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1. INTRODUCTION 

Elastic Stability—Mathematical 

The problem of structural stability has long been the sub
ject of research for a number of researchers. Early in the 
18th century, Euler^ investigated the elastic stability of 
a centrally loaded isolated strut using the bifurcation ap
proach. The bifurcation or eigenvalue approach is ba
sically a mathematical approach. Under the assumptions 
that (1) the member is perfectly straight, (2) the material 
remains fully elastic and obeys Hooke's Law and (3) the 
deflection is small, a linear differential equation can be 
written based on a slightly deformed geometry of the 
member. 

The eigenvalue solution to the characteristic equation 
of this differential equation will give the buckling load 
of the strut. This load corresponds to the state at which 
bifurcation of equilibrium takes place. At this load, the 
original straight position of the member ceases to be sta
ble. Under this load, a small lateral disturbance will pro
duce a large lateral displacement which will not disap
pear when the disturbance is removed. This buckling load 
is referred to as the critical load or Euler load given by 

(1) 

where 
/ = 
L = 
K = 

moment of inertia of the cross section 
unbraced length of the column 
effective length factor to account for the end 
conditions of the column 
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This formula gives a good prediction of the behavior 
of long columns so far as the axial stresses in the mem
ber remain below the proportional limit, i.e., if the 
member remains fully elastic. For short or intermediate 
columns, the assumption of fully elastic behavior will be 
questionable. Under the action of the applied force, some 
fibers of the cross section will yield. Consequently, only 
the elastic core of the cross section will be effective in 
resisting the additional applied force. Thus, the Euler 
load will overestimate the strength of the column. 

Plastic Buckling—Physical 

To account for the effect of inelasticity, two theories were 
proposed:^'^ the double modulus theory and the tangent 
modulus theory. In the double modulus theory (also known 
as the reduced modulus theory), the axial load is as
sumed constant during buckling. Consequently, at buck
ling, the bending deformation of the column will pro
duce strain reversal on the convex side of the member 
with the result that the elastic modulus E will govern the 
stress-strain behavior of the fibers. The concave side of 
the column, on the other hand, will continue to load and 
so the tangent modulus E^ will govern the stress-strain 
behavior of the fibers (Fig. 1). The critical load obtained 
based on this concept is referred to as the reduced mod
ulus load given by 

1T%I E, 
Pr = h = -Pe 

{KLf E 
(2) 

where E^ is the reduced modulus. 
The reduced modulus is a function of the tangent mod

ulus and the geometry of the cross section. Hence the 
reduced modulus load depends on both the material 
property and the geometry of the cross section. The re
duced modulus load is lower than the Euler load because 
the ratio E^/E in Eq. 2 is always less than unity. It should 
be pointed out that the reduced modulus load can only 
be reached if the column is artificially held in a straight 
position when the tangent modulus load (to be discussed 
later) has been exceeded. The reduced modulus load can 
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never be reached even if the slightest geometrical im
perfection is present in the column. 

In the tangent modulus theory, the axial load is as
sumed to increase during buckling. The amount of in
crease is such that strain reversal will not take place and 
so the tangent modulus E^ will govern the stress-strain 
behavior of the entire cross section (Fig. 2). The critical 
load obtained is known as the tangent modulus load given 
by 

i;%l E, 

(KLf E 
(3) 

The tangent modulus load, unlike the reduced mod
ulus load, is independent of the geometry of the cross 
section. It depends only on the material property. For a 
steel column, the nonlinearity of the average stress-strain 
behavior of the cross-section is due to the presence of 
residual stress. Residual stresses arise as a result of the 
manufacturing process. When a compressive axial force 
is applied to a stub column (very short column), the fi

bers that have compressive residual stresses will yield 
first. The fibers that have tensile residual stresses will 
yield later. As a result, yielding over the cross section 
of the column is a gradual process, as shown in Fig. 3. 

The slope of the stub column stress-strain curve is the 
tangent modulus E^ of the member. Also shown in the 
figure is the stress-strain behavior of a coupon. A cou
pon, unlike a stub column, is free of residual stress. 
Therefore, its stress-strain relationship exhibits an elas-
tic-perfectly plastic behavior. 

The tangent modulus load marks the point of bifur
cation of a perfectly straight inelastic column. The tan
gent modulus load is lower than the Euler and the re
duced modulus loads and so it also represents the lowest 
load at which bifurcation of equilibrium can take place 
(Fig. 4). 

Experiments on columns have demonstrated the fail
ure loads of columns fall nearer to the tangent modulus 
loads than the reduced modulus loads. The theoretical 
justification for this observation was given by Shanley,"^ 
who, in 1947, investigated the buckling behavior of col-
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Fig. 3. Stress-strain relationship for steel 
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(I) Perfectly Straight Elastic Pin-ended Column 

(ii) Perfectly Straight Inelastic Pin-ended Column 

(iii) Initially-Crooked Inelastic Pin-ended Column 

(iv) Initially-Crooked Inelastic End-Restrained Column 

Fig. 4. Load-deflection behavior of columns 

umns above the tangent modulus load. Using a simpli
fied physical model, Shanley showed that bifurcation of 
equilibrium will take place when the applied load reaches 
the tangent modulus load. After bifurcation, increase in 
lateral deflection is accompanied by a slight increase in 
load above the tangent modulus load. Thus the maxi
mum load is really slightly larger than the tangent mod
ulus load, provided the column is perfectly straight. Ex
tensions of Shanley's model to describe the buckling 
behavior of columns above the tangent modulus load were 
reported by Duberg and Wilder^ and Johnston.^ 

In Ref. 5, it was shown that if a column were artifi
cially held in a straight position up to a load somewhere 
in between the tangent modulus and reduced modulus 
loads, then released, it would start to bend with an in
crease in axial load. The magnitude of the increase, 
however, was less than that of the tangent modulus load. 
If the column was held in a straight configuration up to 
the reduced modulus load, then released, it would bend 
with no increase in axial load. Reference 6 demonstrates 
that when a column buckles at the tangent modulus load 
there is no strain reversal only for an infinitesimal in
crement of axial load. 

For any finite increase of axial load above the tangent 
modulus load, the column assumes equilibrium positions 
with increasing deflection accompanied by a strain re
versal on the convex side of the column. Nevertheless, 
the amount of strain reversal is less than that of the re
duced modulus theory. The readers are referred to a pa
per by Johnston^ for a more thorough discussion of the 
historic highlights of the column buckling theory. 

The discussion so far pertains to columns which are 
perfectly straight. Columns in reality are rarely perfectly 
straight. Geometrical imperfection in a column tends to 
lower the maximum load of the member. As a result, 
the Structural Stability Research Council (formerly the 
Column Research Council) recommended the tangent 
modulus load be the representative failure load of a cen
trally loaded column. 

The reduced modulus theory and the tangent modulus 
theory, as well as the Shanley's concept of inelastic col
umn, are all based on physical reasoning. They provide 
solutions and explanations to the behavior of perfectly 
straight inelastic columns. The mathematical theory of 
elastic stability and the concepts of inelastic buckling are 
well explained in Refs. 8 and 9. 
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Plastic Stability—Numerical 

As pointed out earlier, real steel columns not only ex
hibit inelasticity due to the presence of residual stresses, 
but also they possess initial crookedness. The analysis 
of columns with residual stresses and initial crookedness 
is rather complicated. The eigenvalue approach, which 
is valid only for perfectly straight columns, can not be 
used here. Instead, a different approach known as the 
stability approach must be utilized. In the stability ap
proach, the load-deflection behavior of the column is 
traced from the start of loading to failure. The procedure 
is often carried out numerically using the computer be
cause the differential equation governing the behavior of 
inelastic-crooked columns are often intractable, so closed 
form solutions are very difficult, if not impossible, to 
obtain. Various methods to obtain numerical solutions 
are presented in Refs. 10 and 11. 

In addition to inelasticity and initial crookedness, the 
end conditions of a column also play an important role 
in affecting its behavior. The analyses of columns taking 
into consideration inelasticity, initial crookedness and end 
restraint were reported by a number of researchers in the 
past few years. The results are summarized in Ref. 12. 

structures loaded into the inelastic range can also be per
formed for certain types of structures. 

The continued development in computer hardware and 
software has made it possible for engineers and design
ers to predict structural behavior rather accurately. The 
advancement in structural analysis techniques coupled 
with the increased understanding of structural behavior 
has made it possible for engineers to adopt the limit state 
design philosophy. A limit state is defined as a condition 
at which a structural member or its component ceases to 
perform its intended function under normal condition 
(serviceability limit state) or failure under severe con
dition (ultimate limit state). Load and Resistance Factor 
Design is based on the limit state philosophy and thus it 
represents a more rational approach to the design of 
structures. 

This paper attempts to summarize the state-of-the-art 
methods in the analysis and design of columns as indi
vidual members and as members of a structure. A sec
ond objective is to introduce to engineers the stability 
design criteria of members and frames in LRFD. High
lights of recent research as well as directions of further 
research will be discussed. 

Structural Stability—Engineering 

Columns in real structures seldom exist alone. The be
havior of a column as an integral part of a structure is 
affected by the behavior of other structural members. In 
particular, in addition to carrying axial force, the column 
must be able to resist bending moments induced by the 
beam, so the column in reality behaves as a beam-col
umn resisting both axial load and bending moments. The 
moment transfer mechanism between beams and col
umns is different depending on whether the connection 
is rigid or flexible. In other words, the behavior of the 
frame and its structural members is dependent on the ri
gidity of the connections. The stability analysis of 
frameworks with flexible connections has been a popular 
research topic in recent years. In particular, the recently 
published Load and Resistance Factor Design (LRFD) 
Specification^^ designates two types of construction in its 
provision: Type FR (fully restrained) and Type PR (par
tially restrained) constructions. Type PR construction re
quires explicit consideration of connection flexibility in 
proportioning structural members. 

The stability analysis of flexibly connected frames re
quires connection modeling. Since connection moment-
rotation behavior is usually nonlinear, the inclusion of a 
connection as a structural element in a limit state anal
ysis requires the use of nonlinear structural theory. With 
the advent of computer technology, great advancement 
has been made in computer-aided analysis and design of 
structures. At the present time, first- and second-order 
elastic analyses of structures can conveniently be per
formed for nearly all types of structures. Analysis of 

2. PIN-ENDED COLUMN 

A pin-ended column is the most fundamental case of a 
column. The behavior of a pin-ended column represents 
an anchorpoint for the study of all other columns. For 
columns with long slendemess ratio, the Euler formula 
(Eq. 1) will provide a good estimate of their behavior. 
For intermediate or short columns, the Euler formula has 
to be modified according to the reduced modulus con
cept or the tangent modulus concept (Eqs. 2 and 3) to 
account for yielding (or plastification) over the cross sec
tion due to the presence of residual stresses. As men
tioned earlier, the tangent modulus theory gives a better 
prediction of inelastic column behavior and hence it is 
adopted for design purposes. 

CRC Curve 

Based on the study of idealized columns with linear and 
parabolic residual stress distribution, as well as the test 
results of a number of small and medium-size, hot-rolled, 
wide-flange shapes of mild structural steel, the Column 
Research Council recommended in the first edition of the 
Guidê "̂  a parabola of the form 

Fy - ' - ) 
(4) 

to represent column strength in the inelastic range. This 
parabola was chosen because it represented an approx
imate median between the tangent modulus strength of 
a W column buckled in the strong and weak directions. 
The column strength in the elastic range, however, is 
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represented by the Euler formula. The point of demar
cation between inelastic and elastic behavior was chosen 
to be F̂ ^ = 0.5 Fy. The number 0.5 was chosen as a 
conservative measure of the maximum value of com
pressive residual stress present in hot-rolled wide-flange 
shapes which is about 0.3 Fy. To obtain a smooth tran
sition from the parabola to the Euler curve, the constant 
B in Eq. 4 was chosen to be Fy/4 ir^E. The slenderness 
ratio that corresponds to F̂ .̂ = 0.5 Fy is designated as 
Cr in which 

C = 
ITT^E 

(5) 

For comparison purposes, Eq. 6 is rewritten in its load 
form in terms of the nondimensional quantities P/Py and 
X̂  in which Py is the yield load given by Py = AFy and 
kc is the slenderness parameter given by X̂  = (KL/r) 

VFTJTT^ 

p 1 - 0.25X? X, < \ / 2 (7) 

t x; ' X, > V2 

The CRC curve is plotted in Fig. 5 in its nondimen
sional form (Eq. 7). 

Thus, for columns with slenderness ratios less than or 
equal to Q , the CRC curve assumes the shape of a pa
rabola and for slenderness ratio exceeding C ,̂ the CRC 
curve takes the shape of a hyperbola, i.e. 

Fcr = 

F. 
(KL/rf 

1 — 

IT^E 

\(K L/r? 

KL 

r 

KL 

r 

s C 

>c. 

(6) 

AISC/ASD Curve 

The CRC curve divided by a variable factor of safety of 

5 3 [KL/r\ 1 (KL/r\^ 

3 8 \ C , / 8 \ C , / 

_ 5 3 / \ , \ 1 

~ 3 ̂  8 VV^j " 8 VV^. 

in tiie inelastic range and a constant factor of safety of 
23/12 in the elastic range gives the AISC Allowable Stress 
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Fig. 5. Column design curves 
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Design (ASD) curve. The factors of safety are employed 
to account for geometrical imperfections and load ec
centricities which are unavoidable in real columns. The 
AISC/ASD curve is also plotted in Fig. 5. The ASD 
column curve is used in conjunction with the ASD for
mat given by 

F.S. 
J^Qni (8) 

where 
Rn = nominal resistance 
(for column design, RJF.S. is represented by the ASD 
column curve) 
Qn = service loads 

AISC/PD Curve 

The ASD curve multiplied by a factor of 1.7 forms the 
AISC Plastic Design (PD) curve (Fig. 5). In plastic de
sign only the inelastic regime of the curve is utilized be
cause of the slenderness requirement. The design format 
for plastic design of columns is thus 

I.IR 

F.S. 
-^l^Qn (9) 

where 7 is the load factor used in the present AISC/PD 
Specification. The values for 7 are: 7 = 1.7 for live and 
dead loads only and 7 = 1.3 for live and dead loads 
acting in conjunction with wind or earthquake loads. 

SSRC Curves 

Before proceeding any further, it should be stated that 
both the ASD curve and PD curve are originated from 
the CRC curve which was developed based on the bi
furcation concept which postulates that the column is 
perfectly straight. Although residual stress is explicitly 
accounted for, the effect of geometrical imperfections is 
only accounted for implicitly by applying a variable fac
tor of safety to the basic curve. Analysis of columns which 
explicitly take into consideration the effects of both re
sidual stresses and initial crookedness was reported.^^ The 
stability approach was used in the analysis and a set of 
three curves referred to as the SSRC multiple column 
curves^^ was developed. Detailed expressions for these 
curves are given in Ref. 16. Approximate formulas for 
these curves based on physical reasoning which are use
ful for design are also reported.̂ " '̂̂ ^ 

For comparison purposes, the three SSRC curves are 
plotted with the CRC, ASD and PD curves in Fig. 5. 
These curves belly down in the intermediate slenderness 
range (0.75 <\< 1.25) due to the combined maximum 
detrimental effects of both residual stresses and initial 
crookedness on column strength in the numerical anal
ysis. Tests of real columns have demonstrated the det

rimental effects of residual stresses and initial crooked
ness are not always synergistic, so the SSRC curves which 
belly down in the intermediate slenderness range will be 
too conservative for most columns in building frames. 

AISC/LRFD Curve 

To provide a compromise between the CRC curve (de
veloped based on the tangent modulus concept) and the 
SSRC curves (developed based on the stability concept), 
the 1985 AISC/LRFD Specification'^ adopted a curve of 
the form 

P_ _ J exp < -0.419X?) 
0.877X: 

X, < 1.5 
K> 1.5 

(10) 

to represent basic column strength. 
The LRFD curve is plotted on Fig. 5, together with 

the other curves described above. Note the LRFD curve 
lies between the CRC curve and the SSRC curve 2. 

The LRFD format is 

^Rn ^ S ^̂  Qn (11) 

where 
Rn = nominal resistance 
Qn = nominal load effects 
(j) = resistance factor 
7 = load factor 

Note the LRFD format has the features of both the 
ASD and PD formats in that factors of safety are applied 
to both the load and resistance terms to account for the 
variabilities and uncertainties in predicting these values. 
Furthermore, these load and resistance factors ((|), 7) are 
evaluated based on first order probabilistic approach. Since 
different types of loads have different degrees of uncer
tainties, different load factors are used for different types 
of loads (e.g. 1.6 for live load, 1.2 for dead load, etc.). 
Therefore, the LRFD format represents a more rational 
design approach. 

The expressions for various column curves described 
above and the three state-of-the-art design formats (ASD, 
PD, LRFD) are summarized in Tables 1 and 2. 

3. COLUMNS WITH END RESTRAINT 

Eigenvalue Analysis 

In addition to residual stresses and initial crookedness, 
the end conditions of a column have a significant influ
ence on column behavior. For perfectly straight elastic 
columns with idealized end conditions (ideally pinned or 
fully rigid), an eigenvalue analysis can be carried out to 
determine the critical load P r̂- The effective length fac-
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Table 1. Summary of Column Curves 

Column Curves Column Equations 

CRC Curve 
P _ K 

Py ~ 4 

P _ 1 

K ^ V2 

X, > V2 

AISC 

Allowable Stress Design 

Curve 

1 
X; 

1 / X, 

3 8 VV2/ 8 \V2 

P 12 1 

P, 23 X; 

X, <V2 

X, > V2 

AISC 
Plastic Design 

Curve 

1 . 7 I 1 - -

P. 5^^/K 

3 8 V y 2 / 8 VV2, 

< 1.0 X, < V 2 

AISC 

LRFD Curve 

(1985 Version) 

= exp (-0.419X:) 
P, 

P 0.877 

X; 

X, < 1.5 

X, > 1.5 

Table 2. Summary of Design Formats 

Allowable Stress Design 

(ASD) 

Plastic Design 
(PD) 

Load and Resistance 
Factor Design 
(LRFD) 

Pn 

F.S. 

P n ^ l l Qn, 

(^R,, > 1 7, Q„. 

tor K for the column with the particular set of end con
ditions can be obtained by 

K = (12) 

where P^ is the Euler load given by P^ = TT^EI/L^ in 
which L is the length of the column. 

The effective length factor multiplied by the true length 
L of the column gives the effective length of the column 
which can be used for design. Table 3^^ gives the the
oretical and recommended K values for columns with 

Table 3. Theoretical and Recommended K Values 
for Idealized Columns 

Buckled shape of column 
is shown by dashed line 

'Hieoretica] K value 

Recommended design 
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(f) 

111 

1 ' 
Tfim 

2.0 

2.0 

Rotation fixed and translation fixed 

Rotation free and translation fixed 

Rotation fixed and translation free 

Rotation free and translation free 

various types of idealized end conditions. Since fully rigid 
supports are seldomly realized in real life, the recom
mended K values for cases with fixed support idealiza
tion are slightly higher than their theoretical values. 
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Numerical Analysis 

It should be remembered that eigenvalue analysis can 
only be carried out for perfectly straight columns. For 
columns with initial crookedness, the stability or load-
deflection approach must be used. In the load-deflection 
approach, the load-deflection behavior of the column is 
traced from the start of loading to collapse. The maxi
mum load the column can carry is the peak point of the 
load-deflection curve. The analyses of non-sway col
umns with residual stresses, initial crookedness and small 
end restraint using the load-deflection approach have been 
reported by a number of researchers. The important re
sults are summarized by the authors.^^ Some of the im
portant findings are: 

1. Comparing with pin-ended columns, the maximum 
load-carrying capacity of end-restrained columns in
creases as the degree of end restraint (as measured 
by the rotational stiffness of the connections con
necting beams and columns) increases. 

2. The increase in load-carrying capacity of end-re
strained columns is more pronounced for slender col
umns when stability is the limit state than for short 
columns when yielding is the limit state. 

3. The end-restraining effect on column strength is more 
noticeable for columns bent about their weak axes 
than for columns bent about their strong axes. 

4. While residual stresses and initial crookedness have 
a destabilizing effect on columns strength, end re
straint will provide a stabilizing effect which coun
teracts the detrimental effects of residual stresses and 
initial crookedness. However, the strengthening ef

fect of end restraint is highly dependent on the slen-
derness of the column. 

Practical Design of Initially Crooked Column with 
End Restraints 
For design purposes, it is convenient to use the effective 
length factor approach in which the actual column with 
end restraints is converted to an equivalent pin-ended 
column by multiplying the actual unbraced length of the 
column by the effective length factor K, so the pin-ended 
column curves described in the preceding section can be 
utilized directly. The procedure to determine the effec
tive length factor for initially crooked end-restrained col
umns with residual stresses is more involved than that 
of perfectly straight elastic columns with idealized end 
conditions. Equation 12 is not applicable anymore for 
the determination of the effective length factor K. In
stead, a number of load-deflection curves, each corre
sponding to a specific slenderness ratio L/r (or slender-
ness parameter X), are generated numerically. The peak 
points of these load-deflection curves are then plotted 
with the associated slenderness ratios (or slenderness pa
rameters) to form a column curve (see Fig. 6). Each col
umn curve is unique for a specific value of initial crook
edness, a specific distribution of residual stress and a 
specific end restraint characteristic. To get the effective 
length factor, the end-restrained column curve (Fig. 6b) 
is compared with the corresponding pin-ended column 
curve and the K factor at any load level is given (Fig. 7), 

K = 

where X̂ ,̂, X^c î*̂  depicted in the figure. 

(13) 

a. 

o 

Curve Fitting 

Through Data Points 

100 

Deflection ( 8 ) Slenderness Ratio ( — ) 

( a ) Load-Def lect ion Curve (b ) Column Curve 

Fig. 6. Determination of column-strength curve from load-deflection 
curves for an initially crooked end-restrained column 
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Fig. 7. Determination of ejfective length factor, K 

Upon investigations of 83 end-restrained columns,^^ 
the values of K for each curve do not vary significantly 
over the load levels. Thus, a relationship between the K-
factor and the magnitude of end restraint can be estab
lished. In particular, the expression 

where 

/ ^ - 1.0 - 0 .017d>0 .6 

2EL 

(MXL, 2EL 

(14) 

(15) 

in which 
Ig = moment of inertia of the girder connected to 

the column 
Lg = length of the girder 
(Mp)^ = plastic moment capacity of the column 
Rki = initial connection stiffness of the connection 

joining the beam to the column (Fig. 8) 

was proposed^^ for non-sway columns with initial crook
edness, residual stresses and small end restraints, taking 
into account the effect of beam flexibility. Procedures 
for the design of such columns have been reported in 
Refs. 12, 21 and discussed in Ref. 22. 

At this point, it is interesting to compare the effective 
length factor K as described by Eq. 14 with the elastic 
effective length factor K^i determined by an eigenvalue 

analysis assuming perfectly straight columns with end 
restraints provided by linear elastic rotational springs 
having spring stiffness Rkj at the ends. Such comparison 
is shown in Fig. 9. The dotted line is a plot of K versus 
d whereas the solid lines are plots of K^i versus d. As 
can be seen, K^i gives a conservative estimate of column 
strength provided that X is relatively low and d is rela
tively high. 

MOMENT 
M 

ROTATION 9^ 

Fig. 8. Determination of R,,i 
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Fig. 9. Comparison of K^i and K 

4. COLUMNS IN FRAMES 

As mentioned earlier, columns in real structures usually 
exist as part of a frame. A column in a frame is usually 
subjected to the combined action of bending moments 
and axial thrust. As a result, part of the strength of the 
member is required to resist the bending moment and 
only the remaining part of the strength is available to 
resist the axial force. Thus, most columns in frames must 
be treated as beam-columns. 

Columns in Braced Frames—B^ Factor 

A phenomenon associated with a beam-column is the 
secondary effect. When a braced member is subjected to 
both bending moments and axial force, the axial force 
acts through the deflection caused by the primary mo
ments (moments arised from transverse loads and end 
moments acting on the member) to produce additional 
moment referred to as secondary or P-8 moment. Figure 
10 shows schematically these two types of moments. The 
moment acting along the member is thus the algebraic 
sum of the primary and secondary moments. To obtain 
the exact value of this moment, a second-order analysis 
of the member is necessary. However, in lieu of such 
analysis, a simplified approach to obtain the total mo
ment can be used. 

Using the assumptions that 

1. The deflection is small 

M. 
t I \ \ \^ 
15 ^^---J£7 

M, 

Mj=f(M,,M2,Q,q,x) 

Mjj=Py 

Fig. 10 P-8 effect 
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2. The secondary moment Mu is in the form of a half 
sine wave 

3. The maximum deflection 8 occurs at midspan 
4. The maximum primary moment M/^^ occurs at or 

near midspan 

an approximate expression for the maximum moment can 
be derived. 

Because of assumptions 1 to 3, we can relate the cur
vature caused by the secondary moment to the maximum 
deflection as 

Mu P8 7T;C 
y'li = = sin — 

EI EI L 

(16) 

Integrating Eq. 16 twice and enforcing the boundary 
conditions y{0) = 0 and y(L) = 0 it can easily be shown 
that the secondary deflection (deflection caused by the 
P-8 effect) can be written as 

2 

(17) yii sm 
Pb L' 

EI U / L 
from which the secondary deflection at midspan is 

Equation 22 shows the maximum moment in the mem
ber can be obtained by multiplying the maximum pri
mary moment M/^^ by an amplification factor Bi (the 
factor in parenthesis). Note this amplification factor must 
be greater than unity if it is of any importance. This is 
because if this factor is less than unity, then from Eq. 
22 it is clear that Mj^a.x ^ ^max and the designer will use 
Mj,^ rather than M^^ in proportioning the members. The 
condition that Bi must be greater than unity is adopted 
in the present AISC/LRFD Specification which was not 
the case for the AISC/ASD Specification. 

Figure 11 shows the value of \\f and C^ for several 
different load cases. It is important to point out that be
cause of assumption 4, Eq. 24, which is derived from 
Eq. 21, is only applicable to the two simply supported 
cases (Cases 1 and 4). For the other cases in which the 
maximum primary moment Mj^^x occurs at the end(s) 
(Cases 2, 3, 5) or occurs at midspan as well as at the 
ends (Case 6), the exact values of the maximum mo
ments are first evaluated; the values for ij; are then ob
tained from calibration.^^ 

8// = yii k (18) 

Since the total deflection at midspan is the sum of the 
primary and secondary deflections, i.e. 

8 = 8;+ 8;; (19) 

we can eliminate 8// by substituting Eq. 18 into Eq. 19. 
The result is 

8 = 
8/ 

P 
1 

P. 

(20) 

From assumption 4, we can write 

(21) 

If we substitute Eq. 20 into Eq. 21 and rearrange, we 
can write 

M^ 
C 

1 - P/P. 
M„ B^M„ (22) 

where 

C 

in which 

B^ --
1 - P/P, 

C„ = 1 + it;P/P, 

ili = ^ ^ - 1 

> 1 
(23) 

(24) 

Case 

1 

2. 

3 

^ fTTTrTTTnTiiiniiml 

4 

1 
f t 

5 

(o 

-i—^—\-

^' 

0 

-0 .4 

- 0 . 4 

- 0 . 2 

- 0 .3 

-0 .2 

Cm 1 

1 .O'-

l-0.4P/Pg 

I -0 .4P/P. 

I -0.2P/P„ 

| -0.3P/Pg 

l-0.2P/Pg 

Fig. 11. Values of if/for beam-columns under 
transverse loadings 
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For the cases in which end-restraint(s) is (are) present 
(Cases 2, 3, 5, 6), the value of C^ for usual P/P^ ratios 
is only slightly less than unity and a conservative value 
of 0.85 is thus suggested for C^. For the two simply 
supported cases (Cases 1, 4), a value of 1 is suggested 
for Cm in the AISC/LRFD Specification.^^ 

A special case arises when in-span transverse loads are 
absent in the member. For this case, the primary mo
ment in the member is caused by end moments acting 
on the member ends. Since the maximum primary mo
ment in members subjected to axial load and end mo
ments seldom exists at midspan, C^ defined in Eq. 23 
is invalid since it was developed based on assumption 4 
postulating that M/^^ occurs at or near midspan. Instead, 
Cm is redefined as 

Cm = 0.6 - 0.4 (M1/M2) > 0.4 (25) 

where M1/M2 is the ratio of the smaller to larger end 
moments of the unbraced length of the member and it is 
positive when the member is bent in reverse curvature 
and negative when the member is bent in single curva
ture. 

Equation 25 was developed based on the equivalent 
moment concept. In the equivalent moment model, a pair 
of equal and opposite end moments are applied to the 
member which, when amplified by the amplification Bi, 
will give the same maximum moment as will the actual 
unequal end moments. It is obvious the location of max
imum moment will be distorted, but this is ignored for 
simplicity. Cm expressed in Eq. 25 was proposed by 
Austin̂ "̂  based on a more accurate expression derived by 
Massonnet.^^ 

Columns in Unbraced Frames—B2 Factor 

The above discussion on moment amplification pertains 
to members in braced frames in which sidesway is pre
vented. For members in an unbraced frame, in addition 
to P-8 effect there is another effect known as the P-A 
effect. The P-A effect arises when the gravity loads of a 
frame act through the drift of the frame thus producing 
additional overturning moment and additional drift 
(Fig. 12). Since this is a destabilizing effect, it should 
be considered in design. Both the P-8 and P-A effects 
can be taken into account by using second-order analy
sis. The AISC/LRFD Specification^^ recommends the use 
of P-A moment amplification factor B2 to account for the 
P-A effect in lieu of a second-order analysis. 

Two expressions for 82 are given in the specification 

B,= 
1 

1 -

and 

B,= 
1 

SP. 

(26) 

(27) 

where 

design axial forces on all columns of a story, 
in kips 
translation deflection on the story under con
sideration based on a first-order analysis, in 
inches 

Mo = HL 

dH H 

(a) (b) 
Fig. 12. Cantilever column 

( C ) 
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2 / / = sum of all story horizontal forces producing 
A ;̂,, in kips 

L = story height, in inches 
P, = Euler load (Eq. 1) 

Equation 26 was developed based on the story stiff
ness concept.̂ '̂̂ '̂̂ ^ By assuming that 

1. each story behaves independently of other stories, 
and 

2. the additional moments in the columns caused by 
the P-A effect is equivalent to that caused by a 
lateral force of l^PJ^/h where SP„ is the sum of 
all vertical forces on the story, A is the total frame 
drift including the P-A effect and h is the height 
of the story, 

the sway stiffness of the story can be defined as: 

horizontal force 

lateral displacement (28) 

^oh A 

Solving the above equation for A gives 

(29) 

1 
SPA,, 

If rigid connections and elastic behavior are assumed, 
the magnified moment induced in the member as a result 
of sway Mif will be proportional to the lateral deflec
tions. Therefore, we can write 

(A^/r)max 

1 

, Ml, - B.Mu (30) 

where 
Mij = moment due to lateral translation determined 

from a first-order analysis 

The alternative expression for the moment amplifi
cation factor B2 is obtained as a direct extension of Eq. 
20. Under the assumption that when sidesway instability 
is to occur in a story, all columns in that story will be
come unstable simultaneously, the P/P^ term in Eq. 20 
is replaced by XPJXP^ in which the summation is 
carried through all columns in a story."^ Using the same 
argument as before that if elastic behavior and rigid con
nections are assumed, the story sway moment will be 
proportional to the lateral deflection. As a result, the 
maximum end moment accounting for the P-A effect can 
be written as 

(MiXna. = I T̂TT Wlr = B,M, (31) 

The P-A moment amplification factor B2 described 
above and recommended in the AISC/LRFD Specifica
tion represents an improvement over that recommended 
in the AISC/ASD Specification^^ in which the P-A mo
ment amplification factor is expressed as 0.85/(1 - fJP'e)-
The reason is that the B2 factor in the LRFD Specifi
cation magnifies only the sway moment M/̂ , whereas the 
moment amplification factor in the ASD Specification 
magnifies the total moment. If the bulk of the column 
moment does not produce sidesway, the approach rec
ommended in the ASD Specification will be unduly con
servative. 

Column Design in LRFD for Type FR Construction 

As mentioned earlier, for an unbraced frame, both the 
P-8 and P-A effects are important, so both effects have 
to be accounted for in design. The AISC/LRFD Speci
fication recommends a superposition technique in which 
the P-8 (sometimes called the member instability) effect 
and the P-A (sometimes called the frame instability) ef
fect are summed together algebraically to obtain the 
maximum design moment, i.e. 

M. B^ M,, + B, Mu (32) 

where B^ and Bo are the P-8 and P-A moment amplifi
cation factors respectively and M^t is the moment in the 
member assuming there is no lateral translation in the 
frame and M/̂  is the moment in the member as a result 
of lateral translation of the frame. 

In the actual design, M,,, is determined from a first-
order analysis of the frame braced against lateral trans
lation under the applied loads. Mj, is determined from a 
first-order analysis of the frame acted on by the reverse 
of the bracing forces (Fig. 13). It is important to note 
Eq. 32 is a conservative approach, since the maximum 
P-8 moment and the maximum P-A moment may not 
necessarily coincide at the same location. Furthermore, 
it should be remembered the expressions for B^ and B2 
are only valid if the joints are rigid. In other words, Eq. 
32 is only applicable to Type FR (fully restrained) con
struction in the LRFD Specification. Finally, it should 
also be mentioned that, depending on how the frame is 
braced against sway, the moments M„, and M^ calculated 
will be different for different arrangements of fictitious 
supports. However, for regular rectangular frames used 
in most building construction, the difference is insignif
icant for design purpose. 

The validity of Eq. 32 has been checked by comparing 
the maximum moment calculated using Eq. 32 with the 
exact maximum moment calculated using a second-order 
elastic analysis."^^ It is concluded that for rectangular 
frames in which the P-A effect is not too significant, 
good correlation between the two calculated moments is 
observed. 

Furthermore, if the P-A effect is not too significant. 
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the two different expressions for B2 (Eqs. 26 and 27) 
give comparable results provided that all the beams and 
columns in the story are rigidly connected. 

If the P-A effect is significant, viz, if B2 > 1.5, the 
approach suggested by LeMessurier^^ provides more ac
curate results. In his approach, the moment magnifica
tion factor is expressed as 

B,= 
1 

^Pu 

where 

^PL 

SP^ - 2 Q P 

(33) 

(34) 

Ci is a factor accounting for the decrease in stiffness of 
the column due to the presence of the axial force. 

Note that if Ci is insignificant, Eq. 33 reduces to Eq. 
26. 

5. CONNECTION RESTRAINT CHARACTERISTICS 

The analyses and design of Type PR (fully restrained) 
and Type PR (partially restrained) frames differ in that 
for Type PR construction, the effect of connection flex
ibility must be taken into account. Since a connection is 
a highly statical indeterminate element, a rigorous ana
lytical study of its behavior is quite a formidable task. 
In view of this, a special Task Group (TG25) of the 
Structural Stability Research Council was set up to in
vestigate theoretically and experimentally connection be
havior. 

The behavior of a connection is best described by its 
moment-rotation relationship. Since most connection 
moment-rotational relationships are nonlinear almost from 

the start of loading, the analysis of structures including 
the effect of connection flexibility is an inherent non
linear problem. To simplify the analysis technique, a 
number of simplified models have been proposed. 

Connection Modeling 

Figure 14 shows two simple linear models. The first 
modeP^ uses the initial stiffness R^t of the connection to 
represent the behavior of the connection for the entire 
range of loading. As can be seen, the validity of this 

MOMENT 
M 

ROTATION B 
r 

Fig. 14. Linear M-O^ models 

ORIGINAL FRAME 

-H 

TW 77/T 

NONSWAY FRAME 

Fig. 13. Two fictional frames for M„, and MIt 

H,=-H, 

H2 ~ ~ ' '2 

Hj = - H j 

SWAY FRAME 
for M. 

' I t 
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linear model deteriorates as the moment increases. To 
get a better representation of the connection stiffness, a 
bilinear modeP^ was used. In the bilinear model, the ini
tial slope of the moment-rotational line was replaced by 
a shallower line at a certain transition moment Mj. A 
direct extension of the bilinear model is the piecewise 
hnear modeP"^ in which the nonlinear M-9^ curve of the 
connection is represented by a series of straight line seg
ments. Although the linear, bilinear or piecewise linear 
models are easy to implement, the inaccuracies and sud
den jump in stiffness which are inherent in these models 
make them undesirable to be used in a limit state anal
ysis routine. 

To this end, Frye and Morris^^ proposed a polynomial 
model in which a polynomial is used to represent the 
connection M-0^ behavior (Fig. 15). However, there is 
a major drawback in this model. Since the nature of a 
polynomial is to peak and trough within a certain range, 
the stiffness of the connection (as represented by the first 
derivative of the polynomial) may be negative, which is 
physically unjustifiable. To overcome this, Jones et aP^ 
uses a cubic 5-spline curve fitting technique to improve 
the polynomial model (Fig. 15). In the cubic 5-spline 

MOMENT 
M 

// 

// 

/ 

o Experimental data 

B-spline fit 

Polynomial fit 

ROTATION e^ 

Fig. 15. B-spline and polynomial curve fit models 

Br 
Fig. 16. Connection moment-rotation idealization used in the power model 
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model, a cubic polynomial is used to curve-fit segments 
of a curve. Continuity between the first and second de
rivatives of each segment of curve are enforced. Al
though the cubic B-spline model gives a good represen
tation of the connection behavior and circumvents the 
problem of negative stiffness, a large number of data are 
necessary for the curve-fitting process. To overcome this, 
the power model proposed by Colson '̂̂  and the expo
nential model proposed by Luî ^ can be used. 

In the power model,^^ a power function is used to rep
resent the connection M-0^ behavior. It has the form 

\M\ 1 

^ki 
1 

M 

M . 

(35) 

where (refer to Fig. 16) 
Rki = initial connection stiffness 
Mcu = ultimate moment capacity of the connection 
a = a parameter to account for the curvature of the 

M-0 relationships 

In the exponential model,^^ the connection M-9^ be
havior is represented by an exponential function of the 
form 

^ = E î (1 - "̂"̂ "''") + ^- + ^^f\^r\ (36) 
7=1 

where 
Mo = initial moment 
Rkf = final or strain-hardening connection stiff

ness 
a = scaling factor 
Cj = connection model parameters 

The connection model parameters are merely curve-
fitting constants which can be obtained by using an op
timization technique. 

To demonstrate the validity of the exponential model, 
two experimentally obtained moment-rotation curves are 
curve-fitted with Eq. 36 using four curve-fitting con
stants and 10 sets of data from each curve. The results 
are shown in Figs. 17 and 18 respectively. The connec
tion used in Fig. 17 was a double web angle connection 
tested by Lewitt, Chesson and Munse.^^ The connection 
used in Fig. 18 was a T-stub connection tested by Rath-
bun. ̂ ^ As can be seen, the exponential model gives an 
excellent representation of the test curves. 

5 0 0 

TEST (LEWITT, CHESSON AND MUNSE) 

EXPONENTIAL MODEL 

10 20 30 40 50 60 70 80 

Fig. 17. Comparison of exponential connection model with test by Lewitt, 
Chesson and Munse 
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Research Need 

As mentioned earlier, because of the complex geome
tries and stress distributions of most connections, most 
M-9^ curves are nonlinear and thus almost all existing 
M-0^ curves available today are obtained from experi
ments. Since most of these experiments were performed 
on connections which have become obsolete, it is es
sential that additional analytical and experimental inves
tigations on comrhonly used connections be conducted 
in view of the advancement made on the limit state ap
proach to analysis and design of steel structures. 

6. BEHAVIOR OF COLUMNS WITH RIGID AND 
SEMI-RIGID CONNECTIONS 

For columns in frames, another important phenomenon 
which the engineers should be aware of is the moment 
transfer mechanism between the beams and columns. One 
commonly posed question is: how can a beam restrain a 
column if at the same time it is inducing moment to the 
column? Whether a beam restrains or induces moment 
to the column depends on a number of factors. Some of 
the important ones are (1) the rigidity of the connections, 
(2) the relative stiffness of the beams and columns and 
(3) the load patterns and load sequences on the frame. 

Moment Transfer—Rigid Connection 

To study the moment transfer mechanism between the 
beam and the column, it is advantageous to look at the 
behavior of some simple subassemblages. Figure 19"̂ ^ 
shows a T-shaped subassemblage consisting of two beams 
and a column rigidly connected to one another. A con
centrated load Q equal to half the yield load of the beam 
is applied to the midspan of each beam, an axial load P 
is then applied to an imperfect column with the influence 
of residual stress as well as with an initial out-of-
straightness of 0.00IL. The moment distributions of the 
joint are plotted as P increases. By assuming that the 
beams behave elastically for the entire range of loading 
and the joint is rigidly connected, the moment at the joint 
is considered to consist of three parts: 

1. Bending moment Mi due to lateral load Q with joint 
fixed. 

2. Bending moment M2 due to joint translation as col
umn buckles. 

3. Bending moment M3 due to joint rotation. 

These three components of bending moments are shown 
schematically in Fig. 20. 

I 3 
c 
O 
O 
o 

O 

TEST ( R A T H B U N ) 

EXPONENTIAL MODEL 

± ± ± ± 
0.001 0.002 0.003 0.004 0.005 

ROTATION (radians) 
0.006 0.007 0.008 

Fig. 18. Comparison of exponential connection model with 
test by Rathburi 
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Fig. 19. Moment distributions at joint of subassemblage 
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The bending moments in the left beam MRI and in the 
right beam Mj^^ can be expressed as follows: 

MRL = - M l + M2 - M3 

MRR = Ml - M2 - M3 

(37) 

(38) 

The bending moment in the column Mc can be ob
tained by considering joint equilibrium. 

Mr -(Mj,, + M^j,) - 2M3 (39) 

The variation of these bending moments with the axial 
load P is plotted in Fig. 19. It can be seen from the 
figure that the moment due to the buckling of the column 
is not negligible. Not only does it reduce the moment of 
the left beam, but, together with the moment arising from 
joint rotation, restrains the column during the final stage 
of loading. The moment of the right beam M^^, at first 
inducing moment to the column, decreases gradually and 
at P = 26 kips reverses sign and becomes a restraining 
moment to the column. On the other hand, the moment 
of the left beam M^^ is always negative and thus always 
restrains the column. 

A 
Fig. 20. Components of bending moments at 

joint of subassemblage 

Moment Transfer—Flexible Connection 

If the connections are not rigid, the moment transfer 
mechanism between the beam and the column are more 
complicated because of the loading/unloading charac
teristic of the connections. To demonstrate this charac
teristic schematically, the readers are referred to Fig. 21. 
For this subassemblage (Fig. 21a), the beams are con
nected to the column by semi-rigid connections. Beam 
loads W£, WR are first applied to simulate the dead load 
of the structure. Figure 21b shows the directions of mo
ments acting on the left- and right-hand side of the joint 
of the subassemblage. The corresponding M-6^ curves 
for the left and right connections are also shown. The 
left connection will follow curve OA' and the right con
nections will follow curve OA". The moment acting on 
the column will be M^ on the left side of the joint and 
MiR on the right side of the joint. 
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M 

M3R 
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F/g. 21. Schematic representation of moment transfer mechanism of a 
flexibly connected subassemblage 
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Now, a column axial load P is applied to the subas-
semblage to simulate the live load. Under the action of 
P, the column will shorten and bend as shown by the 
dashed line in Fig. 21a. The moment induced due to 
shortening of the column is shown in Fig. 21c. Note that 
the directions of moments on both sides of the column 
are opposite to that of Fig. 21b. Therefore, unloading of 
the connections will result. As a result, the M-0,. curve 
of the left connection will follow path A'B' and that of 
the right connection will follow path A"B". The slopes 
of A'B' and A'B" are parallel to the initial slopes to the 
corresponding M-9^ curves. 

In addition to column shortening, there is bending de
formation in the column. As a result of bending, the joint 
will rotate. If rotation is in the direction as shown in Fig. 
21a, the direction of moment induced will be that as shown 
in Fig. 21d. The induced moment to the left of the joint 
has the same direction as that of Fig. 21b but the direc
tion of the induced moment to the right of the joint has 
opposite direction to that of Fig. 21b. In other words, 
the connection to the left of the columns will load while 
the connection to the right of the column will unload as 
a result of joint rotation. 

Since the two column deformations, shortening and 
bending, occur simultaneously as P applies, the phe
nomenon depicted in Figs. 21c and 2Id are concurrent 
events. Consequently, the connection on the left-hand 
side of the column may follow path A'B' or A'C (i.e. 
unload or load) depending on whether M2L is greater or 
smaller than M-^. On the other hand, the connection on 
the right-hand side of the column will always unload and 
so it will always exhibit a restraining effect to the col
umn. 

To study the behavior of flexibly connected frames, 
recourse to numerical methods is inevitable because of 
the inherent nonlinear nature of the problem. To give the 
reader an insight into the restraint characteristic between 
members of flexibly-connected frames, the behavior of 
the following subassemblage will be discussed. 

To study the behavior of flexibly connected frames, 
the subassemblages shown in Figs. 22 and 23 are ana
lyzed with the two load sequences applied as shown. The 
difference between the subassemblage of Fig. 22 and Fig. 
23 is that rigid connections are assumed in the subas
semblage of Fig. 22 and flexible connections with a mo
ment-rotation behavior of Fig. 24 are used in the subas
semblage of Fig. 23 . The loadings for the two 
subassemblages are identical. The two beams are first 
loaded at midspan with a 5-kip concentrated load in load 
sequence 1. The column is also loaded with a 5-kip con
centrated load in load sequence 1. The column loads 
(vertical at the joint and horizontal at quarter-points of 
the columns) are then applied monotonically in load se
quence 2 until a plastic hinge formed in the column. 

The distribution of joint moments for the rigidly con
nected and flexibly connected subassemblages are shown 
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(a) Load Sequence 1 

15' 

////) mrt 

0.01 P 

0.01 P 

0.01 P 

TnTf 

(b) Load Sequence 2 
Fig. 22. Rigidly connected T-shaped subassemblage 

in Figs. 25a and b respectively. The following obser
vations can be made from the plots: 

1. The column is restrained against buckling even though 
the beams are preloaded. For the rigidly connected 
subassemblage, restraint is offered by the left beam 
until at P = 38 kips the right beam starts to provide 
the restraint. At P = 54 kips, restraint is offered solely 
by the right beam. For the flexibly connected subas
semblage both beams provide the restraint to the col
umn. 

2. The restraining effect is more pronounced for rigid 
connections than for flexible connections. 

The difference in moment distribution around the joint 
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Fig. 23. Flexibly connected T-shaped subassemblage 

is apparent in Fig. 25. Of particular interest is the di
rection of MBL. For the flexibly connected subassem
blage, MQI is always negative whereas for the rigidly 
connected subassemblage MBL is only negative at low 
values of P but becomes positive at high values of P. 
The reason for this can be explained by reference to Fig. 
26 in which the beam end moments at the joint are de
composed. At the end of load Sequence 1, M^L is neg
ative (i.e. counterclockwise, Fig. 26a). However, as load 
sequence 2 commences, the induced moment MBL may 
be positive (i.e. clockwise. Fig. 26b) as a result of joint 
translation or negative (i.e. counterclockwise. Fig. 26c) 
as a result of joint rotation. Whether the final value of 
MBL is positive or negative depends on whether joint 
translation or joint rotation dominates. 
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Fig. 24. Connection moment-rotation behavior 
used for the T-shaped subassemblage 

In Fig. 27, the magnitude of joint translation and joint 
rotation as a function of the applied force P are plotted. 
Although the magnitude of joint translation for both the 
rigidly connected and flexibly connected subassem-
blages are comparable, the joint rotation of the flexibly 
connected subassemblage is significantly larger than that 
of the rigidly connected subassemblage. As a result, the 
moment induced as a result of joint rotation will out
weigh that of joint translation, hence the final value of 
MBL for the flexibly connected frame is negative. 

As for the right beam, regardless of whether joint 
translation or joint rotation dominates, the induced MBR 
is almost always negative. As a result, this beam, except 
at the initial loading stage for the rigidly connected sub-
assemblage, will always provide restraint to the column 
regardless of whether the connection is rigid or flexible. 
It should be mentioned that unloading occurs at the con
nection which connects the right beam to the column as 
load sequence 2 commences because the direction of 
moment at this location is opposite for load sequence 1 
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-400 -200 200 400 600 

(a) Rigid Connection 

Joint Moment 
( in-kips) 

Applied Force, P (kips) 
300 T 

'^BL'**^BR 

Mc 

-400 - 2 0 0 0 

(b) Flexible Connection 

200 400 600 
Joint Moment 
. (in-kips) 

Fig. 25. Applied force vs. joint moment relationships 
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Fig. 27. Joint displacement and rotation of 
the T-shaped subassemblage 

and load sequence 2 (see Fig. 26). Consequently, the left 
connection is offering tangent stiffness restraint to the 
column whereas the right connection is offering initial 
stiffness restraint. 

A more detailed analysis and discussion of the behav
ior of subassemblages with flexible connections are given 
elsewhere. ̂ ^ 

7. DESIGN OF COLUMNS WITH SEMI-RIGID 
CONNECTIONS 

For design purposes, if the connections are rigid, one 
can just perform a first-order analysis on a trial frame. 
With the end moments and axial force known for each 
member, an interaction formula (to be discussed in the 
next section) can be used to check the trial sizes of the 
members. However, if the connections are not rigid, then 
care must be exercised in using the interaction equations 
in the proposed LRFD Specifications,^^ because the 
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maximum moment in the member as determined by Eq. 
32 will not be valid anymore, since the moment ampli
fication factors Bi and B2 are only defined for rigidly 
connected frames. 

One plausible solution is to use computer-aided anal
ysis and design in which a second-order analysis is per
formed on the flexibly connected frame to determine the 
maximum moment including the P-8 and P-A effects di
rectly. However, in lieu of such analysis, simplified de
sign methods based on idealized connection behavior have 
been proposed.'^^'''"^''' 

Additional Studies 

Additional studies on the role of connections in effecting 
the strength and stiffness of frames have been reported 
by Ackroyd,"^^ Moncarz and Gerstle"̂ "̂  and Simitses et 
^j 45,46,47 jj^ ^^^ ^2^ it was shown an increase in con
nection stiffness does not always result in an increase in 
frame strength. For long-span frames only a few stories 
high where the lateral loads effects are small compared 
with gravity loads, an increase in connection stiffness 
may cause a decrease in frame strength. A parameter 
was defined which can be used as an index to determine 
whether providing overstiff connections will be benefi
cial or detrimental. 

In addition to connection flexibility, another important 
factor that affects the limit state behavior of a frame is 
panel zone deformation. The study of panel zone defor
mation on frame behavior has been reported by Fielding 
et al,'''^' Becker,'^ Kato'^ and Krawinkler.'' In these 
studies, attention was given to the modeling of the shear 
deformation of the panel zone. The important results of 
these studies were summarized by the authors.^^ Re
cently, a finite element model of the panel zone which 
can represent all modes (extension, shear, bending) of 
deformation of the panel zone has been reported.^^ Gen
erally speaking, the strength and stiffness of frames will 
be reduced if the effect of panel zone deformation is taken 
into account in the analysis procedures. 

It should be mentioned that since both connection 
flexibility and panel zone deformation have detrimental 
effects on frame strength and stiffness, particular atten
tion must be given by the designers to ensure that the 
strength of the frame is adequate and that the stability 
and drift will not be a problem for Type PR frames. 

8. BEAM-COLUMN INTERACTION FORMULAS 

With the end moments and axial force of a member 
known, the member can be proportioned so that it can 
resist these applied forces without premature failure. For 
design purposes, the proportion of the member is facil
itated by the use of interaction formulas. The general 
form of an interaction formula is 

/ 
P„' MJ M„ 

< 1.0 (40) 

where P ,̂, M^ ,̂ M̂ ,̂ . are the design axial load and bending 
moments (required strength) about the principal axes re
spectively and P„, Mnx and M„,, are the corresponding 
ultimate axial force and moment capacities of the sec
tion. Interaction equations can be linear or nonlinear. A 
linear interaction equation is an equation in which the 
terms P^ /P„, M^ /M^, M^,y /M^y are combined together 
linearly. A nonlinear interaction equation is one in which 
these terms are combined together nonlinearly. 

Linear Interaction Equations 

The AISC/LRFD Specification, based on the exact in
elastic solution of 82 beam-columns,^"^ proposed the fol
lowing interaction equations for sway and nonsway beam-
columns 

for- 0.2 

(f),P, 9 V(j),M,, (f),M, 
< 1.0 (41) 

for-
^cPn 

<0.2 

M. 

2(!),F, ^^M^ (f)̂ M,, 
1.0 (42) 

The above interaction formulas are a simplification and 
clarification of interaction Formulas 1.6.1a and 1.6.1b 
used in the present AISC/ASD Specification.^^ Equation 
1.6.1a is a check for stability and Eq. 1.6.1b is a check 
for strength. Since the amplification factor ^j can be less 
than unity in the AISC/ASD Specification, both equa
tions are required to be checked in the design. However, 
in the AISC/LRFD Specification, since the B^ factor must 
be greater than unity, only one equation needs to be 
checked. The applicable equation is governed by the value 
PJi;)cPn, where F„ is the axial force in the member, P„ 
is the axial strength capacity of the member and 4)̂  is 
the column resistance factor and has a value of 0.85. 

M^ and M ,̂,, are the maximum moment (including the 
P-8 and P-A effects) in the member which may be de
termined from a second-order elastic analysis. However, 
in lieu of such analysis, their values may be determined 
from the simplified approach described in the section on 
Columns in Frames. 

Nonlinear Interaction Equations 

Equations 41 and 42 are applicable to members in both 
braced and unbraced frames. For members in braced 
frames, the new specification also recommended a non-
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linear interaction equation based on the work in Ref. 55 
for the design of I and wide-flange shapes. The equation 
has the form 

M,. 

C M 

+ 
^bM'py, 

C M 
^^ my ̂  ̂ -^ uy 

< 1.0 

1.0 

where 

C = 1 . 6 -
P P 
'^ u ^ y 

2[\n(P,Py) 

^ = S 
0.4 + - + ^ 

Py d 
1 

1.0 f o r V ^ > 0 . 3 

f o r V ^ < 0 . 3 

bf — flange width, in. 
d = member depth, in. 

M;. 1 . 2 M , , [ 1 - ( P , / P , , ) ] < M , , 

l.2M^y[l-(PJPy)]^M^y 

M'^ = M^[\- (P,/ct),P,)][l - ( P . / P J ] 

M' 

(43) 

(44) 

forO.5 < V ^ - 1 - 0 (45) 

(46) 

(47) 

(48) 

(49) 

M' = M„, [1 - {PJ<^, P„)][l - {PJPJ] (50) 
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Design Evaluation 

At this point, it is of interest to compare design carried 
out using the ASD format and the new LRFD format. 
A comprehensive comparative study was reported by Zhou 
and Chen.^^ In the study, a number of nonsway beam-
columns under a specific set of force conditions were 
designed using both the ASD and LRFD formats. For 
the LRFD format, both the linear (LRFD-Linear) and 
nonlinear (LRFD-Non) interaction equations were used. 
The result of the comparison was expressed by the weight 
ratios of the sections chosen using the various design 
formats and interaction equations. 

Figure 28 shows one such comparison. It can be seen 
that for single curvature bending (C^ = C^y = 1), the 
LRFD approach is generally more liberal than the ASD 
approach. Figure 29 shows the distributions of the weight 
ratios for the beam-columns designed using live load to 
dead load {LJD^ ratios of 1, 3 and 5 respectively. A 
constant roof live load to dead load (L./D^) ratio of 0.2 
was used for all three cases. From the figure, it can be 
seen that 

1. The smaller the LJD^ ratio is, the more liberal is the 
LRFD approach as compared to the ASD approach. 

2. The LRFD nonlinear equations will give the lightest 
section (except in cases when b/d ratio is small and 
the ratio of moment to axial force is large when the 

LRFD linear equations give a more economical sec
tion) . 

The readers are referred to Ref. 56 for a more thorough 
discussion of the comparison. 

Nonlinear Interaction Equations for Box Columns 

Before leaving the subject, it is necessary to discuss re
cent development of the interaction equations for rec
tangular box beam-columns under biaxial loading. Based 
on a study by Zhou and Chen,^^ the following interac
tions are proposed as an extension of the expressions 
proposed previously by Chen and McGraw^^ for welded 
square box columns under biaxial loading to the present 
more general case of rectangular box cross section. 

For short members 

+ 
Muy 

< 1.0 

where 

C = 1 . 7 -
PJPy 

\n {PJPy) 

Ml 1.2(1-F„/FJM„,<M„ 

M'= 1.2(1 -PJPy)M.. M„ 

(51) 

(52) 

(53) 

(54) 
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For long members 

KM' 
where 

\ML 

PJP, KL 
1.7 ^ « — (PyPv) > 1.1 

\n (PJP,) r 

M'^^M^(l-PJP^) 

M;. = M,,,(I - p y p j 

1.25 

1 
Pu 1.25 

Z? = 
l .OifPyP, < 0 . 4 
2.0ifP,yp', > 0 . 4 

(55) 

(56) 

in which 
B = width and H = depth of the cross section 

^ fo.06ifP, /P, < 0 . 4 
^ | 0 . 15 i fPyP , > 0 . 4 

(57) 

(58) 

These nonlinear interaction formulas have been shown^^ 
to compare favorably with computer solutions and some 
experimental results. 

9. SUMMARY AND CONCLUSIONS 

In this paper, the state-of-the-art design philosophies with 
particular emphasis on the Load and Resistance Factor 
Design (LRFD) format are discussed. The background 
and relevant development of the design methods relating 
to columns and beam-columns are presented. 

LRFD is a limit-state design method. A valid limit-
state analysis and design of structures or structural mem
bers requires more understanding of structural behavior 
and more demand on structural analysis techniques. For 
example, in the AISC/LRFD Specification, a direct sec
ond-order analysis of the structure to determine the max
imum design forces in the member is recommended. 
Furthermore, an extensive use of stability theory is em
ployed in the development of the specification equa
tions. 

Although first-order theory is still extensively used by 
engineers and designers in proportioning members, the 
use of second-order analysis will become more and more 
popular in the near future. The use of more sophisticated 
analysis techniques is enhanced by the rapid develop
ment in computer hardware and software. In particular, 
the great advancement in microcomputers has enabled 
engineers and designers to perform fast and more effi-
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cient analysis and design of most structural members. 
Consequently, computer-aided analysis and design of 
structure will continue to gain popularity as time pro
ceeds. 

In addition to theoretical investigations of structural 
behavior, the continued need for experimental investi
gations is inevitable, especially in the area of connection 
restraint characterization. Theoretical and experimental 
work must go in parallel paths to ensure the continued 
development of more economical and rational design 
procedures in view of recent great advancement in mi
crocomputers. 
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