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I n the stability design of frameworks, attention must be 
given to the additional moment developed as a result of 
member (F-8) and frame (P-A) amplification effects from 
compressive axial loads. These secondary moments may 
have a deleterious effect on the strength and stability of 
the frame and so they must be reckoned with in the analy
sis and design processes. These are various approaches 
ranging from very simple to rather rigorous by which a 
designer can employ to account for these second-order 
effects. In particular, the AISC/LRFD Specification^ 
adopts the so-called moment magnifier method in which 
moment amplification factors B^ and B2 are introduced to 
account for the additional moments due to P-8 and P-A ef
fects, respectively, as an alternative to a complete second-

order elastic analysis. In using this approximate method, 
the designer must perform two separate first order analy
ses: A non-sway analysis in which artificial supports are 
provided to ^Le frame to prevent it from displacing later
ally; and a sway analysis in which the frame is allowed to 
displace laterally (Fig. 1). The first analysis gives M^^ that 
is multiplied by Bi to account for the P-8 effect and the 
second analysis gives Mi^ that is multiplied by B2 to ac
count for the P-A effect. These two magnified moments 
are then added algebraically to obtain the design moment 
(required flexural strength) M„ for the member in ques
tion. The advantage of this method is that it is straightfor
ward and can be implemented easily in design since only 
first-order analysis is required. The disadvantage of this 
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method is that it is appHcable only to rectangular rigid 
(Type FR) frames. This restriction arises as a result of the 
assumptions and simplifications used in the structural 
model in deriving the expression for B2. Another disad
vantage is that the additional moments arising from the 
P-b and P-A effects may not be synergistic, since they nec
essarily do not occur at the same location. The use of this 
method will, therefore, in some cases overestimate the re
quired strength for the member leading to an uneconomi
cal design. Furthermore, for multi-story, multi-bay 
frames, there is the question of where to place the artifi
cial supports for the non-sway analysis, since placement of 
these supports at different locations will lead to slightly 
different but noticeable results. 

The aforementioned disadvantages can be circum
vented if one uses the preferred method contained in the 
LRFD Specification by performing a direct second-order 
elastic analysis to obtain M,,. In using this direct approach, 
the designer often relies on computer programs capable of 
performing second-order structural analysis that account 
for both the deterioration of member flexural rigidity 
under axial compression (F-8) and equilibrium of the de
flected structure (P-A). 

Although second-order structural analysis programs are 
available in the market, extreme care must be exercised in 
using these programs. Special attention must be paid to 
such factors as modeling of the structure and setting toler
ance limits for the analysis. It is important that a designer 
possess some basic knowledge of nonlinear analysis and 
behavior of the structure before any attempt is made to 
accept the results of the analysis. 

In this paper, a simple and practical method of second-
order frame analysis using first-order structural analysis 
technique is proposed. The proposed method accounts for 
the F-8 and P-A effects by the use of a fictitious or pseudo 
lateral load. This method has the advantage over other ex
isting methods in that no special consideration is required 
for the modeling of the structure—and the approach is ap
plicable not only to rectangular rigid (Type FR) frames but 
also to non-rectangular, semi-rigid (Type PR) frames. As 

demonstrated in subsequent sections, the approach is 
based on a firm theoretical background and provides good 
results for frames subject to normal loading conditions. 

THEORETICAL BASIS OF THE METHOD 

Consider the beam-column of flexural rigidity EI with no 
relative joint translation subjected to an axial force of F, 
end moments M^, M^ and an arbitrary lateral load of w as 
shown in Fig. 2. The differential equation governing the 
small displacement behavior of this member is given by 
(2a). 

dx^ dx^ 

Upon rearrangement, Eq. 1 can be written as 

dx^ 

where 

w' = -P 
d^ 
dx^ 

(1) 

(2a) 

(2b) 

If we compare Eq. 2a with the differential equation of a 
beam (Fig. 3), 

EI 
dx^ (3) 

it is seen a beam-column differs from a beam by only 
the extra term w' given by Eq. 2b. Based on this obser
vation, we can, therefore, account for the beam-column 
effect by applying a pseudo lateral in-span load of 
w' = -P(d^yldx^) to the member (Fig. 4). In other words, 
the beam-column shown in Fig. 2 can be analyzed as a 
beam shown in Fig. 4 provided that a fictitious lateral load 
w' equal to the negative product of the axial force P and 
the second derivative of the displacement d^yldx^ is ap
plied to the member. 

W 
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Fig. 2. Beam-column Fig. 3. Beam 
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If small displacements are assumed, the following rela
tionship holds 

EI 
(4) 

where M is the bending moment (considering second-
order effects) in the member. 

In view of Eq. 4, the fictitious or pseudo lateral load ex
pressed in Eq. 2b can now be written as 

-"(I EI 
M (5) 

Equation 5 indicates the pseudo lateral load can be ob
tained from the second-order moment diagram by scaling 
it down by a factor of P/EI. Since P and M are not known 
in advance for a member in a structure, the exact value of 
w' cannot be evaluated directly. However, as a first ap
proximation, the first-order values for P and M can be 
used. Using these values, an approximate value for w' can 
be evaluated using 

! - ; ) " • (6) 

in which the subscript 1 refers to the first cycle of calcula
tion. By loading the member with this pseudo lateral load 
together with the actual loadings, a first-order analysis 
again can be performed on the structure from which a bet
ter estimate of P and M can be obtained. Using these new 
values P and M, a better approximation for w' can be eval
uated. Using this updated value of w' and the actual load
ings, another first-order analysis can be performed to ob-

w ' - - P ^ = ^ 

i i t f t r t * 

tain yet better values for P and M. Thus, an expression for 
the pseudo lateral load at the i-th cycle of calculation can 
be written as 

EI 
M,- (7) 

If the member in question is subject to relative joint 
translation (Fig. 5a), a secondary overturning moment 
equals the product of the axial force P and the relative 
joint displacement A induced in the member. This so-
called P-A moment traditionally is taken into account by 
replacing the axial force P by a pair of equal and opposite 

(a) 

Fig. 4. Beam with pseudo-lateral, in-span load 

P-A Effect 

A (b) (c) 

Fig. 5. Beam-column with relative joint translation 
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shear forces equal PA/L (L is the length of the member) 
acting at the ends of the member. Strictly speaking, this 
approach is not exactly correct. The pitfall lies in the fact 
that by subjecting the member to a pair of end shears of 
PA/L, only the P-A effect can be accounted for, whereas 
the P-h effect, which is also present in the member cannot 
be accounted for. In what follows, it will be shown that 
with slight modification, the proposed pseudo load 
method can also be applied to members with relative joint 
translation. The method accounts for both the P-b and 
P-A effects simultaneously for these members. 

To illustrate the rationale behind the method, let's con
sider Fig. 5b in which the axial force P acting on the mem
ber has been decomposed into components. The compo
nent that acts along the chord (dashed-dotted line) of the 
members is given by 

P cos 9. P at the A-th end 

and 

P cos e^ ^ F at the B-th end 

(8a) 

(8b) 

respectively, and the component that acts perpendicular 
to the chord is given by 

P sin 8̂  - P OA - H~/')^ ^^ ^^^ ^'^^ ^"^ ^̂ ^̂  

and 

P sin e^ - F e^ =- P 
/dy 
\dx 

at the B-th end (9b) 

respectively. The component of P that acts along the 
member chord (i.e. Eqs. 8a and 8b) gives rise to the P-h ef
fect and the component of P that acts perpendicular to the 
member chord (i.e. Eqs. 9a and 9b) contributes to the P-A 
effect of the member. It has been shown earlier the P-b ef
fect can be accounted for by applying the pseudo lateral 
load of w' to the member. To account for the P-A effect, 
what we need to do is to apply a pair of pseudo shear 
forces equal P{dy/dx)^ and P{dyldx)B at the A-\h and B-ih 
ends of the member, respectively. This is shown in Fig. 5c. 
Note that by subjecting the member to a pseudo lateral 
load of w' in conjunction with the pseudo end shears, both 
the P-h and P-A effects can be accounted for simultane
ously. 

Since the end slopes (dy/dx)^ and {dyldx)^ are not 
known in advance, it is necessary to use approximate val
ues from a first-order analysis. These values can be im
proved upon in subsequent cycles of analyses. 

It is important to note the directions of these pseudo 
loads. The pseudo lateral load must be applied in the di
rection to amplify the displacement of the member with 
respect to its chord, while the pseudo end shears must be 
applied in the direction to cause the member to rotate in 
the same sense as the P-A moment. 

If more than one member is connected at a joint, the 
pseudo end shears for these members must be combined 

to obtain a psuedo joint load to be appUed to the struc
ture. For instance, if two columns meet at a joint, the 
pseudo joint load H' is obtained from 

H' = 
\dxl B lower story \dxjA upper story (10) 

This pseudo joint load must be applied in such a direction 
as to cause an increase in deflection of the structure from 
its original configuration. 

PSEUDO LATERAL LOAD METHOD 

Member With No Relative Joint Translation 

To demonstrate how the pseudo lateral load can account 
for the member instability effect, cosider the beam-
column in Fig. 6. The member is subjected to an axial force 
of P and a concentrated mid-span lateral load of Q. Under 
the load Q, the member will deflect. The axial force will 
act through this lateral displacement creating additional 
deflection and moment. This phenomenon is referred to 
as the P-8 effect. The maximum moment of this member 
occurs at mid span and has a theoretical value (2) of 

-''^max tan 

kL 
2 

k_L 

2 

M. (11) 

where M^ is the first-order moment given by QL/4 and 
k = vP/EI. It is now desirable to obtain an approximate ex
pression for Mmax using the proposed approach and com
pare it with Eq. 11. 

To begin, let's ignore the axial load P and analyze the 
member subjected to Q only using first-order analysis 
technique. The result of this analysis is in Fig. 7a. Next, 
scale the moment diagram of Fig. 7a by the factor P/EI to 
obtain the pseudo lateral load as shown in Fig. 7b. Load 
the member by this pseudo lateral load together with the 
actual lateral load, analyze the beam again using first-
order analysis. The moment at midspan (i.e. M^^^) now 
becomes 

a 

L/2 L/2 
— P-x 

t 

y 
Fig. 6. Beam-column subjected to concentrated mid-span load 
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M„ l^Y^ikLf M„ (12) 

Table 1 shows a comparison of the theoretical value for 
Mmax expressed in Eq. 11 with the approximate value 
given in Eq. 12 for the range of kL commonly encoun
tered in nonsway frames. It can be seen that reasonably 
good approximations are obtained for small kL values. 
For large kL values, the approximate values begin to devi
ate from the exact values. This derivation becomes more 
pronounced as kL increases. To obtain a better approxi
mation, a second iteration is performed. The moment dia
gram obtained from the first iteration is scaled by the fac
tor PIEL the resulting pseudo lateral load together with 
the actual lateral load are then loaded on the member as 
shown in Fig. 7c. Under these loadings, it can be shown by 
elementary structural analysis that the mid-span moment 
(M^a^) is given by 

M. 1 + — (kLf + — (kLy 
12 ^ ^ 120 ^ ^ 

M. (13) 

A comparison of Eq. 13 with Eq. 11 is shown on Table 1. 
As shown, Eq. 13 gives a better approximation than Eq. 

Table 1. Comparison of {Mmax I Mo) exact with 
iMmaxlMo)approx. for Supported Beam-Column 

kL 

0.20 
0.40 
0.60 
0.80 
1.00 
1.20 
1.40 
1.60 
1.80 
2.00 

Exact 
Eq. 11 

1.003 
1.014 
1.031 
1.057 
1.093 
1.140 
1.203 
1.287 
1.400 
1.557 

MmaxIMo 

Approximate 
Eq. 12 Eq. 13 

(one cycle) (two cycles) 

1.003 1.003 
1.013 1.014 
1.030 1.031 
1.053 1.057 
1.083 1.092 
1.120 1.137 
1.163 1.195 
1.213 1.268 
1.270 1.357 
1.333 1.467 
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Fig. 7. P- 6 analysis by the pseudo-lateral load method 
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12 to Eq. 11, especially for higher kL values. This process 
can be continued further until the desired accuracy is ob
tained. This is not attempted here. Instead, it will be 
shown in the forthcoming that there is a physical signifi
cance to the pseudo lateral load used in the proposed 
method. 

If we expand Eq. 11 using Taylor series expansion, we 
obtain 

M . 1 + 
1 kL^^2_ 

2 / 15 
kLY 
2 / 

M . 

P will then act through this sidesway displacement creating 
additional sidesway and moment. This phenomenon is re
ferred to as the F-A effect. Note that in addition to this 
P-A effect, the JP-8 effect is also present since the member 
also deflects with respect to its chord. Using structural sta
bility theory, it can readily be shown that the theoretical 
moment at the fixed-end of the member is given by 

Mf = (sec kL) M,, 

where k = VPIEI 

(15) 

or 

'^Ti^'^^^'-Tr,^''^'^- M„ (14) 

Upon comparison of the above equation with Eqs. 12 
and 13, it can be seen readily that by successive applica
tion of the pseudo lateral load, additional terms in the 
Taylor Series expression of the theoretical value of M^ax 
will be obtained. Thus, for each cycle of calculation, a bet
ter approximation to Mĵ ^x will be obtained, since one 
more term in the series will be generated. For ordinary 
structures under normal loading conditions, the value of 
kL will be small. Convergence of the series will be fast and 
so one iteration (two cycles of calculations) will usually 
suffice. 

Member With Relative Joint Translation 

Consider the cantilever beam-column shown in Fig. 8. This 
member is subjected to a concentrated moment of M^ and 
a vertical force of P at its free end. Under the action of 
M„, the members will deflect sidesway. The vertical force 

M L 
o 

EI 

(a) 

+ + 
'^^ 

PM L 
o 

EI 

PM L 
o 

2EI 

Fig. 8. Cantilever beam-column Fig. 9. P-h analysis by pseudo-lateral load method 

90 ENGINEERING JOURNAL / AMERICAN INSTITUTE OF STEEL CONSTRUCTION 



To obtain an approximate value for Mp using the pro
posed method, the member is analyzed as a beam with the 
concentrated moment M^ acting alone as shown in Fig. 9a. 
The result of this analysis indicates that {dyldy)/^ = 0 and 
{dyldx)^ = M^L/EI. Consequently, in order to account for 
the P-A effect, an end shear of PM^LIEI is applied to the 
member. To account for the P-h effect, the moment dia
gram of Fig. 9a is scaled by the factor PI EI to obtain a 
pseudo lateral load oi w\ = PM^IEL These pseudo loads 
are shown acting on the member in conjunction with the 

real load M^ in Fig. 9b. Under these loadings, M/r is calcu
lated to be 

Mp 1 + \ {kLf M„ (16) 

A comparison of this approximate value of Mp with the 
exact value expressed in Eq. 15 for a range of kL typical of 
sway frames is presented in Table 2. Good agreements are 
observed at low kL values. For high kL values, the ap
proximate value deviates from the exact value. However, 

2 2 2 2 
PM P M L P M L 

o o o 
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+ 
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+ 
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o 

2EI 
o 

6 ( E I ) ^ 

Fig. 9. (continued) 

+ 
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o 
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Table 2. Comparison of (MFlMo)exact with 
{MplM,). for Cantilever Beam-Column 

kL 

0.20 
0.40 
0.60 
0.80 
1.00 

Exact 
Eq. 15 

1.020 
1.086 
1.212 
1.435 
1.851 

MmaxIMo 

Approximate 
Eq. 16 Eq. 17 

(one cycle) (two cycles) 

1.020 1.020 
1.080 1.085 
1.180 1.207 
1.320 1.405 
1.500 1.708 

improvement can be made by performing another cycle of 
calculation. This new cycle of calculation is depicted in 
Fig. 9c. The moment at the fixed-end is now 

M, 1 + \ {kLf + ^ {kLf M. (17) 

It can be seen in Table 2 that Eq. 17 gives a better approxi
mation of Mp than Eq. 16. 

A reader should recognize Eqs. 16 and 17 are the Taylor 
Series expansion of Eq. 15. Hence, the pseudo loads for 
sway members bear the same physical significance as that 
for non-sway members in that each set of new pseudo loads 
represents an additional term in the power series expan
sion of the exact solution. 

APPLICABILITY OF THE METHOD 

In the preceeding section, two simple examples were 
shown to demonstrate the use of the proposed method. It 
should be mentioned that the method can easily be ex
tended to structures composed of an assemblage of frame 
members. The steps that need to be followed are: 

1. Perform a first-order analysis on the structure. 
2. Construct bending moment diagram for each and every 

member of the structure. 
3. Obtain pseudo lateral in-span loads for all the members 

of the structure by scahng the moment diagram of the 
member in question by the factor PI EI where P is the 
axial force and EI is the flexural rigidity of the member. 
For members subjected to sway, additional end shears 
and, hence, pseudo joint loads must be calculated and 
applied to the joints of the structure according to Eqs. 
9a, 9b and 10. 

4. Load the structure by these pseudo loads together with 
the actual loadings. Perform another first-order analy
sis on the structure. 

5. Repeat steps 2 to 4 if desired. 

By following this procedure, secondary moments which 
must be accounted for in design can be obtained by first-
order analysis technique. In addition, since no assumption 

regarding the structure geometry and member end condi
tions were made in the derivation of the method, the 
method thus is applicable not only to rectangular Type FR 
frames but also to non-rectangular Type PR frames. This 
represents an obvious advantage over the moment magni
fier method contained in the current LRFD Specification 
by which only rectangular Type FR frames can be handled. 

In using the proposed method, it is necessary for the de
signer to carry out first-order frame analysis on the struc
ture. A number of first-order frame analysis schemes are 
available in the literature. Examples are: the slope-
deflection method, moment distribution method and ma
trix stiffness method. In all these methods, the analyst is 
required to obtain values for the fixed-end moments to ac
count for any in-span loads that might be present in the 
member. Since in-span member loads are always present 
in the pseudo lateral load method of frame analysis, a 
brief discussion of these fixed-end forces is necessary and 
will be presented in the following section. 

FIXED-END FORCES 

Table 3a lists the general expressions for the fixed-end 
forces of several pseudo lateral load distributions that are 
most commonly encountered. Recall the pseudo lateral 
load is obtained from the moment diagram of a first-order 
analysis, it follows that the order of the pseudo lateral load 
expression will be two higher than that of the real load. 
Thus, Case 1 in Table 3a represents the pseudo lateral 
load for a member subjected to end moments only. Case 
2 represents the pseudo lateral load for a member sub
jected to a concentrated lateral load and end moments. 
Case 3 represents the pseudo lateral load for a member 
subjected to a uniformly distributed lateral load and end 
moments. 

If a member is subjected to a real lateral load whose 
order is higher than a uniformly distributed load (i.e. zero 
order), the moment expression will have an order higher 
than two. For such cases, it may be preferable to obtain an 
approximate rather than an exact expression for the fixed-
end moments of the resulting pseudo lateral load. This is 
shown as Case 4 in Table 3b. The member is first divided 
into n segments. An equivalent concentrated load is then 
calculated for each segment from the equation 

G, 
w'iL 

n 
(18) 

In Eq. 18, w- is the value of w' at point /. Once Qf is calcu
lated, the fixed-end forces can be evaluated from the given 
expressions. 

The expressions shown in Tables 3a and 3b are applica
ble only if rigid connections are present at both ends of the 
members. If semi-rigid connections exist at either end, the 
fixed-end forces must be modified to account for the pres
ence of these connections. Denoting Rj^^ and Rf^^ as the 
connection stiffness at the ^-th and B-\h ends of the mem-
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Mp 
[(6 - gQp + (4 - OLM + 2air] L" 

120 

Table 3a. Fixed-end Forces 

- [ ( 4 - a2)p + (6 - oi2)q + 2 a2r] L^ 
M. 

120 

_ [(4 - a3)p + (2 - 0^3)̂  + 2a3r] L M^^ + M^^ 
Vj.B = 

[(2 - oi^)p + (4 - a4)^ + la^r] L Mp^ + MpB 

12 

Load Case 

1 

q 

"^r—T— 

^VA( 

^ A 

M 1 fV.,. 
T "̂  f ^ "'' 
1 1 ^FB 

2 

p y^ 

^ A 

: [ 

r 

f 
1 

\ ' r ^ 

^ aL bL 

L 

3 

P r - ^ 

^FA' 

i 1 j 

r 

\ 

L/2 1 
L ' ' 

q 

n FB 

^ p a r a b c 

" " ^ ^ q 

\ 

L/2 ^ 1 0 '-

Values of a's 

«! = a2 = a3 = a4 = 0 

a i = 2a^ (10 - 15a + 63^) + Sb^ (5 - 4b) 

oi2 = 3a^ (5 - 4a) + 2b2 (10 - 15b + 6b2) 

a3 = a^ + Sab + 2b2 

a4 = 2a2 + Sab + b^ 

) l a 

^1 ^ Ct2 = 4 

a3 = a4 = 2 

hers respectively, the fixed-end moments for the member 
are modified to (3) 

M'PA -
LR, 

AEI \ 2EI 

LR, 

1 + 
4£ / 

2EI 

1 + • 
E/ \ 4 / £ / 

J^^kB/ ^kARkB \ ^ 

(19a) 

M^«=-
L/? kA 

AEI 

1 + 
AEI 

LRkA 
1 + • 

AEI 

^Rks) RkARkB \ L f) 
7 (19b) 

In these expressions, Mf^ and M/r^ are the fixed-end mo
ments of the member with rigid connections and Mp^ and 
Mf-s are the fixed-end moments of the members with semi
rigid (PR) connections. The subscripts A and B refer to 
the A-th and B-th ends of the member, respectively. Once 
Mfr^ and MpB are calculated, the modified fixed-end 
shears Vf^ and Vps can be evaluated by considering mem
ber equilibrium. 

NUMERICAL EXAMPLES 

In this section, several frame examples will be given to 
demonstrate the validity of the proposed method. 
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Table 3b. Fixed-end Forces 

Load Case Fixed-end Forces 

FA 

^0 

4 = 1 t: A M 
io 1 2 i n V ) 

FB 

" V 
FA FB 

Mp 

Vj.^ = 

, Mp 
^Qi afb, 

l.Qiaf(ai + 35,) 

Example 1 

Figure 10a shows the geometry and loading conditions of 
a pinned-base portal frame. All members of the frame are 
made of W12x65 sections. The loadings shown are fac
tored loads. The frame is braced against out-of-plane 
bending. It is desired to determine the maximum mo
ment in the column and the beam considering second-
order effects. 

To proceed with the proposed method, a first-order 
analysis of the frame is performed from which value of the 
axial force P and bending moment M are obtained for 
each individual member. Next, obtain the pseudo lateral 
in-span load for each member by scaHng the moment dia
gram down by the factor PI EL For members that experi
ence relative joint translations (i.e. the columns), addi
tional end shears equal to the product of P and the end 
slope must be calculated and transformed into pseudo 
joint loads. Load the frame with these pseudo loads to
gether with the real loads as shown in Fig. 10b. Perform 
another first-order analysis on the frame. The results of 
this analysis are presented in Table 4 in which maximum 
moments in the column and the beam are shown for vari
ous methods of analyses. 

As can be seen, the proposed method gives an excellent 

approximation to the more exact method of second-order 
frame analysis with just one iteration. For the purpose of 
comparison, the moment magnifier method {B^ and B2 
method) recommended in the LRFD Specification is also 
presented. It can be seen that for this simple portal frame 
the results obtained using the proposed method are very 
comparable to those obtained using the LRFD moment 
magnifier method. 

Example 2 

In this example, a three-story frame shown in Fig. 11a will 
be analyzed. As in the preceding example, all loads shown 
are factored loads and the frame is braced against out-of-
plane bending. Following the same procedure as before, a 
set of pseudo lateral in-span loads is obtained by scaling 
the first-order moment diagrams by the factor PI EI and a 
set of pseudo joint loads is obtained by first calculating the 
end shears according to Eqs. 9a and 9b and then trans
forming them to joint loads according to Eq. 10. Using 
these pseudo loadings in conjunction with the real load
ings Fig. l i b , another first-order analysis is performed on 
the frame. The results for the maximum column moments 
obtained using the proposed method and several other 
methods are shown in Table 5. 
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Table 4. Moment in Leeward Column and Beam 
of the Simple Portal Frame (kip-in) 

Table 5. Moment in Leeward Columns of the 
Three-story Frame (kip-in) 

Method of Analysis 

First-order 
Analysis 

Second-order 
Analysis 

Proposed Method 
(1 iteration) 

Si, S2 Method 

Column 

2506 

2537 

2537 

2535 

Beam 

2702 

2711 

2710 

2710 

Method of Analysis 

First-order 
Analysis 

Second-order 
Analysis 

Proposed Method 
(1 iteration) 

Si, 82 Method 

1st Story 

833 

845 

844 

963 

2nd Story 

686 

695 

695 

717 

3rd Story 

576 

579 

579 

587 

A A 

(a) Frame geometry and loading 

2 . 9 8 

5.46 

5.46 

14 0 . 1 9 4 2 
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(b) Frame subjected to real and pseudo loads 

Fig. 10. Numerical example—simple portal frame 
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Fig. 11. Numerical example—three-story frame 
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Although only one iteration is used, the proposed 
method gives excellent results when compared to a 
second-order analysis. The LRFD moment magnifier 
method, however, overestimates the column moments. 
The overestimation is rather pronounced for the first- and 
second-story column moments. This conservatism is at
tributed to the fact that the maximum nonsway moment 
and the maximum sway moment do not coincide at the 
same location. For instance, for the first- and second-story 
columns, (M„̂ )max and (Mi^)^.^^ occur at different ends of 
the member. Depending on the degree of conservatism, 
the LRFD moment magnifier method could lead to a less 
economical design. 

Example 3 

In the preceding examples, the frames analyzed were all 
rectangular in geometry and the connections were as
sumed to be rigid. To demonstrate the proposed method is 
also appUcable to non-rectangular, semi-rigid frames, the 
gable frame shown in Fig. 12 will be analyzed. All mem
bers of the frames are made of W8x40 sections. The 
frame is assumed to be braced against out-of-plane bend
ing. While the connection at the apex of the frame is as
sumed to be rigid, the connections at the eaves of the 
frame are modeled as semi-rigid. The connection stiffness 
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1.26 0.711 

0.323 

r T - ^ 0.0412 2.20 
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0.0841 

0.00672 

0.0345 7.33 

0.024^/ 

3.874 

0.100 

//// Pseudo loads //// 

(Units for distributed loads: x 10~^ Klin.) 

(b) Frame subjected to real and pseudo loads 

Fig. 11. (continued) 
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Table 6. Moment in Girder and Leeward Column 
of the Semi-rigid Gable Frame (kip-in) 

0.167 k/in 

Method of Analysis 

First-order 
Analysis 

Second-order 
Analysis 

Proposed Method 
(1 iteration) 

Girder 

869 

890 

890 

Column 

1167 

1187 

1186 

assumed for these connections is R^ = 28525 kip-in./rad. 
The frame is analyzed using a semi-rigid frame program 
developed by the author. The results obtained for the 
maximum moment in the girder and the column using sev
eral different analysis schemes are presented in Table 6. It 
can be seen that even with just one iteration, the proposed 
method gives very good results for the maximum girder 
and column moments. The LRFD moment magnifier 
method is not used for this example, since the magnifica
tion factor B2 is applicable only to rectangular rigid 
frames. 

1 : : : i 
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(a) Frame geometry and loading 
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rmr yfrr 

Pseudo loads 
(b) Frame subjected to real and pseudo loads 

Fig. 12. Numerical example—gable frame 
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SUMMARY AND CONCLUSIONS 

A simple and effective method of second-order frame 
analyses was presented in this paper. The method ac
counts for the F-8 and P-A effects by the use of pseudo 
loads obtained from a first-order analysis of the frame. 
The method is quite versatile in that it is applicable riot 
only to rectangular Type FR frames but also to nonrectan-
gular Type PR frames. The validity of the method has 
been demonstrated and it is therefore recommended for 
general use. 
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NOMENCLATURE 
=Nonsway moment amplification factor 
= Sway moment amplification factor 
=Modulus of elasticity 
=Pseudo joint load 
= Moment of inertia 
--VP/EI 
= Length 
=Moment 
=Fixed-end moment 
= Modified fixed-end moment for the presence of 

semi-rigid connection 
=Maximum moment 
=First-order moment 
=Axial force 
=Transverse force 
= Connection stiffness 
= Fixed-end shear 
= Modified fixed-end shear for the presence of 

semi-rigid connection 
= Distributed load 
= Pseudo lateral in-span load 
= Deflection of member with respect to its chord 
=Deflection of member with respect to its initial 

position 
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