ment and execute in second-order matrix analysis programs, 
and which does not require the above assumptions. The pro­
posed procedure is derived directly from the P-A effect on 
an individual column. These P-A forces are illustrated in 
Fig. 10. The relationship between these forces and the lateral 
translations at the top and bottom of a column can be writ­
ten in matrix form as 

(6) 

where P is the axial force in the column (negative for com­
pression), and L is the column height. This matrix is actu­
ally the geometric stiffness of a three-dimensional truss ele­
ment. There is a small approximation in the modeling of the 
gravity columns in this way. The actual columns are often 
continuous from floor to floor. Therefore, if the sway of the 
column is not the same in adjacent stories, some bending 
is induced in the column. However, the effect of these 
moments in the gravity columns is not expected to be large. 

The full P-A contribution from a gravity column at any 
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Fig. 10. P-A forces associated with a gravity column. 

story level can be represented in a global matrix solution 
by simply assembling the stiffness matrix of Equation 6 for 
that column into the global structure stiffness. While a finite 
element must be included in the model for each gravity col­
umn, definition of its elastic properties is optional, as is its 
contribution to the structure's elastic stiffness. If a rigid floor 
constraint is employed, these element stiffnesses would be 
transformed to the master node of each floor. Constraint pro­
cedures which perform this operation are discussed in a num­
ber of references including Ref. 33. In this case, the con­
straints associated with the gravity column nodes are the same 
as those for the nodes of the lateral framing system, with 
the exception that a rotational degree of freedom normal to 
the plane of the floor does not have to be modeled at a gravity 
column node. The rigid floor assumption allows the descrip­
tion of the in-plane displacements of the floor simply as two 
in-plane displacements and one rotation at the floor master 
node. The out-of-plane degrees of freedom at the nodes 
belonging to the lateral framing system are independent of 
these floor in-plane displacements. It is not necessary to 
model the out-of-plane degrees of freedom at the gravity col­
umn nodes in the suggested procedure. If the matrix analy­
sis program requires a constant number of degrees of free­
dom at each nodal point, this may be accommodated by 
fixing the out-of-plane degrees of freedom and the rotational 
degree of freedom normal to the plane of the floor at the 
gravity nodes. Also, the beams of the gravity framing sys­
tem do not need to be modeled if the rigid floor constraint 
is employed. 

If the rigid floor assumption is not employed, then the 
gravity column nodal degrees of freedom are included directly 
in the global structure stiffness. In this case, the model of 
the floor system must include some connectivity to all of the 
gravity column nodes. 

Live Load Reduction 

Incorporating live load reduction into a second-order elas­
tic analysis/design procedure poses some unique problems. 
In current practice, if linear elastic analysis is employed, it 
is common to apply the full factored live load in the analy­
sis. The full factored live load forces in the structural mem­
bers are thus obtained. Then, it is typical to apply live load 
reduction to these forces on a member by member basis, con­
sidering the influence area for each particular member. 
Finally, these reduced live load member forces are used for 
the design. 

Two problems occur when attempting to apply this live 
load reduction procedure with second-order elastic analy­
sis. The first problem relates to the fact that superposition 
of the results for separate factored load effects is not valid. 
As discussed previously, in general a separate second-order 
elastic analysis must be performed for each different com­
bination of factored loads. The main problem here is that, 
since all the load types are applied together in any of the 
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second-order analyses and superposition is not valid, it is 
generally not possible to determine the portion of the second-
order elastic forces in a particular member resulting from 
the live load part of the loading. 

One possible method of alleviating this problem is first 
to perform a linear elastic analysis for the full nominal live 
load (using a load factor of 1.0). Member live load reduc­
tion percentages are then computed by code provisions, based 
on the influence areas of the different members in the struc­
ture. Using these percentages, the engineer computes for each 
member the amount of live load force which may be sub­
tracted to achieve the member live load reductions permit­
ted by the particular building code being used. These forces 
are referred to here as the "live load reduction forces." The 
second-order analyses for all appropriate load combinations 
are then performed. After this, for each load combination, 
the "live load reduction forces" are multipled by the live load 
factor for that load combination, and these resulting forces 
are subtracted from the member second-order analysis forces. 
These final forces are the ones used for design. The sug­
gested procedure is summarized in Fig. 11. 

This approach should be conservative since the second-
order effects of the full unreduced live load are included in 
the analysis but not in the reduction of the member live load 
forces. Alternatively, a more involved approach would be 
to obtain "live load reduction forces" based on a number 
of second-order elastic analyses, one for each factor by which 
the live load is multiplied in the design load combinations. 

In complex structural systems, the influence area for a par­
ticular member may not be straightforward to estimate. 
Therefore, other methods of handling live load reduction may 
be desirable. For example, a simpler procedure would be to 
apply the reduction directly to the live loads used in the analy­
sis. The results from the second-order elastic analyses could 
then be used directly for design. However, in this approach, 
some members would be designed for more than the per­
mitted reduced live load member forces. For example, the 
fully reduced live load in a beam member may transfer 
greater loads to the adjacent columns than need to be 
designed for according to the maximum live load reduction 
for the columns. 

It should be emphasized that live load reduction accounts 
for the aspect that the maximum live load effects in the dif­
ferent members of a frame do not occur at the same point 
in time. This leads to the second problem associated with 
the use of live-load reduction with second-order elastic analy­
sis: the live loads causing the second-order effects in a frame 
structure are assumed to be applied at the same point in time. 
The first procedure suggested above is conservative in that, 
for calculation of second-order effects, the full unreduced 
live load is used. However, one might question if some lesser 
value of live load might not be appropriate for assess­
ment/calculation of the overall stability effects in the 
structure. 

1. Apply the nominal live load (Load factor 
of 1.0). Perform a linear elastic analysis. 

2. Compute the member live load reduction 
forces (LLRF) based upon code provisions. 

Member 

# 
Nominal live 

load force 
Live load 

reduction factor 

30 
20 

0.3 
0.2 

3. Perform second-order elastic analyses for 
the desired factored load combinations. 

4. For each load combination, multiply the 
LLRF by the combination' s live load factor 
and subtract from the member forces to 
obtain the design forces. 
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Fig. U. Live-load reduction procedure. Fig. 12. Identical columns with initial imperfections. 
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Minimum Out-of-Plumbness for Gravity Loaded Frames 

It is not necessary, nor is it practical, to model initial mem­
ber out-of-straightness effects in a second-order elastic analy­
sis. This is because member out-of-straightness effects are 
accommodated implicitly in the AISC-LRFD formulas for 
column axial resistance. Specifically, the AISC-LRFD col­
umn strength equations are essentially the same as column 
strength curve 2 of the Fourth Edition SSRC Guide,̂ ^ which 
was developed based on an out-of-straightness criterion of 
L/1500. 

Also, the effects of column out-of-plumbness are accounted 
for, to a certain extent, in the AISC-LFRD column strength 
equations. This aspect is illustrated by the two columns in 
Fig. 12, which behave identically in both the elastic and 
inelastic ranges of loading. The simply supported column 
has an initial out-of-straightness of L, /1500 whereas the cor­
responding sway column has an initial out-of-plumbness of 
L2/75O. 

Since the AISC erection tolerance for columns is L/500, 
it could be stated that the maximum possible out-of-
plumbness of the columns is not accounted for in the AISC-
LRFD column strength formulas. Furthermore, the effect of 
member out-of-plumbness on the force distribution in the 
structural system can be accounted for rigorously only if the 
out-of-plumbness is considered directly in the analysis. For 
example, to obtain the forces associated with out-of-
plumbness in a braced or shear-wall core of a tall building 
system, the out-of-plumbness effects might be considered 
directly in the analysis. However, in most cases, these types 
of forces may be estimated conservatively by simple hand 
calculations, and they are often quite small compared to the 
forces associated with the lateral loads on the system. 

Also, one would never expect all the columns of a build­
ing to be at the maximum permitted out-of-plumbness and 
all leaning in the same direction. Beaulieu and Adamŝ "̂  
made an extensive study of out-of-plumbness and erection 
tolerances and their effect on frame stability and statistically 
derived the following ''effective" value of A, for stories of 
gravity loaded frames: 

A,- = 
0.006L 

,̂0.445 
(7) 

where L is the story height and n is the number of columns 
in the story. When n becomes larger than 12, the value of 
A, obtained from this equation is less than L/500 (the AISC 
erection tolerance for columns), and when n is larger than 
29, A, is less than L/750. 

Based on the above observations, the authors conclude that 
out-of-plumbness effects may often be neglected in the 
second-order elastic analysis of a structural system. How­
ever, the decision about whether they should be considered 
or not must be left to the judgment of the engineer. If these 
effects are considered, the frame might be analyzed for an 

out-of-plumbness specified as given by Equation 7 for two 
orthogonal directions in each story. The specification of out-
of-plumbness may be easily automated using the computer. 

INTERFACE BETWEEN THE COMPUTER 
AND THE USER 

While second-order elastic analysis offers many benefits, the 
large amount of data which is generated from the multiple 
analyses requires careful management. Even the use of the 
LRFD ^81/̂ 2 approach generally requires more analyses 
and more careful management of data than do the equiva­
lent analysis/design procedures of the ASD.̂ ^ An interactive 
computer graphics interface greatly aids in this data manipu­
lation. In particular, the creation and management of the 
structural geometry, loading, member properties, analysis 
parameters, analysis results, and design results will be 
expedited significantly if they are coupled with a fully devel­
oped graphical interface. Preparation and management of 
the results from different load combinations especially will 
be facilitated. The authors have had the opportunity to work 
with several current systems in research and in industry which 
serve as examples of the potential of sophisticated graphi­
cal interfaces.'^'^^ There are several other emerging pack­
ages which provide similar interfaces. While the design pro­
cedure outlined in the next section may be more complex 
than procedures that are used commonly in practice, it is 
expected that the complexity will be offset by the added 
power and capacity of the current and new generations of 
computers and by the use of an effective interactive com­
puter graphics interface. This environment will then allow 
the broad scope of analysis and design capabilities that make 
second-order elastic analysis so appealing. In fact, with an 
appropriate user interface, the comprehensive approaches 
are in certain respects simpler and more intuitive than con­
ventional approaches. 

RECOMMENDED DESIGN PROCEDURE 

Based on the concepts outlined in the previous sections, it 
is possible to utilize comprehensive second-order elastic 
analysis approaches in the design of a lateral framing sys­
tem according to the AISC LRFD Specification. Below are 
two recommended step-by-step analysis/design approaches 
which achieve this goal. The purpose of outlining these 
approaches is not to specify a restrictive procedure that 
should be followed if comprehensive second-order elastic 
analysis is to be used, but to outline an appropriate general 
framework for analysis and design using such methods. The 
first approach is a general procedure which does not employ 
any of the simplifying assumptions needed to apply super­
position in a limited sense. The second procedure takes 
advantage of the simplifying assumptions previously dis­
cussed such that superposition can be employed for all the 
lateral load cases which are combined with a particular set 
of factored gravity loads. 
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Procedure 1 
1. Perform one or more preliminary analysis/design steps. 

Some or all of these steps might be computerized. As 
discussed previously, approximate calculation of 
second-order effects, or use of "target" amplification 
factors, is considered to be more appropriate than use 
of a comprehensive matrix analysis procedure at these 
preliminary stages. 

2. If desired, specify a minimum initial out-of-plumbness 
in two orthogonal directions for each story of the frame. 

3. Analyze the structure for each factored combination 
of gravity and gravity plus lateral loads. Use a one-
increment Newton-Raphson procedure for the analy­
sis. A separate analysis is needed for all the different 
distributions and magnitudes of loading considered: for 
wind load in different directions, for full and patterned 
gravity loads, etc. Use the factored unreduced live load 
in these analyses. 

4. Perform a linear elastic analysis of the nominal live load 
effects (load factor of 1.0), calculate member live load 
reduction percentages, and determine the member live 
load reduction forces as discussed previously. 

5. For each load combination considered in the analy­
sis/design iterations: 
a. Perform live load reduction for each member in the 

framework by subtracting the factored live load 
reduction forces obtained in Step 4 from the mem­
ber load effects obtained in the analysis. 

b. For beam-columns, obtain the maximum second-
order elastic moments, M^̂  and M^^y, along the 
length of the member based on the end moments 
and axial force from the analysis and any local load­
ing on the isolated member. For end-loaded mem­
bers, determine these moments based on these loads 
and the B^ amplification factor from Chapter H of 
the LRFD Specification (as discussed previously). 

c. Check each beam-column in the lateral framing sys­
tem against the specification provisions. Use effec­
tive length factors that are greater than or equal to 
one for the calculation of the nominal axial resis­
tance P^ unless the beam-column is "braced" by 
another portion of the structural system (as per 
Chapter C of the AISC LRFD Specification). 

d. Check the beams of the lateral system against the 
specification provisions. Obtain the moments within 
the span of the beams by statics given the end 
moments from the analysis and any local loading 
applied to the beam. These local loads may be 
reduced by member live load reduction percentages. 

e. Check the gravity columns using an effective length 
factor of unity for the calculation of P,,. Often, the 
forces for these members may be obtained by cal­
culations separate from the matrix analysis. 

6. Resize the members as required. 

Of course, in Step 5, local loading effects often cannot be 
considered effectively in the overall analysis of the struc­
ture (this is true for any type of analysis, linear or secon-
dorder elastic). The forces computed for a particular mem­
ber in the second-order elastic analysis may be used directly 
for design unless extra local effects need to be taken into 
account. 

Procedure 2 

The second procedure is exactly the same as the first with 
the exception of the performance of the matrix analyses in 
Step 3. For Step 3 of the second procedure, utilize the 
assumptions necessary to justify the use of superposition for 
all lateral load cases added to a particular set of factored 
gravity loads. For each of these sets of gravity load com­
bined with multiple cases of lateral load, perform the anal­
ysis in two steps as discussed previously in the paper: first 
apply the factored gravity loads, and then apply all the cor­
responding lateral load cases as a linear increment from this 
factored gravity load state. Superimpose the gravity and 
lateral loads for use in Step 5. 

CONCLUSIONS 

The matrix analysis procedures outlined in this paper account 
comprehensively for second-order effects and are thus suit­
able for use in design of both simple structural systems as 
well as for systems with characteristics such as irregular 
geometry, leaned columns, and flexible floor diaphragms. 
These methods account for P-d effects accurately in any sit­
uations where they may be significant. When formulated as 
outlined, the comprehensive matrix analysis procedures 
require about the same computational effort as conventional 
P-A type methods. Furthermore, use of these types of pro­
cedures reduces the number of tedious hand calculations and 
analysis decisions that must be made. For example, direct 
second-order elastic analysis eliminates the need for setting 
up separate no-translation and lateral-translation analysis 
cases. The designer is freed to concentrate on the physical 
behavior and the performance of the structure at hand. 

The comprehensive procedures outlined here require some 
additional computation compared to linear elastic ap­
proaches. Because complications arise with the use of super­
position, they require management of results from several 
analyses to account properly for load combinations. Never­
theless, continuing advances in hardware coupled with devel­
opment of interactive computer graphics analysis/design sys­
tems will allow this technology to be applied effectively in 
practical design. At no time should any computer analysis, 
design algorithm, or data management be a "black box." The 
engineer must always be aware of the assumptions and capa­
bilities of the software system being used. However, through 
the use of sophisticated interactive computer environments, 
integrated management and design of complex structural 
models may be performed efficiently and intuitively. 
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This paper has addressed the ways in which several criti­
cal design issues relate to the use of second-order elastic anal­
ysis. Further work is recommended in the following areas: 

1. Assessment of the need for and possible improvement 
of the analysis technology to account better for effects 
of member lateral-torsional stability on the overall limit-
states behavior of structural systems. 

2. Investigation of possible LRFD beam-column design 
recommendations which alleviate the need for calcu­
lation of effective length factors. The use of the effec­
tive length concept seems necessary to formulate beam-
column interaction equations which are generally 
applicable for a wide range of frame types and for any 
range of axial force versus moment in the beam-column 
members.̂ '"^ Yet, for complex structural systems, the 
calculation of effective length is a challenging and time-
consuming part of the design effort which, in the con­
text of the current specifications, is not alleviated by 
simply accounting for second-order elastic amplifica­
tion of the load effects. Liew, et al.̂ "̂  have shown that 
if (1) limits are placed on the maximum allowed LRFD 
B2 amplification factor and (2) a minimum out-of-
plumbness is modeled in the analysis, the LRFD inter­
action curves with K = I used to determine the axial 
strength P^^ correlate well with "exact" strength curves 
for some types of unbraced frame subassemblies. The 
current Canadian Standard^ places a maximum limit 
of 1.4 on B2, requires that a minimum lateral force of 
0.005P be applied for gravity load analysis (this is 
related to out-of-plumb effects), and employs the actual 
column length in the beam-column design calculations. 

3. Assessment of the proper use of live load reduction with 
second-order elastic analysis of the structural system. 
The method proposed in this paper is relatively straight­
forward. It allows the engineer to use judgment in the 
computation of the reduction factors throughout the 
building in a manner consistent with current design 
practice. This is an important feature since the calcu­
lation of influence areas requires judgment on the part 
of the engineer. However, the implications of this as 
well as other live load reduction approaches should be 
investigated more thoroughly with respect to the designs 
obtained as well as the design effort required. 

4. Implementation and use of a wide variety of possible 
second-order elastic analysis/design methods in a prac­
tical design setting. To the author's knowledge, the 
appropriate commercial software for accomplishing the 
comprehensive procedures discussed here does not cur­
rently exist. Several comprehensive analysis/design pro­
cedures have been outlined in this paper not only to 
summarize their scope and characteristics, but also to 
promote discussion of their desirable and undesirable 
features. 

Second-order elastic matrix analysis, when coupled with 
integrated graphical analysis/design systems, allows the engi­
neer to exercise greater freedom in structural design. Only 
by continuing to attack these coupled analysis and design 
issues will more advanced approaches be able to assist in 
providing both efficient and cost-effective design solutions. 
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