
Torsion of Rolled Steel Sections in Building Structures 

JOHN G. HOTCKKISS 

TORSIONAL STRESSES in a steel framed building are rarely 

serious enough to require design analysis. Many tor
sional situations can be disregarded completely. There 
are conceivable conditions, however, in which torsional 
loads can produce stresses of sufficient magnitude to 
require torsional analysis of a framing member. 

I t is important, therefore, that the structural engineer 
understand the principles of torsional behavior in rolled 
steel sections, and be able to recognize those special 
situations in which torsional loading may be significant 
to the design. 

The purpose of this paper is to provide practical 
guidance to the designer in the evaluation and analysis 
of the effects of torsional loading on steel framing mem
bers. Design examples illustrate both a "short" approxi
mate method of torsional analysis and a more exact 
method. A brief review of basic torsional theory and 
the torsional properties of rolled steel sections are in
cluded. 
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TORSIONAL BEHAVIOR 

Torsional Loads —When a structural member is twisted 
about its longitudinal axis, it is said to be in torsion. 
Twisting is caused by external forces, moments or a 
couple acting on the member. Figure 1 shows these 
types of loads. The couple is composed of two parallel 
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forces, equal in magnitude and opposite in direction. 
These forces are acting normal to the axis of the member. 
The usual torsional loading is that of a vertical load P, 
which does not pass through the shear center S, of the 
cross-section. The distance from load P to the shear 
center S is called the eccentricity, e. The eccentric 
moment that induces torsion on the cross-section is Pe. 
This moment is called M. (In this paper M represents a 
concentrated torsional moment, and m represents a 
uniformly distributed torsional moment induced in a 
member.) 

Effects of Induced Torsion—The aforementioned types 
of torsional loading are the cause of twisting in a member. 
The effect of this twisting can be threefold in a W7, I 
and C -section: torsional shear stresses, torsional warp
ing shear stresses and torsional normal (longitudinal 
bending) stresses. These additive stresses often occur 
together with shear and normal stresses due to plane 
bending. Of these torsional effects, the magnitude of the 
torsional normal stresses is much greater than any of 
the other torsional stresses. The emphasis on normal 
stresses resulting from torsion will be discussed later in 
this paper. 

Internal Equilibrium—The development of torsional 
stresses in a cross-section of a member is the result of 
internal resisting moments, which balance the applied 
moment M or m. For torsional equilibrium, then, the 
fundamental equation is 

Mt = Mp + Ms (1) 

where Mt is the total of the internal resisting moments 
producing torsional shear, Mv is a torsional resisting 
moment called primary torsion (Mp is also known as "St. 
Venant 's" torsion, " p u r e " torsion and "unrestrained" 
torsion), Ms is a secondary torsional moment which 
expresses warping resistance of a cross-section (Ms is 
often called "warping" torsion). Actually, Equation (1) 
is a statement of shear equilibrium, as both Mv and Ms 

produce shearing stresses. I t is generally assumed that 
normal stresses a, resulting from primary torsion Mv 

are negligible, unless the angle of twist is very large. 

19 

J A N U A R Y / 1 9 6 6 



Analogy between Torsion and Plane Bending— 
Figure 2 shows a wide flange beam loaded at midspan 
with a concentrated torsional load M equal to unity. 
As shown, the ends of the beam are considered simply 
framed, AISC Type 2 construction, where it is assumed 
that the ends of the beam are free to rotate under loading 
which produces plane bending. A web connection consisting 
of two clip angles may be considered as Type 2 con
struction (See Fig. 8b). Under torsional loading, however, 
this connection prevents twisting of the beam about its 
longitudinal axis at the connection, since the web is 
restrained. 

At any cross-section of the beam from A to C the 
internal moment Mt equals M b and from C to B, M^ 
equals — M 2 . I t can be seen also that Mxa — M2b = 0 
and Mi + M% = M, and finally the following expressions 

M i = - M and M 2 = - M (2) 

An interesting analogous relationship is suggested 
by Equation (2). The analogy exists between the shear 
diagram due to plane bending and the moment diagram 
due to torsional twisting (Fig. 2). If a concentrated load 
P is applied at midspan, the shear at each end of the 
beam will be V = P/2. In the case of a torsional concen
trated load M at midspan, the end moments M\ and M 2 

are equal to Mt, and Mt = M / 2 . 

The moments M i and M 2 are determined in the 
same manner as the reactions at A and B due to a single 
load at C. I t should be emphasized explicitly that this 
simple, apparently obvious analogy is by no means 
valid in general. For beams framed with Type 2 con
struction, the assumption that Mt = M i and M 2 at 
ends A and B is valid and Equation (2) is directly 
analogous. However, when beams are framed with 
Type 1 connections (welded, fully rigid) this assumption 
is not always strictly valid because of unsymmetrical 
loading conditions and the redundancy of the supports. 
Table 1 makes this distinction, and exact values are 
given when this analogy is not strictly valid. For beams 
subjected to a uniform torsional loading m, the same 
comments and restrictions for concentrated torsional 
loads apply. 

Influence of Mp—The torsional resisting moment Mv 

is well named "pr imary" , because it always appears to 
some extent in a beam under torsion. I t is zero in a 
cross-section only when that cross-section is completely 
restrained against warping, such as at a fully welded 
connection. (See Case 5, Table 1.) In Fig. 3b, the cross-
section at midspan must remain planar due to symmetry 
of load M (note that the angle of twist <j> = 0 at each end, 
viz., no twisting). Thus, since this cross-section at mid-
span is completely restrained against warping, Mv = 0 
also. Warping is defined as a plane which when acted 
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upon by forces, no longer remains planar; it warps out 
of plane. 

The fundamental equation for primary torsion, for 
non-circular sections, is 

Mv = GW (3) 

where G is the shear modulus, <f>' is the first derivative of 
cj) (the angle of twist) with respect to z, and K is a tor
sional constant which describes the torsional resistance 
of a cross-section, and is based upon the geometry of the 
profile. Values for the torsional constant K for rolled 
steel sections have been published by Bethlehem Steel 
Corp.1 Reference should also be directed to a recent 
paper by El Darwish and Johnston6 covering an accurate 
calculation of this constant. For cross-sections made-up 
of welded plates, values for K can be computed from 
Chart 1. 

Equation (3) shows that Mv is directly proportional 
to G, K, and </>', whereas </>' is indirectly proportional to 
GK, where GK is the torsional rigidity of the cross-section. 
Thus as K is increased, Mv increases. This means that 
Mv will offer a greater resistance to twisting action. 
The larger values for K appear for the larger (thicker) 
beam sections. For example, K = 68.80 for a 36 W7 

300 section, whereas, K = 0.195 for a 5V\F16 section.1 

The influence of Mv is shown in Figs. 3a and 3b. 
In Fig. 3a, a solid circular cross-section is loaded at 
midspan with a torsional moment M = 1. At the ends, 
Mv = Mt = M / 2 and 0 = 0. Since a circular section 
cannot warp (warpfree), Mp is constant for each half of 
the beam. From Equation (1), Mt = Mv + 0, where 
Ms = 0 and there is no warping. For circular sections, 
then, Mv = Mt, and Mv is exactly analogous to the 
shear diagram in plane bending. In Fig. 3b a W7 section 
is loaded at midspan with a torsional moment M = 1. 
The noticeable difference between Fig. 3a and Fig. 3b 
is the curve for Mv. Since V\F, I and C-sections are free 
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to warp if unrestrained, Mp no longer equals Mt. An 
increment of Mt is made up by the contribution of Ms 

as warping torsion. At midspan, where due to symmetry 
the cross-section remains planar, Mv = 0 as in Fig. 3a. 

Influence of Ms—Figure 3b also shows the influence of 
Ms. At midspan where the cross-section is prevented 
from warping, the warping resistance is maximum. 

Here Ms = Mt = M/2. Since the sum of Mv and Ms 

equals Mt, the curves for Mv and Ms are complementary. 
As Ms expresses warping resistance, a distinction 

must be made between various profiles as to their warping 
characteristics. One way is to refer to a warping resistance 
constant, known as Cw. Approximately exact values for 
Cw are tabulated in Table 4 for all rolled sections com
monly used. Other values for Cw can be computed for 
sections of built-up welded plates by using the equations 
in Chart 1 and 2. For rolled W7 sections 

or 
2 2 4 

I h2 

y IL xyn (4) 

Chart 1 shows the equations for Cw for several built-
up cross-sections. For rolled sections, Cw is negligible for 
T and L-sections. V\F, I and C -sections, on the other 
hand, are free to warp if unrestrained and warping 
effects must be considered. Sections made up of not more 
than two rectangular elements do not warp, because of 
the fact that the middle planes of each element pass 
through the shear center. For W7, I and C -sections, the 
middle planes of every element do not pass through the 
shear center (Chart 2) . 

The warping resistance for moment Ms is determined 
from the equation 

Ms = -ECW4>' (5) 

where E is the modulus of elasticity and 0 ' ' ' is the third 
derivative of <\>. From this equation it is seen that the 
warping resistance constant Cw is directly proportional 
to the moment Ms and indirectly proportional to the 
angle of twist </>. When Cw = 0 as in circular sections, 
Ms = 0, as was shown in Fig. 3a. In Equation (5) the 
term ECW is actually a measure of the warping rigidity 
of a cross-section. In Equation (3) the term GK is a 
measure of the torsional rigidity of a cross-section. Both 
of these terms, influenced by the geometry of the cross-
section, are important to torsional behavior. The ratio 
of these rigidities appears in another torsional constant 
called X, which is tabulated for all rolled sections in 
Table 4. X is a constant that describes the rate of de
crease of the warping stresses and is found from 

X = V GK 

EC,. 
(in."1) (6) 

Torsional Stresses Resulting from Mv and Ms—The 
result of torsional moments Mp and Ms in a member is 
shearing stress. Figure 4 shows the cross-section of a 
V\F profile under the influence of MP9 Mw and Ms. 
The diagram for -\-Mv shows that shearing stresses are 
developed in the flanges and web as a result of Mp. The 
diagram for -\-Ms (warping) shows that the shearing 
stresses resulting from Ms appear only in the flanges . 
-\-Mp and +MS follow sign convention when a positive 
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Positive angle of twist # 

Figure 5 

angle of twist occurs as shown in Fig. 5. In terms of 
torsional shear magnitude, flange warping shear due to 
Ms is minor, compared to flange shear resulting from 
Mp; hence, Ms is called a secondary resisting moment. 

The torsional shearing stress rv in the flanges or web 
of a V\F, I or C -section due to Mv is determined from the 
equation 

Mvt 

K 
or 

where / is the thickness of flange or thickness of web. 
Torsional shearing stresses in the flanges due to 

warping are found from 

(8) 

where <^max, shown in Chart 1, is the unit area of stress 
in the flange and b equals the width of the flange. For 
V\F, I and C -sections wmax = wa. For C -sections wa 

and wb are required as shown in Chart 1. The values for 
wa and wb are tabulated in Table 4 for all rolled E-
sections. 

Torsional Normal Stresses Resulting from Mw—Thus 
far the discussion has been centered around two effects 
of twisting, namely Mv and Ms, and the associated 
shearing stresses. Of all the torsional effects in V\F, I and 
C -sections, the additive effect of torsional normal 
stresses aw is the major consideration. The normal 
stresses aw are a result of torsional flange bending (in
duced by warping restraint) and are shown in Fig. 4. 
-\-Mw is shown as the horizontal bending of the flanges 
producing normal stresses aw in the flanges. Torsional 
normal stresses aw must be added algebraically to the 
normal stresses ab produced by plane bending. Note 

in Fig. 4 the signs for stress aw follow the sign convention 
previously mentioned. 

Normal stresses in plane bending are determined 
in the well-known manner by dividing the bending 
moment by a factor called section modulus. In torsional 
behavior, Prof. Bornscheuer3. 4 suggests that the factor 
Sw be used as a warping modulus, and Mw as a moment 
(expressed as lb-in.2),* to describe flange bending. 
This flange bending due to torsion is expressed by the 
equation 

Mw = -ECw<f>f (9) 

Note that this equation is identical to Equation (5), 
except that the second derivative of (j> is used here. The 
torsional normal stresses can be determined from 

Mu 
(10) 

In each of the Cases of Table 1, the two lower dia
grams represent the curves for Mb and Mw. When 
plotted one above the other, the designer can quickly 
locate the ordinate to the curve which is maximum. 
Both the location and magnitude of the ordinate are 
given, and the additive effects of normal stresses can be 
quickly attained. 

Summary of Torsional and Shears—In any W7, I 
or E-section under torsional loading, three internal 
moments occur, which are: 

Mv = GKcf)f, which produces flange and web shear rv 

Mw = —ECwcj)/f, which produces flange bending and 
flange normal stresses aw 

Ms = —ECw4>f", which produces warping shear rw 

in the flanges only. 
From these equations it is seen that the only unknowns 
are the angle of twist <j> and its three derivatives. In de
signing for torsion, 0 is unknown; therefore, it has to be 
determined by the solution of the general differential 
equation. 

However, the designer does not have to use this 
differential equation, since Table 1 has been set up for 
maximum torsional moments, which have been com
puted by determining the proper constants of integra
tion and the location of maximum values. The simplified 
resulting equations are shown in each Case. 

X/-Curves and Their Significance**—Figures 6a and 
6b illustrate families of curves with varying pa
rameters of A/. One family represents the M^-curves 

Generally accepted expression for shearing stress in flanges or web. 
Reference 6 has, for the first time, more accurately determined this 
expression. In some cases, particularly C -sections, Equation (7) 
may be low by 20 per cent for values of shear in the flanges. 

* Bornscheuer uses the term "bimoment"', since its dimension con
tains the second power of inches. 

** Reference 7 provides more extensive curve-plots for all rolled 
sections. 
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and the second family below it, the Ms-curves. The third 
diagram is the sum of the Mp- and Ms-curves and is a 
plot of Equation (1), Mt = Mv + Ms. As is true of any 
parameter, A/ is fixed for each individual curve but 
differs from one curve to another in the same family. 

Observation of Fig. 6a, with a unit torsional load at 
midspan, and Fig. 6b, with the same unit load at x = 
0.3/, shows the complex nature of the curves involving 
hyperbolic functions. In Fig. 6a the family of Mp-curves 
(A/ = 5 ,3 and 2) each have the same point of inflection 
at midspan. At each end of the beam where x = 0 
and x = /, the ordinates at these points are maximum. 
As the parameter A/ increases, the ^-intercept to the 
Mp-curves becomes larger. Graphically, this indicates 
that the influence of Mp is greater, and has more resis
tance to twisting than Ms. Examination of the famliy 
of Ms-curves shows that the point of maximum ordinate 
occurs at midspan where the curves pass through the 
point of inflection. As A/ increases, the ^-intercept close 
to x = 0.5/ becomes smaller and the influence of A/ is less 
noticeable. 

By comparison, Fig. 6b shows the same family of 
curves, with different curvatures and a notable difference 
in the point of inflection for each A/-curve for values of 
Mp. The point of inflection not only is not under the load 
as would be expected, but has different ^-intercepts. 
The point of maximum ordinate to the Mp-curve is at 
x = 0. In the case of the Ms-curves the point of inflection 
occurs under the load at x = 0.3/. The maximum ordi

nates to the curve are at the point of inflection. The 
higher values of A/ yield smaller ^-intercepts and Ms 

contributes less in resisting the twisting of the beam. 
The three curves of each diagram represent A/ = 2, 

A/ = 3 and A/ = 5. In order that their significance be 
meaningful in a practical sense, three beams have been 
selected from Table 4 whose A values, when multiplied 
by the span length /, correspond to the A/ values plotted. 
The span length / is arbitrarily taken as 200 in. The beam 
sections and their A values are as follows: 24 W7 76, 
A = 0.0103; 18 V\F 70, A = 0.01475; 8 V\F 40, A = 
0.0245. 

Chart 3 gives the computed values for the ordinates 
to the Mp-, Ms- and M r cu rves in Fig. 6. It can be seen 
that the sum of the Mv and Ms ordinates all add to the 
sum of 0.50, which agrees with the diagram for Mt in 
Fig. 6a. The analogy between the shear diagram and the 
Mt diagram is strictly valid for this case of loading and 
end support. Therefore, Mt = 0.5M. 

Figure 7 illustrates the family of Mw-curves located 
under the moment diagram for unit load at x = 0.3/ 
producing plane bending. The parameters plotted are 
A/ = 5, 3 and 2 as used in Fig. 6a and Fig. 6b. The 
maximum ordinate to the M^-curve appears at x = 
0.3/ where each curve has a marked cusp. The maximum 
ordinate to the Af^-curve for symmetrical torsional 
loading also occurs under the point of loading and will 
correspond to the same location for the maximum 
ordinate to the Mp-curve. 
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As the XI values increase, the ^-intercept becomes 
greater. I t can be seen from this figure that a greater 
warping resistance is required of a cross-section as XI 
increases. When heavier, thicker beam sections are 
selected, the ordinate to the M^-curve becomes smaller, 
indicating that the geometry of the section has less 
tendency to warp and consequently the normal stresses 
developed will be of a lower magnitude. 

The various Cases shown in Table 1 include only one 
curve for the parameter XL I t was not necessary to plot 
other X/-curves, since in practice the designer is primarily 
concerned with the location and magnitude of maximum 
ordinates to the curves. Equations to the right of the 
diagrams provide this information. After studying the 
curves in Fig. 6a and Fig. 6b it will be evident that one 
curve of a family exhibits certain common characteristics 
compared to other curves in the family. All curves of the 
same family have the same concavity viz., concave 
upwards or concave downwards. All curves at any y-
intercept have the same sign for curve slope m = Ay/Ax 
viz., Ay increases or Ay decreases, indicating negative 
and positive slope respectively. Graphically this tells the 
designer the important condition as to whether the func
tion under study is increasing or decreasing at any point 
along the beam span. 

END RESTRAINTS 

The condition of an end restraint is important in 
torsional analysis, as it is in plane bending. In building 
construction, and for plane bending, the AISG suggests 
three types of end restraint, namely: Type 1—fully-fixed 
beams, Type 2—simple connections, and Type 3— 
semi-rigid framing (partially restrained). In torsional 
analysis, only Types 1 and 2 will be considered (Fig. 8). 

A Type 1 connection, in which the beam-end is 
fully welded around the flanges and web, offers only 
partial warping restraint and Mp ^ 0, as is found in 
many references. This restraint may range from 20 to 60 
percent. .In order to assume Mp = 0 as shown in Fig. 8 
and the diagrams in Table 1, the ends of the beam must 
be boxed-in. This can be simply taken care of by welding 
stiffener plates between the toes of the flanges. To be 
effective in the end zone of the beam, the length of these 
stiffeners along the longitudinal axis of the beam must 
be equal to or greater than the depth d of the beam. 
The designer should also take into consideration the 
torsional characteristics of the column in a beam-to-
column connection. Where the rigid box-ended beam 
connects to a column with torsionally soft flanges it is 
advisable to provide column stiffeners between the 
flanges at the point of load application (see Design 
Example 1). In Type 2, which is considered as a typical 
web connection made up of two clip angles, the twisting 
at the connection is prevented and 0 = 0. However, it 
should be recognized that the L distance of the clip 
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Brick 
wall 

Concrete floor slab offers lateral restraint m— 
Spandrel beam restrained against 
twisting. Torsional load Pe produces 
negligible angular rotation of beam. 

Fig. 9. Uniform torsional loading with no torsional stress effect 

angles must extend over the major depth of the web 
in order that the assumption </> = 0 is reasonably valid. 

What are the effects of end restraint on Mp, Mw and 
Ms? Figures 8b and 8c show Type 1 and 2 connections, 
where for Type 1,0 = 0 and Mv = 0; for Type 2, <j> = 0 
and Mw = 0. 

For torsional equilibrium, Mt = Ms as shown in 
Fig. 8c. In the Type 2 connection the beam does not 
twist at the connection. However, since the flanges can 
displace as shown in Fig. 8b, there is no restraint to 
flange bending and Mw = 0. The equilibrium of tor
sional moments is Mt = Mp + Ms. Actually, Ms would 
be zero at the ends if the beam were twisted by an equal 
and opposite moment at each end. This condition of 
pure torsion will rarely be found in structural practice. 

PRACTICAL DESIGN CONSIDERATIONS 

The occasions in actual practice where torsional 
problems arise are few in number, when considering 
building design. When such occasions occur, however, 
certain preliminary questions should be proposed. 
Will the torsional load produce significant twisting? 
Are there any restraining effects which will prevent 
twisting? 

When an appreciable torsional moment is known to 
exist, the most satisfactory solution is to use a full length 
welded box girder. Usually with appreciable torsion, 
the box girder will take no more material than a heavy 
rolled section with welded end stiffeners. 

In building design, most structural members are 
laterally restrained because of attachments to the struc
ture along the length of the member. Rarely will the 
designer find a beam that is totally unrestrained viz., 
free to twist over its entire length. Hence, a good many 
cases involving torsional loading show that lateral 
restraints, existing in the form of attachments to the 
member, prevent twisting and torsional stresses can be 
ignored. This condition may be considered as torsion 
that is self-limiting. It is of no consequence when limited 
by the permissible end slope of the attaching members. 

Based upon this evidence, beams that are a part of 
the floor assembly in buildings are usually restrained by 
a floor slab and, therefore, the torsion is simply self-
limiting. Figure 9 illustrates this point where a typical 
spandrel beam is under a one-sided loading. The torsional 
load does not pass through the shear center. Norm
ally, this loading would introduce torsional mo
ments and subsequent torsional shearing and bending ' 
in the beam. In Fig. 9a the floor assembly consists of a 
concrete floor slab, usually not less than 4 in. in thick
ness, spanning not over 8 ft between intermediate 
beams. In order that the spandrel beam can twist under 
this eccentric loading, the entire floor assembly would 
have to rotate as well. Although the concrete slab in 
Fig. 9b is only 2 ^ in- thick, it also offers continuous and 
adequate lateral support against torsional twisting. 
Since twisting is prevented, it is safe to assume that 
normal stresses due to torsion can be ignored and no 
torsional analysis will be required. 

Twisted 

Spandrel beam twisted by 
wet concrete 
acting as eccentric 

Formworlr^ load. Wire tie7' 

Fig. 70. Uniform torsional loading produces torsional stresses 

Beam Twists During Erection—When significant 
twisting occurs in building construction, it will probably 
be during erection, before all the final loads are applied. 
During the erect on of building structures, while tem
porarily unbraced, an unbalanced loading condition 
may produce excessive twisting. A few years ago, the 
writer investigated steel beams twisted by torsional 
loading as a result of improper field practice. The case 
involved spandrel and header beams in a school building, 
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which were twisted as much as 17 degrees. The twisting 
was due to unbalanced loading as shown in Fig. 10. 

The formwork for the concrete slab was supported 
by wire ties wrapped around the top flange of the 
beams. All wire supports, however, were carried down 
on one side of the beam only. These wire ties supported 
the entire weight of the wet concrete. The one-sided 
support introduced an eccentricity equal to one-half 
of the flange width. 

Since the beams were sized for plane bending only, 
they were torsionally weak. Had the wire ties been 
carried down on alternate sides of the beam, the un
balanced loading condition would never have occurred. 

Improving the Torsional Rigidity—One means of 
improving the torsional rigidity of a rolled steel section 
is by the addition of new material, thus altering the K-
value of the section—restricted, however, to that zone 
where the additional material occurs (Fig. 12). In other 
zones of the beam the effect is indirect. As an example, 
when a plate is welded between each flange at the toes, 
as in Fig. 11, the it-factor is increased considerably. 
In this instance K is increased to 3,246, approximately 
one hundred times the original value. The addition of 
these plates is analogous to the addition of cover plates 
to a beam under plane bending. I t should be pointed 
out that the addition of these plates prevents the flanges 
from deforming; consequently warping effects become 
nil. The resulting closed box section is treated as being 
under primary shear only. 

In passing, the engineer will recognize another 
familiar case of torsion and unsymmetrical bending 
resulting from biaxial bending, where a torsionally weak 
rolled section has to be reinforced. This is in the design 
of crane runway girders. It is common practice to 
assume that the bending moment caused by the horizon
tal loading is resisted by the upper flange. Accordingly, 
the top flange is reinforced. 

GENERAL REMARKS 

If torsional loading is known to produce significant 
twisting, and analysis of the torsional plus direct bending 
stresses shows the stresses are too high, the following 
solutions may be employed: (1) furnish a full length box 
girder section instead of a rolled section, (2) provide 
additional lateral supports, or braces, which will torsion
ally restrain the twist, (3) select a rolled section whose 
value of X is of a lower value than the one which is highly 
stressed, and (4) consider the addition of welded plates 
between the flanges as just described (see Fig. 12). The 
improved torsional rigidity of steel beams encased in 
concrete for fire protection requirements should not be 
overlooked. 

-A 1-0.9 

— 
tf> 

2 
J 

i, 16.6 I 

l. 4k 

L ! -L'.-LJJ 

weld 

1-0.6 

K - 2 b t 3 + ±*,t? 
3 3 " 

- . 6 7 - 1 6 * 1.4*+.34* 13.2* 0.9* 

= 32.6 

-•ft-rr 
3246 

Fig. 17. Effect of stiffeners 

Weld 

Fig. 72. Use of end stiff eners 

DESIGN EXAMPLES 

As stated previously, three types of torsional stresses 
are produced as a result of torsional loading on thin-
walled open profiles such as a V\F, I or C-section: (1) 
normal (bending) stresses in the flanges, critical at the 
toes, (2) primary shear stresses in the flanges and web, 
critical at the juncture of the web and flange, and (3) 
secondary warping shear stresses in the flanges, not 
critical and normally disregarded in stress analysis. 

Of major concern in torsional analysis is the increase 
in bending stresses at the toes of the flanges which must 
be added to the direct bending stresses. Therefore, in 
any torsional design the first step is to determine the 
location of the maximum torsional moment Mm and 
then determine the maximum normal stresses. Reference 
to Table 1 for the type of loading and nature of end 
restraint will give the location of the maximum ordinate 
to the Af^-curve. With a few minor exceptions, this 
location, as appearing in the diagrams, is applicable to 
all X/-curves of the same family. Where this is not true, 
an x-distance is given for several X/-values. A linear 
interpolation can be made for intermediate values of XL 

The most frequently used loading condition is that 
of a concentrated torsional load M applied at some 
distance x from the left support, and a uniformly dis
tributed load m applied over the entire span. For these 
conditions then, a "Short Method" is offered to the 
designer permitting him to evaluate the magnitude of 
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Mw and <rw immediately before continuing an extensive 
torsional analysis. The results obtained by this method 
are then compared with the permissible stresses for 
combined bending and torsion. If the results are close 
to the allowable stresses established, then a more exact 
method should be undertaken. The design examples 
illustrate both methods. 

Under the "Short Method" , each of the two loading 
conditions just mentioned are treated separately for two 
cases of end restraint. Table 2 covers Type 2 construc
tion (simple framing connection) and Type 1 construc
tion (all welded, fully fixed connection) is covered by 
Table 3. 

When a more exacting analysis is required, the 
designer may refer to Table 1 using the appropriate Case 
for loading and end restraint. Equations are given for 
computing the maximum Mw, Mv and Ms. For special 
conditions, an equation is given for Mw for any value of x 
along the span. With this information a complete XI-
curve for Mw can be plotted. I t will be found by the 
designer that under most circumstances the addition of 
torsional primary shear stresses is inconsequential. 

Space does not permit the inclusion of the derivation 
of the general differential equation, nor the complete 
solution of this equation for numerous other conditions 
of loading and end support (see References 3, 13, 15). 

Example 1 

Given: An 18V\F96 beam fixed at both ends is under a 
torsional load P, applied at the end of the bracket 
which is 71 in. long. (The eccentricity, e = 71 in. The 
torsional moment M = 71 X —400 = —28.400 lb.-in.) 
(See Fig. 13.) 

Solution: 

From AISC Manual 

Ix = 1674 in.4 

Sx = 184.4 in.3 

w = D. L. beam 

A 7(1 l3'-4" !3'-4" /-A 
J l / l 8 ¥ F 9 g 

L / T7 I 

P* 4 0 0 lb. 

- J N 26' -8" 

maxJ 

max 

ft M«Pe 

ixFhw Mb > < T 

m a * max 
SL^ max P T 

y—r I 

m > D.L. beam 

maxcrb maxc^ max<rb maxab 

maxcJ^ maxcr̂  maxaw maxow 

See TABLE I Case 10 S 5 and Short Method in TABLE 3. 

Figure 13 

1. From moment curves in diagram it is seen that the 
controlling condition will be when moments are 
combined at the end supports, for the determina
tion of normal stresses. 

2. Determine the moments and normal stresses due 
to plane bending: 

Load P: 

From Table 4 

»max = 50.90 in.2 

Iw = 15,380 in.6 

Sw = 302.1 in.4 

X = 0.01201 in."1 

Normal stresses: 

T ' ' 
M„ 

where 

Mb = plane bending and Mw = flange bending (torsion) 

PI 4 0 0 X 3 2 0 in. 
Mb = - = = - 1 6 , 0 0 0 lb.-in. 

M 16,000 
<Th = — = 

S 184.4 

(max at center and ends) 

= 86.7 psi 

Load 

Mh 
wP _ 96 X (26.66)2 

12 ~ 12 

M 5,700 X 12 

= - 5 , 7 0 0 lb.-ft. 

(max at ends) 

S 184.4 
= 371 psi 
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3. Determine the moments and normal stresses due to 
warping torsion: 

Quick Method: Use of influence lines in Table 3. 
The following values are required: 
Let 7 = XI = 0.01201 X 320 = 3.84, v = 0.370, 
where rj is found by entering Table 3 with z/l = 
160/320 = 0.5, proceed to curve where y = 
3.84. The desired value of rj at the left is 0.370. 

The moment Mw, due to flange bending, for z = 0 is 

1 1 
Mw = - riM = 

X ' 0.01201 
0.370 X 

( -28 ,400) = -876 ,000 lb.-in.2 

The normal bending stress is 

M,r 876,000 
as — = 2,900 psi 

Sw 302.1 

The normal stresses are as shown in Fig. 14. 

m=IOOlb/ft 

e -7" 

I8V\F96 

m = 700 lb/ft 

tti 
-z z-

g = 26'-8" 

Figure 15 

A 
3 458 psi 

&*\ 
Plane bending 

D458psi 
£-J 

^£]2900psi 

Torsion 

^]2900psi 

Figure 14 

At point © , max a = max ab + max a, 
= 458 + 2,900 = 3,358 psi 

Conclusion: Since ainax, due to combined bending and 
torsion, is well below any allowable stress limit it is 
unnecessary to proceed to a more extensive analysis. 

Example 2 

Given: Assume the same conditions as Example 1 except 
for loading. Let m equal a uniformily distributed tor
sional load. Then m = 100 X 7 = 700 lb.-in./ft or 
58.4 lb.-in./in. (See Fig. 15.) 

Solution: 

Quick Method 

1. Determine warping moment Mw from influence 
lines Table 3. 
Let 7 = A/ = 0.01201 X 320 = 3.84 and 1/X2 = 
6,940 

Enter tabular values at right with y = 3.84 and 
find area A ^ -1 .07462 . 

Warping moment Mw for z = 0 equals l/X2Am 
where m — 58.4 lb.-in./in. 

Mw = 6940 X ( -1 .0746) X 58.4 
= -436 ,000 lb.-in. 

- 4 3 6 , 0 0 0 A Arn . 
max a = = —1,450 psi 

302.1 

This stress would then be added to any bending stresses 
resulting from plane bending. 

Exact Method 

Table I, Case 5 

Warping moment Mw = — ECw<j>' 

m ( , x sinh Xz + sinh Xz 

A 2 \ sinh XI • ' ) 

where 

XI = 3.84 

Xz = 0.01201 X 0 = 0 

Xz' = XI 

1 
1.92 

tanh X(//2) 

Mw = 58.4 (6,940) (l - (1 + 1) 

= -406 ,000 lb.-in. 

-406,000 

0.95792 

0 + 22.5 

22.5 

max a = 302.1 
= - 1 , 3 4 5 psi 
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w = 11.5 lb/ft 
1 1 1 1 1 1 1 1 1 1 1 1 

"t 1 

1=50" j 

P = lk 

P+w 
<D ri© 

4, 

log. 
! 8CII.5 

V b-2.25" 

Figure 76 

Example 3 

Given: Cantilever beam loaded at its free end with a 
concentrated load P = 1 kip, acting through the e.g., 
point G. The dead load of beam will also be considered 
as acting through the e.g. (See Fig. 16.) 

Solution: 

From AISC Manual From Table 4 

Ix = 32.3 in.4 X = 0.05873 in . - 1 

Sx = 8.1 in.3 Sw = 2.423 in.4 

x = 0.58 in. Iw = 12.84 in.5 

wb = 2.555 in.2 

wa = —5.3 in.2 

e = 0.5785 in. 

Loads: D.L. w = 11.5 lb./ft - 0.96 lb. / in. 

^ = 1 kip 

Eccentricity: - * + * = 0.5785 X 0.58 = 1.16 in. 
Torsional moment due to D.L. : 

- 0 . 9 6 X 1.16 = - 1 . 1 1 lb.-in./in. = -m 

Torsional moment due to P: 

- 1 0 0 0 X 1.16 = - 1 , 1 6 0 lb.-in./in. = -M 

The stresses at the fixed end are as follows: 

Due to plane bending: 

Bending moment due to w: 

0.96 X 502 

Mb= - -1200 1b.-in. 

Bending moment due to P: 

Mb = - 1 0 0 0 X 50 = - 5 0 , 0 0 0 lb.-in. 

Bending stresses due to w: 

1,200 
= db 

8.1 
± 1 4 8 psi 

Bending stresses due to P: 

50,000 
ah = ± 

8.1 
= ±6,170 psi 

Due to warping: 

For warping calculations the following factors are 
needed: 

X2 = 0.058732 = 0.00345 

XI = 0.05873 X 50 = 2.94 

From Table 2: 

sinh X/ = 9.431 
cosh XI = 9.484 
tanh XI = 0.9944 

Warping moment due to w: 

From Case © where z = 0 and XI sinh Xz = 0 •. 

m (1 + XI sinh XI) X 11 
cosh XI J 

-1 .11 

0.00345 

(1 + 2.94 X 9.431)" 
~ 9.484 _ 

= +654 lb.-in.2 

trping moment due to P: 

/ - s m n 

From Case @ where z = I and — - = tanh: 
cosh 

M / sinh XI 

X \ cosh XI 

- 1 . 1 1 
X ( -0 .9944) + 19,720 lb-in. 

0.05837 V 

Warping stresses due to w at points © and © : 

Mw + 6 5 4 
( 7 2 = 

Sw - 2 . 4 2 3 
= - 2 7 0 psi 

a1 = A^Xw1 ^ ^ X 2.555 = + 1 3 0 psi 
Iw 12.84 

Warping stresses due to P: 

+ 19720 

(7 i = 

-2.423 

h 19720 

= - 8 , 1 4 0 psi 

X 2.555 = +3 ,920 psi 

The total longitudinal bending stresses in the upper 

flange at points ® and © are: 

Pt. ® : a = + 1 4 8 + 6,170 + 130 + 3,920 
= +10,368 psi 

Pt. © : or = + 1 4 8 + 6,170 - 270 - 8,140 
= - 2 , 0 9 2 psi 

The largest combination appears at Pt. ® . 
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w*2k/ft 
|e<, 

2 J 
2 

2 
12" 

Figure 77 

Determine max. warping bimoment Mw at midspan by 
using Table 2, Quick Method. Since \l = 1.88, a 
linear interpolation between X/ = 1.5 and 2.0 
gives 0.0893. Then max. Mw = 0.0893 m/2 = 
0.0893 X 1,000 X 462 = 189,000 lb.-ft. 

Af„ 189,000 . 
max <rtt = —- = = 3,540 psi 

Sw 642 

Determine max. moment due to plane bending at 
midspan: 

wl2 2,000 X 462 

max Mb = — = = 528,000 lb.-ft. 

Mh 

max ah = 
528,000 

~~547~ 
= 11,600 psi 

Example 4 

Given: A beam built-up by welding three plates resem
bling an I-section is loaded with a uniformily distributed 
torsional moment m = 1000 lb.-ft/ft over the entire 
span of 46 ft. The end connections are assumed to be 
bolted web clip angles, Type 2 construction. Deter
mine if the additive torsional normal stresses are within 
permissible limits by the "Quick Method", (e = 6 in., 
w = 2,000 lb./ft.) (See Fig. 17.) 

Solution: 

m = We = 2,000 X 0.5 = 1,000 lb.-ft/ft (positive 
moment, see Fig. 5) 

Determine the torsional constants and properties from 
Chart 1: 

1 1 
Cw = — bzhH = - 123 X 53.52 X 0.50 

= 103,000 in.6 

2 1 
K =-bt*+- /i*i3 

2 1 
= - X 12 X 0.503 + - X 53 X 0.503 

3 3 

Combined normal stresses: max <rw + max ab = 
3,540 + 11,600 = 15,140 psi (See Fig. 18.) 

11,600 psi 

r̂ — V 
A 

FT 

t^-J 

-3,540 psi 

-ll,600psi 3,540 psi 

Figure 78 

Check by long method using Table 1: 

max Mw = 1 -
1 

cosh X//2 

.mere X//2 = 0.94 and cosh 0.94 = 1.475 

max M.n = 
1000 

0.003412 

1 

1.475 

= 27,800,000 lb.-in. 

By quick method: 
27,800,000 X 144 = 27,200,000 lb.-in. 

3.21 in.4 

bh 12 X 53.5 
™max = 160.5 in.: 

JL = 0.62 J ^ 
1CW ^ 1 0 3 , 

X = 0.624/— = 0.62i 
21 

000 
0.00341 in."1 

X/ = 0.00341 X 552 = 1. 

o„, — 
Cw 103,000 

160.5 
642 
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NOMENCLATURE 

a Distance measured along the longitudinal axis 
of member (ft); distance from the shear center 
to the centerline of web in a channel (in.) 

b Width of a flange (in.); length of a rectangular 
element (in.); distance measured along the lon
gitudinal axis of a member (ft) 

c Distance measured along the longitudinal axis 
of a member (ft) 

d Depth of a section (in.) 
e Eccentricity in a member ; in a channel it is the 

distance from the shear center to the back of 
the channel web (in.) 

/ Subscript indicating flange; symbol for function 
h Distance between centroids of flanges (in.) 
/ Span of a beam (ft) 
/i Distance between flanges (in.) 
m Uniformly distributed torsional load (lb.-ft/in.) 
t Thickness of a flange (in.) 
h Thickness of a web (in.) 
wa> wb Value of unit warping at points a and b of a 

flange for V\F, I and E -sections, (in.2) 
^max Maximum value of unit warping, wmax = wa 

for V\F and I sections (in.2) 
wi, w2 Value of unit warping at points 1 and 2 in 

the flanges of channel sections (in.2) 
x Coordinate; the distance in a channel from the 

back of the web to the v-axis (in.) 
y Coordinate; deflection in plane bending (in.) 
z Coordinate 
A Area of a section or rectangle (in.2); area 

under influence line (in.2) 
Af Area of flange (in.2) 
Aw Area of web (in.2) 
C Constant of integration 
Cw Warping resistance constant (in.6) 
E Modulus of elasticity (psi) 
G Shear modulus of elasticity (psi); center of grav

ity of a cross-section 
/ Moment of inertia (in.4) 
K Torsional resistance constant; associated with 

St. Venant 's torsion (in.4) 
L Length of stiffener plate (in.) 
M Applied concentrated torsional moment (lb.-ft) 
Mb Moment due to plane bending (lb.-ft) 
Mv Primary or pure torsional resisting moment (lb.-

ft) associated with St. Venant 's torsion 
Ms Secondary warping torsional resisting moment 

(lb.-ft); associated with warping torsion 
Mt Total torsional resisting moment at any given 

cross-section, where Mt = Mv + Ms (lb.-ft) 
Mw Warping coefficient of loading and support 

condition; associated with warping forces and 
used to determine flange bending (lb.-in.2) 

P Concentrated load (lb.) 
5 Shear center of a cross-section 
Sw Warping section modulus (in.4) 
SXt y Section modulus about x or y axis (in.3) 
7 Parameter where y = XI (dimensionless) 
6 Unit angle of twist (radians/in.) 

X Torsional constant, X = \GK/ECW ( in. - 1) 
p Radius of curvature (in.) 
a Normal unit bending stress (psi) 
<rb Normal stress associated with plane bending 

(psi) 
ap Normal stress associated with primary torsion 

(psi) 
crs Normal stress associated with warping torsion 

(psi) 
r Unit shearing stress (psi) 
rb Shearing stress due to plane bending (psi) 
rv Shearing stress associated with St. Venant's 

primary torsion (psi) 
rs Shearing stress associated with secondary warp

ing (psi) 
4> Total angle of twist (radians) 
EIX, EIy Bending rigidity of a section (lb.-in.2) 
GK Torsional rigidity of a section (lb.-in.2) 
ECW Warping rigidity of a section (lb.-in.4) 
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CHARTS 

CHART I Properties of Welded Shopes free to warp* 

Doubly Symmetrical Singly Symmetrical 

it 
*vl M. 

3-

i 

T—t 
^ < J w a 

ft • Sjj lc .g. 

2 
kTNw* 

Wa = ™max ( in2) bh 
4 

4A. + I A , 

(in2) A, b l , 

4A, + | A 2 

(in6) -LbVt 
24 

I b
3 / t 3 b t + 2 l , t 

12 6 b t + j?,t, 

( in4) I b t ' + i J ? , ! 3 

3 3 ' 
2 . b t 3 + l j ? ( t f 
3 3 ' ' 

(in ) 3 b A, 
6A, + A2 

Where A, = flange area = b t , A2= webarea = J?, t„ Total area = 2A ( + A2 

\ / G K . 0 6 2 fK for steel 

Exact values for rolled sections are given in Table 4 . 
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CHART 2 Warping Properties of Welded Shapes 

N 

h-t 

\\ 
b*b' 

M, 

S V 
Singly Symmetrical 

R . ( 2b t ) 3 s O 

Ne 

^ 

144 
gligible warping 

l b -1 

1 , 1-_, .._+ 

H 

[ p 

f 
rag 

| . »>• . 

•i, * 

t 

Singly Symmetrical 

C„= rfl, I2 

Free to warp 

Nonsymmetrical 
C » A* + A3

2 sp 
w 36 

Negligible warping 

b . 

t.H 

tT" 

eg. 

Antisymmetrical 

C =h2 I 

1 

J= 

' 

f ' r 

- | 

S 1 1 
<—+ 
J—x T 

Teg. 

kf« 

Singly Symmetrical 

C = 0 

Warpfree 

Free to warp 

here A = total area 

CHART 3 

CD 

r-
& 
CM 

CM 

O 
r> 

— 
ro 
ii 

o 

£ CO 

in 
II 

< 

X 

0.00 

0 .20 

0 .50 

0 .70 

1.00 

0 .00 

0 .20 
0 .50 

0.70 

1.00 

0 .00 

0 .20 

0.50 

0.7 0 

1.00 

Mp 

0.1760 

0.1497 

0 

-0.1 159 

-0.1760 

0.2875 

0.2480 
0 

-0.1954 

-0.2875 

0.4185 

0.3742 

0 

-0.3082 

-0.4185 

Ms 

0.3240 

0.3503 
-0.5000 
+0.5000 
-0.3841 

-0 .3240 

0.2126 

0.2520 
-0.5000 
+0.5 00 0 
- 0 . 3 0 4 6 

-0 .2126 

0.081 5 

0.1258 
-0 .5000 
+ 0.5000 
-0.1 9 1 8 

-0 .0815 

Mp+ M5 

0 .5000 

0 . 5 0 0 0 

+ 0 . 5 0 0 0 

- 0 . 5 0 0 0 

- 0 . 5 0 0 0 

0 . 5 0 0 0 

0 . 5 0 0 0 
± 0 . 5 0 0 0 

- 0 . 5 0 0 0 

-0 .5001 

0 . 5 0 0 0 

0 . 5 0 0 0 

± 0 . 5 0 0 0 

- 0 . 5 0 0 0 

- 0 . 5 0 0 0 

M f=0.5M 

0.50 

0.50 

±0.50 

-0 .50 

-0 .50 

0.50 

0.50 
±0 .50 

-0 .50 

-0.50 

0.50 

0.50 

±0.50 

-0.50 

-0.50 

CD 

CM 

CM 
n 

< 

o 

— 
ro 
II 

< 

00 

m 
u 

< 

X 

0.00 

0.20 

0.3 0 

0 .80 

1.00 

0 .00 

0 .20 

0.30 

0 .80 

1.00 

0 .00 

0 .20 

0 .30 

0.8 0 

1.00 

Mp 

0.17 49 

0.1324 

0.0776 

-0.1 102 

-0.1245 

0.2985 

0.2241 

0.1247 

-0.1785 

-0.1975 

0.4771 

0.3560 

0.1756 

-0.2557 

-0.27 1 3 

Ms 

0.5251 

0.5676 

+ 0.6 22 4 

-0 .1898 

-0.1 755 

0.4015 

0.4759 
-0.4247 
+ 0.575 3 

-0.1 2 1 5 

-0 .1025 

0.2229 

0 .3440 
-0.475 6 
+0.5 24 4 

-0 .0443 

-0 .0287 

M p +M s 

0 . 7 0 0 0 

0 . 7 0 0 0 

;8:788°o 
- 0 . 3 0 0 0 

- 0 . 3 0 0 0 

0 . 7 0 0 0 

0 . 7 0 0 0 
- 0 . 3 0 0 0 
+ 0.7 0 00 

- 0 . 3 0 0 0 

- 0 . 3 0 0 0 

0 . 7 0 0 0 

0 . 7 0 0 0 
- 0 . 3 0 0 0 
+ 0.7 00 0 

- 0 . 3 0 0 0 

- 0 . 3 0 0 0 

M t 

0.70 

0.70 

0.70 

-0 .30 

-0 .30 

0.70 

0.70 

0.70 

-0 .30 

-0 .30 

0.70 

0.70 

0.70 

-0.30 

-0.30 1 
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TABLE 1 

b = 0.71 

M=t>M=0.7M 
f J 

Region H 

slope of curve influenced by 

X f where A j / H " 
V EC„ 

Mp-* flange 8 web shear M 

XLLUJJ-LLLI 
M « ° M * 0 . 3 M 

Flange web shear Tp, rs are determined from Mp and Ms respectively. Web shear is determined from Mp only. 

These torsional shears must be combined with the shears resulting from plane bending. 

M t is determined, as above, from the symmetry of loading. 

Mp max., shown above, is determined from the following Tables. 

M, M t - M p 

Shears' 

Primary torsional shear stress, % = G t 6 ' = M P * 
K 

where t is the thickness of the flange or web 

Secondary torsional shear stress, rs = Wfnax 

where b is the width of flange 

M* 
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TABLE 1 (continued) 

Mw=0 ^m M*0 
I I I 1 I I I I I I I I ' I I I I I I I I 

Tnfh ft 

maxM. 

t/lf/F 

I wnax0 

CASE I 

max M = Hil 
* 2 

maxMp= HI 
A 

maxMp 

rqaxMs 

A i - t a n h A i 
2 2 

, yields max fp 

maxMt 

maxMs*maxM+-maxMp , yields max fs 

max M* PI I -
coshAi. 

2 

, yields max 6„ 

Mw for any value of z : 

maxM. 

M«iH 

maxMu 

l_ sinhAz + sinhAz' 
sinhAj? 

max f? max o~„ max 7p 
max % max(Tb maxTj 

^ = 0 
M*0 

CASE 2 

maxM«5| [2a+b] 
t o o l J 

maxM p « I | I A b cosh A (a + b) - cosh A a 
2 — , yields max Tp 

sinh A J? 

Ms = max M+~ maxMp , yields max combination of shear stresses 

maxMw=£L 
maxMP A2 

I . cosh A a 
cosh A * 

, yields max 6^ 

M^for any value of z •• 

m a x M s Region 11,1^=1" 

m q x M b Region X, Mw« J2|-

I coshAa • sinhAz'+ cosh A a • sinh A z 
sinhXtf 

cosh A1 (a+b)-
sinhAfi 

COShAa sinh\7 T 
maxM For max M w , occurring in Region I F J e t z * x « a + - j 
.—i— w m 

maxrp max£ max£bmaxTs m a x ^ 
max<5L 
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TABLE 1 (continued) 

0=0 
Mw=0 

7T77T 

i i i i i i r i i i i i i 
m 

0=0 
M„=0 

maxM+ 

npi 

ZV-

Mt 

m a ^ M t m o x M p P | > ^ 

maxTp 
maxT, 

max ab 
maxcr̂  

CASE 3 

maxM+=EL°(2j?-a) 

maxMp = "1 
* - « 

_ coshXg-coshXb 
sin) hxF 

. , yields n\QXTp 

maxMs = maxM t - maxMp , yields max 7̂  

max 

AJP 

1.0 
2.0 
3.0 
4.0 
5.0 

Mw = i &mJT 
A 

a =.10 
x=.09 
.004 
.004 
.004 
.003 
.003 

a =.20 
x=.l6 
.015 
.014 
.012 
.010 
.009 

a=.30 
x=23 
.030 
.026 
.022 
.018 
.015 

a=40 
x=29 
.047 
.039 
.031 
.0 25 
.020 

a=50 
x=34 
.065 
.052 
.040 
.0 32 
.024 

a=60 
x=.38 
.080 
.064 
.048 
.0 36 
.027 

a=.70 
x=43 
.094 
.074 
.055 
.040 
.030 

a=80 
x=.47 
.105 
.082 
.060 
.043 
.032 

a=.90 
x=.49 
. I I I 
.086 
.063 
.045 
.033 

Mw for any value of z •• 

M = m ( I - sinh Az' + cosh A b sinhAz \ Region I 
w Tf\ sinhAtf J 

CASE 4 

maxMf= maxMs 

maxM = ni 
A 

maxMD 

2k^MJ) coshAl-G + k) 
— 2 A T sinh A J? 

, yields max Tp 

max^ 
maxffb 
max<rw 

max£ 

Mg= ™ coshAl-U + k) 
sinh Xi 

, yields maxE> 

m a x M w * - I " k i yields max 6W 
A 

Mw for any value of z • 

M « ™ J i , sinhAz + sinhA2 
sinhAj? 

where k = Aj? 
(A|-tanhA|)tanhAJ? 

XFlanhAF 
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TABLE 1 (continued) 

0*0 
Mp=0 

0=0 
M=0 

maxfl 

m 
I I I I I I I I I I I ' l l I I 1 I 1 

^ L T ] > > ^ M, 

^ ^ ^ i i ^ l maxM t 

CASE 5 

max M = H L £ 
f 2 

max M = mJ? 

• 2 '^Ml^Vt1 '^i^jlfKixMP maxMs = max Mt , yields max Ts 

, yields maxc^ 

0.30 + cosh 0.2Ag-cosh 0.8Al| yields max Tp 

4sintrM r 

2 

m c(x Ms maxMM-m 

a x M w p ^ ^ t 
"̂  1 I 

max^ max Tp 

max<3rb 

max 0* 

tanhA£ 
2 

Mw for any value of z = 

maxM. 

max_Mw 

M = m l-(l-k)*I sinhXz +sinhAz 
sinhXf 

where k* 1- 2 . 
tanhAj 

2 

max1/; max^ 
max (5̂  
max cr„ 

0«O M =0 

j " "''' " ' " l 7 i 7 l W i » ,| 11 j-W-IAsvl-.J.--

max 7£ max 7̂  
maxoj, 
max<£, 

CASE 6 

maxM f = m i 
maxMp* maxMp=DmJ? 

Ai 
X 

D 

0.5 
1.0000 
.0374 

1.0 
0.7719 
.1 145 

1.5 
0.6344 
.1872 

2.0 
0.5371 
.2466 

3.0 
0.4256 
.3420 

4.0 
0.3667 
.4200 

5.0 
0.3290 
.4845 

max Ms * maxMt - maxMp , yields max Ts 

, yields maxo"w maxMw«ro l4 l»AJ?8lnhAl) 
cosh A ( 

Mw for any value of z 

M = m 
A2 

1 + AjPsinhAz- V l+Als inhAl /coshAz 
cosh A l 
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TABLE 1 (continued) 

Mp=0 

maxM t 

Z fMt 

5"r""M" 
m°^^xi^in^ 

maxMb 

maxM, 

max<rb 
max (5, 

M„=0 

CASE 7 

maxM+
 s M 

maxMp =M I - . , yields max7*p 
coshAj? 

maxMs = maxM+-maxMp ,yieldsmax7^ 

™ X M P maxMw = - M ftanh \lTj, yields max c^ 

maxMs 

~~T M w for any value of z •• 

M = M sinhAz' 
cosh A J? 

\&\ 
.29|.40|.5o| 

27 
1 
.191 

a = 0.2 
2_ 

1.17 I 
[o4o6|.l I 

4 
J6L 

LI7 123^ 

+ tanh AJ? (cosh A a - IJ L yields maxtf^ 

Mw for any value of z « 

Region I M « M -cosh A l sinhAz' + (coshAc- l) sinhAz' 
* w X coshAJ? " 

Region n , M - VcoshAa - l ) sinhAz' M 
w cosh A ( A 
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TABLE 1 (continued) 

max To max t< 
max<5"b 

maxcr, 

^ =0 
M„=0 

•7V CASE 9 For Quick Method see Table 3 
nint 

maxM * Mb_ 
+ £ 

m a x M p = M b sinh A b 
7 sinh A 6 

, yields m a x £ 

max Ms * max M+ - Mp , yields max Ts 

I maxM w « i l s inhAb sinhAa , yields max<rw 
A sinnAi ' 

M w for any value of z 

Region T M , M sinhAb sjnhA7 
" A sinh A J? 

Region n , M « M s i n h A a a i n h W ' 
A sinh A f 

£ =0 
M p * 0 

maxM+ 

maxM0 

max Ms 

J L 

maxMb 

X 
maxMw 

~1~ 

aMjj 

II 

z— 

rM+ 

I =0 
M p =0 

prim 

p" 
ZllTr-^M,, M 

M„ 

fM>-~ 
max^maxTp 
maxcyb 

maxo~w 

CASE 10 (when a < b ) , See Table 3 for Short Method. 

M t « Mp + M s 

maxM p =AM 

maxM D 

M -M[^ p + k 2~ k . (sinhAb-i-kjcoshAz-K.coshAz1] 
' ?~ I \$ sinh A J L 

Ai? 

1.0 
2.0 
3.0 
4.0 
5.0 

A 
a=0.50*,xs0.25 

0.015 
0.057 
0.1 14 
0.176 
0.235 

a=0.30f.x*O.I8 
0.014 
0.051 
0.105 
0.167 
0.229 

a*O.I04.x*O.IO 
0.003 
0.012 
0.026 
0.040 
QQ.64 .__ 

m a x M s * M (sinhAb + y - k.coshAl 
7 sinh A { 

maxMw= M k, 

M w for any value of z • 

Region I M = M (sinhAb +k2) sinh A z +k, sinhAz' 
' M ~X sinhAJ? 

Region n M - M kzsinhAz + (sinhAa+k.) sinhAz' 
* w A sinhAb 

•*..*• 

sinhAa + sinhAb i / a - b sinhAa-sinh A b \ CtnnhAj^ 
sinhAJ? . V"T"sinhXf /2 2 

2tanhAi fi-2tanhAl 
* 2 
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TABLE 1 (continued) 

4 »0 
Mp«0 

MJ/ 

maxMt 

# » 0 
M «0 

77T7T 

n 

. ' i ^ iT 'p j . " . ' " ! K....1 
J r 

max 7̂  max 7̂  
maxcrb 

maxc?*, 

CASE II 

Region I MP=M Xb-k sinhXb coshhz-kcoshXz' 
T T sinhXJp 

Region II Mp = M -Xa+k sinhXa + k CoshXz' 
^ H T ^ T sinhXJe 

max Mp = A M , when a = b max MP occurs at hinge support, 
when a < b max Mp occurs at fixed support. 

Ai? 

I.O 
2.0 
3.0 
4.0 

L5.0 

Region 1 
a«.IO 
x=.08 

.0140 

.0296 

.0492 

.0717 

a*. 20 
x=.l5 
.0112 
.0397 
.0809 
.1274 
.1781 

a«30 
x = . l 9 
.0176 
.0638 
.1258 
.1922 
.2573 

a =.40 
x = .2l 
.0242 
.0790 
.1525 
.2273 
.2945 

Region II 
a*.50 
x=I.O 
-.0296 
-.1025 
-.1875 
-.2602 
-.3209 

a =.70 
x=I.O 
-.0350 
-.1230 
-.2299 
-.3373 
-.4138 

a«.90 
x = 1.0 
-.0195 
-.0702 
-.1365 
-.2058 
-.271 8 

i 

max Mc = sinhXb - k cosh XI when a = b, occurs at fixed support. 5 SuihA? 

max M, = sinhXb cosh A a -kcoshAb when a > b, occurs at load M. 5 sinhxj 

maxMw « J£k 

Mw for any value of z * 
Reaion I M * M sinhXb sinhXz +k sinhXz' 

A smhAJP 

Region n , Mw = M sinhAo+k SinhAz' 
^ sinhAf 

k . Ab sinhXJJ -AJ?sinhXb 
sinhXJP-XJcoshXJF 
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TABLE 2—SHORT METHOD 

TYPE 2 CONSTRUCTION 

Values for max Mp and maxM , uniform torsional moment m 

i i i i i r x x j 
' / / i / ' 

maxMrTTT>>^ 
i|-maxM0 

T77T> 

m̂ 
' • • • " ' ' ' ' 

^ m a x M t J 

maxMp= D,ml? max M = D,mJ? 

AJ? 

D, 

1 D* 

0.5 

0.0102 
0.1220 

1.0 

0.0379 
OJ 132 

1.5 

0.0765 

0.10 I I 

2.0 

0.1192 
0.0880 

2.5 

0.1607 
0.0753 

3 

0.1983 
0.0639 

4 

0.2590 
0.0459 

5 
0.3027 
0.0338 

6 

0.3342 
0 0 2 5 2 

Values for max Mw , concentrated torsional moment M 

0.25 

0.20 

0.15 

0.10 

0.05 

r\ 

v: >> 
/ 

i 
*A 
/ 

&s 
'}< 

f l 

*'i 

s* 
*s* 

IV 

3X 

4.( 

5.< 
u— 

)-

U 
D-

~6 .0 
1 1 

~ 8 . 0 

=H 

_J 

0.1 0.2 0.3 0.4 0.5 

"A 

v\\\\\ ^ 
\(\\V 

max Mw= D3MJ? 
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TABLE 3 

INFLUENCE LINES FOR MW /2 S 0 f (\£), SHORT METHOD 

^0.5 

X£ 
0.25 

0.50 

1.00 

2.0 

3.0 

i 4 0 

5.0 

6.0 

8.0 

10.0 

16.0 

32.0 

40.0 

A 

0.00522 

0.02 074 

0.08197 

0.31 304 

0.65 718 

1.07462 

1.53392 

2.01492 

3.00268 

4.00045 

7.0 

15.0 

19.0 
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TABLE 4 

Structural 
Section 

36 \AF 300 
280 
260 
245 
230 
194 
182 
170 
160 
150 
135 

33 V\F 240 
220 
200 
152 
141 
130 
118 

30V\F 210 
190 
172 
132 
124 
116 
108 

99 
27 W 7 177 

160 
145 
114 
102 

94 
84 

24V\F 160 
145 
130 
120 
110 
100 

94 
84 
76 
68 

21 V\F 142 
127 
112 

96 
82 
73 
68 
62 
55 

18 \AF114 
105 

96 
85 
77 
70 
64 

^ m a x i 

in.2 

145.9 
144.9 
144.0 
143.3 
142.6 
106.7 
106.1 
105.4 
104.9 
104.5 
103.8 
127.3 
126.4 
125.4 

93.81 
93.29 
92.78 
92.22 

109.8 
108.8 
107.9 

77.29 
76.88 
76.52 
76.17 
75.74 
92.01 
91.17 
90.44 
66.33 
65.73 
65.34 
64.89 
83.08 
82.40 
81.73 
70.65 
70.16 
69.68 
53.05 
52.55 
52.18 
51.81 

66.86 
66.14 
65.44 
45.65 
44.96 

1 42.51 
42.27 
41.97 
41.65 
51.74 
51.32 
50.90 
38.47 
38.07 
37.73 

1 37.44 

^w 1 
in.6 

372,500 
340,700 
306,000 
281,800 
258,400 
108,900 

99,980 
91,310 
83,250 
75,340 I 
61,710 

223,000 
198,000 
173,700 

66,670 
59,420 
51,730 
43,380 

148,100 
129,500 
113,100 

39,240 
35,830 
32,150 
28,160 
24,180 
87,620 
76,720 
67,600 
25,670 
22,050 
19,470 
16,050 
67,890 
59,250 
50,650 
34,370 
30,810 
27,190 
13,860 
11,880 
10,210 

8,436 

39,640 
34,410 
29,090 
11,030 

8,923 
6,878 
6,239 
5,453 
4,471 

19,360 
17,340 
15,380 

7,460 
6,588 
5,783 

1 5,143 

Sw 
in.4 

2,553 
2,351 
2,125 
1,967 
1,812 
1,021 

942.8 
866.2 
793.4 
721.3 
594.6 

1,752 
1,567 
1,385 

710.8 
637.0 
557.5 
470.4 

1,349 
1,190 
1,048 

507.8 
466.0 
420.1 
369.7 
319.3 
952.4 
841.5 
747.5 
387.0 
335.5 
297.9 
247.3 
817.1 
719.1 
619.8 
486.5 
439.2 
390.2 
261.3 
226.0 
195.6 
162.8 

592.9 
520.2 
444.5 
241.7 
198.5 
161.8 
147.6 
129.9 
107.3 
374.3 
337.8 
302.1 
193.9 
173.1 
153.3 

1 137.4 

X 
i n . " 1 

0.008284 
0.007843 
0.007387 
0.007034 
0.006695 
0.009050 
0.008594 
0.008133 
0.007756 
0.007379 
0.006877 
0.008106 
0.007567 
0.007011 
0.008613 
0.008112 
0.007623 
0.007144 
0.008788 
0.008114 
0.007502 
0.009972 
0.009480 
0.009010 
0.008570 
0.008104 
0.009600 
0.008858 
0.008204 
0.010720 
0.009809 
0.009199 
0.008495 
0.009813 
0.009057 
0.008293 
0.009792 
0.009140 
0.008474 
0.01227 
0.01121 
0.01034 
0.009525 

0.01180 
0.01081 
0.009771 
0.01541 
0.01364 
0.01330 
0.01259 
0.01170 
0.01074 
0.01376 
0.01289 
0.01201 
0.01718 
0.01592 
0.01475 
0.01375 

Structural 
Section 

18 V\F 60 
55 
50 
45 

16 V\F 96 
88 
78 
71 I 
64 

16 V\F 58 
50 
45 
40 
36 

14 \AF426 
398 
370 
342 
314 
287 
264 
246 
237 
228 
219 
211 
202 
193 
184 
176 
167 
158 
150 
142 
320 
136 
127 
119 
111 
103 

95 
87 
84 
78 
74 
68 

14 V\F 61 
53 
48 
43 
38 
34 
30 

12 V\F190 
161 
133 
120 
106 

99 
92 

^ m a x 

in.2 

33.17 
32.93 
32.68 
32.45 
44 .53 
44.18 
33.15 
32.82 
32.48 
32.19 
27.62 
27.38 
27.12 
26.96 
65.35 
64.15 
62.94 
61.75 
60.50 
59.35 
58.34 
57.55 
57.16 
56.77 
56.36 
56.04 
55.63 
55.23 
54.82 
54.49 
54.10 
53.69 
53.34 
53.04 
61.48 
50.44 
50.03 
49.67 
49.33 
48.96 
48.62 
48.26 
40.28 
40.03 
33.76 
33.49 
33.17 
26.77 
26.54 
26.30 
23.05 
22.86 
22.69 
40.05 
38.78 
37.54 
37.00 
36.37 
36.05 
35.75 

-"w 
in.6 

3,591 
3 
2 
2 

12 
10 

5 
4 
3 
3 
2 
1 
1 
1 

144 
129 
115 
102 

90 
79 
70 
63 
60 
57 
54 
51 
48 
45 
43 
40 
37 
35 
33 
30 
88 
26 
24 
22 
20. 
18, 

17, 
15, 
10, 

9, 
5, 
5, 
4 , 
2, 
2, 
1, 
1, 
1, 

23 , 
18, 
1 4 ' 
12, 
10, 

9, 
8, 

,175 
,794 
,374 
,240 
,820 
,167 
,548 
,957 
,463 
,101 
825 
576 
302 
200 
400 
700 1 
700 
460 
270 
470 
830 
590 
530 
400 
700 I 
830 
940 
230 
650 
990 
510 
200 
900 
130 
570 
460 
600 
710 
940 
150 
490 
120 
202 
992 
390 
716 
534 
236 
948 
231 
065 
884.7 
520 
640 
360 
440 
630 
727 
864 

&w 
in.4 

108.3 
96.40 
85.48 
73.16 

274.9 
245.0 
155.9 
138.6 
121.8 
107.6 

76.04 
66.68 
58.12 
48.29 

2,206 
2,017 
1,838 
1,663 
1,495 ! 
1,336 
1,208 
1,109 
1,060 
1,013 

965.1 
922.6 
877.9 
831.8 
788.6 
746.0 
702.2 
661.3 
622.3 
582.6 

1,433 
526.9 
489.0 
455.0 
419.8 
386.8 
352.7 
320.9 
251.2 
229.9 
177.5 
160.9 
142.2 

94.67 
84.25 

j 74.07 
53.42 
46.60 
39.00 

587.3 
580.8 
382.5 
336.1 
292.4 
269.8 

1 248.0 

X 
i n . " 1 

0.01556 
0.01451 
0.01343 
0.01237 
0.01425 
0.01332 
0.01936 
0.01800 
0.01662 
0.01542 
0.01700 
0.01563 
0.01423 
0.01318 
0.03001 
0.02875 
0.02745 
0.02606 
0.02459 
0.02308 
0.02175 
0.02065 
0.02008 
0.01951 
0.01891 
0.01838 
0.01777 
0.01714 
0.01652 
0.01593 
0.01527 
0.01461 
0.01399 
0.01338 
0.02497 
0.01403 
0.01326 
0.01256 
0.01183 
0.01109 
0.01035 
0.009584 
0.01297 
0.01216 
0.01576 
0.01467 
0.01337 
C.01710 
0.01572 
0.01434 
0.01592 

1 0.01447 
0.01304 

| 0.02851 
0.02530 
0.02187 
0.02014 
0.01825 
0.01724 

1 0.01624 
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TABLE 4 (continued) 

^max 

35 
35 
34 
34 
28 
28 
23 
23 
22 
19 
18 
18 
26 
25 
25 
24 
24 
24 
24 
23 
23 
19 
18 
18 
14 
13 
13 
16 
16 
15 
15 
15 
15 
12 
12 
10 
10 

21 
21 
16 
16 
11 
11 
11 
9 
9 
9 

m.2 

42 
16 
.85 
.54 
91 
71 
32 
09 
85 
20 
96 
79 
38 
87 
38 
86 
64 
36 
10 
82 
61 ' 
06 
80 
55 
09 
90 
74 
71 
32 
86 
53 
30 
13 
42 
24 
22 
10 

27 
04 
92 
73 
98 
84 
73 
905 
815 
731 

8 
7 
6 
5 
3 
3 
1 
1 
1 

6 
5 
4 
3 
3 
2 
2 
2 
2 
1 

1 
1 

cw in.6 

,059 
,329 
,542 
,784 
,577 
,165 
,877 
,646 
,437 
805. 
663. 
549. 
,031 
,159 
,405 
,645 
,327 
,994 
,664 
,345 
,073 
,200 
994. 
791. 
356. 
292. 
220. 
,440 
,180 
929. 
724. 
618. 
528. 
311. 
258. 
126. 
98. 

713. 
537. 
389. 
300. 
159. 
127. 
95. 
100. 
82. 
65. 

,2 
.6 
5 

0 
0 
0 
,4 
1 

9 
8 
0 
9 
4 
3 
6 
1 

4 
9 
0 
9 
4 
0 
0 
9 
1 
4 

sw in/ 

227 
208 
187 
167 
123 
110 
80 
71 
62 
41 
34 
29 
228 
199 
173 
146 
135 
122 
110 
98 
87 
62 
52 
42 
25 
21 
16 
86 
72 
58 
56 
40 
34 
25 
21 
12 
9 

33 
25 
22 
17 
13 
10 
8 
10 
8 
6 

i 

5 
4 
7 
5 
7 
2 
49 
30 
88 
94 
99 
25 
6 
5 
5 
6 
0 
9 
5 
42 
81 
98 
88 
65 
26 
04 
02 
15 
30 
63 
67 
38 
95 
07 
11 
39 
724 

54 
56 
99 
99 
32 
73 
102 
19 
370 
721 

0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0 
0. 
0 
0 
0 
0 
0 
0. 
0, 
0 

.01520 

.01429 

.01321 

.01211 

.01502 

.01389 

.01915 

.01755 

.01593 

.02027 

.01798 

.01615 

.03116 

.02863 

.02616 

.02334 

.02208 

.02058 

.01904 

.01742 

.01602 

.02192 

.01942 

.01691 

.02550 

.02263 
0.01987 
0, 
0. 
0. 
0, 
0. 
0 
0 
0, 
0 
0 

0 
0. 

.03699 

.03311 

.02857 

.02453 

.02198 

.01984 

.02575 

.02266 

.02813 

.02515 

.01610 

.01412 
0.01905 
0 
0, 
0. 
0. 
0. 
0, 
0. 

.01680 

.02676 

.02390 

.02196 

.03003 

.02748 

.02556 

Structural 
Section 

8B 

6B 

6 \AF 

5 \AF 

12 B 
10 B 
8B 
6B 
5 M 
4 M 
24 I 

20 I 

18 I 

15 I 

12 I 

10 I 

8 I 

7 I 

6 I 

5 I 

4 I 

3 I 

15 
13 
16 
12 
25 
20 
15.5 
18.5 
16 

14 
11.5 
10 
8.5 
18.9 
13 
120 
105.9 
100 
90 
79.9 
95 
85 
75 
65.4 
70 
54.7 
50 
42.9 
50 
40.8 
35 
31.8 
35 
25.4 
23 
18.4 
20 
15.3 
17.25 
12.5 
14.75 
10.0 
9.5 
7.7 
7.5 
5.7 

Z^max 

in.2 ' 

7.835 
7.746 
5.890 
5.721 
8.989 
8.776 
8.597 
5.904 
5.800 

11.60 
9.545 
7.581 
5.551 
5.729 
3.571 
46.07 
45.08 
41.90 
41.19 
40.45 
34.35 
33.65 
30.69 
30.02 
27.05 
25.96 
20.27 
19.77 
15.53 
14.89 
14.54 
14.32 
11.75 
11.08 
7.899 
7.575 
6.377 
6.046 
5.028 
4.696 
3.837 
3.506 
2.591 
2.465 
1.719 
1.596 1 

10 
10 
6 
5 
5 
4 
4 
2 
2 
1 
1 

^"w 
in.6 

49 
39 
36 
23 
149 
113 
79 
49 
40. 

76. 
46. 
29. 
14. 
45. 
12. 

,640 
,010 
,108 
,823 
,544 
,339 
,094 
,633 
,473 
,710 
,526 
779. 
727. 
479. 
426. 
313. 
300. 
176. 
150. 
58. 
52. 
32. 
28. 
17. 
14. 
8. 
6. 
2. 
2. 
1. 
0. 

.9 

.0 

.7 

.4 

.3 

.3 

.5 

.0 

.3 

.2 

.5 
3 
9 
6 
4 

5 
1 
.7 
2 
.7 
6 
6 
1 
6 
2 
6 
1 
1 
1 
3 
4 
9 
5 
0 
8 

ow 

in.4 

6.375 
5.040 
6.234 
4.104 
16.62 
12.92 
9.250 
8.307 
6.960 

6.571 
4.879 
3.866 
2.685 
7.963 
3.487 

231.0 
222.0 
145.8 
141.4 
137.0 
126.3 
121.7 
85.77 
82.39 1 
63.21 
58.78 
38.45 
36.78 
30.89 
28.63 
21.57 
20.99 
15.03 
13.56 
7.426 
6.901 
5.113 
4.658 
3.402 
3.019 
2.164 
1.847 
1.134 
1.039 
0.5971 
0.52421 
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TABLE 4 (continued) 

Structural 
Section 

18 C 58.0 
51.9 
45.8 
42.7 

15 C 50.0 
40.0 
33.9 

12 C 30.0 
25.0 
20.7 

10 L 30.0 
25.0 
20.0 
15.3 

9 C 20.0 
15.0 
13.4 

8 C 18.75 
13.75 
11.5 

7 C 14.75 
12.25 
9.8 

6 C 13.0 
10.5 
8.2 

5 C 9.0 
6.7 

4 [ 7.25 
5.4 

3 C 6.0 
5.0 
4.1 

e 
in. 

0.6617 
0.7618 
0.8707 
0.9293 
0.4739 
0.6418 
0.7581 
0.4982 
0.6120 
0.7239 
0.2762 
0.3897 
0.5167 
0.6575 
0.4122 
0.5604 
0.6183 
0.3406 
0.4974 
0.5785 
0.3523 
0.4392 
0.5370 
0.3001 
0.3954 
0.4984 
0.3492 
0.4613 
0.3163 
0.4194 
0.2445 
0.3274 
0.3931 

wb 

in.2 

8.753 
9.186 
9.697 
9.988 
5.840 
6.339 
6.739 
4.231 
4.529 
4.862 
2.853 
3.043 
3.297 
3.634 
2.661 
2.945 
3.074 
2.161 
2.406 
2.555 
1.810 
1.923 
2.074 
1.421 
1.516 
1.645 
1.157 
1.261 
0.8480 
0.9099 
0.5480 
0.5938 
0.6238 

Wa 

in.2 

-24.48 
-23.62 
-22.68 
-22.17 
-17.50 
-16.33 
-15.51 
-11.96 
-11.32 
-10.69 
-9.564 
-9.042 
-8.454 
-7.796 
-7.350 
-6.732 
-6.489 
-6.176 
-5.600 
-5.300 
-4.823 
-4.546 
-4.231 
-3.805 
-3.548 
-3.267 
-2.665 
-2.414 
-1.867 
-1.688 
-1.241 
-1.135 
-1.052 

cw 
in.6 

1,012 
931.2 
847.8 
804.8 
391.5 
327.8 
287.8 
116.6 
101.3 
87.35 
60.49 
52.12 
43.69 
35.40 
30.16 
23.99 
21.82 
19.16 
14.85 
12.84 
10.03 
8.58 
7.11 
5.48 
4.54 
3.67 
2.23 
1.71 
0.92 
0.69 
0.33 
0.28 
0.23 

&w 

in.4 

41.34 
39.42 
37.39 
36.30 
22.37 
20.08 
18.55 
9.752 
8.942 
8.169 
6.325 
5.765 
5.169 
4.542 
4.104 
3.564 
3.364 
3.103 
2.652 
2.423 
2.081 
1.888 
1.682 
1.442 
1.282 
1.123 
0.8378 
0.7111 
0.4978 
0.4137 
0.2731 
0.2472 
0.2188 

X 
in."1 

0.03307 
0.02904 
0.02555 
0.02406 
0.04968 
0.03935 
0.03476 
0.05125 
0.04270 
0.03764 
0.08815 
0.06956 
0.05413 
0.04468 
0.07154 
0.05434 
0.05081 
0.09204 
0.06588 
0.05873 
0.09926 
0.08118 
0.06923 
0.1296 
0.1012 
0.08400 
0.1344 
0.1059 
0.1831 
0.1409 
0.2991 
0.2406 
0.2057 
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