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Diagonal bracing is commonly used in steel structures to 
resist horizontal loads. In current practice, the design of 
this type of bracing system is based on the assumption the 
compression diagonal has negligible capacity and the ten
sion diagonal resists the total load (Fig. 1). 

If the diagonals are connected at their intersection point 
(usual practice), this design procedure is conservative be
cause the effect of this connection on the out-of-plane 
buckling capacity of the compression diagonal is ig
nored.1'2 ,3'4 The restraint provided to the compression di
agonal by the loaded tension diagonal is generally sufficient 
to consider that the effective length of the compression 
diagonal is 0.50 times the diagonal length (KL = 0.5L) for 
out-of-plane buckling as for in-plane buckling. Analytical 
and experimental results1'2 have also shown the ultimate 
horizontal load on the bracing system is much higher than 
the horizontal component of the yielding strength of the 
tension member, because of load sharing between the di
agonals. The assumption that the compression diagonal has 
negligible capacity usually results in overdesign. 

This paper presents the results of a theoretical study 
aimed at the determination of the transverse stiffness 
offered by the tension diagonal in cross-bracing systems 
and at the evaluation of the effect of this stiffness on the 
out-of-plane buckling resistance of the compression di
agonal. The theory is supported by seven transverse stiff
ness tests and 15 buckling tests. The test results are re
ported in the second part of the paper. 

BUCKLING OF THE COMPRESSION DIAGONAL 

In double diagonal cross bracing, the tension diagonal acts 
as an elastic spring at the point of intersection of the com
pression diagonal as shown in Fig. 2a, where a is the spring 
stiffness (kips/in. or kN/mm). If a = 0, then K = 1.0 (Fig. 
2b) and the elastic critical load Cce is equal to: 
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Fig. 2. Buckling modes for compression diagonal 
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In this equation, Ic is the moment of inertia of the com
pression diagonal considering out-of-plane buckling. 

If a = °°, then K = 0.5 and the elastic critical load is 
equal to: 

4TT2EIC 

r = 4C„ (2) 

Therefore, the effective length factor is given by: 

K= \ l ^ (3) 
r 

Timoshenko and Gere5 demonstrated there is a limit 
spring stiffness above which the elastic critical load is 4Ce 

(Fig. 2c). In other words, the spring does not have to be 
infinitely stiff to obtain K = 0.5. The limit spring stiffness is 
given by:5 

aiim = 7T^ (4) 
Lr 

Let us define the non-dimensional spring stiffness as: 

= oL 
7 " C 

(5) 

From Eqs. 1, 4 and 5, the limit value of the non-
dimensional spring stiffness is equal to: 

7lim = CXlim — = 1 6 (6) 

If we assume a linear relationship between Cce and 7, we 
obtain: 

Cr„ = | l + — I C < \CP (7) 

The variation of the dimensionless elastic buckling load is 
shown in Fig. 3 in terms of the dimensionless spring stiff
ness. The exact solution obtained by Timoshenko and Gere 
is also shown in the figure. It can be seen that Eq. 7 is 
slightly conservative. 

Using Eqs. 3 and 7, the effective length factor becomes: 

K = 
V l6 + 37 

0.5 (8) 

The variation of K is plotted in Fig. 4 against the dimension
less spring stiffness. The exact solution, given in Refs. 5 and 
6, is also shown in the figure. 

TRANSVERSE STIFFNESS OF 
THE TENSION DIAGONAL 

To determine the parameters a and 7, we will consider a 
prismatic member subjected to a transversely applied point 
load Q and a concentrically applied tensile force T, as 
shown in Fig. 5. For the problem studied here, Q represents 
the transverse force transmitted to the tension diagonal by 
the compression diagonal at buckling. 

The general solution of the differential equation ob
tained from equilibrium of the tension member shown in 
Fig. 5 is classical, assuming elastic behavior. The elastic 
behavior assumption is easily satisfied for X-bracing, since 
both diagonals are identical. When the compression di
agonal buckles, the tension diagonal is still behaving 
elastically.1'2 

The transverse stiffness or spring stiffness provided by 
the tension diagonal is obtained from the solution of the 
differential equation and is given by:1'2 

a=m\ 
\ L3 ) (v - tank v) 

(9) 
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C e 

Exact solution (Ref. 5 ) - \ 
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Fig. 3. Relationship between elastic buckling load and non-
dimensional spring stiffness 

Fig. 4. Relationship between effective length factor and non-
dimensional spring stiffness 
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where v is defined as: The following approximation for Eq. 12 is proposed: 

Hfr 
EI, 

(10) 

In Eqs. 9 and 10, E is the elastic modulus of the material 
and It is the moment of inertia of the tension diagonal, 
considering out-of-plane bending of the X-bracing. 

Combining 1, 5 and 9, we obtain the following equation 
for the evaluation of the dimensionless spring stiffness: 

\ i r 2 / \ / c / ( v - tank v) 
(11) 

In X-bracing systems, both diagonals are identical and It = 
Ic = I. However, in X-trusses supporting loads which al
ways act in the same direction, the compression diagonal 
could be stiffer. Since this paper deals with double diagonal 
bracings, Eq. 11 can be rewritten as: 

7 = 
TT / (v - tank v) 

(12) 
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Fig. 5. Tension member subjected to transverse force at mid-span 

7 = ^ - ( 3 + 1.09v2) (13) 

Eqs. 12 and 13 are compared in Fig. 6. It can be seen Eq. 13 
very closely approximates Eq. 12 when 0 < v2 < 80. This 
practical range for parameter v2 was evaluated as follows. 

Let us first assume the out-of-plane slenderness ratio of 
the compression diagonal, i.e., both diagonals, should not 
exceed 200. Since the diagonals are connected at their 
intersection, we get: 

L/2 
r 

LY 
2, 

200 

40 0 0 0 -
A 

(14) 

The maximum force in the tension diagonal being AFy, Eq. 
10 together with Eq. 14 and E = 29 000 ksi leads to: 

l\AFy 

'A EI 

Considering a maximum value for Fy of 58 ksi, then 0 < v 2 

< 80. 

In the previous equation, the constant 1.38 is in (ksi)-1. If 
SI units are used E - 200 000 MPa and the constant is equal 
to 0.20 (MPa)~\ Then Fy is in MPa. 
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Fig. 6. Comparison of Eqs. 12 and 13 
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Eq. 13, being an acceptable approximation (Fig. 6), will 
be used in the theoretical analysis. Since Ic = It = /, 
combining Eqs. 1, 5, 10 and 13 gives: 

a = Q , = 48|/ + 4 3 6 r 
E L 3 L 

It is interesting to note the first term in Eq. 15 represents the 
flexural stiffness of the tension diagonal. Then T = 0, the 
spring stiffness is equal to the flexural stiffness. Therefore a 
is never equal to zero and K is always smaller than 1.0 (amin 

= 48 EIIL3; from Eq. 5 or Eq. 18,7min = 4.86; from Eq. 8, 
Kmax = 0.72 (see Fig. 4). 

The results of the transverse stiffness tests reported in the 
second part of the paper demonstrate the validity of Eqs. 13 
and 15. 

Eq. 10 can be rewritten as: 

TTL\2 T 

2 J T:2EI 
= 2.47-

Ce 

(16) 

tions was ignored. In Ref. 4, the rotational restraint was 
relatively important, and test results suggest use of an 
effective length factor of 0.85 times the half diagonal 
length, i.e., K = 0.425 if the total length of the diagonal is 
considered. 

COMPRESSION-TENSION RATIO 

Since the behavior of the braced frame shown in Fig. 1 is 
elastic up to buckling of the compression diagonal, the ratio 
CceIT is equal to the ratio of the force in the compression 
diagonal C to that in the tension diagonal T obtained from 
an elastic analysis of the frame. Eq. 19 can thus be rewritten 
as: 

K= \ / 0 . 5 2 3 - ^ U o . 5 0 
CIT 

(20) 

Introducing Eq. 16 into Eq. 13 gives: 

Eq. 20 is plotted in Fig. 7. As seen, when the CIT ratio is 
larger than 1.6, the effective length factor increases. It 
reaches its maximum value when the CI T ratio is equal to 

y = 4.86 + 4.36 — 

From Eq. 3, Ce = K2CC( 

rewritten as: 

(17) 

Therefore, Eq. 17 can be 

y = 4.86 + 4.36 

Combining 8 and 18 gives: 

K2Cr, 

K= \/0.523--^->0.50 
CrJT 

(18) 

(19) 

During the buckling tests reported in the second part of 
the paper, the force in the tension diagonal was kept con
stant. Therefore, the value of T is known. If the compres
sion diagonal buckles in the elastic range, Eq. 19 can be 
used to determine the effective length factor (Cce = Ccr 

where Ccr is the measured buckling load). For inelastic 
buckling, Eq. 19 is not valid. However, the measured ine
lastic buckling load can be introduced into AISC equations7 

(safety factor removed) or into CSA equations8 (resistance 
factor removed) to determine the effective length factor. 
With this value of K, two values of Cce can be computed. 
One is obtained from Eq. 19 and the other from the follow
ing equation: Cce = TT2 EII(KE)2. These two values are 
compared to evaluate the accuracy of Eq. 19. 

Two final comments should be made concerning the 
previous equations. These equations are valid for con
tinuous diagonals which are connected at their intersection 
point. If one diagonal is interrupted at the intersection 
point, constant stiffness is not maintained and the connec
tion at this point may become a weak link when the inter
rupted diagonal is compressed.3 

In the derivations the rotational restraint of the connec-
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infinity, which corresponds to the minimum spring stiff
ness, equal to the flexural stiffness of the tension diagonal 
(T = 0 in Eq. 15 or Eq. 17). 

By considering the elastic deformations of the braced 
frame shown in Fig. 1, Vickers3 derived the following equa
tion to compute the CIT ratio: 

C = 1 + cos3^ 
T ^ i + A s i n 3 6 

A \ Ac J 

The parameters of this equation are defined in Fig. 1. Eq. 
21 was derived for a load pushing against one side of the 
frame as in Fig. 1. This is the most critical loading condition 
for the design of the compression diagonal because the CIT 
ratio exceeds one.3 

In a typical braced frame, the area of the cross section of 
the columns Ac is usually much greater than the area of the 
cross section of the diagonals A. Moreover, sin39 is always 
smaller than one. Consequently, the term A sin39A4cinEq. 
21 is small compared to 1 and can be neglected with only a 
minor loss in accuracy resulting in errors which are on the 
conservative side. Eq. 21 becomes: 

f.1 + (A)cos>e m 

Eq. 22 is plotted in Fig. 8. It can be seen that large values of 
Ab, i.e. small values of the AIAb ratio, tend to equalize the 
forces in the diagonals. In practical situations, the AIAb 

ratio is much smaller than one. Therefore, as shown in Fig. 
8, the CIT ratio is usually smaller than 1.6 and the lvalue is 
equal to 0.5 (Fig. 7). 

CONCLUSION 

The theoretical study reported in this paper shows that in 
double diagonal bracing systems the effective length of the 
compression diagonal is 0.5 times the diagonal length when 
the diagonals are continuous and attached at the intersec
tion point. 

Tests were done to demonstrate the validity of the equa
tions used to determine the transverse stiffness or spring 

stiffness provided by the tension diagonal and the validity 
of the equations used to determine the effective length 
factor. The results of these tests are reported in the second 
part of the paper. 
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