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INTRODUCTION 

Plexural-torsional and torsional buckling strength of com­
pression members is covered for the first time in the AISC 
Load and Resistance Factor Design (LRFD) Specification,^ 
and, thus, must now be considered in hot-rolled steel design 
for buildings, in addition to overall flexural and local buck­
ling (Fig. 1). This new strength criterion is also included in 
the 1989 Allowable Stress Design (ASD) Specification.^^ As 
illustrated in Fig. 1, flexural-torsional buckling is a compres­
sion member instability involving a combination of mem­
ber bending and twisting as well as any local buckling of 
slender elements. In this behavioral sense, it resembles 
lateral-torsional buckling of unbraced beams. Torsional buck­
ling is simply a twisting of the entire cross section about its 
shear center. Flexural-torsional buckling applies to all shapes 
except those that are doubly symmetric. Pure torsional buck­
ling can only occur in these doubly symmetric shapes, such 
as rolled wide flange sections. 

Flexural-torsional buckling is strongly influenced by the 
degree of symmetry in a cross section that is mathematically 
represented by the location of the shear center relative to 
the centroid. An interactive coupling effect of flexural and 
torsional buckling occurs only when these two points are not 
coincident; when they are identical, as for doubly symmet­
ric, wide-flange shapes, the response reduces to pure tor­
sional buckling. 

Generally, for hot-rolled columns, truss and bracing com­
pression members, which are usually relatively stocky with 
at least one axis of symmetry, and with effective lengths KL 
of about 10 ft or more, these new limit states either do not 
govern or the reduced critical load differs insignificantly from 
the weak-axis flexural buckling load. Furthermore, closed 
symmetric cross sections, such as pipes and tubes, are tor-
sionally very strong and their capacity will ordinarily not 
be limited by torsional buckling. Flexural-torsional or tor­
sional buckling more often controls the design capacity of 
shorter built-up compression members made from thin plate 
elements with unsymmetric open cross sections or rolled sin-
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gle angles. For this reason, AISI cold-formed steel design 
specifications^ have for many years included flexural-
torsional buckling criteria, based on theory that has been well 
documented for several decades in many references and ad­
vanced texts. The LRFD and ASD Specifications now also 
require that a check of these limit states be made. 

Many structural engineers are probably somewhat un­
familiar with flexural-torsional buckling theory and its mean­
ing, as the authors initially were prior to a study of the ex­
isting literature and several sample calculations. Hence, this 
article will attempt to provide some useful overview and 
practical understanding of this strength limit state. Numeri­
cal comparisons have been made to identify general trends, 
sensitivity to key design variables, and conclusions. Refs. 
3 and 4 cover similar material pertaining exclusively to dou­
ble angles. 

FLEXURAL-TORSIONAL BUCKLING PROVISIONS 
IN LRFD 

According to LRFD Specification Appendix E3,* the com­
pressive design strength based on the limit states of torsional 
and flexural-torsional buckling is (t),.P^, where cf),. is 0.85 and 
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Fig. 1. Flexural-torsional buckling 

*All references to formulas, Appendices, and Sections are to the LRFD 
Specification, which covers flexural-torsional buckling in detail. 
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Pn is the product of y4̂  and /J^. The critical stress F^^ is de­
termined from the general column design curves represent­
ing the inelastic and elastic flexural buckling zones, includ­
ing reduction factors Q and X :̂ 

(A-E3-2) 
For X, VQ < 1.5 (inelastic) 

F,r = e(0.658^'^' )Fy 

For X̂  

F = 

> 1.5 (elastic) 

X.̂  J 
(A-E3-3) 

The local buckling reduction factor Q is dependent on the 
compression element slenderness and boundary conditions 
and it is defined identically to the 8th Edition Allowable 
Stress Design (ASD) Specification.^ However, Q does not 
include the additional reduction in overall flexural-torsional 
coupling effects for singly symmetric and unsymmetric 
shapes. Thus, in order to fully account for this latter effect, 
the new equivalent column slenderness X̂  from LRFD Ap­
pendix E must be evaluated. The flexural-torsional buckling 
equations are based on elastic buckling theory of an ideal­
ized column, i.e., perfectly straight member with no residual 
stresses. As the member slenderness approaches zero, all 
elastic buckling stresses tend toward infinity. The adjusted 
slenderness X̂  converts those theoretical equations for use 
in "real" column design (the general column design F^^. 
curves), thereby automatically including residual stress, out 
of straightness, and yielding effects with a maximum F^.^ 
equal to the yield stress, where 

X. = (A-E3-4) 

There are three different Appendix E equations for F,., 

centrold 

Y (major principal axis) 

X (minor principal axis) 

shear 
center 

the critical elastic buckling stress, depending on the design 
of column section symmetry. 

For unsymmetric shapes (i.e., unequal leg single angles), 
flexural buckling about the two principal axes, X-X and Y-Y, 
interacts with pure torsional buckling to produce the most 
complex flexural-torsional buckling solution. This is due to 
the shear center being offset from the centroid in both the 
X and Y principal directions (see Fig. 2). Note that the AISC 
Manual Part 1 coordinate system designates X and Y as the 
horizontal and vertical geometric axes and Z as the minor 
principal axis, whereas X and Y in the context of this article 
refer to the principal axes, and Z to the longitudinal torsional 
axis along the shear center. For this unsymmetric case, the 
critical elastic buckling stress is the lowest of the three pos­
sible roots of the cubic equation,̂ '̂ '̂  

(F,-FJ(F,-FJ(F,-FJ - F^(F,-F,y)(xJrS -
F^(Fe-FJ(yJ7j = 0 (A-E3-7) 

The lowest root F^ or the stress at which the member will 
theoretically become elastically unstable is always less than 
either of the Euler flexural buckling stresses, F^^ and F^y, 
and i;^, the pure torsional buckling stress about the shear 
center, which are defined as 

F.r = 

F. = 
TT^E 

(Kyl/ryf 

Vir^Ec^, ^ n 1 
-h G/ — 

l(K,Lf JAT, 

(A-E3-10) 

(A-E3-11) 

(A-E3-12) 

The flexural-torsional properties C^, J, and ^, are all 
tabulated in Part 1 of the LRFD Manual of Steel Construc­
tion.' The polar radius of gyration about the shear center 
^ is defined by one formula for all shapes: 

ro^ = ^o + yo + /. + u (A-E3-8) 

Fig. 2. Unsymmetric single angle 

The above expression is easily derived from the polar mo­
ment of inertia about the centroid (4 + /y) by use of the 
parallel axis theorem. For doubly symmetric shapes (wide 
flanges), x̂  = }̂^ = 0 and Ar^ reduces to simply (^ + /y). 
Similar to lateral-torsional buckling of beams, torsional buck­
ling strength of columns consists of both warping and St. 
Venant (pure torsion) components, which correspond to the 
first and second terms in the parentheses of Eq. A-E3-12, 
respectively. The warping constant C^ and torsional con­
stant J vary for the different shapes and their exact formulas 
can be found in textbooks, such as Bleich^ or Reference 10. 
The conventional approximation for J in open sections com-
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posed of thin plate elements of length b and thickness t is 
J = (V3)Lbt^, while 

C ^ 

for singly symmetric I-shapes, 4 and /̂  being the moments of 
inertia for the compression and tension flanges, respectively. 

The flexural-torsional elastic buckling stress for singly sym­
metric shapes (i.e., double angles, equal leg single angles, 
WTs, channels), where Y is the axis of symmetry (see Fig. 3) 
is: 

F. = 
R. + K 

2H 'i^-^F^Sf] (Fe. 
F.. 

(A-E3-6) 

X.' + y,' 
where H = flexural constant = 1 

/ / is a section property, also tabulated in the LRFD Man­
ual for angles, tees, and channels, which represents the de­
gree of symmetry in the cross section. It is not defined for 
unsymmetric sections and reaches its upper bound of 1.0 for 
doubly symmetric shapes. This singly symmetric F^ solution 
is derived from the previous unsymmetrical general case with 
x„ = 0, since the shear center is on the principal Y-axis. As 
this formula indicates, for singly symmetric shapes flexural-
torsional buckling occurs when Y-Y axis flexural buckling 
and torsional buckling interact. As shown in Fig. 4, F^ is 
again always less than either F^y or /̂ ,̂ the variables in Eq. 
A-E3-6, but it may be greater or less than F^^ depending on 
whether X is the major or minor axis. Therefore, a singly 
symmetric shape will buckle in one of two modes, flexural-
torsional or simple X-X flexural buckling, where the X-X 
axis elastic buckling strength is defined by Eq. A-E3-10, as 
stated earlier. 

For doubly symmetric sections (i.e., I-shapes, cruciforms) 
the shear center and centroid always coincide, therefore x^ 
= y„ = 0 and H = 1.0, and consequently Eq. A-E3-7 sim­
plifies to 

(F, - FJ(F, - F,y)(F, - F;J = 0 

There are three possible independent roots to this equa-

J 
Y / \ X 

(equal legs) 
X 

tion, F,^, F,y, and /^,. Since no interaction occurs between 
the torsional term F,. and either of the flexural terms, F,^ 
and F,y, F, for a doubly symmetric shape is the lower of F,^, 
F,y, or F,., as defined in Eqs. A-E3-10 through A-E3-12. 
Equation A-E3-6 similarly defaults to Ĵ  = F^y or F^^ for H 
= 1.0. 

FLEXURAL-TORSIONAL BUCKLING IN ASD 

Flexural-torsional buckling for compression members is 
briefly covered in the updated 1989 ASD Specification (Sect. 
E3) and included in the design aids for the new 9th Edition 
AISC Manual. The main conversion formula for equivalent 
member slenderness is given in the ASD Commentary: 

Kl 

""TE 

wherein /; is the elastic buckling stress, as defined in 
LRFD. 

IMPACT OF NEW PROVISIONS 

This paper addresses only the behavior and design of cen­
trally loaded compression members. Any applied bending 
moments and end restraint effects must be evaluated, as 
usual, in conjunction with the beam-column interaction for­
mula and the effective length factor K. Any effects of com­
pression load eccentricity relative to the centroid should also 
be checked. 

The effect of the new flexural-torsional or torsional buck­
ling criteria on the strength of a centrally loaded column de­
sign depends on the member's geometry and the thickness 
of its components. In general, these limit states are most im­
portant for columns with unsymmetric open cross sections 
and slender elements. These types of members are not among 
the standard hot-rolled structural steel shapes, except for un-
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Fig. 3. Singly symmetric shapes Fig. 4. Elastic buckling curves for a singly symmetric shape 
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equal leg single angles, and will not be addressed further 
here. A separate and new 1989 AISC Specification on sin­
gle angle design has been developed to satisfy this particu­
lar need.̂ '̂̂ "̂  Most of the ensuing discussion will focus on 
flexural-torsional buckling strength of the more common 
singly symmetric shapes. In addition, pure torsional buck­
ling effects on doubly symmetric shapes will be summarized. 

Singly Symmetric Shapes 

The effect of flexural-torsional buckling on singly symmet­
ric member strength was found to primarily depend on cross 
section geometry, member slenderness, and bracing loca­
tions. The relative importance of the warping constant Q, 
on the overall flexural-torsional buckling curve was also 
analyzed. 

Several plots of nominal critical stress F^^ versus effective 
length KL were made for selected Wis, double angles, chan­
nels, and equal leg single angles, all for A36 steel. The crit­
ical stress F^-r based on the LRFD column design curve was 
calculated for X-X, Y-Y, and flexural-torsional (F-T) buck­
ling. In all cases, flexural-torsional buckling reductions were 
greatest for the lower KL values, about 10 ft and less. As 
shown in Figs. 5 and 6, this limit state may or may not con­
trol for larger KL values. Flexural-torsional buckling mar­
ginally governs for the entire range of AX values for the heav­
ier WT18X179.5 (Fig. 5), with the maximum difference being 
less than 10% at a S . of approximately 5 ft. For the WT4xl2 
(Fig. 6), the F-T curve crosses over the minor X-X axis curve 
when KL is approximately 4 ft. 

Consistent with the observations in Ref. 8, the correspond­
ing plots for other singly symmetric shapes demonstrate that 
if the axis of symmetry, Y-Y, is also the minor principal axis, 
flexural-torsional buckling controls the strength for all KL 
values, but the difference from the minor axis flexural buck­
ling strength at larger unbraced lengths is usually negligible 

for design purposes. On the other hand, if the Y-Y axis is 
the major principal axis as it is for equal leg single angles 
and channels, F-T buckling governs only for smaller KL 
values or not at all, while minor X-X flexural buckling gov­
erns for the other unbraced lengths. For equal leg single an­
gles and channels, the latter case is always true. On the other 
hand, double angles situated long legs back to back (LLBB) 
and short legs back to back (SLBB) illustrate both situations. 
In Fig. 7, F^, versus KL is plotted for double angles 8x4x1 
(LLBB) where the Y-Y axis is the weak axis and F-T buck­
ling always governs with the curve falling just below the Y-Y 
buckling curve. The maximum effect occurs at AX = 2.25 
ft wherein the F-T F^, curve is about 4.7% lower than the 
Y-Y axis critical stress curve. This difference decreases rela­
tively quickly and, beyond KL = 9.5 ft, there is negligible 
difference of less than 3% between the two curves. Con­
versely, Fig. 8 is the graph of double angles 8x4x1 (SLBB), 
where the Y-Y axis is the strong axis and F-T buckling gov­
erns only for very small KL values. 

Based on sample analyses, member slenderness KL is of 
secondary importance to section geometry for flexural-
torsional buckling. More slender section elements could in­
crease the reduction by a substantial amount in some cases. 
Two illustrative examples are given here: one wherein the 
Y-axis of symmetry is the weak axis and another where it 
is the strong axis. Considering the first case. Figs. 9a and 
9b give F,, plots for a WT15X105.5 and a WT18X179.5, 
respectively. Although the shapes of the buckling curves are 
similar, F-T buckling is slightly more significant for the more 
slender WT15X105.5 with a stem thickness of 0.775 in. and 
flange thickness of 1.315 in. than for the stockier WT18X179.5 
with a stem thickness of 1.12 in. and flange thickness of 2.01 
in. Figure 10 is a graph of percent difference between the 
F-T and Y-Y minor axis buckling curves for both shapes. 
The maximum percent difference occurs near AX = 4 ft in 

WT18x179.5 

Fcr (flexural torsional) 

20 

KL (ft.) 

1 \ 1 T-

KL (ft.) 

Fig. 5. Critical stress for WT18 X 179.5 Fig. 6. Critical stress for WT4 X 12 
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both cases; however, the maximum is approximately 10.7% 
for the more slender shape versus 6% for the WT18X179.5. 
Although the maximum F-T effects for both shapes occur 
at low effective lengths, the percent F^r reduction relative 
to minor axis flexural buckling exceeds a given percentage 
for a wider range of effective lengths in the thinner 
shape. 

Local slenderness has a similar effect on the strength 
of columns when the strong axis is the axis of symmetry. 
Figures 11a and lib give graphs of F,., versus KL for an 
LSxSxli/g and an L8x8x%, where F-T buckling governs 
only at small KL values. The l/g in. thick angle's F-T curve 
crosses the X-X curve at approximately 4.5 ft, while this 
intersection occurs at KL slightly greater than 10 ft for the 
thinner % in. angle. For a thinner angle, flexural-torsional 
buckling becomes critical for a wider range of KL values as 
the entire buckling curve is lower in comparison. Since the 
minimum radius of gyration r, for both angles is about 1.60, 
the reduction in the F-T buckling curve in these two cases 
can be attributed to the torsional term F^^, as defined in Eq. 
A-E3-12. The main section properties affecting /^, are the 
warping constant C^ and the torsional constant /. As will 
be discussed subsequently, any effect of EC,^ is limited to 
much shorter KL values. Therefore, the lowered F^, F-T 
curve must be due to the reduced torsional rigidity, and thus 
GJ, associated with thinner members. 

Values of C^ for Wis and angles are small compared to 
I-shapes.' A good measure of the relative warping to pure 
torsional stiffness of a given section is 

GJ 

about 25% of the weakest I-shape warping strength. In Fig. 12, 
for a WT18X179.5, /J, versus KL is plotted for X-X axis 
buckling, Y-Y axis buckling, and flexural-torsional buckling 
with and without C^. With the larger C^ value of 480 in.^ 
and a equal to 4.7, this shape gives a good indication of the 
maximum beneficial effect the inclusion of warping would 
have on the F-T buckling curve for WT and singly symmet­
ric angle shapes at lower unbraced lengths. It is apparent 
from this plot and the similarity of the warping term in F,^ 
to the Euler flexural buckling formula that the warping ef­
fect quickly diminishes with increasing KL values. In this 
case, including C^ allows a slightly higher nominal strength 
only for KL values less than approximately 10 ft. Therefore, 
some strength advantage can be gained by including Q if 
short unbraced lengths are involved. This strength advantage 
is applicable to a wider range of lengths for channels as show 
in Fig. 13 for a C15x33.9. 

Channels have slightly greater a values in general, result­
ing in a greater decrease in strength with Q = 0 before the 
two flexural-torsional curves coincide. However, it is easier 
and always conservative to ignore C^ for WTs, double and 
single angles, as often has been done by many authors in 
the literature, thereby simplifying Eq. A-E3-12 to 

Fe, = (GJ) 
AT^ 

The smallest such ratio for rolled I-shapes is approximately 
20. For larger WTs and angles, a may reach 4 or 5, or only 

which is a constant independent of KL. However, the AISC 
LRFD Manual^ has included Q contributions in the design 
capacity of these members. 

Finally, different unbraced lengths in the X and Y direc­
tions and for flexural-torsional buckling must be considered. 
Flexural-torsional buckling may control the column strength 
if sufficient bracing is not provided, even if the F-T curve 
falls above the X or Y buckling curves. 
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Doubly Symmetric Shapes 

As discussed earlier, since the shear center location is iden­
tical to the centroid of a doubly symmetric shape, flexural 
and torsional buckling do not interact. The applicable limit 
states are the separate X-X and Y-Y flexural buckling and 
Z-Z torsional buckling limit-states. For most compact I-
shapes, torsional buckling can be simply ignored with the 
weak Y-axis buckling controlling the strength. The influen­
tial variables are the flange width to section depth ratio 
ibf/d), the warping constant C^ and the maximum unbraced 
length against twist. 

Torsional buckling has been found to be important only 
for those I-shapes with rather short lengths and wider 
flanges.'^ This is evidenced by comparing Figs. 14 and 15; 

WT15x105.5 
stem thickness = .775" 
flange thickness^^ 1.315" 

FQ^ (flexural-torsional) 

Fcry(minoraxis) -

( f t ) 

Fig. 9a. Effect of local slenderness on flexural-torsional 
buckling (axis of symmetry is minor axis) 

plots of î ,. versus KL for a Ĵ , = 3 6 ksi, W10x22 and 
W12X65 respectively. For the W10x22, with a lower flange 
width to member depth ratio of 0.57, the Y-Y buckling curve 
is always the lowest. The {bf/d) = 0.99 ratio is consider­
ably higher for the Wl2x65, and the torsional buckling curve 
drops slightly below the Y-Y curve until KL reaches 7 ft. 
This graph is representative of W shapes with higher (bf/d) 
ratios. Even in this case, the maximum difference between 
the two curves is much less than 1%, an inconsequential devi­
ation for design purposes. 

The general insignificance of torsional buckling on the 
strength of W shapes can be attributed to its sensitivity to 
the previously defined ratio a. The relatively large EC,^ 
value for W-shapes raises the torsional buckling curve such 
that it does not govern their strength. This is demonstrated 
in both Figs. 16 (an extension of Fig. 15) and 17, where plots 
for a 36 ksi W12x65 and Wl2x336 are given for X-X, Y-Y, 
and torsional buckling. The torsional buckling curve is also 
given with Q, = 0. It is evident from these curves that tor­
sional buckling would govern only in the lower KL range 
if Q. were ignored; the amount of which is dependent on 
the a ratio. For the Wl2x65, a = 82.9 and for the W12X336, 
a = 24.7. As expected, the larger a value for the lighter W-
shape indicates that EC^ is more dominant than GJ and 
vice versa for the smaller a value. The GJ component for 
the W12X65 in Fig. 16 is found to be only 64% of the total 
and torsional buckling based on GJ alone governs for KL 
values up to approximately 25 ft. These are typical effec­
tive lengths for design and, therefore, Q, is very important 
in this case. For the Wl2x336 in Fig. 17, however, the GJ 
contribution is 97% of the full torsional buckling strength. 
Also, torsional buckling based on GJ alone governs only to 
KL = 7 ft. For these reasons, it would be feasible to con­
servatively ignore the £Q, term in the torsional buckling 

WTiax179.5 
3tem thlckn«ss=1.12" 

KL (ft.) KL (ft.) 

Fig. 9b. Effect of local slenderness on flexural-torsional 
buckling (axis of symmetry is minor axis) Fig. 10. Percent difference between F-T and Y-Y critical stress 
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strength calculation for W-shapes with a low a, such as the 
W12X336. However, since EC^ is an important parameter 
for most W-shapes, it should be combined with GJ in the 
more accurate column torsional strength evaluation, similar 
to the new LRFD beam lateral-torsional buckling limit state. 

It can be concluded that torsional buckling is not ordinar­
ily important for the design of W-shapes columns, provided 
adequate bracing against twist is furnished. However, if the 
section has a greater unbraced length for torsional buckling 
than for the minor (Y-direction) bending, torsional buckling 
may govern. For example, a W20x33 is braced every 10 ft 
in the Y-direction, every 20 ft in the X-direction, and has 
an unbraced length for torsional buckling of 20 ft. Refer­
ring to Fig. 14, this bracing arrangement results in torsional 

L8x8x1-1/8 

buckling being the governing limit state (see Appendix). 
Therefore, even though torsional buckling appears to be rela­
tively insignificant for W-shapes, it may govern the strength 
if adequate torsional bracing is not provided. ̂ ^ In many 
cases, X or Y direction lateral bracing by rolled structural 
members provides sufficient strength and stiffness to also 
act as a torsional brace. A clear exception is rod bracing at­
tached at a single localized point which does not effectively 
restrain twist. 

DESIGN AIDS 

As the previous discussion elaborated, the LRFD Appendix 
E and ASD flexural-torsional buckling criteria add an addi­
tional dimension of complexity to the column design pro­
cess. Fortunately, computer-aided design relieves most of the 
burden of the extra required calculations, but for spot check­
ing and selected "long-hand" design, the LRFD Manual col­
umn load tables and graphical aids can be quite useful. 

All the LRFD Manual column load tables for d^P^r can be 
directly used with factored loads without any modifications, 
since these design strengths automatically include any 
flexural-torsional buckling, local buckling, or interconnec-
tor spacing reductions. The latter is only applicable to built-
up sections (such as double angles), but the former two limit 
states are relevant to both double angles and tees. Since the 
axial capacities of other common singly symmetric shapes-
channels and equal leg angles—are not shown in this Man­
ual, a simple graph has been developed to expedite the solu­
tion of the laborious Appendix E equation for F^ (Eq. A-
E3-6). Figure 18 is valid for all singly symmetric compres­
sion members and represents the percent decrease in the crit­
ical elastic buckling stress due to flexural-torsional coupling 
from the smaller of K^ or F,,. At the limit ofH= 1 for a 

Fig. 11a. Critical stress for L8 X Ij/g (axis of symmetry is 
major axis 
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C15x33.9 . a = 30.1 

"̂ "̂  "^--^---^^ ~ F^ry (major axis) 

F^r f l exu ra l t o r s i ona l . 0 ^ = 3 5 8 ) 

F(̂ r f l exu ra l t o rs iona l , C^-^) 

KL ( f t . ) 

Fig. 13. Q, effect on critical stress for C shapes 

doubly symmetric shape, F^, is merely the smaller of F^y or 
F^- as discussed previously. Of course, the X-direction 
strength must also be checked. The independent variables 
are simply the (FjlF^) > 1.0 ratio and the H property of 
the shape. The maximum reduction occurs near (F2/F1) = 
1 and low H. Conversely, as H increases or (F2/F1) be­
comes larger, the reduction becomes smaller, approaching 
the doubly symmetric H = \ case at the limit. The follow­
ing easy steps can be used with Fig. 18 in flexural-torsional 
buckling design/analysis: 

1. Compute F^^y and /̂ ^ 
2. Set Fi = min (/^,, F,^) 

F2 = max (/;,, 4 ) 
3. Determine H, {FJF,) 
4. Read {FJF^) from Fig. 18 

.5b — 

35.8 -

35.6 -

35.4 -

35.2 -

35 -

34.8 -

34.6 -

34.4 -

34.2 -

34 -

33.8 -

33.6 -

33.4 -

33.2 -

33 

Fcr 

1 1 1 1 

yfminor axis) 

1 1 1 1 

^ Fc, 

W12x65, b f / d = 9 9 

V F^rx ('T^^JO''3Xis) 

tors ional) \ 

1 1 1 1 1 1 1 1 1 

0 2 4 6 8 10 12 14 16 18 20 

KL ( f t . ) 

Fig. 14. Critical stress for WIO x 22 

fKl\ 
5. Compute X, (LRFD) or — (ASD) 

6. Use column design curve to determine governing 

= ^F,,A (LRFD) or F^ (ASD) (flexural-torsional or 

S) 

As an illustration, assume P^ = 1,000 kip for a truss 
compression chord WT18 X 150 (Y axis of symmetry is 
also the minor axis), A36, KL^ = KLy = 10 ft. 

A. Use LRFD Manual tables (pg. 2-79) 
<\>P,, = 1,310 kip 
(\)P^.,. = (\)P,jy = 1,200 kip (includes flexural-torsional 
effects) 
1,000 < 1,200 OK 

B. Use Fig. 18 x^^ 
I. F;, = 292 ksi at 31.3 

Q, - 278 in.^ 7 = 32 m.\ r,, = 7.30 in. 
7;, - 150 ksi by Eq. (A-E3-12) 
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Fig. 15. Critical stress for W12 X 65 
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Fig. 16. C^y effect on compressive strength of W12 X 65 
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2. F, = 150; F2 = 292 
3. / / = 0.797; (/2/F,) - 1.95 
4. (/^/F,) 3 0.85 

R - 127.5 

5. X. = 
36 

127.5 
= 0.531 

6. (f)/̂ ., - 27.2 ksi 
<\>P,, = 27.2 (44.1) = 1,200 kip O.K. 

Note: without flexural-torsional effects: 
(j)/J, = <\>P,y = ^F,,yA = 29.05 (44.1) - 1,281 kip, 

or about 6.8% higher than 1,200 kip 
It can be shown^ that for singly symmetric single angle col­
umns, H = 0.625 and flexural-torsional buckling will gov­
ern only when the minor principal axis 

< " ' ' 7 
The limiting slenderness (b/t) for angle legs to prevent local 
buckling is 76/V^ as in ASD. For A36 steel angles that 
satisfy this local slenderness criterion, simple flexural buck­
ling will always govern above a maximum member slender­
ness of 68.4, again demonstrating that for this case, flexural-
torsional buckling effects will become evident only for 
shorter unbraced lengths. For stockier legs and smaller (M)s, 
this transition limit will correspondingly decrease. For ex­
ample, in Fig. 11(a) for a L8 X 8 X \% flexural-torsional 
buckling F^ is less than /^, in the graph for KL less than ap-
poximately 5 ft., which for minimum r^ = 1.56 in. trans­
lates into (Ki/r), = 38.5. The local slenderness (b/t) = 7.11 
results in (K\/r), = 5.4 X 7.11 = 38.4, as predicted. 

Similar to equal leg angles, channels' Y-axis of symmetry 
is also the major principal axis. Therefore, flexural-torsional 
buckling will only control below a certain unbraced length. 
Figure 19 from the AISI Cold-Formed Design Manual pro­

vides a convenient graphical solution for this transition 
length. Hot-rolled channels have no lips and, thus, c/a = 
0, b/a corresponds to bf/d, and the t/a2 can be approxi­
mated by (t,,, + tf)/2d2^, using an average of the flange and 
web thicknesses. Given a channel shape and its characteris­
tic Bf/d and (t^ + tf)/2d^ this design aid can be used very 
easily. For example, for a C8 X 18.75, b/a = .316, t/a^ = 
.00686, the transition unbraced length is about 20 in., mean­
ing that simple flexural buckling will usually always govern. 

It can be seen from Fig. 19 that flexural-torsional buck­
ling for rolled channels will be inconsequential for all prac­
tical purposes at (bf/d) < 0.3. For other channel shapes, the 
transition length can be estimated from this graph and the 
governing compression strength obtained with the help of 
Fig. 18. 

A few more examples of LRFD compression members are 
provided in the Appendix. 

CONCLUSIONS 

An additional compression member strength limit state has 
been introduced in LRFD and the updated 1989 ASD. This 
flexural-torsional or torsional buckling will generally not gov­
ern for the stockier hot-rolled shapes that are at least singly 
symmetric and have governing effective lengths of about 10 
ft. or more. Therefore, only relatively infrequent and remote 
cases will be encountered in practice wherein this new limit 
state can be important. Nevertheless, compliance of all de­
signs with the applicable building codes and specifications 
must be assured independently by the responsible structural 
engineer. To help with this task, the relevant elastic buck­
ling theory has been reviewed, graphical design aids and ex­
amples presented. 

It is expected that this article will stimulate a greater aware­
ness of flexural-torsional buckling implications for steel de­
sign and remove the mystery of this additional limit state. 
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A 

E 

Fa 
Fe 
F 
'•ex 

F. 

F2 
G 

H 

h. ly 

NOMENCLATURE 

Cross-sectional area, in.^ 
Gross area, in.^ 
Warping constant, in.^ 
Modulus of elasticity of steel (29,000 ksi) 
Critical stress, ksi 
Allowable compression stress, ksi 
Elastic buckling stress, ksi 
Elastic flexural buckling stress about X-axis, 
ksi 
Elastic flexural buckling stress about Y-axis 
(axis of symmetry for singly symmetric 
shapes), ksi 
Specified minimum yield stress of type of 
steel being used, ksi 
Smaller of F^y or F^^, ksi 
Larger of F^y or F^^, ksi 
Shear modulus of elasticity of steel (11,200 
ksi) 

Flexural constant = 1 
Xn' + Jo^ 

Moment of inertia about principal X and Y 
axes, respectively, in."̂  

J Torsional constant, in.'̂  
K^, Ky, K^ Effective length factor for X-axis, Y-axis, and 

torsional buckling, respectively 
'Kr\ 
— I Equivalent slenderness ratio used in Allow-
^ Je able Stress Design 

L Unbraced length, in. 
P^ Nominal compressive axial strength, kips 
Q Full reduction factor for slender compression 

elements 
r^, ry Radius of gyration about principal X and Y 

axes, respectively, in. 
r^) Polar radius of gyration about principal X 

and Y axes, respectively, in. 
x^, y^^ Coordinates of the shear center with respect 

to the centroid, in. 
X̂  Equivalent slenderness parameter 
<\>c Resistance factor for compression = 0.85 

APPENDIX 

Selected LRFD Design Examples 

1. Assuming a centrally loaded, single angle, 6x6x ^2, A36, 
what is the controlling LRFD compression strength for 

a) KL, = KLy = KL^ = 10 ft x Y 

b) KL, - KLy = KL, = 5 ft 

Alt. .4—first check Eq. 3 Ŷ  

rKlX"^ rb\ 
a) f - j =5.4f-] =5.: = 5.2 (12) - 64.8 

rKl\ 10x12 
r, = 1.18 in.; — I = = 101.7 

\ r l 1.18 
101.7 > 64.8, thus, simple minor axis flexural buckling 
controls 

(i)F,.,^ = 17.75 ksi 

(i>P,, = (i)F,,,A = 17.85 (5.75) = 102.1 kips 

b) 
Kl\ 5x12 
— = - 50.8 ((i>F,,, = 26.7 ksi) 
rj, 1.18 

50.8 < 64.8, thus, flexural-torsional buckling controls 

2 (1.86)̂  = 1.18̂  -h r / 

'"> 

/ 

I 

= 

''Kf 

v ' - . 

2.35 

^ -

A 

in. 

5X12 

2.35 
= 25.53 

\5 

/r̂ , = 439 ksi 

J = 0.5, I = 3.32 in., Q - 1.32 

H = 0.627 

F,^ = 90.19 ksi by Eq. A-E3-12 

use Fig. 18: jp2 = 441 

(F.JF,) = 5 

read (/^/F,) ^ 0.91 

F; = 80.4 ksi 

X. = 
36 

80.4 
= 0.67 

(t)F^, = 25.34 ksi 

(i>P,, - 25.34 (5.75) = 146 kips 

Note: without flexural-torsional effects: 

(()P,, - (i>F,,,A - 26.7 (5.75) - 153.5 kips 

about 5.4% higher than 146 kips 
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Alt. B—directly compare flexural and flexural-torsional 
strengths 

a) ( ~ ) " ^^^•^' ^^^^ ^ '̂̂ ^ " ^^'^^ ̂ ^^ 

( -

10x12 
= 51 

2.35 

F,y = 110 ksi 

F,^ = 88.36 by Eq. A-E3-12 

use Fig. 18: F, = 88.4; F2 - 110 

(F2/F,) = 1.24 and / / = 0.627 

read (FJF,) = 0.67 

/; = 59.2 

36 

59.2 
= 0.78 

(i>F,, = 23.7 ksi 

17.85 < 23.7, thus X flexural buckling controls 

(i>P,, = 17.85 (5.75) - 102.6 kips 

b) as before F^y = 441 ksi 

F,^ = 88.36 

use Eq. A-E3-6 directly: 

441+88, 
F. = 

2(.627) 

;.4 r [ 

r L ' - V 
4(441)(88.4)(.627) 

(441+88.4) ̂ ] 
F, = 422[1-V 1-0.349] = 81.5 ksi 

(81.5 compares well to 80.4 determined previously by 
Fig. 18) 

as before, cj)/̂ ^ = 146 kips 

2. For a central compression factored load of /^ =75 kips, 
X 

KL, = KL, = AX, = 10 ft, 
select minimum weight 

A 36 channel section 

estimate I — 

try C12X30 

120, then ((>/[., 

X 

14.3 ksi 

75 , 
^min = = 5.25 m." 

14.3 
A = 8.82 in.2 

Uf 3.17 in. 
^ - 12 in. 
ry = 4.29 in. 
r, = 0.763 in. 

J = 0.87 in.^ 
C^ = 151 in.^ 
r^ = 4.55 in. 
H - 0.919 

rKl\ 10x12 
( — 1 = - 157.3 
\ r l 0.763 

(t)F,.,^ = 8.6 ski 

(1>P,, = 8.7 (8.82) = 75.9 k > 75k ok 

bf 3.17 
— = = 0.26, from Fig. 19, since 
d 12 

KL = 10 ft ( 40 in., only simple flexural buckling will 
govern design 

or check Fig. 18 

Kl\ 120 
— = = 28; 4 , = 365 ksi, 
r Jy 4.29 

F;, = 70 ksi by Eq. A-E3-12 
(F2/F,) = 5.2 
(F;JF,) = 0.97 

F; = 67.9 

36 
X, = A / - ^ ^ = 0.73 

'67.9 

(\>F,, = 24.5 ksi > 8.7 ksi ok 
minor axis controls 

3. A W10X22, A36 column has (KL)y = 10 ft and (KLJ 
= (KL). = 20 ft. What is its design strength? 

A = 6.49 in.^ 
r, = 4.27 in. 
Ky = 1.33 in. 
/ = 0.24 in.^ 
Q, = 275 in.^ 

/'Kl\ 10x12 
mmor axis: — = = 90.2; (i>F,, = 19.9 ksi 

yrjy 1.33 
. rKl\ 20x12 /'Kl\ 

major axis — = ( ) = 56.2 < — 
\rj, 4.27 V ^ A 

torsional buckling: /;., = 31.5 by Eq. A-E3-12 

r36" 
X. = A/ = 1.07 

36 

31.5 

(j)/?., = 18.7 ksi < 19.9 ksi 

thus, torsional buckling controls 

(i>P,, = 18.7 (6.49) = 121 kips 
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