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ABSTRACT 

In designing beam-columns in a steel frame, the LRFD Spec
ification uses two moment amplification factors (B^ and B2) 
to account for the second-order P—d (member instability) 
and P—A (frame instability) effects. For beam-columns with 
joint translation restricted and subjected to end moments 
only, the B^ factor usually underestimates the P—d effect. 
However, in some uncommon practical cases, under high ax
ial compression ratio (P/P^ > 0.7) with double curvature 
bending, it is conservative to estimate the P—d effect. This 
is due mainly to the fact that, for simplicity, the LRFD C,„ 
expression excludes the influence of the axial load ratio 
P/P^. In this paper, an improved C,„ expression, written in 
terms of both the axial load ratio P/P^ and the end moment 
ratio MJMi,, is proposed. The proposed moment amplifi
cation factor has been verified by an extensive comparison 
with the exact analytical solution. It is found that the P—b 
moment predicted by the proposed formula is more accurate 
than that predicted by the B^ factor in the present LRFD 
Specification. 

INTRODUCTION 

There are several computer-based methods available for an 
elastic second-order analysis. For design purposes, a 
simple procedure is desirable. One simplified procedure is 
the AISC LRFD method^ in which the P-b effect is ap
proximated by the ^i factor while the P—A effect is ap
proximated by the B2 factor. For members subjected to ax
ial compression combined with uniaxial bending, the 
following LRFD bilinear interaction equation is used to de
sign these beam-columns. 

Pu S M, P 
- ^ ^ + — < 1.0 for - ^ > 0.2 
4>,P„ 9 0,M, cl>,P, 

^ + ^ ^ < 1.0 for - ^ < 0.2 
2cl>,P, (A,M, K-Pn 

(1) 

(2) 

where 

P^ = required compressive strength 
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M,. 

= nominal compressive strength determined from the 
LRFD column-strength curve 

= nominal flexural strength determined from the 
LRFD beam-strength curve 

= resistance factor for compression ^ 0.85 
= resistance factor for flexure = 0.9 
= required flexural strength, i.e., design moment of 

beam-columns. 

For structural members in a frame, M,̂  is the maximum 
second-order moment in the beam-column.'" It may be de
termined directly from an elastic second-order analysis. In 
structures designed on the basis of elastic first-order analy
sis, the LRFD Specification recommends the following pro
cedure for the determination of the second-order moment 
Mĵ  in lieu of a second-order analysis. 

M,. ^ iM. + B2M1, (3) 

where 

B, 

maximum moment in the member assuming there 
is no lateral translation of the frame, calculated 
by using a first-order elastic analysis, 
maximum moment in the member as a result of 
lateral translation of the frame only, calculated by 
using a first-order elastic analysis. 
P—b moment amplification factor, given by 

B, = 
C,„ 

> 1.0 

1 
p. 

(4) 

where /J. = 7r^EI/(KL)^, in which K is the non-sway effec
tive length factor in the plane of bending. 

B2 = P—A moment amplification factor, given by 

1 
B, 

or 

1 

B, 

^P. 
J:HLJ 

(5a) 

1 
^P. 

(5b) 

where 

A,,i, = translational deflection of the story under consider-
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ation, calculated by using a first-order elastic 
analysis 

D/^ = required axial load strength of all columns in a 
story 

E// = sum of all story horizontal forces producing Â /̂  
L = story height 
P^ = Tr^EI/(KL)^, in which K is the sway effective 

length factor in the plane of bending. 

Use of the B^ and B2 factors is a convenient way to ap
proximate the P—d and P—A secondary effects. However, 
for beam-columns subjected to end moments only, the B^ 
factor usually underestimates the P—d effect, while in some 
uncommon practical cases, under high axial compression ra
tio with double curvature bending, it may overestimate the 
P-d effect. 

In this paper we will first discuss the exact amplification 
factor due to P—d effect. Then we will highlight the approx
imation and simplification associated with the amplification 
factor Bi used in the present LRFD Specification. Finally, 
we will propose an improved C^ factor. For simplicity, we 
will consider moments about only one axis and will denote 
P^ and M^ as P and M^^, respectively, and the resistance 
factor will not be considered. 

EXACT AMPLIFICATION FACTOR FOR BEAM-
COLUMNS SUBJECTED TO END MOMENTS ONLY 

For the beam-column subjected to end moments M^, M^ 
and axial force P as shown in Fig. 1, the closed-form elastic 
moment amplification factor Af can be derived from the 
governing differential equation for a beam-column. '̂̂ ^ The 
elastic maximum moment M„,„̂  can be written as 

Mnox = ^f\Mh 

where, for 0 < x < L, 

Af = 
(MJMi,y+2{MJMf,) cos yL+\ 

sin^7L 

and for X < 0 or X > L, 

Af = 1.0 

(6) 

(7a) 

(7b) 

in which x is the location of the maximum moment and it 
can be determined by 

tan (yx) 

and 7 is given by 

(MJMf,) cos yL -h 1 

(M^/Mfy) sin yL 

TT 

L 

(8) 

(9) 

and Miy in Eqs. 7 and 8 are end moments such that 
\MJ < |M^| . M^^/Mfy is positive when the member is bent 
in reverse curvature, and negative when bent in single curvature. 

The exact moment amplification factor, Eq. 7, is plotted 
in Figs. 2 through 4, and some of the values are also listed 
in Tables 1 and 2 for more detailed comparisons. For con
venience in the comparisons, Af is expressed in the famil
iar form as: 

A,= c (10) 

1 -

where, for 0 < x < L, 

C' exact__ (MJMi,y^2{MJMi,) cos 7L-hl 

sin^7L 

and for X < 0 or X > L, 

C' exact 1 
m ^ 

(1 - - ) (11a) 
P. 

(lib) 

THE Bi FACTOR FOR BEAM-COLUMNS 
SUBJECTED TO END MOMENTS ONLY 

The exact amplification factor (Eq. 7), denoted by ^i in the 
LRFD Specification,^ can also be written as 

B, = C^ sec (7L/2) (12) 

where C,^ is referred to as the equivalent moment factor 
and is given by 

For 0 < X < L 

C = 
{MJMt,y+2{MJM^) cos 7L+I 

For X < 0 or X > L 

C = -

sec 

2(1 — cos yL) 

1 yL 
= cos — 

yL 2 

(13a) 

(13b) 

To simplify Eqs. 12 and 13, two approximations were made 
in the LRFD Specification. First, Eq. 13 is replaced by the 
following expression proposed by Austin:^ 

Q = 0.6 - 0.4 {MJM,) (14) 

Second, sec 7L/2 is replaced by 1/(1 - P/P^). The B^ fac
tor has therefore the form 

5, = 
C 

(15) 

1 -

For some combinations of P/P^ and M^/Mf^, Eq. 15 re
sults in ^1 < 1.0. But, by definition, B^ should not be less 
than unity, i.e., the second-order moment cannot be less than 
the first-order moment. To this end, LRFD imposed the con-
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dition B^ > 1.0. The LRFD Specification therefore recom
mends Bi factor as 

5, 
C 

P 
1 

P. 

> 1.0 (16) 

The restriction on C,„, Q, > 0.4, imposed in ASD 
Specification^ has been removed in the LRFD. 

However, these two simplifications result in the follow
ing two major shortcomings: 

1. The 5, factor is mostly unconservative as compared 
to the exact amplification factor. For example, for the 
beam-column under equal moments (M^/Mf^ = -1.0), 
Eq. 16 reduces to 

B, = 
1 

P 

P. 

1.0 (17) 

This equation is compared with the exact amplification 
factor for the case of equal end moments in Fig. 3 and 
in Table 2. It is seen that the larger the P/P^ value, the 
more unconservative it becomes. For instance, when 
P/P, = 0.5, the error is about -11%; while when P// .̂ 
= 0.7, the error becomes -15%. For a small axial 
force, such as P/P^ < 0.2, the error is less than 5%. 
For P/P^, > 0.2, the accuracy of the 5, factor is 
decreased. Also, in Fig. 2, the J5, factor always gives 
an unconservative result for the single curvature case 
(M^/Mf, < 0) for all values of P/P^ considered. 
The Bi factor is conservative for a few uncommon 
practical cases, i.e., under high axial compression ra
tio with double curvature bending. For example, in Fig. 

2, the J5, factor is conservative for the case of double 
curvature for P/P^ greater than 0.7. The conservative-
ness increases as the value of P/P^. increases. 

THE PROPOSED MOMENT AMPLIFICATION 
FACTOR A/ 

Against the background of this information, an improved mo
ment amplification factor is proposed for estimating the elas
tic second-order P-d effect of beam-columns subjected to 
end moments without joint translation: 

Af = 
^m 

1 -
P 

P. 

> 1.0 (18) 

where 

C = l^0.25(P/P,)-0.6{P/P,y\MJM,+l) (19) 

Equation 18 is compared with the exact solution of Eq. 7 
in Figs. 3 and 4 and in Tables 1 and 2. Good agreements 
are generally observed. This proposed formula has the fol
lowing advantages: 

1. The moment amplification factors predicted by Eq. 18 
(Figs. 3 and 4, and Tables 1 and 2) are more accurate 
than those predicted by the B^ factor in the present 
AISC LRFD Specification. 

2. When P/P, = 0.0, Eqs. 18 and 19 automatically re
duces to C* = 1.0 and A^ = 1.0, respectively. 

3. When the beam-column is in single curvature bending 
(MJMf, = -1.0), Eq. 18 becomes 

A 
1 + 0.25(P/P,) 

P 
1 

P. 

(20) 

Ma Mb 
M J > I Mai 

M. 

P P-

M eq 

^ 

M •q 

M eq 

M„ 

M eq 

(«) (b) (c) 

Fig. 1. Maximum moment in a beam-column subjected to end moments and axial force. 

132 ENGINEERING JOURNAL/AMERICAN INSTITUTE OF STEEL CONSTRUCTION 



This equation can also be derived analytically from 
Eq. 7a. For the equal end moment case, MJMf^ = 
-1.0, Eq. 7a reduces to: 

sec 
jL 

(21) 

Using the power series expansion for sec (yL/2), Eq. 
21 can be expressed as 

Af = 1+-
2 V 2 7 24 V 2 y 720 V 2 

(22) 

Substituting yL/2 = 7r/2VP//J into Eq. 22, we obtain 

720 V2 V Pe J 
+ . 

or 

Af = 1+1.2337P/P,+1.2683(P/P/+1.2727(P/P,)^ + . . . (24) 

or, as a close approximation 

Af « 1+1.25fP/PJ[l+(P/P,)+(P/P/+. . .] (25) 

Thus, Eq. 21 can be conveniently expressed as: 

1 + 0.25P/P 
Af^ (26) 

1 - P/Pe 

This is the same as the approximate Eq. 20 for the mo

ment amplification factor for a beam-column subjected 
to equal end moments only. 

EFFECT OF THE B^ FACTOR ON 
INTERACTION EQUATIONS 

Figure 5 shows a comparison of the LRFD interaction equa
tions with the exact solutions and the proposed amplifica
tion factor for a beam-column subjected to axial compres
sion combined with end moments only. In Fig. 5, the solid 
lines are based on the exact second-order moments, and the 
proposed Af factor, and the dashed lines are based on the 
LRFD Bi factor. It is seen that the Bi factor gives a some
what unconservative result, while the proposed Af factor 
gives an almost identical result with that of the exact second-
order moments. 

Since beam-column interaction equation involves both axial 
force and bending moments, the difference in moment am
plification factor will not cause a significant effect in actual 
design.'^ It is found that, in most cases, the unconservative-
ness of the interaction equation due to the approximate na
ture of the B^ factor is less than 5%. For example, for a 
braced member subjected to axial compression combined 
with equal end moments (MJMfy = -1), with KL/r = 120, 
E = 29,000 ksi, F, = 36 ksi, P/P^ = 0.43, and M/M^ = 
0.41, we find the following differences: 

Using the LRFD B^ factor, Eq. 16, we obtain 5, = 1.568, 
and the interaction equation leads to the value: 

0.43 + 
(8)(1.568)(0.41) 

1.001 (27) 

2.2 

2.0 

1.8 

1.6 \-

< 1 4 

1.2 

1.0 

0.8 

0.6 

— Exact Af 

-1.0 -0.8 -0.6 -0 4 -0.2 0.0 0 2 0.4 0.6 0.8 1.0 

M a / Mb 

(a) P/Pe< 0.5 

16 0 

14.0 — —— - . B^ Factor 

— — Exact Af 

-1.0 -0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0 6 0.8 1.0 

M a / Mb 

(b) P/P, > 0.5 

Fig. 2. Moment amplification factor for beam-column subjected to end moments and axial force (the Bj factor and the exact Af). 
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p/p. 

0.1 

0.2 

0.3 

0.4 

0.5 

0.6 

0.7 

0.8 

0.9 

Table 1. 
Comparison of Amplification Factors 

(for End Moment Case) 

M,//W^ 

- 1 . 0 
- 0 . 6 
- 0 . 2 

- 1 . 0 
- 0 . 6 
- 0 . 2 

- 1 . 0 
- 0 . 6 
- 0 . 2 

- 1 . 0 
- 0 . 2 

0.4 

- 1 . 0 
- 0 . 2 

0.2 
0.6 

- 1 . 0 
- 0 . 2 

0.2 
0.8 

- 1 . 0 
- 0 . 2 

0.2 
1.0 

- 1 . 0 
- 0 . 2 

0.6 
1.0 

- 1 . 0 
- 0 . 6 
- 0 . 2 

1.0 

Exact 
Af 

1.137 
1.002 
1.000 

1.310 
1.093 
1.001 

1.533 
1.255 
1.061 

1.832 
1.198 
1.000 

2.252 
1.423 
1.222 
1.000 

2.884 
1.782 
1.319 
1.000 

3.941 
2.400 
1.694 
1.000 

6.058 
3.657 
1.458 
1.000 

12.419 
9.937 
7.462 
1.000 

LRFD 
B^ 

1.111 
1.000 
1.000 

1.250 
1.050 
1.000 

1.429 
1.200 
1.000 

1.667 
1.133 
1.000 

2.000 
1.360 
1.040 
1.000 

2.500 
1.700 
1.300 
1.000 

3.333 
2.267 
1.733 
1.000 

5.000 
3.400 
1.800 
1.000 

10.000 
8.400 
6.800 
2.000 

B,/Af 

0.977 
0.998 
1.000 

0.954 
0.961 
0.999 

0.932 
0.956 
0.943 

0.910 
0.946 
1.000 

0.888 
0.956 
0.927 
1.000 

0.867 
0.954 
0.985 
1.000 

0.846 
0.944 
1.023 
1.000 

0.825 
0.930 
1.235 
1.000 

0.805 
0.845 
0.911 
2.000 

P roposed 
A; 

1.139 
1.015 
1.000 

1.312 
1.137 
1.000 

1.536 
1.306 
1.077 

1.833 
1.244 
1.000 

2.250 
1.488 
1.107 
1.000 

2.875 
1.863 
1.357 
1.000 

3.917 
2.496 
1.786 
1.000 

6.000 
3.772 
1.544 
1.000 

12.250 
9.933 
7.616 
1.000 

Ar/Af 

1.001 
1.013 
1.000 

1.002 
1.040 
0.999 

1.002 
1.041 
1.015 

1.001 
1.038 
1.000 

0.999 
1.046 
0.986 
1.000 

0.997 
1.045 
1.029 
1.000 

0.994 
1.040 
1.054 
1.000 

0.990 
1.031 
1.059 
1.000 

0.986 
1.000 
1.021 
1.000 

P/Pe 

0.00 
0.10 
0.20 
0.30 
0.40 
0.50 
0.60 
0.70 
0.80 
0.90 
0.95 
0.99 

Table 2. 
Comparison of Amplification Factors 

W 
Exact 

Af 

1.000 
1.137 
1.310 
1.533 
1.832 
2.252 
2.884 
3.941 
6.058 

12.419 
25.149 

127.006 

g/M^ = Single Curvature 

LRFD 
B, 

1.000 
1.111 
1.250 
1.429 
1.667 
2.000 
2.500 
3.333 
5.000 

10.000 
20.000 

100.000 

B,/Af 

1.000 
0.977 
0.954 
0.932 
0.910 
0.888 
0.867 
0.846 
0.825 
0.805 
0.795 
0.787 

Proposed 
A; 

1.000 
1.139 
1.312 
1.536 
1.833 
2.250 
2.875 
3.917 
6.000 

12.250 
24.750 

124.750 

Ar/Af 
1.000 
1.002 
1.002 
1.002 
1.001 
0.999 
0.997 
0.994 
0.990 
0.986 
0.984 
0.982 

Using the exact amplification factor, Eq. 7, we obtain Af = 
1.708, and the interaction equation leads to: 

(8)(1.708)(0.41) 
0.43 + ^-^ = 1.052 (28) 

Using the proposed amplification factor, Eq. 18, we obtain 
Af= 1.710, and the interaction equation leads to: 

0.43 
(8)(1.710)(0.41) 

1.053 (29) 

The difference between the LRFD and the exact or the 
proposed amplification factor is about 9%, while the dif
ference between the values of interaction equation is 5 %. 

CONCLUSIONS 

1. In a braced frame, for beam-columns subjected to end 
moments only, the 5, factor usually underestimates 
the P-3 effect, and only in some uncommon cases, 
i.e., under high axial compression ratio (P//J. > 0.7) 
with double curvature bending, it becomes conserva
tive in estimating the P—d effect. 

2. Although the proposed C* factor includes the effects 
of both axial force and end moments, it is still simple 
and easy to use. The proposed moment amplification 
factor A^ has been verified by comparison with the 
exact solutions. The P—d moment predicted by the pro
posed Eq. 18 is more accurate than that predicted by 
the i5, factor in the present LRFD Specification. 

3. The difference in moment amplification factor will not 
affect significantly the actual beam-column design. In 
most cases, unconservativeness in the interaction equa-

00 01 02 03 04 05 06 07 08 09 10 

Fig. 3. Moment amplification factor for beam-column subjected 
to equal end moments (MjMfj = —1.0) and axial 
force. 
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tion due to the difference in B^ factor is less than 5%, 
although the difference in moment amplification may be 
more than 10%. 
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Fig. 4. Moment amplification factor for beam-column subjected 
to end moments and axial force (the proposed Afand 
the exact Af). 
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M 
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Fig. 5. Comparison of the LRFD interaction equations. 
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