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Limit analysis and plastic design are techniques devel
oped to represent more realistic behavior of indeterminate 
steel structures. They take advantage of the fact these 
structures have a greater load-carrying capacity than indi
cated by the elastic analysis and the allowable stress design 
concept. 

Furthermore, the theoretical and experimental research 
of the last 40 years or so has led to the realization that the 
assumption of perfectly elastic behavior of structures is by 
far too simple. The actual performance of structures often 
departs considerably from pure theory of elasticity. In 
many instances, the calculated local stresses will be ex
ceeded due to residual stresses from rolhng, welding and 
cold-forming. Additional stresses can also be a product of 
erection and differential settlement of foundation. When 
highly stressed sections of a continuous structure yield, 
they merely transfer additional moments to less stressed 
areas and readjust themselves to carry the load more 
efficiently. In fact, there is not a vahd reason to insist the 
calculated service stresses in a steel structure should be 
below yield stress, as long as there is no danger of low 
cycle-fatigue or brittle failure. 

This paper presents the upper bound approach to the 
analysis of orthogonal grid systems applying the kinematic 
or mechanism method. The corresponding virtual work 
equations are formally written and solved for the value of 
the ultimate load. The load obtained in this way is the cor
rect limit load only if the corresponding bending moments 
nowhere exceed the maximum plastic moments (the 
plasticity condition). 

It is assumed the grid members all He in the same plane, 
and that all loads act perpendicularly to this plane. 
Furthermore, bending moments having axes perpendicu
lar to this plane and axial forces in the plane are assumed 
to be zero. The beams of a grid system rigidly connected, 
in general, will transmit both bending and torsional 
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moments. In this study, torsional moments are ignored, 
assuming the beams have no resistance to torque. Thus, 
any obtained solutions will be somewhat on the conserva
tive side. J. Heyman^ has shown however, that for typical 
I-beams the error has no practical significance since it was 
found to be less than 0.1% for the grids considered. The 
further assumption is that grid deformations are small 
compared with the grid size, so the equilibrium conditions 
may be satisfied by the undeformed rather than the 
deformed configuration. 

Restrictions on deflection at working as well as ultimate 
loads may also control the choice of structural members, 
and the plastic design method must allow for this. Also, 
the deformability of the structural system should be 
checked to verify that it can actually go through the 
required deformations and plastic hinge rotations up to the 
formations of the last plastic hinge (the actual collapse of 
the structure). 

The principles of limit analysis may be applied directly 
to the large majority of low-rise frames, continuous beams 
and grid systems, without modification, as far as failure 
load is concerned. It has been used this way in most coun
tries of the world̂ '̂ '̂ '̂ ^ and the AISC Specification Part II 
has approved plastic design since 1963.̂  

Now, the principle of virtual work will be used to deter
mine the ultimate capacity of a grid system. Moving 
through the collapse mechanism, the grid segments will 
rotate along yield lines while maintaining deflection com
patibility. The principle of virtual work states that the total 
work done by a force system in equilibrium going through 
a virtual rigid body displacement is zero. By means of 
stated principle, one can equate the total work of exterior 
forces to that done by interior plastic moments, or 

W, = Wi (1) 

The total work done by the uniform load is equal to the 
volume which is outlined by the structure moving during 
virtual displacement multipHed by the uniform load, i.e. 

W = F{x,y,z)p{x, y)dxdydz (2) 
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Fig. 1. Rectangular grid system 

The work of interior forces on the same mechanism is 
equal to the sum of the plastic moment at each plastic 
hinge times the hinge rotation, or 

--^MpiPi (3) 

The material is assumed to be ideally elastic-perfectly 
plastic. 

GRID ANALYSIS 

Assume a rectangular steel grid system with length £^ in 
x-direction and £y in y-direction, as shown in Fig, 1. The 
task is to find the grid beam sizes in order to support a load 
p uniformly distributed over the grid area. 

The elementary beam spacings will be denoted by s^ and Sy 
in X- and >;-direction respectively, so that: 

and 

{n^-\-l)s^ = £^ 

{ny+l)Sy = £y 

(4) 

(5) 

For the sake of simplicity, the load will be taken as divided 
into equal concentrated loads of value P acting at the 
joints of the grid system. The replaced concentrated load 
is equal to: 

P = s^syp (6) 

Suppose the grid is formed of I-beams of equal plastic 
moments Mp placed in both directions. It is obvious that by 
increasing the loading on the grid, the first plastic hinges 
theoretically will be formed at the mid-span of the cen
trally placed beam where the bending moment is the larg
est. In practice, two hinges will not be formed in the same 

beam, one on either side of the joint, but only one would 
form on one side of the joint. The work given by Eq. 1 
however remains unaffected. With further increasing of 
the load a chain of the plastic hinges will spread towards 
mid-points of the grid support sides. Because of the 
absence of any significant torsional rigidity of the system, 
the grid collapse pattern differs from that diagonally devel
oped, usually found in the slab-type collapse. 

The grid members between the plastic hinges or the 
plastic hinge and the support will remain straight. The 
dark dots represent the positions of each plastic hinge in 
Fig. 2. Therefore, the grid system undergoing virtual dis
placement will outline a hyperbolic paraboloid deflected 
surface, as in Fig. 3. 

It is easy to prove that centrally placed collapse pattern 
yields the lower bound solution to the diagonal one, which 
usually appears in a slab-type collapse. Using the solution 
for a diagonal collapse pattern"* and the one given in Table 
1, it can be shown that a square 5 by 5 grid yields a 25% 
lower load and a 10 by 10 grid yields 36.4% less. With 
increasing number of beams, the difference will increase 
to the maximum limit of 50%. 
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Fig. 2. Hinge formation pattern 

Fig. 3. Hyperbolic paraboloid collapse shape 
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Table 1. Work Equations for Different Beam Layout* 

CASE 
GRID 

LAYOUT 

Odd n^^^Ky 

Square Grid 

Even n;^i,ny 
I—^-^—i i 

If-H-^-
J-L-. 

l̂ v 

^ 

WORK DONE 
BY EXTERIOR LOAD 

'A £JyPu 

V4e+sfp, 

[%{(,- Sj{(y-Sy) + 

{€y-Sy)^ + 

SxSy]Pu 

WORK DONE BY INTERIOR MOMENTS 

W 

2^iny+l) 
^ Y 

w, 

2 ^ K + 1 ) 

2(M„, + M„,) 

4Mp^ ("-̂  +1 

n+2 

4^C?z.+ i 
y y 

Even n^, odd n^ 

u—i- j— i 

. i L . 

1 
^ y V ^ x "^ATJ "' 

^ > " ^ A : 

.>^x. 

^.^ 

Odd Hy^, Even n^ 

I ! 
^x\ ^y ^y] 

^x^yWu 

2M, ^ K + 1 ) l ^ K + 1 

2M, 
"^y 'Jy 

^ K + 1) 

*"Assuming a unit for the maximum virtual displacement 
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Fig. 4. Three-square grid system 

Let us now appraise the collapse load of a simple sup
ported 3 by 3 grid system, shown in Fig. 4. Assume all 
beams are equally spaced and are the same size. The load 
p is uniformly distributed over the structure area. 

a. Grid Plan 

b. Collapse Pattern 

The maximum deflected point during the collapse is the 
center of the grid (3,c). The structure will move through 
the four doubly symmetrical hyperbolic paraboloid sec
tions during virtual displacement of the work. The exterior 
load is equal to the described volume times the uniform 
load, i.e. 

The work of interior plastic moments is equal to 

W;=4- ( n + l ) 

(7) 

(8) 

Equating the work of exterior forces to the value of the 
work done by interior moments: 

P„ = 64M /̂€^ 

or expressed by the concentrated load at joint: 

Pu = ^Mpl^ 

(9) 

(10) 

This is the same result as found by J. Heyman^ conducting 
a step-by-step search for the true collapse grid pattern. 

The work done by the exterior load and the interior 
moments is found for different combinations of odd and 
even numbers of grid members. The results obtained are 
compiled in Table 1. 

Number of beams in x-direction is: 

similarly in >^-direction: 

(11) 

(12) 

The use of the table is illustrated in the following numeri
cal examples: 

EXAMPLE 1 

Given 
For a rectangular steel grid 56 ft by 48 ft, shown in Fig. 5. It 
is required to design beams made of A36 steel to support 
total working loads of 175 psf. Use a load factor of 1.7, see 
Refs. 1,5,12. 

Solution 
Using Table 1, and assuming maximum virtual displace
ment of one ft, the total work of exterior load is equal to 
(Case 3): 
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Fig. 5. Grid layout, Ex. 1 
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= [i/4(48)(56 - 8) + y2(48)(8)](1.7)(0.175) 

= 228.48 kip-ft. (13) 

In a similar way, the work done by the plastic moments is: 

= 2 ^ ^ ( 3 + l ) + 4 ^ ( ^ + l 
5 6 - 8 ^ 48 \ 2 

= ̂ M , . + -i-A/„. (14) 

= M ,̂, == M^ and equating the value of 

Typically, the relationship between M^̂  and M^y would be 
known, or could be assumed. Assuming all beams are of 
the same size M^ 
Eqs. 13 and 14, Eq. 1 becomes, 

228.50 = 0.5 M,„ or 

Mp^ 457.0 kip-ft 

This would require W24x62 beam (M ,̂ = 459 kip-ft). 
If a W24X68 with M^ = 531 kip-ft were used in the y-
direction, then Eq. 14 becomes, 

228.50= V6M .̂, + 1/3 531, or 

Up,, = 309.0 kip-ft 

for which an adequate beam size would be W21x50 (M^ = 
330 kip-ft). 

Usually in the optimum design process it is required to 
produce safe but economical structures minimizing the 
weight of steel used. The weight of the steel beams in this 
example using uniform beam sizes W24x62 would be 
28,272 lbs., and in the case when using W21x50 in x- and 
W24x68 in the y-direction, the total weight of beams 
would be 27,984 lbs. (saving about 1%). 

In this kind of analysis, the discrete available number of 
beam sizes is replaced by a continuous range of sections in 
which available beam sections represent discrete points 
within a continuous function. A power curve gives a good 
approximation of a non-linear relationship between the 
mass per unit length, >v, of a member and its plastic 
moment, Mp, by 

•a-Ml (15) 

Where a and 7 are constants depending on the geometry of 
the cross section and material of the beam. For the average 
value of the plastic moments of hot rolled beams made of 
A36 steel, the constants are: 

fl = 1.021 
7 = 0.68 

The a and 7 constants are based on the most effective ratio 
of plastic moment/beam weight range of beams from 
M10x9 to W36X300 (total 39 beams). The calculated 
coefficient of determination was r^ = 0.997, indicating the 
high quality of the curve fit. For example, for a plastic 
moment of 310 kip-ft, the expected weight of A36 steel 
beam would be: 

)v = (1.021)(310O-^^) 
w = 50.50 lbs/ft 

Corresponding to a W21 x 50 beam with a plastic moment of 
330 kip-ft. 

It is of interest to note that heavier beams are more 
economical to use. So, for the ratio of plastic moments 
1:2:3 the corresponding beam unit mass ratio is 1:1.5:2.11. 

EXAMPLE 2 

It is required to find the ultimate carrying capacity of a square 
grid system of a 17.5-ft span shown in Fig. 6. The grid consists 
of six 8H2 bar joists orthogonally threaded through six 12H2 
bar joists. The plastic moment capacity of a bar joist is 
approximately given by: 

(16) Up = A4^y 

where 

A^ - area of smaller chord member 

d = effective joist depth (measured to centroids of 
chords) 

Fy = steel yield stress 
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Fig. 6. Square grid 17.5 ft x 17.5 ft. 
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The plastic moment capacities of bar joists, calculated from 
Eq. 16 are: 

for 8H2: Mp^ = (0.378 in2)(0.5 ft)(50 ksi) - 9.450 kip-ft 

for 12H2: M^y = (0.378in^)(0.85ft)(50ksi) = 16.065 kip-ft 

Applying formulas from Table 1, the virtual work done by 
the uniform load is (Case 2a): 

= 1/4 (17.5+ 2.5)2w^-100 w. 

The work done by the plastic moments is (for a maximum 
virtual displacement of one ft): 

W, = 2{Mp, + Mpy) n + 2 

2(9.450 + 16.065)- 6 + 2 
: 27.216 kip-ft 

17.5-2.5 

Equating the two expressions for work and solving for w„, 

100 w^ = 27.216, or 
w^, = 111 psf 

J. Cannon^ has carried out tests on the grid system consid
ered in this example. 

As indicated by the load-deflection curve in Fig. 7, the test 
was terminated at the load of 260 psf that is shghtly lesser 
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than the calculated ultimate load of 272 psf. However, it 
would appear from examination of the load-deflection 
curve of Fig. 7, that the grid could sustain the predicted 
failure load before reaching collapse. 

CONCLUSION 

Summarizing the results of the investigations presented in 
this paper it may be said it extends the theoretical work 
previously developed into a general multiple beam grid 
system. The full-scale bar joist grid and bar grids previ
ously tested by others^^ seem to correspond well with the 
theoretical calculated collapse load. The work thus 
confirms the general behavior of this type of structure, in 
particular, the hyperbolic paraboloid modes of failure. 

From the practical standpoint, the design procedure 
presented can be appHed within given guidelines of the 
AISC Specification, Part IT to produce an economical and 
safe design without modifications. 
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NOMENCLATURE 

The following notations are used in this paper, unless 
otherwise stated: 

I 2 3 4 5 6 
CENTER DEFLECTION, INCHES 

Fig. 7. Load deflection for bar-joist grid 

a -
d-

Fix,y,z)--
€ = 

(,-
n -

riy-

Mpr-

p(x,y) --

Pi, = w„ --
Pu 

S 

Sy-

Wr 
! ' • 

9i-

area of smaller joist chord member, in^ 
1.021, a constant 

-- effective joint depth 
steel yield stress 

•• virtual displacement function 
grid beam span 
grid beam span in x-direction 
grid beam span in y-direction 
number of beams 
number of beams in x-direction 
number of beams in y-direction 
plastic moment 
plastic moment at section / 
plastic moment of a beam in x-direction 
plastic moment of a beam in y-direction 
load function 
uniformly distributed ultimate load 

-- ultimate concentrated load 
= beam spacing 
= beam spacing in x-direction 
-- beam spacing in y-direction 
= unit mass of steel beam 
-• work done by exterior load 
-• work done by plastic moments 
= 0.68, a constant 
-- plastic hinge rotation at section / 
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