Deflections of Stepped Beams and Girders

Y. EUGENE YAMAMOTO

Stepped beams and girders, illustrated in Fig. 1, can be used in many structures. An appropriate application for stepped sections could be on the floor framing of highrise buildings where the ceiling plenums are kept shallow to limit the floor to floor dimension. Stepped sections provide greater clearance under beams for the ducts and other mechanical systems which are often crowded into ceiling plenums. By proper selection, greater clearance may be achieved with the added benefit of reducing the weight of beams and girders.

However, stepped sections are rarely used. The reasons for their unpopularity are possibly due to the lack of familiarity with their deflection characteristics and the unavailability of deflection formulae for such beams and girders. Formulae for deflection and tables to assist in the selection of stepped sections are presented in this paper.

THE UNIFORMLY LOADED SPAN

The simple beam parabolic moment curve for a uniformly loaded span is shown in Fig. 2. The ordinates are given as percentages of the maximum ordinate at the center of the span. At points *a* equal to 0.05L, 0.10L, 0.15Land 0.20L, the ordinates are 19%, 36%, 51% and 64% respectively. Steps are most effective between 0.05L to 0.20L and are also the most economical. Table 1 shows the reduction in the depths of sections that are possible when the steps are placed at these points.

THE THEOREM OF EQUIVALENT MOMENTS

On any simple span the line loading can be uniform, triangular, parabolic or other pattern, and can be either partial or full. The line load may be replaced by a set

SECOND QUARTER / 1985

"a" Segment % Maximum Moment		0.20 <i>L</i> 64	0.15 <i>L</i> 51	0.10 <i>L</i> 36	0.05 <i>L</i> 19			
Main Section S								
W36×300	1 110	W33×221	W30×191	W24×162	W18×119			
130/0500	1,110	W36×210	10000101	$W_{27 \times 146}$	$W_{21} \times 101$			
		100/210		W33×130	$W24 \times 94$			
				11557(150	W27×84			
W36×280	1.030	W30×211	$W30 \times 173$	$W24 \times 146$	$W14 \times 120$			
1150/200	1,050	W33×201	10000175	$W27 \times 146$	W18×106			
		W36×194		$W_{30} \times 132$	W21×93			
		1150/(1)+		W33×130	$W24 \times 84$			
W36×260	953	W30×191	$W27 \times 178$	$W24 \times 146$	$W_{14 \times 120}$			
1130/200	155	W36×182	$W_{30} \times 173$	W_{2} + × 140 W 30 × 124	W18×97			
		100/102	W33×152	W33×118	W21×93			
			W36×150	11 55/(110	W24×76			
W36×245	805	W30×191	W27×161	$W_{21 \times 147}$	$W_{14 \times 100}$			
VV30/245	075	W36×171	$W_{30} \times 173$	W24×131	W16×100			
		W 30×170	$W_{33} \times 141$	W30×116	W18×86			
			VVJJ/141	V 30/(110	W21×83			
					W24×76			
W36×230	837	W/30×172	W24 × 162	W21×132	W14×00			
1130/230	001	W36×160	$W27 \times 161$	$W24 \times 131$	W16×80			
		W 30×100	W33×141	W27×114	W18×86			
			W36×135	W30×108	$W_{21} \times 83$			
			VV 30×135	W 30×108	$W21\times63$			
W33×221	757	W27×178	$W24 \times 162$	W21×122	$W_{14} \times 90$			
W33^221	151	$W_{23} \times 152$	$W_{27} \times 146$	$W_{24} \times 117$	$W14 \times 90$			
		VV35×152	$W_{20} \times 132$	$W_{27} \times 102$	$W10 \times 39$			
			$W_{33} \times 130$	W30×00	$W_{21\times68}$			
W26×210	710	W27×161	$W_{24} \times 146$	$W_{21} \times 122$	$W_{14\times 90}$			
W30×210	/19	$W_{20} \times 141$	$W_{20} \times 132$	$W21 \times 122$ $W24 \times 104$	$W14 \times 90$			
		VV30×141	$W_{30} \times 132$	$W24 \times 104$	$W10 \times 77$			
			W 30×118	$W_{20} \times 00$	$W_{10} \wedge 70$ $W_{21} \times 68$			
W33×201	684	W27×161	$W24 \times 146$	$W_{21} \times 111$	$W_{14} \times 00$			
VV 35×201	004	W33×141	$W_{24} \times 140$ $W_{30} \times 124$	$W_{24} \times 104$	$W14 \times 30$ $W16 \times 77$			
		WJJ/141	$W_{33} \times 118$	$W_{27} \times 04$	$W10 \times 71$			
			VV JJ×110	VV2/~94	$W_{10} \wedge 71$ $W_{21} \times 62$			
W36×194	664	W24×162	$W24 \times 146$	W/21×111	$W_{14\times82}$			
1130/174	004	W27×161	$W27 \times 146$	$W24 \times 104$	$W14 \times 32$ W16 × 77			
		W33×141	W30×116	W27×04	W10×77			
		W36×135	W 50×110	VV2/////	W21×62			
W36×182	623	W24×162	W21 \times 147	W18×110	$W_{12} \times 87$			
100/102	025	W27×146	$W24 \times 131$	W21×101	$W12 \times 87$ $W14 \times 82$			
		W33×130	W30×116	W24×04	W16×67			
				*****	W18×65			
					W21×62			
W36×170	580	W24×146	W21×132	W18×106	W12×79			
100/170	500	W30×132	$W24 \times 117$	$W_{21} \times 100$	$W12 \times 74$			
		W33×130	$W27 \times 114$	$W24 \times 94$	W16×67			
		1055/150	$W_{30} \times 108$	$W27 \times 84$	W18×60			
			1120/100	1121/04	W21×57			
					W24×55			
W36×160	542	W24×146	W21×122	W14×120	W12×79			
1120/100	572	W30×124	$W24 \times 117$	W18×106	W14×68			
		W33×118	W27×11/	W21×03	W18×60			
		**33/110	W30×00	W21~93	W21×57			
			**50^77	**27^04	W2125			
W36×150	504	$W21 \times 147$	W21×111	W14×120	W12×72			
1130/130	504	W21/14/	$W24 \times 104$	W18×07	W12A72			
		W30×116	$W27 \times 104$	W212079/	W14A08			
		11 50/110	W30×00	$W21 \times 75$ W24 × 76	W18×55			
			••20/22		W21×50			

Table 1.	Design	Selection	Table	for	Stepped	Beam
----------	--------	-----------	-------	-----	---------	------

"a" Segment % Maximum		0.20L	0.15 <i>L</i>	0.10L	0.05 <i>L</i>
Moment		64	51	36	19
W33×141	448	W21×132	W18×119	W14×99	W12×65
		W24×117	W21×101	W18×86	W14×61
		W27×114	W24×94	W21×83	W18×50
		W30×108		W24×76	
W36×135	439	W21×122	W18×119	W14×99	W12×65
		W24×117	W21×101	W16×89	W14×61
		W27×114	W24×94	W18×86	W16×50
		W30×108		W21×83	W21×44
				W24×68	
W33×130	406	W21×122	W18×106	W14×90	W12×58
		W24×104	W21×101	W16×89	W14×53
		W27×102	W24×94	W18×76	W16×50
		W30×99	W27×84	W21×73	W18×46
				W24×68	W21×44
W33×118	359	W18×119	W14×120	W14×90	W10×60
		W21×101	W18×97	W16×77	W12×53
		W27×94	W21×93	W18×71	W14×48
			W24×84	W21×62	W16×45
					W18×40
W30×116	329	W18×106	W14×109	W12×87	W10×60
		W21×101	W16×100	W14×82	W12×50
		W24×94	W18×86	W16×67	W14×43
		W27×84	W21×83	W18×65	W16×40
			W24×76	W21×62	
W30×108	299	W14×120	W14×99	W12×79	W10×54
		W18×97	W16×89	W14×74	W12×45
		W21×93	W18×86	W16×67	W14×43
		W24×84	W21×73	W18×60	W16×36
			W24×68	W21×57	W18×35
				W24×55	
W30×99	269	W14×109	W14×90	W12×72	W10×49
		W16×100	W16×77	W14×68	W12×40
		W18×97	W18×76	W16×67	W14×38
		W21×83	W21×68	W18×55	W16×36
		W24×76		W21×50	W18×35
W27×94	243	W14×99	W14×82	W12×65	W10×45
		W16×89	W16×77	W14×61	W12×35
		W18×86	W18×71	W16×57	W14×34
		W21×73	W21×62	W18×50	W16×31
		W24×68			
W27×84	213	W14×90	W12×79	W12×58	W10×39
		W16×77	W14×74	W14×53	W12×35
		W18×76	W16×67	W16×50	W14×30
		W21×68	W18×60	W18×46	
			W21×57	W21×44	
			W24×55		
W24×84	196	W14×82	W12×72	W12×53	W10×39
		W16×77	W14×68	W14×48	W12×30
		W18×71	W16×67	W16×45	W14×30
		W21×62	W18×55	W21×44	W16×26
W24×76	176	W12×87	W12×65	W12×50	W10×33
		W14×74	W14×61	W14×43	W12×26
		W16×67	W16×57	W16×40	
		W18×65	W18×50		
		W21×57			
		W24×55			

Table 1.(cont.)

"a" Segment					
% Maximum		0.20L	0.15L	0.10L	0.05L
Moment		64	51	36	19
			51		17
W24×68	154	W12×72	W12×58	W10×49	W8×35
		W14×68	W14×53	W12×45	W10×30
		W16×67	W16×50	W14×38	W12×26
		W18×55	W18×46	W16×36	$W14 \times 22$
		1110/055	$W_{21\times44}$	W18×35	
W24×62	131	W12×65	$W10 \times 60$	W10×45	W8×28
1121002	101	W14×61	$W12 \times 53$	$W12 \times 40$	W10×26
		W16×57	$W14 \times 48$	$W14 \times 34$	$W12 \times 22$
		W18×50	W16×45	W16×31	
		W21×44	$W18 \times 40$		
W21×62	127	W12×65	$W10 \times 60$	W10×45	W8×28
1121002	12,	W14×61	$W12 \times 50$	$W12 \times 35$	W10×26
		W16×50	$W12 \times 30$ $W14 \times 48$	$W14 \times 34$	$W_{12\times 22}$
		W18×46	$W16 \times 40$	W16×31	
		$W_{21\times44}$	110/140	110/051	
W24×55	114	W14×53	$W10 \times 54$	W10×39	W8×28
11210000		W16×45	$W12 \times 45$	W12×35	W10×22
		W18×46	$W14 \times 43$	$W14 \times 30$	$W12 \times 19$
		W21×44	W16×36		$M12 \times 19$ M14 $\times 18$
			W18×35		
W18×55	98.3	$W12 \times 50$	$W10\times45$	W10×33	$W8 \times 21$
110/055	70.5	$W12\times30$ W14×43	$W12 \times 40$	$W12 \times 30$	$W10 \times 19$
		$W16\times40$	$W14 \times 34$	$W12 \times 26$	$M14 \times 18$
W21×50	94 5	$W10 \times 54$	$W_{10\times45}$	$W10 \times 33$	W8×21
121/050	74.5	$W12 \times 50$	$W12 \times 40$	$W12 \times 26$	$W10 \times 19$
		$W12\times 30$ W14×43	$W12 \times 34$	112/20	$M14 \times 18$
		$W_{16\times40}$	$W16 \times 31$		1014/10
W18×50	88.9	$W10 \times 54$	$W10 \times 54$	W8×35	W6×25
110/000	00.7	W12×45	$W12 \times 35$	$W10 \times 30$	W8×21
		$W12\times43$	$W14 \times 34$	W12×26	W10×19
		W16×36	W16×31		$W12 \times 16$
		W18×35			
W21×44	81.6	W10×49	$W10 \times 39$	W8×35	W6×25
	01.0	$W12 \times 40$	$W12 \times 35$	$W10 \times 30$	W8×18
		$W14 \times 38$	$W14 \times 30$	W12×26	W10×17
		W16×36		$W14 \times 22$	W12×16
		W18×35			
W18×40	68.4	W10×45	W10×33	W8×28	W6×20
		W12×35	W12×30	W10×26	$M6 \times 20$
		W14×34	W14×26	W12×22	W8×18
		W16×31			W10×15
					W12×14
W16×40	64.7	W10×39	W10×30	W8×28	W6×20
		W12×35	W12×26	W10×22	M6×20
		W14×30			W8×18
					W10×15
					M12×11.8
W18×35	57.6	W10×39	W8×35	W8×24	W6×20
		W12×30	W10×30	W10×22	M6×20
		W16×26	W12×26	W12×19	W8×15
			W14×22	M14×18	W10×12
					M12×11.8
W14×34	48.6	W8×35	W8×28	W8×21	M5×18.9
		W10×30	W10×26	W10×19	W6×15
		W12×26	W12×22	W12×16	W8×13
					M12×11.8

of concentrated loads such that the load intensity is in accordance with their spacings and where the outermost load at each end is distributed between the bearing point of the span and the first interior load. The moment at any load point of concentrated load may be expressed by the same moment formula for the line load. For the uniformly loaded span, see Fig. 3.

The theorem above allows moments to be calculated by using the moment equation for the simple beam uniformly loaded span for any concentrated load. For spans loaded with multiple concentrated loads, such as girders and trusses, moment calculations will be eased by application of the theorem.

By inspection of Fig. 3, one can see that with multiple concentrated loadings on a span, the moment curve will approach the uniformly loaded case. Should a concentrated load also be at the center of a span, the maximum moment will also be the same for both loadings. As the moment curves approach equality, so also will the deflection curves. Thus, the equivalent uniformly loaded span is the limiting condition for both moments and deflections of a span.

COMPARATIVE MOMENT CURVES

Figure 3

DEFLECTION OF UNIFORMLY LOADED STEPPED BEAMS AND GIRDERS

The deflection formulae presented below are for the deflection at the center of a span for a uniformly loaded, simple span with steps.

For symmetrical stepped beams as shown in Fig. 4:

$$\Delta_{\hat{q}} = \frac{WL^4}{EI_2} \left[\frac{5}{384} - \frac{c^3(4-3c)}{24} \right]$$
(1)
+ $\frac{WL^4}{EI_1} \left[\frac{c^3(4-3c)}{24} \right]$

For asymmetrical stepped beams as shown in Fig. 5:

$$\Delta_{\mathbf{f}_{2}} = \frac{WL^{4}}{48E} \left[\frac{5}{8I_{2}} - \frac{c^{3}(4 - 3c)}{I_{2}} + \frac{c^{3}(4 - 3c)}{I_{1}} \right] \quad (2)$$

The first term in the brackets of the formulae above can be seen to be the deflection constants for a regular prismatic beam. The additional terms account for the stepped segment. Where c is between 0.05 and 0.20, the influence of the step on the deflection is minor. Tables 2 and 3 compare the centerline deflections for stepped beams as illustrated in Figs. 6 and 7 with a standard prismatic beam. These tables show that the greatest increase in the deflection occurs when a equals 0.20L. For the symmetrical beam, the steps increased the deflection by 0.13 in. or L/2700 of the span.

DEFLECTION OF POINT-LOADED STEPPED BEAMS AND GIRDERS

The formulae for the centerline deflection for a stepped beam with concentrated load or loads are derived by ap-

ASYMMETRICAL STEPPED BEAM-UNIFORMLY LOADED

 Table 2. Comparative Deflection at
 Symmetrical

 Stepped Beam
 Stepped Beam

с	0.0	0.05	0.10	0.15	0.20
a (ft)	0.0	1.5	3.0	4.5	6.0
SECTION		W10×33			
SECTION			W10×60		
SECTION				W14×61	
SECTION	W24×76				W14×74
I_1 (in. ⁴)	2,100 (= I_2)	170	341	640	796
$\Delta_{\mathbf{c}}(\mathrm{in.})$	0.94	0.95	0.99	1.02	1.07

 Table 3. Comparative Deflection at Q—Asymmetrical

 Stepped Beam

с	0.0	0.05	0.10	0.15	0.20
a (ft)	0.0	1.5	3.0	4.5	6.0
SECTION		W10×33			
SECTION			W10×60		
SECTION				W14×61	
SECTION					W14×74
SECTION	W24×76				
I_1 (in. ⁴)	2,100	170	341	640	796
$\Delta_{\mathcal{G}}$ (in.)	0.94	0.95	0.97	0.98	1.00

plying Maxwell's theorem of reciprocal deflection. This theorem states "the deflection at the point A caused by a load P at the point B is equal to the deflection at point B produced by moving the same load to the point A." Thus, for each concentrated load on a span, the sum of deflection for each load applied to the formulae with the applicable constants for that load will produce the centerline deflection for all concentrated loads on a span. The formulae are given below. For symmetrical stepped sections as shown in Fig. 8 where $x_a \leq a$:

$$\Delta_{\mathcal{Q}} = \frac{P_a L^3}{E} \left[\frac{c^2 b}{4I_1} - \frac{b^3}{12 I_1} + \frac{(1 - 4c^2)b}{16I_2} \right]$$
(3)

where $a \le x \le L/2$:

$$\Delta_{q_{\rm L}} = \frac{PL^3}{E} \left[\frac{c^3}{6I_1} - \frac{c^3}{6I_2} + \frac{b}{16I_2} - \frac{b^3}{12I_2} \right] \tag{4}$$

For asymmetrical stepped sections as shown in Fig. 9 where $x_a \le a$:

SYMMETRICAL STEPPED BEAM-Concentrated LOAD

ASYMMETRICAL STEPPED BEAM-Concentrated Load

$$\Delta_{\xi} = \frac{P_a L^3}{12EI_1} \left[c^2 b(3 - 2c) - b^3 \right]$$

$$+ \frac{P_a L^3 b}{48EI_2} \left(3 - 12c + 8c^3 \right)$$
(5)

where $a \le x \le L/2$:

$$\Delta_{\hat{q}_{\pm}} = \frac{Pa^{3}}{6EI_{1}}(1-b) + \frac{PL^{3}b}{48EI_{2}}(3-12c^{2}+8c^{3})$$

$$-\frac{PL^{3}}{12EI_{2}}(b+2c)(b-c)^{2}$$
(6)

where $x_r \leq L/2$ is measured from the support opposite the stepped segment:

$$\Delta_{\hat{\mathbf{q}}} = \frac{P_r a^3 b}{6EI_1} + \frac{P_r L^3}{48EI_2} \left(3b - 8bc^3 - 4b^3\right) \tag{7}$$

If deflections are required at points other than at the centerline of a span for stepped sections, a deflection analysis by sections may be accomplished with available formulae. This solution involves segmenting the beam as illustrated in Fig. 10 and applying the deflection formulae to each section and combining the results.

An outline for calculating the deflection at points greater than a are listed below for Fig. 10.

- 1. The segment between the stepped section is assumed to be a simple beam with loads as shown in Fig. 10c. Determine the rotation θ_a due to the end moments and the load.
- 2. Determine the deflection due to the rotation θ_a which is θ_a multiplied by *a*.
- 3. Determine the deflection on the stepped segment a due to beam reaction V acting as a cantilever beam of span length a (Fig. 10d). Add this deflection to Step 2 above.
- 4. Determine the deflection on stepped segment *a* due to the uniform load on segment *a* (Fig. 10d) as a cantilever beam of span length *a*. Subtract this deflection from 2 and 3 above. The result is the deflection from the beam support to the end of segment *a*.
- 5. Calculate the deflection of the center segment (Fig. 10c) for both the uniform load and the end moment M_a on the center segment. Add this deflection to the deflection from 2, 3 and 4 above.
- 5a. Alternate Step 5

In lieu of span segment L-2a, use span length L and I_2 constant for length L. Substitute these factors into the simple beam, uniformly loaded deflection equation and calculate deflections at point a and beyond. Add the difference in deflection beyond point a to Steps 2, 3 and 4. The effect of end moment M_a is included by this method.

Figure 10

SUMMARY AND CONCLUSIONS

The deflection of a beam section is not significantly increased by the presence of a stepped segment whose length does not exceed 20% of the span length.

The benefits of the increased ceiling space at the stepped segment of a beam can be significant. It could result in reducing the cost of the structure by reducing the column lengths, the curtain wall and the mechanical systems that are usually installed in a building.

NOMENCLATURE

- a =length of end segment of a stepped section
- b = ratio of length from bearing of concentrated load where distance x = bL
- c = ratio of length of stepped segment of beam where a = cL
- x = distance of concentrated load from the bearing
- x_r = distance of concentrated load from support in asymmetrical stepped beam where stepped segment occurs on opposite bearing side
- E = Young's modulus of elasticity
- I_1 = moment of inertia of stepped segment of a stepped beam
- I_2 = moment of inertia of main segment of a stepped beam

- S_x = section modulus of a beam
- P = concentrated load on a span
- P_n = concentrated load of a span at point *n*
- S^{-} = spacing between concentrated loads on a span
- S_n = spacing between concentrated loads on a span left of point *n*
- S_{n+1} = spacing between concentrated loads on a span right of point *n*
- S_1 = spacing between concentrated loads on a span between bearing and point 1
- S_2 = spacing between concentrated loads on a span between S_1 and S_2
- W = uniform load on a span
- L = span length
- K = kips or 1,000 pounds
- M = moment
- Δ = deflection
- \mathbf{Q} = centerline of a beam span or beam support

REFERENCES

- 1. American Institute of Steel Construction, Inc. Manual of Steel Construction 8th Ed., Chicago, Ill., 1980.
- 2. Grinter, Linton E. Vol. II, Theory of Modern Steel Structures Macmillan Co., New York, N.Y. 1949.
- 3. Morris, I. E. Handbook of Structural Design Reinhold Publishing Corp., New York, N.Y., 1963.