
Unified Autostress IVIethod 
CHARLES G. SCHILLING 

ABSTRACT 

A new unified method of inelastic analysis that can be 
applied in both the AASHTO overload and maximum load 
checks is developed in this paper. Formerly, different 
methods of analysis were used in these two checks in the 
AASHTO alternate load factor design procedures. The new 
method, which is called the Unified Autostress Method, can 
account for yielding at any number of negative- and positive-
bending locations, such as pier and flange-transition loca
tions. The new method is founded on classical indeter
minate theory and can be readily adapted for computer 
programming. 

In continuous spans, automoments are caused by yielding 
at various locations and remain after the loading is removed. 
These automoments are calculated by satisfying a continuity 
relationship at all pier locations and a rotation relationship 
at all yield locations. The continuity relationship depends 
on the stiffness properties along the entire length of the mem
ber, and the rotation relationship depends on the properties 
of the cross sections at the yield locations. An iteration pro
cedure is required for more than two spans; one such pro
cedure, which has been shown to work satisfactorily, is 
outlined. 

INTRODUCTION 

AASHTO now allows alternate load factor design (ALFD) 
procedures for designing braced compact sections.^ These 
ALFD procedures are based on the autostress method^ and 
permit inelastic redistribution of moments in continuous 
spans. The ALFD procedures, like the load factor design 
(LFD) procedures,^ required design checks at both overload 
(1.67 times the specified service load) and maximum load 
(2.17 times the specified service load). The beam-line 
method^ of analysis is normally used in the ALFD overload 
check and the mechanism method^ is normally used in the 
maximum load check. 

A new unified method of inelastic analysis^ that can be 
applied in both the overload and maximum load checks is 
developed in this paper. The new method, which is called 
the Unified Autostress Method (UAM), can account for yield
ing at any number of positive-bending or negative-bending 
locations such as flange-transition and pier (interior support) 
locations. It gives the same results as the beam-line and 
mechanism methods, but is easier to understand and apply, 
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especially for bridges with more than two spans or when 
yielding in positive-bending regions is considered. The new 
method is founded on classical indeterminate theory and can 
be readily adapted to computer programming. Iterative pro
cedures are required for girders with more than two con
tinuous spans. The new method has been used to make trial 
autostress designs for steel girders.^ 

The paper first explains the development of automoments 
due to yielding at piers and other locations. If the plastic rota
tions at all yield locations are known, the automoments can 
be calculated by classical indeterminate methods and the total 
moments can be obtained by adding these automoments to 
the elastic moments caused by the applied loading. Addi
tional information, however, is required to determine the 
plastic rotations caused by a given loading. 

The paper defines two relationships that can be used to 
determine the plastic rotations for a given loading: a con
tinuity relationship and a rotation relationship. Both relation
ships must be satisfied. The continuity relationship interre
lates the plastic rotations at all yield locations and the 
moments at all pier locations; it depends on the stiffness 
properties of the girder. The rotation relationship interrelates 
the plastic rotation and moment at each yield location and 
depends on the properties of the cross sections at those 
locations. 

Finally, the paper discusses calculation procedures used 
in the new method and application of the method to bridge 
design. The discussion of calculation procedures covers iter
ation procedures, stifftiess properties, sequential loading, and 
composite sections. The discussion of application of the 
method to design covers both the AASHTO maximum load 
and overload checks. 

AUTOMOMENTS 

Due to Yielding at Piers 

Yielding at a pier due to a given load causes a plastic rota
tion that remains after the loading is removed. This perma
nent rotation actually occurs over a finite length, but is 
assumed to occur at a single cross section (over an 
infinitesimal length) at the pier. Thus, the girder is assumed 
to be elastic over its entire length and to have all of the plas
tic rotation concentrated in the angular discontinuity at the 
pier. This is the usual assumption made in plastic design 
methods.^ 

With this assumption, the plastic rotation is equivalent to 
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an angular discontinuity created by cutting the ends of two 
beams slightly off square and then welding them together 
end to end as illustrated in an exaggerated way in Fig. 1. 
When the spliced beam is placed on the abutments and held 
down against the pier (either by a downward reaction at the 
pier or by dead weight), moments occur along the beam as 
illustrated in the figure. 

Such moments develop automatically if pier yielding 
occurs in a continuous girder; hence, they are called automo-
ments. They are proportional to the amount of plastic rota
tion (or angular discontinuity) at the pier and can be calcu
lated by classical indeterminate theory. If yielding and plastic 
rotation occur at more than one pier, the automoments caused 
by the plastic rotation at each pier can be calculated 
separately and summed to get the total automoments. The 
automoments are held in equilibrium by reactions at the sup
ports and remain after all applied loading is removed. Fig
ure 2 illustrates the automoments caused by an angular dis
continuity (plastic rotation) at Pier 1 of a three-span girder. 

The classical three-moment method of indeterminate 
analysis ̂ ^ is ideally suited for calculating the automoments 
caused by plastic rotation at one or more piers. In this 
method, the continuous span is treated as a series of simple 
spans (or hinges are inserted at the piers), and the end 
moments necessary to restore the continuity are determined. 
First, end slopes due to unit end moments are calculated. 
These end slopes define the stiffness characteristics of the 
girder. The three-moment equation derived in Appendix A 
is then applied at each pier; this gives a sufficient number 
of simultaneous equations to provide a unique solution. 

The three-moment equation defines the plastic rotation at 
a pier in terms of (a) the end slopes caused in the adjacent 
spans by the applied load, (b) the stiffnesses of the adjacent 
spans expressed as end slopes caused by a unit moment at 
an end, and (c) the moment at the pier and at the two adja
cent piers. For an elastic analysis of a girder subjected to 
applied loads, the plastic rotation, or angular discontinuity, 
is set to 0 at each pier, and the end slopes due to the applied 
loads control the pier moments. In calculating the auto

moments due to the plastic rotation, the applied loads and 
corresponding end slopes are 0 and the pier moments result 
only from the plastic rotation. 

Due to Yielding at Other Locations 

The applied loading may cause yielding at locations other 
than the piers. For example, yielding might occur at the loca
tion of the maximum positive moment; this can occur as a 
result of residual stresses even if the moment is below the 
theoretical yield moment. Similar yielding might occur at 
splice locations where the flange width, thickness, or yield 
strength is changed. Any such yielding causes automoments 
similar to those caused by pier yielding. 

The yielding at each location can be assumed to occur over 
an infinitesimal length and be equivalent to an angular dis
continuity at that location. The resulting automoments, illus
trated in Fig. 3, can again be calculated by the three-moment 
equation. In this case, however, the plastic rotations at the 
piers are 0 and the automoments result from end slopes 
caused by the plastic rotation within the span. If an angular 
discontinuity is inserted into a simple beam, the rest of the 
beam will remain straight as illustrated in Fig. 3. The result
ing end slope is given by 

S = 
aR 

(1) 

where S is the slope at one end, a is the distance from the 
opposite end to the angular discontinuity R, and L is the span 
length. 

CONTINUITY RELATIONSHIP 

The total moments in a continuous span under a given load
ing are equal to the algebraic sum of the elastic moments 
caused by this loading and the automoments due to plastic 
rotations at various locations. The plastic rotation at any loca
tion may have resulted from either yielding due to the pres
ent loading, or yielding from a previous different loading. 
The total moment at Pier 1 can be expressed as 
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Fig. 1. Plastic rotation analogy. Fig. 2. Automoments due to discontinuity at Pier 1. 
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In this equation, MIC is the total (continuity) moment at 
Pier 1, MIE is the elastic moment at Pier 1, RPi is the plas
tic rotation at Pier 1, M\Pi is the automoment at Pier 1 due 
to a unit plastic rotation at Pier 1, MLP2 is the automoment 
at Pier 1 due to a unit plastic rotation at Pier 2, RSI is the 
plastic rotation at a point in Span 1, MLSl is the automoment 
at Pier 1 due to a unit plastic rotation at the point in Span 1, 
and the other parameters are defined in a comparable way. 
Automoments due to yielding at any number of different loca
tions can be included in this equation. 

The automoments due to unit plastic rotations (MLPl, AfLSl, 
and similar terms) will be called automoment coefficients. 
The actual automoments can be expressed as the product of 
these automoment coefficients and the corresponding plas
tic rotations because the automoments are proportional to 
the plastic rotations. The automoment coefficients are actu
ally stiffness properties of the girder. This automoment-
coefficient approach facilitates subsequent calculations as 
will be explained later. 

Equation 2 provides a continuity relationship that inter
relates the pier moment with the plastic rotations at all yield 
locations. This relationship is based on classical indeter
minate theory and depends on the stiffness properties of the 
girder. A similar continuity equation can be defined at each 
pier. These continuity relationships are used in conjunction 
with rotation relationships at the yield locations to determine 
the correct pier moments for a given loading. The moments 
at other locations along the span can then be calculated by 
elastic procedures. 

ROTATION RELATIONSHIP 

At each yield location, the total moment (elastic moment plus 
automoments) and the corresponding plastic rotation must 
fall on the plastic-rotation curve (moment versus plastic rota
tion) for the cross section at that location. As illustrated in 
Fig. 4, such a plastic-rotation curve can be obtained by sub
tracting the elastic rotation, represented by the straight dashed 
line in the figure, from the total rotation represented by the 
solid curved line.^ The plastic-rotation curve depends on the 
properties of the cross section, especially the web and flange 
slenderness ratios, and defines the permanent rotation that 

remams after a simple-span specimen of this cross section 
has been loaded into the inelastic range and then unloaded. 

The permanent rotations result mainly from: (a) steel yield
ing, including the effects of residual stresses; (b) the spread 
of this yielding along the length as the loading progresses; 
(c) cracking or local crushing of the slab in composite sec
tions; and (d) permanent distortions of the cross sectional 
shape. Plastic-rotation curves are generally determined in 
such a way that they give the total plastic rotation over the 
finite length in which yielding occurs. Thus, the total plas
tic rotation due to yielding along the span is accounted for 
in the UAM method even though this plastic rotation is 
assumed to be concentrated in an angular discontinuity and 
the girder is assumed to be elastic over its entire length in 
the continuity relationship. 

At present, such plastic-rotation curves can best be deter
mined experimentally, but in the future, it may be possible 
to generate such curves by sophisticated computer model
ing. ̂ ^ Some plastic-rotation curves developed^ from test 
results"̂ '̂ '̂ ' are given in Appendix B for girders with 
ultracompact compression flanges and slender webs; curves 
are given for both positive- and negative-bending sections. 
These curves were used to make the trial designs mentioned 
earlier.^ 

CALCULATION PROCEDURES 

Iteration Procedure 

The moments and plastic rotations for a given loading can 
be calculated by inserting hinges at the piers and applying 
the three-moment equation. At each pier, there are two 
unknowns, the plastic rotation and the moment; there are 
also two independent equations, one from the continuity rela
tionship and the other from the rotation relationship. At some 
piers, of course, the plastic rotation may be 0. At each other 
yield location (those not at piers), there is one unknown, the 
plastic rotation, and one equation from the rotation relation
ship. The moments at these locations are defined by the pier 
moments and the applied loading. Thus, there are enough 
simultaneous equations for a unique solution. 

For a two-span girder with yielding only at the pier, the 
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Fig. 3. Automoments due to discontinuity in Span 1. 
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Fig. 4. Relationship between total rotation and plastic rotation. 
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solution can be obtained directly without iteration from the 
two available simultaneous equations. However, if yielding 
occurs at other locations, or there are more than two spans, 
iteration is generally required because the rotation relationship 
is nonlinear and because the location of the peak positive 
moment varies as the loading increases in the inelastic range. 
An iteration procedure that has been shown to work satisfac
torily^ is described briefly below and in more detail in Ap
pendix C. Other iteration procedures could be used in the UAM. 

The proposed iteration procedure is conducted in two 
stages. In Stage 1, the plastic rotations at all pier locations 
are progressively changed until both the continuity and rota
tion relationships are satisfied at all piers. In this stage, the 
plastic rotations at all other yield locations are assumed to 
remain constant at the values determined in the previous iter
ation (or assumed in the first iteration). In Stage 2, the 
moments at all other yield locations (those not at piers) are 
calculated from the applied loading and the pier moments 
from Stage 1. The corresponding plastic rotations at these 
locations are determined from the rotation relationships 
(plastic-rotation curves) for these cross sections and used in 
the next Stage 1 iteration. 

The iteration procedure is continued until the differences 
between the plastic rotations from two successive Stage 2 
iterations are within acceptable limits. At this point, all 
moments and plastic rotations are correct within acceptable 
iteration limits. If the applied loading exceeds the maximum 
(ultimate) strength of the girder, the iteration procedure will 
not converge. The elastic moments remain constant during 
the iterations. 

Stiffness Properties 

The stiffness properties of the girders must be calculated 
before the iteration procedure is started. These properties 
do not change during the iterations. Specifically, it is neces
sary to calculate the automoments at the piers due to unit 
plastic rotations at the piers and other locations (automo
ments coefficients), and the end slopes due to unit end 
moments at the piers (end-slope coefficients). The automo-
ment coefficients are used in the continuity relationship dis
cussed earlier, and the end-slope coefficients appear in the 
three-moment equations given in Appendix A, which are 
used to calculate both elastic moments and automoments. 

The following automoment coefficients and end-slope 
coefficients need to be calculated for a three-span girder if 
yielding at the maximum positive moment location in each 
span is considered. The spans and piers are numbered con
secutively from the left. 

Automoment Coefficients: 
MlPl = automoment at Pier 1 for unit plastic rotation at Pier 1 
MLP2 = automoment at Pier 1 for unit plastic rotation at Pier 2 
MlSl = automoment at Pier 1 for unit plastic rotation in Span 1 
MIS2 = automoment at Pier 1 for unit plastic rotation in Span 2 

MIS3 = automoment at Pier 1 for unit plastic rotation in Span 3 
M2P1 = automoment at Pier 2 for unit plastic rotation at Pier 1 
M2P2 = automoment at Pier 2 for unit plastic rotation at Pier 2 
MlSl -= automoment at Pier 2 for unit plastic rotation in Span 1 
MlSl = automoment at Pier 2 for unit plastic rotation in Span 2 
M1S3 = automoment at Pier 2 for unit plastic rotation in Span 3 

End-Slope Coefficients: 
SIPIMI = end slope in Span 1 at Pier 1 for unit moment at Pier 1 
SIPIMI = end slope in Span 2 at Pier 1 for unit moment at Pier 1 
SlPiMl = end slope in Span 2 at Pier 1 for unit moment at Pier 2 
SlPlMl = end slope in Span 2 at Pier 2 for unit moment at Pier 1 
SlPlMl = end slope in Span 2 at Pier 2 for unit moment at Pier 2 
S3P1M1 = end slope in Span 3 at Pier 2 for unit moment at Pier 2 

To determine the automoment coefficients for plastic rota
tion at Pier 1 (MlPi and M2Pi), a hinge is placed at Pier 1 only, 
and a unit angular discontinuity is imposed at that point. The 
resulting moments at Piers 1 and 2 are then calculated by an 
indeterminate method such as the three-moment method. To 
determine the automoment coefficients for plastic rotation at 
a point in Span 2 (MlSl and MlSl), a unit angular discon
tinuity is imposed at that point, and the resulting moments at 
Piers 1 and 2 are calculated by an indeterminate method. No 
hinges are placed in the girder for this calculation. The end-
slope coefficients in Span 2 for a unit moment at Pier 1 
(SlPiMl and SlPlMl) are determined by applying a unit 
moment to the left end of Span 2 treated as a simple span, and 
calculating the resulting slopes at the left and right ends. 

Sequential Loadings 

Automoments are retained in the girder after the loading that 
caused them is removed. These automoments will not be 
changed if the same loading is applied again, but may be 
changed if a different pattern of loading is applied. The final 
automoments that will result from any sequence of loadings 
can be determined in UAM by using the plastic rotations for 
each loading as the starting values for the analysis of the next 
loading. 

In a bridge girder, the maximum automoments at piers 
usually result from loading on the two adjacent spans. Such 
a loading can be caused by two trucks (or strings of trucks 
simulating lane loading) crossing the bridge at the proper 
spacing. If there are more than two piers, the automoments 
caused when the two trucks are straddling the first pier will 
be changed when the trucks are straddling the second pier. 
If the same trucks repeatedly cross the bridge at the same 
spacing, the resulting automoments will eventually stabilize 
(usually after only a few passages) and thereafter remain 
unchanged. The same thing will happen if the piers are alter
nately loaded (trucks or lane loading in the two adjacent 
spans) in the UAM. 

Composite Girders 

In composite girders, a portion of the dead load is usually 
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applied to the steel girder before the slab has hardened. In 
a continuous span girder, this causes a set of elastic moments, 
deflections, and end slopes that can be calculated by using 
the stiffness of the steel section in an indeterminate analy
sis. When the remaining portion of the loading (dead plus 
live load) is applied to the composite section, additional elas
tic moments, deflections, and end slopes occur and can be 
calculated by using the stiffness of the composite section. 
Thus, the total elastic moments, deflections, and end slopes 
can be calculated by treating the steel and composite sec
tions separately and combining the values from the two sep
arate analyses. 

If steel yielding occurs at a pier when loading is applied 
to the composite section, a plastic rotation develops and 
causes automoments in the composite section. The total 
moments are equal to the algebraic sum of the elastic 
moments in the steel section, the elastic moments in the com
posite section, and the automoments in the composite sec
tion. Thus, MIE in Eq. 2 is composed of the elastic moments 
in the steel and composite sections, each calculated by using 
the appropriate stiffness in the indeterminate analysis. The 
automoment coefficients (MLPl, etc.) in this equation are cal
culated by using the stiffness properties of the composite 
section. 

To be strictly correct, the load applied to the steel section 
before the slab has hardened should also be accounted for 
in the rotation relationship. Specifically, a portion of the 
moment should be applied to the steel section and then addi
tional moment applied to the composite section when gener
ating plastic-rotation curves by either tests or analyses. 
Plastic-rotation curves generated by applying all moment to 
the composite section, however, may provide a suitable 
approximation, especially, if it is necessary to use a gener-
atic curve (instead of a curve for the particular cross sec
tion) anyway. 

For normal bridge loadings, no yielding, or only a very 
small amount of yielding, occurs before the slab has hard
ened. Consequently, any effect of such yielding can gener
ally be neglected. However, it can be considered in the UAM 
if desired. To do this, the plastic rotations and automoments 
for yielding in the steel section are calculated first. These 
remain unchanged when load is applied to the composite sec
tion, but additional plastic rotations and automoments occur 
in this section. The constant automoments in the steel sec
tion, of course, must be included in Eq. 2. 

APPLICATION TO DESIGN 

Maximum Load Check 

In the maximum load check, the specified factored loading 
(2.17 times the service load) must not exceed the maximum 
(ultimate) strength of the girder. Thus, the maximum load 
check is satisfied if the specified loading is applied in the 
UAM and the iteration procedure converges. Since the max

imum load check is based on the worst single loading 
expected, it is probably not appropriate to consider sequen
tial loadings in this check. Sequential loading is not presently 
considered in the maximum load check in either LFD^ or 
ALFD.i 

Overload Check 

At present, both LFD^ and ALFD^ limit the maximum 
stress in positive-bending regions to a fraction of the yield 
stress to prevent objectionable permanent deflections. This 
fraction is 0.95 for composite sections and 0.80 for noncom-
posite sections. These specified limits can be checked by the 
UAM. To do this the specified loading that causes the highest 
automoment at a pier is applied first; usually, this is truck 
or lane loading in the two spans adjacent to the pier and will 
be referred to as negative-bending loading. Then, the speci
fied loading that causes the highest stresses in positive-
bending regions is applied; usually, this is truck or lane load
ing in the span containing that region. The algebraic sum 
of elastic stresses from the second loading and autostresses 
from the first loading must not exceed the specified limit. 

If the girder has more than two spans, sequential loadings 
could be considered in the first step by applying the negative-
bending loading alternately at each pier until the plastic rota
tions stabilize. The stabilized plastic rotations after sequen
tial loading are somewhat greater than those for single load
ing at one pier, but the automoments at that pier are 
somewhat higher for the single loading.^ Therefore, it may 
not be necessary to consider sequential loading in most cases. 
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APPENDIX A 

THREE-MOMENT EQUATION 

To develop an equation interrelating the moments in a con
tinuous girder at three consecutive supports, hinges are placed 
in the girder at all support locations and the end (support) 
moments and end slopes for the resulting simple spans are 
interrelated. The support moments in a continuous girder 
with any number of spans can then be calculated by writing 
such a three-moment equation at each interior support and 
solving the resulting set of equations simultaneously (see Fig. 
Al). 

Span n 

Support n-1 

' z s — 
Support n 

Figure Al 

Span n-t-1 

Support n+1 
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Symbols: 

M = moment at support 
R = plastic rotation (angular discontinuity) 
SR = slope at right end of span 
SL = slope at left end of span 
SRA = slope at right due to applied load 
SLA — slope at left due to applied load 
SRMR = slope at right due to unit moment at right 
SLMR = slope at left due to unit moment at right 
SRML = slope at right due to unit moment at left 
SLML = slope at left due to unit moment at left 
C = coefficients in three-moment equation 

The symbols used here apply to any span n and, therefore, 
differ from those used in the three-span example in the sec
tion on Stiffness Properties. For example, SLMLi here cor
responds to S2P\M\ in the text example. 

Slope at Right of Span n: 

SR, - SRA, + (MJ (SRMRJ + (M,_,)(SRMLJ 

Slope at Left of Span «+l: 

SL,^, = SLA,^, + (MJ(SLML,^0 + (M,^J(SLMR,^,) 

Equate Slopes at Support n: 

K, = SR, — SL,^i 
R, - SRA, + (M,)(SRMR,) -h (M,_,)(SRML,) 

- SLA,^, - (M,)(SLML,^,) - (M,^,)(SLMR,^0 

Rearrange in Matrix Form: (Three-moment Equation for 
Support n) 

(SRML,)(M,_^) -h (SRMR, - SLML,^^ (K) + 
(-SLMR,^0 (M,^0 = R, - SRA, + SLA,^, 

(C,,,_0(M,-i) + (C,,,)(M,) + (C,,,^,)(M,^0 = C, 

Define Coefficients: 

€,,,_, = SRML, 
^n,n+\ = -SLMR,+i 
C,^, = SRMR, - SLML,^^ 
C, = R, - SRA, + SLA,^, 

APPENDIX B 

PLASTIC-ROTATION CURVES 

The approximate plastic-rotation curves presented in Figs. 
Bl and B2 were developed^ from available test results"̂ '̂ '*̂  
for pier sections and positive-bending sections, respectively. 
The plastic rotations for these curves are plotted in millira-
dians (radians/1000). The curves are specifically for com
posite girders with: (a) ultracompact compression flanges in 
negative-bending regions; (b) a closely spaced stiffener on 
each side of the pier; and (c) adequate lateral supports. 
Ultracompact flanges are limited to smaller slendemess ratios 
than presently allowed by AASHTO '̂̂  for compact sec

tions; specifically, the maximum allowable ratios are 7.0 and 
8.2 for 50-ksi and 36-ksi steels, respectively.^ Other 
appropriate plastic-rotation curves '̂̂  could, of course, be 
used in the Unified Autostress Method. 

Pier Sections 

The plastic-rotation curve for pier sections is given in Fig. Bl. 
The loading portion of this curve up to M^^ approximates 
the plastic-rotation curve given for composite sections in the 
AASHTO guide specifications for ALFD^ normalized with 
respect to the maximum-moment capacity, M,^^. This por
tion of the curve is controlled by the combined effects of 
cracking of the concrete slab and yielding of the steel, includ
ing the effects of residual stresses. The curve reaches M^^ 
at a plastic rotation R of 8.05 mrad. The following empirical 
equation defines this portion of the curve; R must be in mil-
liradians. 

M/M^,r = -0.00023/?^ + 0.0046/?^ 
-h0.2487?+0.17 

omoR^ 
(Bl) 

The unloading portion down from M„^ is represented by 
a family of parallel straight lines for different web slender-
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Fig. BL Plastic-rotation curve for Pier sections. 
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Fig. B2. Plastic-rotation curve for positive-bending sections. 
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Table B1. 

D/t 

80 
100 
120 
140 
160 
163 

RL 

.0651 

.0452 

.0308 

.0202 

.0107 

.0093 

ness ratios D/t. These straight lines were developed from test 
results"̂ '̂  and are controlled primarily by buckling and dis
tortion of the cross section. The sloping lines intersect the 
horizontal line corresponding to M/M^^ = 1 at different 
values of the limiting plastic rotation RL that depend on the 
web slenderness. The family of downward sloping lines is 
defined by 

M/M^^ = 1.00 - 9.2(R - RL) (B2) 

in which M is the moment and R is the corresponding plas
tic rotation. The plastic-rotation curve is assumed to remain 
horizontal between 0.00805 and RL. 

The test results"̂ '̂  for girders with ultracompact flanges 
showed that M^^ can be taken as equal to the plastic-
moment capacity Mp for web slenderness ratios up to 134 
and can be obtained from the following equation at ratios 
between 134 and 170. 

Mmox / Mp = 1.41 - 0.00306 (D/rj (B3) 

The empirical values in Table Bl, derived from the test 
results,^ can be used for RL; values corresponding to other 
slenderness ratios can be obtained by interpolation. 

Positive-Bending Sections 

The plastic-rotation curve for positive-bending sections is 
given in Fig. B2; it was obtained from a positive-bending 
test̂ ^ of a composite girder and is normalized with respect 
to Mp. The curve reaches Mp at a plastic rotation of 15 mil-
liradians and can be assumed to remain constant at Mp 
thereafter. The unloading portion of the curve is not defined 
because positive-bending sections are not normally required 
to sustain plastic rotations large enough to cause unloading. 
The curve is controlled by concrete crushing at shear studs 
and yielding of the steel. ̂ ^ The shape of this plastic-rotation 
curve for positive-bending sections has a smaller effect on 
the behavior of the girder than the shape of the curve for 
pier sections; therefore, it need not be known with as much 
accuracy. 

APPENDIX C 

ITERATION PROCEDURE 

The proposed iteration procedure involves iterations of the 
plastic rotations and is conducted in two stages. Specifically, 

the plastic rotations at all yield locations are progressively 
changed until the corresponding moments at these locations 
satisfy both the continuity and rotation relationships within 
acceptable limits. 

In Stage 1, the correct plastic rotations at all piers (subse
quently referred to as pier rotations) are determined for a 
given set of plastic rotations at positive-bending locations 
(subsequently referred to as span rotations). During the first 
application of this stage, the span rotations are assumed to 
be 0. A trial plastic rotation for Pier 1 is determined by chang
ing this pier rotation until the continuity moment from Eq. 2 
and rotation moment from Fig. Bl are equal at that pier. 
Other pier rotations, as well as the span rotations, are taken 
as 0 during this process, which will be referred to as balanc
ing the moments at the pier. 

Next, a trial plastic rotation is determined for Pier 2 by 
balancing the moments at that pier; the trial plastic rotation 
just determined for Pier 1 is retained, and all other pier and 
span rotations are taken as 0, during this calculation. Next, 
this process is repeated at all other piers. Then it is again 
applied to Pier 1 and all other piers. Each time a trial plastic 
rotation is determined at a pier, all other pier and span rota
tions are held constant. This process is continued until the 
moments are balanced within acceptable limits at all piers. 
In developing the trial designs mentioned earlier,^ the abso
lute value of the difference between the moments from the 
continuity and rotation relationships divided by the elastic 
moment was not permitted to exceed 0.001. 

Next, Stage 2 is applied; it consists of determining the span 
rotations for the trial pier rotations calculated in Stage 1. 
These trial pier rotations, together with the applied loadings, 
define the moments at all positive-bending yield locations. 
The corresponding span rotation at each location is obtained 
from the plastic-rotation curve for that location. At some of 
these locations, the moments may not be high enough to 
cause yielding so that plastic rotation is taken as 0 at these 
locations. 

Next, Stage 1 is applied again in a manner similar to the 
first application. In this application, however, the span rota
tions are held constant at the values determined in Stage 2. 
The span rotations cause automoments at all piers; these are 
included in Eq. 2 and the similar equations for the other piers. 
The elastic moments (MIE, M2E, etc.) in these equations 
are unchanged throughout the iteration procedure. During 
the second application of Stage 1, the trial plastic rotation 
at each pier from the first application is retained until a new 
trial plastic rotation is determined at that pier. 

This process of alternate applications of Stages 1 and 2 
is continued until differences between the span rotations for 
successive Stage 2 applications, which progressively de
crease, are within acceptable limits. For the trial-design 
study, ̂  these differences were not permitted to exceed 
0.0001 radians. At this point, the iterations are complete, and 
all moments and plastic rotations are correct within accept-
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able iteration limits. In the trial-design study,̂  only a few 
cycles were required for the iteration procedure to converge. 

If the applied loading exceeds the maximum strength of 
the girder, the iteration procedure will not converge. This 
occurs in the following way. For normal bridge loading pat
terns, plastic hinges form first at the piers. As the loading 
is further increased, the moments at these locations decrease 
in conformance to the unloading portion of the plastic-
rotation curve, while the positive moments increase. If the 
maximum positive moment calculated in Stage 2 exceeds 
Mp in any span, the iteration procedure will not converge. 
Therefore, the maximum positive moments in all spans in 
Stage 2 are checked during each iteration cycle; if any one 
of them exceeds M^ the iteration process is stopped, and it 
is concluded that the applied loading exceeds the maximum 
strength of the girder. 
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