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Summary 
A simple method is offered for the design of stepped 
columns which presents, with respect to the classical effec
tive length method, some advantages (mainly swiftness 
and precision), when designing members in compression 
and bending. 

The method is based on a simplified model with two 
degrees of freedom. It is possible to obtain the ultimate 
interaction domains for stepped members, taking into 
account the effects of both geometrical and mechanical 
imperfections and of the loading path. 

Some of these domains are presented, and compared 
with available numerical results. 

The problem of how to determine the ultimate load-
carrying capacity of stepped-steel columns has been exten
sively—even if not exhaustively—treated in Uterature. 
Only Hmited research has, hov^ever, been carried out on 
the behavior of these structural elements when taking into 
account both the non-linearity of the constitutive law of the 
material and the geometrical non-linearity. 

Most of the preceding studies '̂̂  dealt with the problem of 
determining the elastic critical load of axially compressed 
members, with various conditions of end restraints and 
loading. The only attempt, to the author's knowledge, to 
determine the load-carrying capacity in the elasto-plastic 
range for a stepped column is a work of Barnes and 
Mangelsdorf.^ That paper, however, considers only axial 
effects and disregards compression and bending, which is 
the most frequently occurring stress state for these mem
bers. 

It may be concluded that the only aspect to be investi
gated so far is related to the elastic behavior of stepped 
columns, and when determining the ultimate load carrying 
capacity of such elements, reference is usually made to the 
effective length parameter. 
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Design practice '̂̂ ^ reflects the theoretical state of the 
research. The tendency is to design stepped members car
rying out separate checks for the two shafts, by using the 
effective length method and the axial-thrust bending-
moment interaction formulas which are valid for members 
with uniform cross section. 

With reference to AISE Recommendations,*^ such for
mulas can be written as: 

P/F,.„ + C^M/[Mp(l-F/F£)] 1 (1) 

where 

P is the total axial thrust in the shaft (upper or lower) 
M is the maximum first order bending moment 
C^ is a reduction coefficient < 1 which is a function of the 

bending moment's distribution 
Mp is the fully plastic bending moment of the profile 
Pen and PE are respectively the ultimate and the critical 

elastic loads, calculated on the base of the effective 
slenderness ratio of the shaft under consideration. 

Several general and specific critical considerations may 
be developed about this kind of approach; in particular it 
should be noted: 
• the effective length is derived from the critical multiplier 

of the axial loads acting on the column, and is linked to a 
prefixed value of the ratio of these loads. The effective 
length is therefore different for different load combina
tions. The methods based on calculating the effective 
length of structural members lose (at least in part) their 
advantage of being easy and quick to apply when a 
number of different load combinations must be taken 
into account. 

• design methods based on the concept of effective length 
do not work well for the interaction between column 
segments. This requires a series of separate checks. 

On the basis of the preceding critical considerations, this 
author, following an approach developed by previous inter
national research on the behavior and stabiHty of members 
with uniform cross section and axial load, has performed a 
numerical study.̂ ^^^ This study follows step-by-step the re
sponse of a stepped member (affected by both geometrical 
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and mechanical imperfections) during a number of differ
ent loading paths, up to the attainment of the collapse 
situation. 

Ultimate interaction domains, for the elements consid
ered in the study were numerically obtained in terms of the 
two vertical loads Pi and P2 (respectively applied on the 
upper and lower shaft) and compared with those deductible 
on the basis of design methods based on the effective length 
and Formula 1. It was pointed out that: 
• The shapes of the interaction domains obtained numer

ically are very similar to those obtained using the effec
tive length concept. 

• For simple compression members, there is a close agree
ment between numerical results and those obtained 
by the effective length method, which enables a fun
damentally correct evaluation of the ultimate load-
carrying capacity for stepped columns. 

• For members in compression and bending: 
a. With a method based on the concept of effective 

length (which is impHcitly linked with the concept of 
instability of equihbrium as a bifurcation problem), it 
is possible to understand correctly which situation is 
associated with the collapse of the structural ele
ment. It is not possible to appreciate the effect of 
geometrical imperfections on the behavior of the 
member or on the shape of its ultimate interaction 
domain. (The author pointed out̂ ^ this effect is rel
evant and different in the two shafts). 

b. The method based on effective length tends to always 
be on the safe side when the collapse situation is 
reached in the lower shaft (the situation of greatest 
practical interest), while it tends to be on the unsafe 
side when the collapse occurs in the upper shaft. 

• The safety factor assumed, using a method based on the 
effective length concept, is not homogeneous and is a 
function of the vertical load ratio. 
The knowledge of the ultimate interaction domains has 

the advantage of allowing the safety margin associated with 

the various load combinations (which can occur during the 
Hfe of the structure) to be appreciated in global terms in 
design checks. If reference is made to these ultimate do
mains, methods based on axial-thrust bending-moment in
teraction formulas, such as (1), are decidedly complex from 
the computational point of view, since for every load com
bination they require: 
• the calculation of the effective length 
• the solution of the interaction formula with regard to the 

axial load 
Furthermore, to obtain a better precision in the solution, 
the reduction coefficient C^ should also be defined for the 
different values of the ratio between the applied loads. 

A simple approach was proposed^^'^^ based on the use of 
an interaction formula directly written in terms of the ap-
phed vertical loads. 

= 1 (2) 

In Formula 2, PIC,M ^^^ PICM ^re the maximum values 

of the loads Pi and P2 sustainable by the column in the 
presence of a single vertical load; PIC,M and P2C,M impHc
itly take into account the possible transverse loads acting on 
the column, and can be defined making reference to the two 
situations shown in Figs, lb and Ic. 

The use of such formulas requires the definition of the 
value of exponent p and the availability of a sufficiently 
simple method for determining the loads PIC,M and P2C,M\ 

it has the implicit advantage over using Formula 1 (i.e. 
determining the coefficient C^) only for calculating PIC,M 
and P2c,My i-^-5 when one of the two vertical loads is 
absent. 

In the case of members with uniform cross section, it was 
shown in a preceding paper^^ that it is possible, with an 
acceptable degree of approximation, to adopt p = 1.0 for 
elements subjected to centric vertical loads and p = 0.9 for 
elements subjected to eccentric vertical loads. In the same 
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Fig. 1. Loading conditions associated with calculation of P^CM 
and P2c,M 
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paper however, it was pointed out the obvious influence of 
coefficient C^ on the intersection of the domain with the 
load axis (i.e., on the values of PIC,M and P2C,M)' 

It has been tried, but it has not yet been possible to 
extend the same approach to columns with variable cross 
section, because coefficient (3 has a very wide range of 
variation, and it is influenced by too many parameters. 
Some research is still going on, trying to determine the 
values of p to be used in Formula 2, in the case of stepped 
elements. 

From preceding studies,^^'^^ it has been noted that the 
collapse of a stepped member is mainly associated with two 
different and non-correlated situations: the coUapse of the 
upper shaft or the collapse of the lower shaft. In both cases 
the coUapse situation is reached in the most stressed section 
of the shaft. The collapse situation of these elements seems 
to be caused more by local buckling in a well defined area of 
one of the shafts (the most stressed cross section), rather 
than by global instability of the whole member. 

It is possible to predict where in the shaft, but is not 
possible to know a-priori in which one of the two shafts the 
coUapse will occur, this last fact depends on the loading 
conditions. 

Starting from these considerations, this paper simulates 
the behavior of stepped columns with a simple model with 
two degrees of freedom. The deformabiUty of the element 
is concentrated in the two most stressed cross sections, and 
the interaction between the two shafts is disregarded. 

THE MODEL 

The Equilibrium Equations 

If the column is considered as simply cantilevered at its 
lower edge (a simplifying and conservative scheme when 
dealing with mill building columns, because the rotational 
restraint effect of the roof structure is ignored), the most 
stressed section of each shaft is its lower section. The ulti
mate load carrying capacity of the stepped element can be 
determined using the simple model shown in Fig. 2. (It is 
assumed the presence of adequate bracings preventing the 
out-of-plane buckling of the column.) 

The model consists of two rigid bars and two cells in 
which the deformability has been concentrated. The upper 
shaft has a length Li , a cross sectional area Ai and a 
moment of inertia (with respect to the center of gravity) / j . 
The lower shaft has a length L2, a cross sectional area A2 
and a moment of inertia (with respect to the center of 
gravity) I2. The two shafts are connected together taking 
into account an eccentricity 6^2 between them. 

Two vertical loads Pi and P2 are applied with an eccen
tricity ei and 62 respectively at the top of each shaft, 
together with two horizontal forces Fi and F2. In addition, a 
horizontal force H, proportional by a constant coefficient ^ 
to the vertical load P2 may be present at the top of the lower 
shaft: H = ^^2-

K. 
^-^51 

e„-4— e. -12 

^ ^ 

Fig. 2. The model 

The two degrees of freedom of the model may be iden
tified with the relative rotation Vi between the upper and 
the lower shaft, and with the absolute rotation V2 of the 
lower shaft with respect to the vertical axis. Initial geomet
rical imperfections/oi = VQI LI and/02 = V02 L2 have been 
assumed at the top of the upper and of the lower shaft 
respectively, VQI and V02 being the initial values of Vj and V2 
respectively. 

The equilibrium conditions for the model in a displaced 
configuration characterized by two rotations Vi and V2 can 
be derived by equating in each cell the internal bending 
moments to the external ones due to the apphed loads. 

Two equations can be written: 

Fi^i + FiLi (vi + V2) + FiLi = Ki (vi - VQI) (3) 

^2^2 + P2L2V2 + ^2^2 + HL2 + Fi (Li + L2) + 
Pi{ei + ^12) + Pi [(Li + L2)V2 + LiVi] = 
K2 (V2 - V02) (4) 

When the external loads, the initial out-of-straightness 
and the bending stiffnesses Ki and K2 of the two shafts are 
known. Formulas 3 and 4 form a system of hnear equations 
in which the unknowns are the two rotations Vi and V2, i.e., 
the parameters which define the equihbrium configuration 
of the model. The collapse situation may be reached either 
in the upper or in the lower shaft. In the first case, rotation 
Vi is equal to the ultimate limit rotation Vi u^ and V2 < V2 um, 
while in the second case rotation Vi< Vi u^ and V2 is equal to 

^2 lim-
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Equivalence Between Model and Real Column 

The parameters which govern behavior of the model must 
be defined so there is complete equivalence between the 
model and the simulated real element. Equating the Euler 
elastic critical load and the ultimate limit bending moment 
for each step imposes that the discrete model and the 
continuous real member have the same global elastic de-
formability, and they locally reach their ultimate strength 
under the same bending stresses. 

So, for each step, two equations may be written from 
which the two unknown parameters (the bending stiffness 
K and the ultimate limit rotation V//̂ ) can be determined. 
In each shaft of the model, the Euler critical load can be 
defined respectively as: 

F , , i = K,IL, and P,,2 = ^ 2 / ^ 2 

while the ultimate limit bending moment can be defined 
respectively as: 

MpLi = Ki{vxiim - Vol) and Mp^2 = ^livii V02) 

For the real column, the Euler critical loads of the two 
shafts are respectively: 

P,,i = iT^EI,/4L\ and P,,2 = -rr^Ehl^Ll 

where E is the Young modulus. 
The ultimate hmit bending moment is not a constant in a 

cross section of a member which is subjected to variable 
axial loads, but is different for different values of the axial 
load. 

For the cross section, a linear interaction domain can be 
assumed (on the safe side) of the kind: 

= 1 

where 
M^ = maximum bending moment sustainable by the cross 
section in absence of axial load at the plastic adaptation 
limit state (i.e., M^, = \\f fy S, where the coefficient i|i 
amplifying the section modulus S, is called the plastic 
adaptation coefficient, and l<i|;<a, where a is the shape 
factor of the cross section^^ and fy the yield stress of the 
material) 
Ni, = maximum axial load sustainable by the cross section, 
in absence of bending moment (i.e. Â„ = fy ^)-

When the value of the axial load in the shaft is known, 
then it is possible to define: 

A M / 

MpL2= M,,2\l -
Pi + P2 

where 

Mul = ^ifyS^ 

Mu2 = ^2fyS2 

Plu — fy^l 

Plu — fy^2-

By equating the corresponding expressions, the four un
known parameters are determined: 

K2 = TT̂  EI2/4L2 

(5a) 

(5b) 

(6a) 

(6b) 

Note that posing the equivalence of the Euler elastic 
critical loads separately in the various steps does not imply 
that the same equivalence exists between the whole model 
and the real structure. The operating way was forced be
cause the critical load of the model depends on the ratio of 
the bending stiffnesses Ki and K2 of the two steps, which 
are a priori unknown. 

However, as the deformabiUty of the column was con
centrated in the two cross sections at the bottom of each 
step, the approximation introduced here turns out to have 
no influence on the final results. 

The Ultimate Interaction Domains 

It is possible to reduce Formulas 3 and 4 to two expressions 
respectively of the kind Vi = Vi(v2) and V2 = V2(vi), by solv
ing Formula 3 with respect to Vi and Formula 4 with respect 
to V2. 

Substituting Formula 3, solved with respect to Vj, into 
Formula 4 the following expression for V2 is obtained: 

V2 
1 

K2 - P,(L, + L2) - P2L2 - P,^L,^ 
KoVn 

K,-P,L, 

Piiei + ^12) + ^ ( ^ 1 + L2) + F2L2 + ^ ^ 2 ^ 2 + (7) 

^2^2 + (PlL^) 
P,e,^ F,L, + K,Vo 

^ 1 - PiL, 

When the geometrical characteristics of the column are 
known, this expression gives a value of V2 as a function of 
the external loads. The collapse situation is reached in the 
lower shaft when the loading condition is such that 
2̂ — V2 Urn (Formula 6a). Equating V2 to V2 nm and varying 
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the values of the vertical loads, Formula 7 describes a curve 
in the plane Pi ^ P2. This curve defines an admissible 
region: all the points contained in the area bounded by the 
coordinate axis and by the curve represent admissible load
ing conditions for the lower shaft. The points on the curve 
represent combinations of loads which cause the limit situa
tion to be reached in the lower shaft. The points external to 
this admissible area represent load combinations which 
cannot be sustained by the column, and cause the collapse 
of the lower shaft. 

Analogously substituting Formula 4 solved with respect 
to V2 into Formula 3, an expression is reached: 

1 

Pi^Li 
Ki - P,L, 

K2 - P2L2 - Pr{L, + L2) 

Pi^i + FjLi + K, Vol + 

K2V02 + ^1 (gi + ^12) + Fi (Li + L2) ^ 

(8) 

P,L 
K2 — P2L2 ~ Pi (Li -\- L2) 

F2L2 + gP2^2 + Piei 

K2 - P2L2 - Pi (Li + L2) J 

which, when the geometrical characteristics of the column 
are known, defines the value of Vi as a function of the 
external loads. The collapse situation in the upper shaft is 
reached when the loading condition is such that Vi > Vi u^ 
(Formula 5a). 

Equating v̂  to Vi um and varying the values of the vertical 
loads. Formula 8 also describes a curve in the plane 
Pi ^ P2. all the points contained in the region bounded by 
the coordinate axis and the curve represent admissible 
loading conditions for the upper shaft. The column cannot 
sustain combinations of loads represented by points exter
nal to the admissible region, without collapse of the upper 
shaft. 

If the two shafts have different cross-sectional prop
erties, then the two curves represented by Formulas 7 and 8 
intersect each other. The ultimate interaction domain for 
the column is the intersection of the two admissible regions 
for the two shafts, and the boundary of the domain is the 
envelope of the two curves. 

If the columns have a constant cross section, the two 
curves do not intersect, and the region bounded by Formula 
7 is completely contained into that bounded by Formula 8, 
this turns out to be the ultimate interaction domain of the 
element. 

Use of the Model 

Even if it is possible to evaluate in a substantially correct 
way the global behavior of the column, the real stiffness of 
the stepped member cannot be correctly evaluated using 

the model as it is, because of rough simphfying assumptions 
on which the model is based. 

Preceding studies^^^^ have shown that by using the effec
tive length concept it is possible to evaluate with good 
precision (at least from an engineering point of view) the 
maximum values Pi^^ and P2uc of the centric vertical loads 
sustainable by the real column (at the top of the whole 
column and at the top of the lower shaft respectively) in the 
absence of other loads (both vertical and horizontal). 

In fact, to obtain the values of Pi^^ and P2uc for the real 
column, it is enough to enter with the values of the effective 
length (calculated separately for the upper and for the 
lower shaft"^^) on the stability curves for the upper and 
lower shaft respectively. 

Let Pi^c and Pluc be the corresponding maximum values 
of the centric vertical loads sustainable by the model. It is 
possible to reduce the approximation introduced with the 
initial assumptions, normalizing the domains obtained us
ing the model over the values Pl^c and Pluc^ i-e. reducing 
the ultimate interaction domains in a non-dimensional 
form, in the plane Pi/Ptuc ^ PilPiuc-

These domains, because in a non-dimensional form, can
not be used by the designer for practical appUcations, but 
must be dimensionalized using the two values Pi^^ and P2uc 
calculated, for the real column, in a fast and easy way, as 
already explained. The domains are now ready to be used 
by the designer. 

By following this, it is also possible, although indirectly, 
to include into the model the effect of residual stresses on 
the ultimate value of the load carrying capacity of the 
member. 

A short interactive computer program has been set up, 
which solves Formulas 7 and 8 for the different combina
tions of loads considered. Once the statical and geometrical 
properties of a stepped member are entered as input data, 
the computer automatically furnishes as output the ulti
mate interaction domains in the non-dimensional form, in 
the plane P i /FL , -̂  P2lPiuc-

Comparison with Numerical Results 

Some comparisons were done between the domains ob
tained with a numerical simulation method,^^ and those 
obtained using the simplified model presented in this paper. 
In Figs. 3 to 8 the domains are shown in a non-dimensional 
form, in the plane Pi/fyAi ^ P2//>'^2-

Figures 3 to 6 show the domains relative to a prismatic 
member, a W 8 x 3 1 shape, subjected to step-wise axial 
loads. 

Figures 7 and 8 show the domains relative to a stepped 
column, with a W8x 108 shape used as lower shaft and a 
W 8 x 3 1 shape used as upper shaft. 

It is possible to see in the various loading conditions 
taken into account, that there is good agreement between 
the model and the numerical simulation. 
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W 8x31 

2 L 2 = 90i2 "4" 
La itlet-

L / L , = 2 J _ J | 

.2 
62 = e^ h^ / i^ =̂  0 h^^hciqhf of the profile 

model 
i^'radius of gyration 

• numerical simulafion 

/.O 
P. 

fyA 

Fig. 3. Comparison between domains obtained with the simplified 
model and numerical simulation, in the case of a prismatic 
member with step-wise axial loads, in simple compression. 

0.50 
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fyA 

W 8x31 vfe 
2L,= 90î  L3/L^=2 ' L I 

l~ 

6^= 3.26 

model 

D numerical simulation 

fyA 

Fig. 4. Comparison between domains obtained with the simplified 
model and numerical simulation in the case of a prismatic 
member with step-wise axial loads, in compression and 
bending. 

CONCLUSION 

In this paper, a simple method is presented to determine 
the ultimate interaction domains for stepped columns. The 
method requires use of the effective length concept only for 
calculating the ultimate values of the centric axial loads 
applied at the top of the lower shaft (P2wc) ^nd of the whole 
column {Piuc)- These values are then used to render in a 
dimensional form the ultimate interaction domains deter
mined in a non-dimensional form using a simple model with 
two degrees of freedom. 

Using this model, it is possible to take into account the 
effect of both mechanical and geometrical imperfections 
and of the loading path, on the shape of the ultimate 
interaction domains for stepped structural members. It is 
possible to obtain the ultimate domains avoiding all the 
difficulties connected with the use of methods based on the 
effective length concept and axial-thrust bending-moment 
interaction formulas (such as 1), which require long calcula
tions when dealing with members in compression and 
bending. 

The method presented in this paper also represents an 
overcoming of that proposed by the author,^^^^ based on 
Formula 2, whose results are heavily influenced by the 
values adopted for the coefficient C^ of Formula 1, when 
calculating the values of PIC,M and P2C,M used in For

mula 2. 
The method was checked in a number of cases, showing a 

good agreement with the numerical results obtainable.^^ 
However, before any use or apphcation of the method in 
standard design practice, more extensive research and 
checks (both numerical and experimental) are required. 

9. 
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NOMENCLATURE 

area of cross section 
values of A respectively for upper and 
lower shaft 
reduction coefficient to be introduced in 
Formula 1 
eccentricity of load Pi with respect to axis 
of upper shaft 
eccentricity of load P2 with respect to axis 
of lower shaft 
eccentricity between axis of upper shaft 
and that of lower one 
Young's modulus of material 
yield stress of material 
initial geometrical imperfections (hori
zontal displacement at top of upper and 
lower shaft respectively) 
horizontal forces applied respectively at 
top of upper and of lower shaft 
horizontal force applied at top of lower 
shaft, proportional to vertical load P2 
bending stiffness 
values of K respectively for upper and 
lower shaft 
moment of inertia of cross section respec
tively for upper and lower shaft 
length respectively of upper and lower 
shaft 
first order bending moment 
fully plastic bending moment 
ultimate Hmit bending moment respec
tively for upper and lower shaft 
maximum bending moment sustainable 
by cross section in absence of axial load, 
at plastic adaptation limit state 
values of M„ respectively for upper and 
lower shaft 

M. 

Pcr\, Perl 

Pi 
P2 

P\u Plu 

Fi Po 

P\uc^ 

S 
^ 1 , S, 

p * 
^2wc 

Piuc 

V2 

^017 ^ 0 2 

^llim^ ^2liT 

w 
a 

P 

= maximum axial load sustainable by cross 
section in absence of bending moment 

= axial load 
= ultimate axial load 
= Euler elastic critical load respectively of 

upper and lower shaft, calculated as if 
shaft were completely disconnected from 
the other, and simply cantilevered at its 
base 

= Euler elastic critical load of shaft, calcu
lated on base of effective length 

= axial load applied at top of whole column 
= axial load applied at top of lower shaft 
= maximum values of Pi and P2 respec

tively, sustainable by column in presence 
of single vertical load and of possible 
transversal actions. 

= values of A'̂ ^ respectively for upper and 
lower shaft 

= maximum values of centric vertical loads 
Pi and P2 respectively, sustainable by col
umn in absence of other loads (both ver
tical and horizontal). 

= analogous to Pi^^^ ^^^ P2uc^ related to the 
model 

= values of Pi„c ^^id P2wc obtained with a 
numerical simulation method 

— section modulus 
= values of S respectively for upper and 

lower shaft 
= relative rotation between the upper and 

lower shaft 
= absolute rotation of lower shaft with re

spect to vertical axis 
= initial geometrical imperfections (initial 

values of v̂  and V2) 
= ultimate limit rotation 
= ultimate Umit values respectively of Vi 

and V2 
= horizontal force (analogous to Fj) simu

lating wind load 
= shape factor for cross section 
= numerical coefficient to be used in For

mula 2 
= plastic adaptation coefficient 
= values of ^ for upper and lower shaft 

respectively 
= numerical coefficient (ratio between H 

and P2 : ^^2 = H) 
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