Reinforcing Loaded Steel
Compression Members

J. H. BROWN

Theoretically, it does not seem plausible that a column
which is reinforced under load will have the same ultimate
capacity as a column reinforced in its unloaded state. Yet
there is a tendency to use the allowable stresses for the
geometry of the reinforced column for both cases. This
question is examined in greater detail in this paper, where
the analysis shows that both the geometry of the reinforce-
ment and initial load can affect column capacity.

The paper develops a method to determine the capacity
of a column reinforced under load based on AISC require-
ments. The analysis is applicable to any kind of column
and reinforcement, but has not been verified by testing.
Tests have been conducted by Nagaraja and Tall* on a
W8x31 column with an L/r ratio of 48, which showed that
welding flange plates—while the column is subjected to a
load of 91.2 kips—produced results comparable to the
same column reinforced under no load. This paper would
confirm this, but shows this is not necessarily true for
larger L/r values of the same reinforced column.

If the effects of residual stresses from welding are ig-
nored, the following examples illustrate how the location
of the new reinforcement influences capacity.

If a column is already carrying its full dead and live
load, only the live load can be removed during reinforce-
ment. The dead load stresses will be frozen in the column
core after welding and can influence its capability to carry
additional load. The original column, hereafter is referred
to as the core.

The effects of residual stresses from welding have not
been considered in this paper and the reader should con-
sult other publications on the subject.>*’

METHOD OF ANALYSIS

Inelastic Analysis for Buckling

The analysis will be based on the assumption a plastic
hinge will first form in the core column and the reinforced
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column has a post-buckling capacity after the core has
failed. The additional capacity will be provided by the
stiffness of the reinforcement. This results in a critical col-
umn length L,. The alternate assumption the reinforce-
ment will buckle first will result in a critical column length
L,. The equations for determining L; and L, are devel-
oped in the paper, together with the way to calculate the
capacity of the reinforced column.

A typical reinforced column is shown in Fig. 1.

The reinforced column, modeled for analysis purposes,
is in Fig. 2.

H=Qq
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The model consists of two separate columns connected
by rigid links. This insures that both the core and the rein-
forcement follow the same axial deformation and have the
same deflection curves.

The model will have three stages of loading:

Stage 1 The reinforcement is welded to the loaded core.

Stage2 A plastic hinge forms in the core at G.

Failure occurs when the reinforcement is unable
to stabilize the core.

Stage 3

The loading in the core and reinforcement at Stage 1 is:

0=0, (core column) (1a)
P=Q (reinforcement) (1b)
W=P+Q (combined) 2)

As the load W is increased, the core reaches its buckling
load of Q.,, with both the core and the reinforcement car-
rying loads up to Stage 2.

When Stage 2 is reached, the core has reached its maxi-
mum load capacity. If strain-hardening is ignored, any fur-
ther lcad will be carried by the reinforcement. The mecha-
nism against failure at this stage is shown in Fig. 2b.

As the deflection of point G increases because of the in-
creased load of W, the capacity of the core will approach
QO.,, while its resistance to rotation at G approaches zero.

As W increases, a plastic hinge will form at E and
the reinforcement loses its stiffness. This is the failure
stage of the reinforced column. The analysis will start at

Stage 1 with the assumed forces and displacements shown
in Fig. 3.

No real column is perfectly straight and its initial crook-
edness can be given as,

Yo = assin(mwx/L) + apsin(2wx/L) +
... ta,sin(nwx/L) 3)
The first term of the series is predominant and will be
used in the analysis to follow. The column CD, in Fig. 3a,
is assumed to have an initial bow. Using this assumption,
then,

Yo = assin(mx/L) ©)

As the load Q increases, the initial bow will take the de-
flected shape given by y. This deflection will result in a
load g on the reinforcement, shown in Fig. 3b. The rein-
forcem. nt will have a transverse loading of the same form
as the deflected core.

q = F sin(mx/L) 5)
where

q = the load per unit length.
F, = maximum force acting at L/2
The deflection® for the beam CD is,
y = Qa sin(mwx/L)/(w*EI./L*— Q) 6)

The term w?EI./L? is Euler beam-column buckling load.
If this is replaced by Q.,, where O, = E, A, then Eq. (6)
becomes,

y = Qasin(mx/L)(Qer — Q) (6a)

W W
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The solution® to the beam-column shown in Fig. 3b is,
w = F,(L/w)*in(wx/L)/(w*EI,/L*~P) @)

Similarly, if w’EI, /L? is replaced by P,,, where P, = F, A,
and E, is based on the stiffness of the reinforcement, then
Eq. 7 becomes:

w= E(L/w)*sin(mx/L)/(P,—P) (7a)
Equating y = w, then,
Fo = Tera(Pcr—P)/Lz(ch— Q) (8)

As (Q., — Q)—0, (R, — P)>0, (from initial assumption).
Rewriting Eq. (8) as,

F,= C(I)cr— P)/(ch—Q) (9)

AsO—Q,,, F,—,whatever the value of C. Soitcanbe con-
cluded a plastic hinge will form at G in column CD, with
a mechanism similar to that shown in Fig. 4b. The force
F acts at the center of column CD, preventing it from col-
lapsing.

The force F also acts at the center of the reinforcement,
creating the beam-column shown in Fig. 4a.

The equation’ for the deflection center of the column
ABiis,

w = LF [tan(uL/2)/(uL/2)—1] /4P (10)
where
uw?>= P/EI,
An approximation of Eq. 10 is:
w = FP,L*/A8EI(P,—P) (11)
| L

o = @ sin(mx/L)

Yo = is the initial curvature

Figure 3a

L/2 N L/2 |
|

-

Figure 3b
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Loading curve resulting

where
P, = wEI,/L? (12)

The corresponding deflection at the center of column CD
after the plastic hinge has formed, shown in Fig. 4b, is,

y = FLIAQ,, (13)

Critical Load on Reinforcement

If the deflection y and w are equated, the maximum load
P can be determined using Eqgs. 10 and 13 and equating
y = w, then,

P = Q,, [tan(uL/2)/((uL/2)—1] (14)

The solution of Eq. 14 is best solved by computer or by
successive approximations.

A simpler but less accurate method for finding P is to
use the approximation given by Eq. 13 and Eq. 11. Equat-
ing deflections,

y=w

then
Poax = P.(1-Q,, L*12EL) (15)
Prax = P.(1-Q,,m/12P,)
Po.=P,—0.8220,, (16)
Prax =P,

Sl 1a

[N 1ol

Figure 4
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Critical Length of Reinforcement

If Eq. 16 is equated to E.,, a critical length L; results. This
is the maximum column length for which the properties
of an unloaded reinforced column can be used, given as,

L, = V[«?EL (P, +0.8220.)] (17

Similarly, if Eq. 15 is equated to zero, a critical length
L, results. This is the minimum length of column for which
the reinforcement provides additional stiffness to the core.
For column lengths greater than L,, the column must be
designed for the elastic range as given by the next section.

L2 =V (12Elr /ch) (18)

Since Eqgs. 17 and 18 give approximate values of L; and
L, sometimes it is necessary to make a second trial calcu-
lation.

Elastic Analysis

When the core column length is greater than L, the col-
umn must be designed for elastic stresses only, with both
the core and reinforcement working below the critical
buckling stress of the reinforced column.

The following analysis derives the ultimate load for a re-
inforced column in this state.

Egs. 21 and 22 are given for the factor of safety and
Egs. 23 and 24 give the critical buckling stresses.

The larger value of the reinforced or unreinforced L/r
should be used to calculate the factor of safety.

The factor of safety (F.S.) for Eq. 1.5-1% s,

F.S. = 5/3+3(KL/r)/8C.—(KL/r)*/8C> (21)
and for Eq. 1.5-2%is,
F.S.=23/12,KL/r > C, (22)
The critical stress E, for Eq. 1.5-1 is,
E, = [1-(KL/r)’2CAE, KL/r<C, (23)
E,=w’E/(L/r)*,KL/r > C, (24)
where
C. = V(2n’EIF,)
EXAMPLES

Three cases will be considered, each using L = 126 in. Ini-
tial dead load Q, = 91.2 kips and the same W8Xx 31 section
with the equivalent area of reinforcement of 2 — 7-in. X
¥s-in. plates with F, = 36 ksi.

Strain in the core column CD at load Q, is €, and the
strain at load Q. is €. Strain in reinforcement at load

Q. is:

€r— €

Load in reinforcement at load Q,, is P = O. Load P in the
reinforcement at load Q, is:

P= (ecr —€ 0) ArE

pP= (ch - Qo) Ar/Ac (19)
The ultimate load P, of the reinforced column is:
W=F=P+Q, (20)

In no case should W exceed the buckling strength of the
reinforced column, with 9, = 0.

FACTOR OF SAFETY AND
CRITICAL BUCKLING STRESS

The factor of safety and critical inelastic buckling stress
should be based on AISC Specification Eq. 1.5-1.3 This
equation can be broken down into two parts: one is the
factor of safety and the other the critical buckling stress.

Properties of core column W8Xx31.

A, =9.12in.2
I, =37.0in*
r, =2.02in.

y

L/r =126/2.02 = 62.38
Determine critical stress £, by Eq. 23.

C.(F,=36ksi)=126.1, K=1.0
F,, = [1—(62.38/126.1)%/2] %36 = 31.60 ksi
Q. =31.60 x 9.12 = 288.19 kips

Case 1.

2 — 7-in. X ¥%-in. plates welded to the flanges.

Reinforcement properties:
A, =2x7x0.375=5.25in.2
I, =2x.375x7%12=21.44in.*
r =V21.44/525=2.02in.
L/r =126/2.02 = 62.38

Combined column properties

A =9.12+525=1437in.2
I =37+21.44=58.44in.
r =VI/A=V(58.44/14.37) = 2.02in.
L/r =126/2.02 = 62.38
F,, =[1—(62.38/126.1)%2] x 36 = 31.60 ksi
Ultimate capacity with Q, = O.
P, =31.60 X 14.37 = 454.09 kips
F,, =[1—(62.38/126.1)%2] x 36 = 31.60 ksi
P, =31.60 X 5.25 = 165.9 kips
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Check critical length L; for post buckling by Eq. 17,

L, = V[7?x29000x21.44/(165.9+.822x288.19)]
=123.4in.

Check critical length L for the elastic buckling by Eq.
18,

L, ="V/(12 X 29000 x 21.44/288.19) = 160.9 in.

The reinforced column is in the transition stage, since
L,<L<L,. Use Eq. 16 to calculate P.

P =P.—-0.820,

P, =m*x 29000 x 21.44/126* = 386.49 kips
Q. =288.19 kips

P =386.49 — .822 x 288.19 = 149.60 kips
P =P,

W =P,=Q0,+ P=288.19 + 149.96 = 438.15
kips

The factor of safety is given by Eq. 21 using the L/r ratio
for the combined column properties,

F.S. = 5/3+3%62.38/(8x126.1)—.125% (62.38/126.1)>
=1.84

ASD design load on reinforced column
F.S.=438.15/1.84 = 238.5 kips
F, =238.5/14.37 = 16.60 ksi

Welds to reinforcement
Use E70XX electrodes
Shear flow tb = V, O, /I,
0, =(7x.375) x (.75+8)/2 =11.5
I, =110 + [(.75+8)/2]*%2.63x2=210.7 in.*
S, =210.7/4.375 = 48.2in.3
Allowable moment, M = 24x48.2 = 1156 kip-in.

Equivalent shear, V, = 2M/L
=2X1156/126 = 18.4 kips

Shear flow/in. =V, Q, /I,
= 18.4x11.5/210.7=1.0 kips/in.

Spacing welds = 127/V' F, = 127/V/36 = 21.2 in.
Limit spacing to 12-in.

Capacity of %16-in. fillet weld = 36x0.4x3/16 =
2.7 kips/in.

Length of weld = 12X1/2.7 = 4.44 in.
Use 2 — %e-in. fillet X 2% long at 12-in. c. to c.
End welds
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Shear on end of plate = MQ, /I,
= 1157x11.5/210.7
= 63.0 kips

Length of ¥%6-in. fillet weld = 63.0/2.7 = 23.3 in.

Use 12-in. of %e-in. fillet weld each side of plate with
1-in. return weld

Case 2.
W8x31 with 2 — 10.5-in. X Y4-in. flange plates
Properties of reinforcement
A, =10.5%.25x2=525in.?
I  =2x0.25x10.5%/12 = 48.23in.*
r  =V/(48.23/5.25) = 3.03in.
L/r =126/3.03 = 41.57
F., =[1— (41.57/126.1)%2] x 36 = 34.04 ksi
P, =34.04 x 5.25 = 178.71 kips
Combined properties
A =1437in.?2
I =37+48.234=28523in*
r =2.44in.
L/r =126/2.44 = 51.64
F,, =[1—(51.64/126.1)%2] x 36 = 32.98 ksi
P, =32.98 x 14.37 = 473.92 kips
Check critical length L; by Eq. 17
Using L; = 182.25, Q., = 244.21 kips,
P., =167.49 kips
then

L; = V[w?X29,000 x 48.23/(167.49+.822x244.21)]
=193.6in.

L; = L, so the column can be designed for the rein-
forced column properties with Q, = O.

then,
P, =473.92 kips

Case 3.
W8X31 with 2 — 6-in. X %6-in. web plates

Properties of reinforcement

A, =5.25in.2
I, =2x6X.438%12+5.25+(.438+.288)%/2
= 774in.*

r  =V/(774/5.25) = .384
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L/r =126/.384 = 327.8

F,, = m?x29000/327.8% = 2.66 ksi

P, =2.66 x5.25 = 14.0 kips

A =1437in?

I =37324

r  =V/37.324/14.37 = 1.61in.

L/ir =126/1.61 =78.16

F,, =[1-(78.16/126.1)%2] x 36 = 29.08 ksi
Ultimate capacity assuming Q, = 0.

P, =29.08 x 14.37 = 417.88 kips
Check critical length for elastic buckling using Eq. 18.

L, ="V(12 % 29,000 X .776/288.19) = 30.6in.

The column is elastic; use Eq. 19

P =(288.19 — 91.2) x 5.25/9.12 = 113.4 kips
P, =0, +P=288.19 + 113.4 = 401.59 kips

If the column had been designed with the reinforced prop-
erties and load Q, = 0, then the column would be defi-
cient by,

(417.88 — 401.59) x 100/401.6 = 4.06%

If the same column was carrying its full load at the time
of reinforcement, then

L/r=62.38
0, =17.2 X 9.12 = 156.86 kips

and

P.(0Q,=156.86) = (288.19—156.86)x5.25/9.12+288.19
=363.1

% overstress = (417.88-363.1)x100/363.1 = 15%

COMPUTER ANALYSIS AND RECOMMENDATIONS

A computer program was written to investigate the char-
acteristics of a W8 31 section reinforced as previously de-
scribed for Cases 1, 2 and 3 in the Example section. The
behavior of the three cases is shown in Figs. 5 and 6. Also,
the computer analysis was used to check the validity of
using the approximate Eq. 16 instead of the more exact
Eq. 14.

Figure 6 shows the curves have a distinct discontinuity
when a critical length L; is reached for each type of rein-
forcement. This is best described by examining the curve
for Case 1.

From points a to b, the curve gives the ultimate capacity
of the column, based on the reinforced column properties.
The initial load on the column has no effect on the ulti-
mate capacity P, of the column for column lengths less

than L;. For lengths up to point b, the column can be de-
signed as a normal column and the effects of the residual
load Q, can be ignored.

From points b to c, there is a change in the curve as the
reinforcement provides post-buckling strength to the core
column. This is the transition stage between inelastic
buckling to elastic buckling and the column should be de-
signed using Eq. 16.

From points c to d, the column is completely dependent
on the initial loading Q,, and the strain of the core cannot
go beyond the first buckling load. The column should be
designed as outlined by the section on Elastic Analsyis.

The computer showed Eq. 16 slightly overestimates the
critical buckling of the reinforced column. If one desires
to check the value of P by Eq. 14, then Eq. 16 can be used
as a starting point.

The ultimate capacity of the column should not exceed
the capacity of the reinforced column under no load condi-
tion,i.e., O, = 0.

The complexity of the failure modes is shown in Fig. 6
curve (3), where the buckling load after L = 150 is based
on Eq. 24 with the properties of the reinforced column
and Q, = 0, rather than the method suggested in the Elas-
tic Analysis of this paper. This is because the radius of gy-
ration of the reinforced column is less than the radius of
gyration of the core.

CONCLUSION

The method developed in this paper for calculating the ul-
timate capacity of a column reinforced under load is based
on a rational analysis and is not substantiated by testing,
although the method does provide the same answer as
Ref. 2 for a W8x31 column reinforced with 2 ft. — 7 in.
X ¥ in. flange plates and an L/r = .48.

The paper treats the reinforced column as a frame with
two members joined to each other by rigid links. The
members are the reinforcement and the unreinforced col-
umn. The reinforced column of length L has two critical
lengths L, and L, which define its behavior. The values
of L; and L, are dependent on the relative stiffness of the
reinforcement and column.

The design criteria for determining the capacity of the
column is given by the following:

1. L = L,, the properties of the reinforced column can
be used.

2. L > L,, the column should be designed for elastic be-
havior only, by Elastic Analysis section of this paper.

3. L; < L < L,, the column uses the post-buckling
strength of the reinforcement after the column core has
failed. The critical load is given by Eq. 14.
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NOMENCLATURE

A = Area of compression members
A, = Area of core column
C = Constant
C. = Column slenderness ratio separating elastic and in-
elastic buckling
Modulus of elasticity of steel
Lateral force acting at center of column, between
core and reinforcement at failure
= Allowable compressive stress
Critical buckling stress
Maximum force between core and reinforcement,
elastic range
y Specified minimum yield stress
F.S. = Factor of safety
= Moment of inertia of core column
= Moment of inertia of reinforcement
= Effective length factor for a prismatic member
L = Length of column
L, = Firstcritical length, Eq. 17
L, = Second critical length, Eq. 18

Il

~

o
Il Il I

‘N ﬂN

X

M = Moment acting on reinforcement

P = Load on reinforcement

P., = Critical load on reinforcement

P, = Euler equation, Eq. 12

P Ultimate load on reinforced column

= Lateral force between core column and reinforce-
ment

= Load on core column

Q, = Load on core column at time of reinforcing

Q., = Critical load on core column

Il

1y

&)
|

©Q

r = Radius of gyration

W = Load on combined core column and reinforcement
w = Deflection of reinforcement, elastic range

x = Distance along column, measured from support

y = Deflection of core column

¥, = Initial curvature of core column

u* = PIEI,

€, = Strain in core column at time of reinforcing

€., = Strain in core column at buckling
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