Torsion of Rolled Steel Sections in Building Structures

TORSIONAL STRESSES in a steel framed building are rarely
serious enough to require design analysis. Many tor-
sional situations can be disregarded completely. There
are conceivable conditions, however, in which torsional
loads can produce stresses of sufficient magnitude to
require torsional analysis of a framing member.

It is important, therefore, that the structural engineer
understand the principles of torsional behavior in rolled
steel sections, and be able to recognize those special
situations in which torsional loading may be significant
to the design.

The purpose of this paper is to provide practical
guidance to the designer in the evaluation and analysis
of the effects of torsional loading on steel framing mem-
bers. Design examples illustrate both a “short” approxi-
mate method of torsional analysis and a more exact
method. A brief review of basic torsional theory and
the torsional properties of rolled steel sections are in-

cluded.
Fe-
e
Ril 9
N

i

——— P
I
XA% |
-Mw i
b <L p

y

-M=Ph +M =Pe

+M=P(e+x)

Figure 1

TORSIONAL BEHAVIOR

Torsional Loads —When a structural member is twisted
about its longitudinal axis, it is said to be in torsion.
Twisting is caused by external forces, moments or a
couple acting on the member. Figure 1 shows these
types of loads. The couple is composed of two parallel
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forces, equal in magnitude and opposite in direction.
These forces are acting normal to the axis of the member.
The usual torsional loading is that of a vertical load P,
which does not pass through the shear center S, of the
cross-section. The distance from load P to the shear
center § is called the eccentricity, e. The eccentric
moment that induces torsion on the cross-section is Pe.
This moment is called M. (In this paper M represents a
concentrated torsional moment, and m represents a
uniformly distributed torsional moment induced in a
member.)

Effects of Induced Torsion—The aforementioned types
of torsional loading are the cause of twisting in a member.
The effect of this twisting can be threefold in a W7, I
and [-section: torsional shear stresses, torsional warp-
ing shear stresses and torsional normal (longitudinal
bending) stresses. These additive stresses often occur
together with shear and normal stresses due to plane
bending. Of these torsional effects, the magnitude of the
torsional normal stresses is much greater than any of
the other torsional stresses. The emphasis on normal
stresses resulting from torsion will be discussed later in
this paper.

Internal Equilibrium—The development of torsional
stresses in a cross-section of a member is the result of
internal resisting moments, which balance the applied
moment M or m. For torsional equilibrium, then, the
fundamental equation is

M, =M, + M (1)

where M, is the total of the internal resisting moments
producing torsional shear, M, is a torsional resisting
moment called primary torsion (M, is also known as ““St.
Venant’s” torsion, “pure” torsion and ‘“‘unrestrained’
torsion), M, is a secondary torsional moment which
expresses warping resistance of a cross-section (M, is
often called ““warping” torsion). Actually, Equation (1)
is a statement of shear equilibrium, as both M, and M,
produce shearing stresses. It is generally assumed that
normal stresses o, resulting from primary torsion M,
are negligible, unless the angle of twist is very large.
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Analogy between Torsion and Plane Bending—
Figure 2 shows a wide flange beam loaded at midspan
with a concentrated torsional load M equal to unity.
As shown, the ends of the beam are considered simply
framed, AISC Type 2 construction, where it is assumed
that the ends of the beam are free to rotate under loading
which produces plane bending. A web connection consisting
of two clip angles may be considered as Type 2 con-
struction (See Fig. 8b). Under forsional loading, however,
this connection prevents twisting of the beam about its
longitudinal axis at the connection, since the web is
restrained.

At any cross-section of the beam from A to C the
internal moment M, equals M), and from C to B, M,
equals —M,. It can be seen also that Ma — My = 0
and M, + M, = M, and finally the following expressions

b
M1=2MandM2=~(;M

2)

An interesting analogous relationship is suggested
by Equation (2). The analogy exists between the shear
diagram due to plane bending and the moment diagram
due to torsional twisting (Fig. 2). If a concentrated load
P is applied at midspan, the shear at each end of the
beam will be VV = P/2. In the case of a torsional concen-
trated load M at midspan, the end moments M; and M,
are equal to M, and M, = M/2.

The moments M; and M, are determined in the
same manner as the reactions at A and B due to a single
load at C. It should be emphasized explicitly that this
simple, apparently obvious analogy is by no means
valid in general. For beams framed with Type 2 con-
struction, the assumption that M, = M; and M, at
ends A and B is valid and Equation (2) is directly
analogous. However, when beams are framed with
Type 1 connections (welded, fully rigid) this assumption
is not always strictly valid because of unsymmetrical
loading conditions and the redundancy of the supports.
Table 1 makes this distinction, and exact values are
given when this analogy is not strictly valid. For beams
subjected to a uniform torsional loading m, the same
comments and restrictions for concentrated torsional
loads apply.

Influence of M,—The torsional resisting moment M,
is well named “primary”’, because it always appears to
some extent in a beam under torsion. It is zero in a
cross-section only when that cross-section is completely
restrained against warping, such as at a fully welded
connection. (See Case 5, Table 1.) In Fig. 3b, the cross-
section at midspan must remain planar due to symmetry
of load M (note that the angle of twist ¢ = 0 at each end,
viz., no twisting). Thus, since this cross-section at mid-
span is completely restrained against warping, M, = 0
also. Warping is defined as a plane which when acted
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upon by forces, no longer remains planar; it warps out
of plane.

The fundamental equation for primary torsion, for
non-circular sections, is

M, = GK¢' (3)

where G is the shear modulus, ¢’ is the first derivative of
¢ (the angle of twist) with respect to z, and K is a tor-
sional constant which describes the torsional resistance
of a cross-section, and is based upon the geometry of the
profile. Values for the torsional constant K for rolled
steel sections have been published by Bethlehem Steel
Corp.! Reference should also be directed to a recent
paper by El Darwish and Johnston® covering an accurate
calculation of this constant. For cross-sections made-up
of welded plates, values for K can be computed from
Chart 1.

Equation (3) shows that A, is directly proportional
to G, K, and ¢', whereas ¢’ is indirectly proportional to
GK, where GK is the forsional rigidity of the cross-section.
Thus as K is increased, M, increases. This means that
M, will offer a greater resistance to twisting action.
The larger values for K appear for the larger (thicker)
beam sections. For example, K = 68.80 for a 36 W
300 section, whereas, K = 0.195 for a 5W 16 section.!

The influence of M, is shown in Figs. 3a and 3b.
In Fig. 3a, a solid circular cross-section is loaded at
midspan with a torsional moment M = 1. At the ends,
M, =M, = M/2 and ¢ = 0. Since a circular section
cannot warp (warpfree), M, is constant for each half of
the beam. From Equation (1), M, = M, 4 0, where
M, = 0 and there is no warping. For circular sections,
then, M, = M, and M, is exactly analogous to the
shear diagram in plane bending. In Fig. 3b a WF section
is loaded at midspan with a torsional moment M = 1.
The noticeable difference between Fig. 3a and Fig. 3b
is the curve for M,. Since WF, T and [ -sections are free
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to warp if unrestrained, M, no longer equals M, An
increment of M, is made up by the contribution of M,
as warping torsion. At midspan, where due to symmetry
the cross-section remains planar, M, = 0 as in Fig. 3a.

Influence of M —Figure 3b also shows the influence of
M. At midspan where the cross-section is prevented
from warping, the warping resistance is maximum.
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Here M, = M, = M/2. Since the sum of M, and M,
equals M, the curves for M, and M are complementary.

As M, expresses warping resistance, a distinction
must be made between various profiles as to their warping
characteristics. One way is to refer to a warping resistance
constant, known as C,. Approximately exact values for
C, are tabulated in Table 4 for all rolled sections com-
monly used. Other values for C, can be computed for
sections of built-up welded plates by using the equations
in Chart 1 and 2. For rolled WF sections

»o LR
Cyp = {235 or —2— 4)

Chart 1 shows the equations for G, for several built-
up cross-sections. For rolled sections, €, is negligible for
T and L-sections. W=, T and [ -sections, on the other
hand, are free to warp if unrestrained and warping
effects must be considered. Sections made up of not more
than fwo rectangular elements do not warp, because of
the fact that the middle planes of each element pass
through the shear center. For WF, T and [ -sections, the
middle planes of every element do not pass through the
shear center (Chart 2).

The warping resistance for moment A/, is determined

from the equation

M, = —ECy$"" (5)

where E is the modulus of elasticity and ¢’’’ is the third
derivative of ¢. From this equation it is seen that the
warping resistance constant C,, is directly proportional
to the moment M, and indirectly proportional to the
angle of twist ¢. When C, = 0 as in circular sections,
M, = 0, as was shown in Fig. 3a. In Equation (5) the
term EC, is actually a measure of the warping rigidity
of a cross-section. In Equation (3) the term GK is a
measure of the forsional rigidity of a cross-section. Both
of these terms, influenced by the geometry of the cross-
section, are important to torsional behavior. The ratio
of these rigidities appears in another torsional constant
called A\, which is tabulated for all rolled sections in
Table 4. X\ is a constant that describes the rate of de-
crease of the warping stresses and is found from

(6)

Torsional Stresses Resulting from A, and M —The
result of torsional moments M, and M, in a member is
shearing stress. Figure 4 shows the cross-section of a
WF profile under the influence of AM,, M, and M,
The diagram for +M, shows that shearing stresses are
developed in the flanges and web as a result of M,. The
diagram for +4-M; (warping) shows that the shearing
stresses resulting from A appear only in the flanges.
+M, and + M follow sign convention when a positive
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angle of twist occurs as shown in Fig. 5. In terms of
torsional shear magnitude, flange warping shear due to
M, is minor, compared to flange shear resulting from
M ,; hence, M,is called a secondary resisting moment.

The torsional shearing stress 7, in the flanges or web
of a W, T or [ -section due to M, is determined from the
equation

Tp =

M,

% M*

where ¢ is the thickness of flange or thickness of web.
Torsional shearing stresses in the flanges due to
warping are found from

wmaxb MS

4 C, ®)

Ty =

where w,,,x, shown in Chart 1, is the unit area of stress
in the flange and b equals the width of the flange. For
WF, 1 and [ -sections wma.x = w,. For [-sections w,
and w, are required as shown in Chart 1. The values for
w, and w, are tabulated in Table 4 for all rolled L-
sections.

Torsional Normal Stresses Resulting from Af,—Thus
far the discussion has been centered around two effects
of twisting, namely M, and M, and the associated
shearing stresses. Of all the torsional effects in W, I and
[ -sections, the additive effect of torsional normal
stresses o, is the major consideration. The normal
stresses ¢, are a result of torsional flange bending (in-
duced by warping restraint) and are shown in Fig. 4.
+ M, is shown as the horizontal bending of the flanges
producing normal stresses ¢, in the flanges. Torsional
normal stresses o, must be added algebraically to the
normal stresses o, produced by plane bending. Note

in Fig. 4 the signs for stress o, follow the sign convention
previously mentioned.

Normal stresses in plane bending are determined
in the well-known manner by dividing the bending
moment by a factor called section modulus. In torsional
behavior, Prof. Bornscheuer?® ¢ suggests that the factor
S, be used as a warping modulus, and M, as a moment
(expressed as lb-in.?),* to describe flange bending.
This flange bending due to torsion is expressed by the
equation

M, = —EC,¢'’ )

Note that this equation is identical to Equation (5),
except that the second derivative of ¢ is used here. The
torsional normal stresses can be determined from

(10)

In each of the Cases of Table 1, the two lower dia-
grams represent the curves for A, and AM,. When
plotted one above the other, the designer can quickly
locate the ordinate to the curve which is maximum.
Both the location and magnitude of the ordinate are
given, and the additive effects of normal stresses can be
quickly attained.

Summary of Torsional and Shears—In any WF, I
or [-section under torsional loading, three internal
moments occur, which are:

M, = GK¢', which produces flange and web shear 7,

M, = —EC,"’, which produces flange bending and
flange normal stresses o,
M, = —EC,¢’"', which produces warping shear 7,

in the flanges only.
From these equations it is seen that the only unknowns
are the angle of twist ¢ and its three derivatives. In de-
signing for torsion, ¢ is unknown; therefore, it has to be
determined by the solution of the general differential
equation.

However, the designer does not have to use this
differential equation, since Table 1 has been set up for
maximum torsional moments, which have been com-
puted by determining the proper constants of integra-
tion and the location of maximum values. The simplified
resulting equations are shown in each Case.

AM-Curves and Their Significance**—TFigures 6a and
6b illustrate families of curves with varying pa-
rameters of A. One family represents the A ,-curves

* Generally accepted expression for shearing stress in flanges or web.
Reference 6 has, for the first time, more accurately determined this
expression. In some cases, particularly [ -sections, Equation (7)
may be low by 20 per cent for values of shear in the flanges.
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* Bornscheuer uses the term “‘bimoment”, since its dimension con-
tains the second power of inches.
** Reference T provides more extensive curve-plots for all rolled
sections.
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and the second family below it, the M~curves. The third
diagram is the sum of the M,- and M -curves and is a
plot of Equation (1), M, = M, 4+ M. Asis true of any
parameter, A/ is fixed for each individual curve but
differs from one curve to another in the same family.

Observation of Fig. 6a, with a unit torsional load at
midspan, and Fig. 6b, with the same unit load at x =
0.3/, shows the complex nature of the curves involving
hyperbolic functions. In Fig. 6a the family of M ,-curves
(M = 5, 3 and 2) each have the same point of inflection
at midspan. At each end of the beam where x = 0
and x = [/, the ordinates at these points are maximum.
As the parameter A increases, the y-intercept to the
M -curves becomes larger. Graphically, this indicates
that the influence of M, is greater, and has more resis-
tance to twisting than M, Examination of the famliy
of M ~curves shows that the point of maximum ordinate
occurs at midspan where the curves pass through the
point of inflection. As N increases, the y-intercept close
to x = 0.5/ becomes smaller and the influence of A/ is less
noticeable.

By comparison, Fig. 6b shows the same family of
curves, with different curvatures and a notable difference
in the point of inflection for each A-curve for values of
M. The point of inflection not only is not under the load
as would be expected, but has different x-intercepts.
The point of maximum ordinate to the M ,-curve is at
x = 0. In the case of the M ~curves the point of inflection
occurs under the load at x = 0.3/. The maximum ordi-
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nates to the curve are at the point of inflection. The
higher values of A yield smaller y-intercepts and M,
contributes less in resisting the twisting of the beam.

The three curves of each diagram represent A = 2,
M = 3 and M = 5. In order that their significance be
meaningful in a practical sense, three beams have been
selected from Table 4 whose A values, when multiplied
by the span length /, correspond to the A values plotted.
The span length / is arbitrarily taken as 200 in. The beam
sections and their A values are as follows: 24 WF 76,
A = 0.0103; 18 WF 70, Ax = 0.01475; 8 W= 40, A =
0.0245.

Chart 3 gives the computed values for the ordinates
to the M-, M- and M ,-curves in Fig. 6. It can be seen
that the sum of the M, and M, ordinates all add to the
sum of 0.50, which agrees with the diagram for M, in
Fig. 6a. The analogy between the shear diagram and the
M, diagram is strictly valid for this case of loading and
end support. Therefore, M, = 0.5M.

Figure 7 illustrates the family of M ,-curves located
under the moment diagram for unit load at x = 0.3/
producing plane bending. The parameters plotted are
M = 5,3 and 2 as used in Fig. 6a and Fig. 6b. The
maximum ordinate to the M, -curve appears at x =
0.3/ where each curve has a marked cusp. The maximum
ordinate to the AM,-curve for symmetrical torsional
loading also occurs under the point of loading and will
correspond to the same location for the maximum
ordinate to the M ,-curve.
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As the A values increase, the y-intercept becomes
greater. It can be seen from this figure that a greater
warping resistance is required of a cross-section as A/
increases. When heavier, thicker beam sections are
selected, the ordinate to the M,-curve becomes smaller,
indicating that the geometry of the section has less
tendency to warp and consequently the normal stresses
developed will be of a lower magnitude.

The various Cases shown in Table 1 include only one
curve for the parameter A. It was not necessary to plot
other A-curves, since in practice the designer is primarily
concerned with the location and magnitude of maximum
ordinates to the curves. Equations to the right of the
diagrams provide this information. After studying the
curves in Fig. 6a and Fig. 6b it will be evident that one
curve of a family exhibits certain common characteristics
compared to other curves in the family. All curves of the
same family have the same concavity viz., concave
upwards or concave downwards. All curves at any y-
intercept have the same sign for curve slope m = Ay/Ax
viz., Ay increases or Ay decreases, indicating negative
and positive slope respectively. Graphically this tells the
designer the important condition as to whether the func-
tion under study is increasing or decreasing at any point
along the beam span.

END RESTRAINTS

The condition of an end restraint is important in
torsional analysis, as it is in plane bending. In building
construction, and for plane bending, the AISC suggests
three types of end restraint, namely: Type 1—fully-fixed
beams, Type 2—simple connections, and Type 3—
semi-rigid framing (partially restrained). In torsional
analysis, only Types 1 and 2 will be considered (Fig. 8).

A Type 1 connection, in which the beam-end is
fully welded around the flanges and web, offers only
partial warping restraint and M, # 0, as is found in
many references. This restraint may range from 20 to 60
percent. In order to assume M, = 0 as shown in Fig. 8
and the diagrams in Table 1, the ends of the beam must
be boxed-in. This can be simply taken care of by welding
stiffener plates between the toes of the flanges. To be
effective in the end zone of the beam, the length of these
stiffeners along the longitudinal axis of the beam must
be equal to or greater than the depth d of the beam.
The designer should also take into consideration the
torsional characteristics of the column in a beam-to-
column connection. Where the rigid box-ended beam
connects to a column with torsionally soft flanges it is
advisable to provide column stiffeners between the
flanges at the point of load application (see Design
Example 1). In Type 2, which is considered as a typical
web connection made up of two clip angles, the twisting
at the connection is prevented and ¢ = 0. However, it
should be recognized that the L distance of the clip
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— Spandrel beam restrained against
twisting. Torsional load P e produces
negligible angular rotation of beam.

Fig. 9. Uniform torsional loading with no torsional stress effect

angles must extend over the major depth of the web
in order that the assumption ¢ = 0 is reasonably valid.

What are the effects of end restraint on M ,, M, and
M2 Figures 8b and 8c show Type 1 and 2 connections,
where for Type 1, ¢ = O and M, = 0; for Type 2,¢ = 0
and M, = 0.

For torsional equilibrium, M, = M as shown in
Fig. 8c. In the Type 2 connection the beam does not
twist at the connection. However, since the flanges can
displace as shown in Fig. 8b, there is no restraint to
flange bending and M, = 0. The equilibrium of tor-
sional moments is M, = M, + M. Actually, M; would
be zero at the ends if the beam were twisted by an equal
and opposite moment at each end. This condition of
pure torsion will rarely be found in structural practice.

PRACTICAL DESIGN CONSIDERATIONS

The occasions in actual practice where torsional
problems arise are few in number, when considering
building design. When such occasions occur, however,
certain preliminary questions should be proposed.
Will the torsional load produce significant twisting?
Are there any restraining effects which will prevent
twisting?

When an appreciable torsional moment is known to
exist, the most satisfactory solution is to use a full length
welded box girder. Usually with appreciable torsion,
the box girder will take no more material than a heavy
rolled section with welded end stiffeners.

In building design, most structural members are
laterally restrained because of attachments to the struc-
ture along the length of the member. Rarely will the
designer find a beam that is totally unrestrained viz.,
free to twist over its entire length. Hence, a good many
cases involving torsional loading show that lateral
restraints, existing in the form of attachments to the
member, prevent twisting and torsional stresses can be
ignored. This condition may be considered as torsion
that is self-limiting. It is of no consequence when limited
by the permissible end slope of the attaching members.
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Based upon this evidence, beams that are a part of
the floor assembly in buildings are usually restrained by
a floor slab and, therefore, the torsion is simply self-
limiting. Figure 9 illustrates this point where a typical
spandrel beam is under a one-sided loading. The torsional
load does not pass through the shear center. Norm-
ally, this loading would introduce torsional mo-
ments and subsequent torsional shearing and bending"
in the beam. In Tlig. 9a the floor assembly consists of a
concrete floor slab, usually not less than 4 in. in thick-
ness, spanning not over 8 ft between intermediate
beams. In order that the spandrel beam can twist under
this eccentric loading, the entire floor assembly would
have to rotate as well. Although the concrete slab in
Fig. 9b is only 214 in. thick, it also offers continuous and
adequate lateral support against torsional twisting.
Since twisting is prevented, it is safe to assume that
normal stresses due to torsion can be ignored and no
torsional analysis will be required.

Spandrel beam twisted by
wet concrete
acting as eccentricB==—
load.

Fig. 710.  Uniform torsional loading produces torsional stresses

Beam Twists During Erection—When significant
twisting occurs in building construction, it will probably
be during erection, before all the final loads are applied.
During the erect' on of building structures, while tem-
porarily unbraced, an unbalanced loading condition
may produce excessive twisting. A few years ago, the
writer investigated steel beams twisted by torsional
loading as a result of improper field practice. The case
involved spandrel and header beams in a school building,
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which were twisted as much as 17 degrees. The twisting
was due to unbalanced loading as shown in Fig. 10.

The formwork for the concrete slab was supported
by wire ties wrapped around the top flange of the
beams. All wire supports, however, were carried down
on one side of the beam only. These wire ties supported
the entire weight of the wet concrete. The one-sided
support introduced an eccentricity equal to one-half
of the flange width.

Since the beams were sized for plane bending only,
they were torsionally weak. Had the wire ties been
carried down on alternate sides of the beam, the un-
balanced loading condition would never have occurred.

Improving the Torsional Rigidity—One means of
improving the torsional rigidity of a rolled steel section
is by the addition of new material, thus altering the K-
value of the section—restricted, however, to that zone
where the additional material occurs (Fig. 12). In other
zones of the beam the effect is indirect. As an example,
when a plate is welded between each flange at the toes,
as in Fig. 11, the K-factor is increased considerably.
In this instance K is increased to 3,246, approximately
one hundred times the original value. The addition of
these plates is analogous to the addition of cover plates
to a beam under plane bending. It should be pointed
out that the addition of these plates prevents the flanges
from deforming; consequently warping effects become
nil. The resulting closed box section is treated as being
under primary shear only.

In passing, the engineer will recognize another
familiar case of torsion and unsymmetrical bending
resulting from biaxial bending, where a torsionally weak
rolled section has to be reinforced. This is in the design
of crane runway girders. It is common practice to
assume that the bending moment caused by the horizon-
tal loading is resisted by the upper flange. Accordingly,
the top flange is reinforced.

GENERAL REMARKS

If torsional loading is known to produce significant
twisting, and analysis of the torsional plus direct bending
stresses shows the stresses are too high, the following
solutions may be employed: (1) furnish a full length box
girder section instead of a rolled section, (2) provide
additional lateral supports, or braces, which will torsion-
ally restrain the twist, (3) select a rolled section whose
value of X is of a lower value than the one which is highly
stressed, and (4) consider the addition of welded plates
between the flanges as just described (see Fig. 12). The
improved torsional rigidity of steel beams encased in
concrete for fire protection requirements should not be
overlooked.

AISC ENGINEERING JOURNAL

26

06
” ©
- <
09 A
—!* ——— -
K=2bt+ 1048 K=2bd - 2x166%146
3 b.d 16 146
= .67%16 %14 +.34%132x09° % 14 06
Fig. 77.  Effect of stiffeners

~

LIRS RERRRRL LN

~rPlate stiffener Il,

/

Fig. 712. Use of end stiffeners

Weld <

[TV SIVRTINT)

DESIGN EXAMPLES

As stated previously, three types of torsional stresses
are produced as a result of torsional loading on thin-
walled open profiles such as a W=, I or [-section: (1)
normal (bending) stresses in the flanges, critical at the
toes, (2) primary shear stresses in the flanges and web,
critical at the juncture of the web and flange, and (3)
secondary warping shear stresses in the flanges, not
critical and normally disregarded in stress analysis.

Of major concern in torsional analysis is the increase
in bending stresses at the toes of the flanges which must
be added to the direct bending stresses. Therefore, in
any torsional design the first step is to determine the
location of the maximum torsional moment M,, and
then determine the maximum normal stresses. Reference
to Table 1 for the type of loading and nature of end
restraint will give the location of the maximum ordinate
to the M,-curve. With a few minor exceptions, this
location, as appearing in the diagrams, is applicable to
all M-curves of the same family. Where this is not true,
an Z-distance is given for several M-values. A linear
interpolation can be made for intermediate values of Al.

The most frequently used loading condition is that
of a concentrated torsional load M applied at some
distance x from the left support, and a uniformly dis-
tributed load m applied over the entire span. For these
conditions then, a “Short Method” is offered to the
designer permitting him to evaluate the magnitude of



M, and ¢, immediately before continuing an extensive
torsional analysis. The results obtained by this method
are then compared with the permissible stresses for
combined bending and torsion. If the results are close
to the allowable stresses established, then a more exact
method should be undertaken. The design examples
illustrate both methods.

Under the “Short Method”, each of the two loading
conditions just mentioned are treated separately for two
cases of end restraint. Table 2 covers Type 2 construc-
tion (simple framing connection) and Type 1 construc-
tion (all welded, fully fixed connection) is covered by
Table 3.

When a more exacting analysis is required, the
designer may refer to Table 1 using the appropriate Case
for loading and end restraint. Equations are given for
computing the maximum M,, M, and M. For special
conditions, an equation is given for M,, for any value of x
along the span. With this information a complete /-
curve for M, can be plotted. It will be found by the
designer that under most circumstances the addition of
torsional primary shear stresses is inconsequential.

Space does not permit the inclusion of the derivation
of the general differential equation, nor the complete
solution of this equation for numerous other conditions
of loading and end support (see References 3, 13, 15).

Example 1

Given: An 18WF96 beam fixed at both ends is under a
torsional load P, applied at the end of the bracket
whichis 71 in. long. (The eccentricity, ¢ = 71 in. The
torsional moment M = 71 X —400 = — 28,400 lb.-in.)
(See Fig. 13.)

Solution:

From AISC Manual
I, = 1674 in#
S, = 184.4 in.®
w D. L. beam

Table 4

= 50.90 in.2

I, = 15,380 in.
302.1 in.t

= 0.01201 in.™!

>’SC/J
Il

Normal stresses:

where

M, = plane bending and M,, = flange bending (torsion)

/ ; 1 13'-4" | 13'-4" / ;
A ’,I8“F96
/ %
\ ! Plate
Weld stiffenersl/
P =400Ib.
2=26'-8"
4
2 2 =
éL 3 Jé ;"h I l/": |D.|L.|b?m|'n g
L., M=Pe I I_, z |
4 4 4
max| M, max ma%‘d max
B max || T o
—

m%x_ M., jl/]E!:OX m%_‘z M, _rll’gx
\ /’ max 1
t ' I ’

max o, max o, maxo, maxg, maxo,
maxg, maxco,  maxo, maxo, maxoy

See TABLE | Case 10 & 5 and Short Method in TABLE 3.

Figure 713

1. From moment curves in diagram it is seen that the
controlling condition will be when moments are
combined at the end supports, for the determina-
tion of normal stresses.

2. Determine the moments and normal stresses due
to plane bending:

Load P:
Pl 400 X 320 in.
My= - = —"—""-""=-16,000 lb.-in.
8 8
(max at center and ends)
M 16,000 86.7 gi
T, = — = — — =
PTS T 1844 T OOPY
Load w:
wil? 96 X (26.66)2
M = - = == — -
v = 15 2 5,700 1b.-ft.
(max at ends)
M 5,700 X 12
o = L = ———— = 371 psi

N 184.4

27
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3. Determine the moments and normal stresses due to

warping torsion:
Quick Method: Use of influence lines in Table 3.

The following values are required:
Lety = A = 0.01201 X 320 = 3.84, n = 0.370,
where 7 is found by entering Table 3 with z// =
160/320 = 0.5, proceed to curve where y =
3.84. The desired value of 7 at the left is 0.370.

The moment M, due to flange bending, for z = 0 is

M, =

1
M = 0
A 0.01201 X

(—28,400) = —876,000 lb.-in.?

The normal bending stress is

The normal stresses are as shown in Fig. 14.

[+ __1458psi 2900psi
- P V‘ﬁm P
Plane bending Torsion
EZ_-:Msepsi B~ 2900psi
Figure 14

At point (1), max ¢ = max ¢, + max o,

= 458 + 2,900 = 3,358 psi

Conclusion: Since a,,,., due to combined bending and
torsion, is well below any allowable stress limit it is
unnecessary to proceed to a more extensive analysis.

Example 2

Given: Assume the same conditions as Example 1 except
for loading. Let m equal a uniformily distributed tor-
sional load. Then m = 100 X 7 = 700 lb.-in./ft or
58.4 Ib.-in./in. (See Fig. 15.)

Solution:

Quick Method
1. Determine warping moment M, from influence
lines Table 3.
Lety = A = 0.01201 X 320 = 3.84 and 1/X\? =
6,940
Enter tabular values at right with v =
find area 4 =~ —1.07462.

3.84 and
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m=100Ib/ ft

Figure 15

Warping moment M, for z=0 equals 1/\A4m

where m = 58.4 lb.-in./in.
M, = 6940 X (—1.0746) X 58.4
= —436,000 lb.-in.
— 436,000
= — " = —1,450 psi
max o 3021 ) pst

This stress would then be added to any bending stresses
resulting from plane bending.

Exact Method
Table I, Case 5

Warping moment M,, = —EC,¢"’

_ 72(1 _a—p sinh )\z. -+ sinh )\z’>
P sinh A/
where
N = 3.84
Az = 0.01201 X 0 =0
A = AN
L A2 192
tanh A(//2) 0.95792
0+ 225
M, = 58.4(6,940)(1 — (1+1)+—>
22.5
= —406,000 lb.-in.
_ —406,000 345 o
max ¢ = 3021 = s pst



w=1151b/ft
IS L L s P
4
E
2= 50"
P+w
o (€]

S 'c.g.
x<—1,
8Cils
H I~
AN L

y
b =2.25"

Figure 76

Example 3

Given: Cantilever beam loaded at its free end with a
concentrated load P = 1 kip, acting through the c.g.,
point G. The dead load of beamn will also be considered
as acting through the c.g. (See Fig. 16.)

Solution:
From AISC Manual From Table 4
I, = 32.3in* A = 0.05873 in.!
S, = 8.1in.3 Sp = 2.423 in.t
x = 0.58 in. I, = 12.84 in5
w, = 2.555 in.?
w, = —5.3in.2
e = 0.5785 in.
Loads: D.L. w = 11.5 1b./ft = 0.96 1b./in.
P = 1 kip

Eccentricity: = ¢ 4+ x = 0.5785 X 0.58 = 1.16 in.
Torsional moment due to D.L.:
—0.96 X 1.16 = —1.11 Ib-in./in. = —m

Torsional moment due to P:
—1000 X 1.16 = —1,160 Ib.-in./in. = — M

The stresses at the fixed end are as follows:

Due to plane bending:

Bending moment due to w:

0.96 X 50°
M, = — ——?— = —1200 Ib.-in.

Bending moment due to P:
M, = —1000 X 50 = —50,000 Ib.-in.
Bending stresses due to w:

1,200
gy, = =+ =

8.1

+148 psi

Bending stresses due to P:

50,000
8.1

g, = % = =*6,170 psi
Due to warping:
For warping calculations the following factors are
needed:
A2 = 0.05873% = 0.00345
M = 0.05873 X 50 = 2.94
From Table 2:
sinh N = 9.431
cosh N = 9.484
tanh A = 0.9944

Warping moment due to w:

From Case (6) where z = 0 and N sinh Az = 0-

m (1 + N sinh A\) X 1-’
M, = ;2[1 +0- cosh A/
111 (1 4 2.94 X 9.431)]
"~ 0.00345 [ 9.484

Il

+654 Ib.-in.?

Warping moment due to P:

sinh
From Case (7) where 2z’ = [ and l’h = tanh:

COS
M = M< sinh M)
Y cosh N/
-~ (—0.9944) 4 19,720 lb-in.2
~0.05837 ‘ ’ '

Warping stresses due to « at points O and (®:
M, 654

=g, Tzazs o 2Ops

oy = %ﬂ X w ;;685; X 2.555 = +130 psi
Warping stresses due to P:

oy = 5%722?0 = —8,140 psi

01 = %874%9 X 2.555 = +3,920 psi

The total longitudinal bending stresses in the upper

flange at points ) and (@) are:

Pt. ®: ¢ = 4148 + 6,170 + 130 + 3,920
= 410,368 psi

Pt.@®: o = +148 + 6,170 — 270 —
= —2,092 psi

The largest combination appears at Pt. (0.

29
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w=2k/ft Determine max. warping bimoment M, at midspan by

Fg'—s.i using Table 2, Quick Method. Since N/ = 1.88, a
T T linear interpolation between A = 1.5 and 2.0
2 | " gives 0.0893. Then max. M, = 0.0893 m? =
2 0.0893 X 1,000 X 462 = 189,000 Ib.-ft.
4 b M, _ 189,000 _
ma. = - = =
X 0y s 1z ,540 psi
— Determine max. moment due to plane bending at
e midspan:
2
12 2 2,000 X 46?
—5— max M, = % = —;5— = 528,000 lb.-ft.
Figure 717
M, 528,000 11.600 osi
max o, =--° = -— = 11,600 psi
E le 4 Combined normal stresses: max o, + max ¢, =
xampie 3,540 + 11,600 = 15,140 psi (See Fig. 18.)
Given: A beam built-up by welding three plates resem-
bling an I-section is loaded with a uniformily distributed 11,600psi -3,5400psi
torsional moment m = 1000 lb.-ft/ft over the entire =1 VA

span of 46 ft. The end connections are assumed to be
bolted web clip angles, Type 2 construction. Deter-
mine if the additive torsional normal stresses are within ) SN

s
permissible limits by the “Quick Method™. (¢ = 6 in., -11,600psi 3,540psi
= 2,000 1b./ft.) (See Fig. 17.
/i) (See Fig ) Figure 18
Solution:
m = w, = 2,000 X 0.5 = 1,000 lb.-ft/ft (positive Check by long method using Table 1:
morment, see Fig. 5) 1
Determine the torsional constants and properties from max M, = m [1 — ——_}
Chart 1: AZ cosh N\/2
1 1 where N//2 = 0.94 and cosh 0.94 = 1.475
C, = — b’ht= ~123>(5352><050
24 24 1000 1
max M, = ——— |1 — ——
= 103,000 in.b 0.00341 1.475
2 = 27,800,000 1b.-in.

1
K = -b8 + - 4Lt
3 + 3 By quick method:
27,800,000 X 144 = 27,200,000 Ib.-in.

2 1
3 X 12 X 0.50% + 3 X 53 X 0.503

3.21 in#
b/z 12 >< 53.5

Wmax =

= 0.62¢4/= = 0.6 = 0.00341 in. !
103 000

M = 0.00341 X 552 = 1.88

= 160.5 in.2

Sp= —2 = = = 642 int

30
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NOMENCLATURE

Distance measured along the longitudinal axis
of member (ft); distance from the shear center
to the centerline of web in a channel (in.)
Width of a flange (in.); length of a rectangular
element (in.); distance measured along the lon-
gitudinal axis of a member (ft)

Distance measured along the longitudinal axis
of a member (ft)

Depth of a section (in.)

Eccentricity in a member; in a channel it is the
distance from the shear center to the back of
the channel web (in.)

Subscript indicating flange ; symbol for function
Distance between centroids of flanges (in.)
Span of a beam (ft)

Distance between flanges (in.)

Uniformly distributed torsional load (Ib.-ft/in.)
Thickness of a flange (in.)

Thickness of a web (in.)

Value of unit warping at points a and b of a
flange for W, T and [ -sections, (in.?)
Maximum value of unit warping, wWn.x = w,
for Ww and I sections (in.?)

Value of unit warping at points 1 and 2 in
the flanges of channel sections (in.?)
Coordinate ; the distance in a channel from the
back of the web to the y-axis (in.)

Coordinate; deflection in plane bending (in.)
Coordinate

Area of a section or rectangle (in.?); area
under influence line (in.?)

Area of flange (in.?)

Area of web (in.?)

Constant of integration

Warping resistance constant (in.6)

Modulus of elasticity (psi)

Shear modulus of elasticity (psi) ; center of grav-
ity of a cross-section

Moment of inertia (in.%)

Torsional resistance constant; associated with
St. Venant’s torsion (in.%)

Length of stiffener plate (in.)

Applied concentrated torsional moment (lb.-ft)
Moment due to plane bending (Ib.-ft)

Primary or pure torsional resisting moment (lb.-
ft) associated with St. Venant’s torsion
Secondary warping torsional resisting moment
(Ib.-ft) ; associated with warping torsion

Total torsional resisting moment at any given
cross-section, where M, = M, + M (lb.-ft)
Warping coefficient of loading and support
condition; associated with warping forces and
used to determine flange bending (lb.-in.2)

“ oy

8

AD ¥ DL

Concentrated load (Ib.)

Shear center of a cross-section

Warping section modulus (in.%)

Section modulus about x or y axis (in.%)
Parameter where v = A (dimensionless)

Unit angle of twist (radians/in.)

Torsional constant, A = \/GK /EC, (in.71)
Radius of curvature (in.)

Normal unit bending stress (psi)

Normal stress associated with plane bending
(psi)

Normal stress associated with primary torsion
(psi)

Normal stress associated with warping torsion
(psi)

Unit shearing stress (psi)

Shearing stress due to plane bending (psi)
Shearing stress associated with St. Venant’s
primary torsion (psi)

Shearing stress associated with secondary warp-
ing (psi)

Total angle of twist (radians)

El,, EI, Bending rigidity of a section (lb.-in.?)

Torsional rigidity of a section (1b.-in.?)

EC, Warping rigidity of a section (Ib.-in.*)

REFERENCES

. Torsional Analysis of Rolled Steel Sections. Bethlehem Steel

Corp., 7963.

. Bornscheuer, F. Systematische Darstellung des Biege-und

Verdrehvorganges unter besonderer Berticksichtigung der
Wolbkrifttorsion, Der Stahlbau 27, 1952, 5. 1.

. Bornscheuer, F. Beispiel und Formelsammlung zur Span-

nungsberechnung diinnwandiger Stabe mit wolbben-
hindertem Querschnitt, Der Stahlbau 22, 7953, s. 32.

. Bornscheuer, F. Schweissanschlusse Torsionsbeanspruchter

Trager mit I, [-und Z Querschnitten, Schweissen und
Schneiden, Jahrgang 13, Heft 3, Marz 71967.

. Eggenschwyler, A. Uber die Festigkeitsberechnung von

Schiebetoren und dhnlichen Bauwerken, Diss. ETH 7927.

. El Darwish, I. A. and Johnston, B. G. Torsion of Structural

Shapes, Proc. ASCE, 203-227, Feb. 1965.

. Goodier, J. N. and Barton, M. V. The Effects of Web De-

formation on the Torsion of I-Beams, J. Applied Me-
chanics, 17, March 7944.

. Kollbrunner, C. F. and Basler, K. Torsionskonstanten und

Schubspannungen bei St.-Venantscher Torsion, Schweizer
Stahlbauverband, Zurich, Heft 23, Juli. 1962.

. Kollbrunner, C. F. and Basler, K. Torsionsmomente und

Stabverdrehung bei St.-Venantscher Torsion, Schweizer
Stahlbauverband, Zurich, Heft 27, Okt. 1963.

. Kollbrunner, C. F. and Basler, K. Sektorielle Gréssen und

Spannungen bei offenen, diinnwandigen Querschnitten,
Schweizer Stahlbauverband, Zirich, Heft 28, Jan. 1964

. Kollbrunner, C. F. and Basler, K. Statik der Wélbtorsion und

der gemischten Torsion. Schweizer Stahlbauverband, Zirich,
Heft 37, Mai. 1965.

. Kollbrunner, C. F. and Hajdin, N., Die St.-Venantsche Torsion.

Schweizer Stahlbauverband, Zurich, Heft 26, Sept. 1963.

JANUARY /1966



13. Kollbrunner, C. F. and Hajdin, N. Wolbkrafttorsion diinn-
wandiger Stibe mit offenem Profil, Schweizer Stahlbauver-
band, Ziirich, Heft 29, Okt. 7964.

Kollbrunner, C. F. and Hajdin, N. Walbkrafttorsion diinn-
wandiger Stibe mit offenem Profil Teil II, Schweizer Stahl-
bauverband, Zurich, Heft 30, Marz. 1965.

Lyse, 1. and Johnston, B. G. Structural Beams in Torsion,
Trans. ASCE 707, 857-926, 1936.

Maillart, R. Zur Frage der Biegung, Schweiz, Bauzeitung,
Bd. 77, 1921.

Thirlimann, B. and Basler, K. Plate Girder Research, National
Engineering Conference Proceedings, AISC, 1959.

Von Bach, C. Versuch iiber die tatsichliche Widerstands-
fahigkeit von Balken mit [ -formigen Zuerschmitt, Z.d.
V.d.I., 71909, 1970.

14.

15.

16.

17.

18.

ACKNOWLEDGMENTS

The author expresses his sincere appreciation to
Prof. F. W. Bornscheuer of the University of Stuttgart
for his gratuitous offer in 1961 to compute, electronically,
the torsional constants of American rolled sections ap-
pearing in Table 4. Other credits to Prof. F. W. Born-
scheuer for valuable contributions included in this
paper include: Table 3, influence lines for beams with
welded end connections and the solutions for the differen-
tial equations from which Table 1 was prepared.

Note: An extensive bibliography on the subject of torsion has been
compiled by the author, and is available from AISC.

CHARTS

CHART | Properties of Welded Shapes free to warp”

Doubly Symmetrical Singly Symmetrical
- b
P o | P .
—— l/ — e
! ~_? f e B f' b
N | ! = +M _5 N . = S _chg
i ~ e §|
_J_ b \lWa i" |' t el NWa
2
. |
Wa = Wng, (in®) .b4_h (A + 3 A,)bg,
4A,+% A,
W, (in?) S A/ b2
4A+2A,
3
C.. (in®) 1 Bt 1 pgt 3bt+241t
23 2 6bt+4 1,
K (in*) 2pt’+L 0t 2ptf+lgt’
3 3 3
e (in) — 3bA
6A,+A;

Where A, =flange area = bt, A,=webarea=4, t, Totalarea= 2A, +A,

x- [GK . 062 [K forsteel
EC, C.

* . . .
Exact values for rolled sections are given in Table 4.
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CHART 2 Warping Properties of Welded Shapes

JANUARY /1966

et b
A T by
'F z -F’" 1 —lr"—i'-" ¥
: v . YV x—HE—x
o \‘\ . b=b a ] 2 A= b'f. cg.
X ~yZC.9 - HI / L <
: T N b e i
S T\
2 S 7 ¥ S v 4 1 __l I__f'
b b,
Singly Symmetrical Nonsymmetrical Singly Symmetrical
3 3 3
c, (2bt) =0 C,=A *A; =0 c,=0
144 36
Negligible warping Negligible warping Warpfree
b b
- -
RS 4
._|__A_.__. = [—
is \I‘ .
3 'C.9 X ?.g. =
iFty - -
-
(L} X
__k,__. T —_— -
Lo | _ b
Singly Symmetrical Antisymmetrical
2
C: KL 1, c.=hlL (I -3A) where A = total area
4 2A
Free to warp Free to warp
CHART 3
X M, M, M,+ M, | M, =05M x M, M, M, + M, M,
©| 000 0.1760 0.3240 0.5000 0.50 ©! 0.00 017 49 05251 0.7000 0.70
£ o020 0.1497 0.3503 0.5000 0.50 % 0.20 0.1324 0.5676 0.7000 0.70
< -
& | 050 0 193999 | +0.5000 | :050 ~l 030 oor7e | ;8:332% | 383899 070
N
‘N o070 -0.1159 | -0.3841 | -0.5000 -0.50 ) 0.80 -0.1102 | -0.1898 | -0.3000 -0.30
? 1.00 -0.1760 -0.3240 -0.5000 -0.50 < 1.00 -0.1245 -0.1755 -0.3000 -0.30
o| 000 02875 02126 0.5000 0.50 o| 000 02985 0.4015 0.7000 0.70
K ~
| o020 02480 | 02520 | 05000 0.50 g 020 02241 0.4759 | 0.7000 070
®| 050 0 138990 1105000 | +0.50 ®| 030 01247 | ;33237 13193999 0.70
Pl 070 -0.1954 | -0.3046 |-0.5000 -0.50 ™| 080 -0.1785 | -0.1215 | -0.3000 -0.30
=1 1.00 -02875 | -0.2126 | -0.500! -0.50 = oo -01975 | -0.1025 | -0.3000 -0.30
Q| oo0o 04185 0.0815 0.5000 0.50 Q| o.00 04771 0.2229 0.7000 0.70
% 0.20 03742 0.1258 0.5000 0.50 £ o020 03560 0.3440 0.7000 070
050 0 133933 | tos5000 | *o50 ®| o030 | oirse | ;32758 | ;93999 070
0 o .
.| 070 -03082 |-0.1918 | -0.5000 -0.50 o | o0 -02557 | -0.0443 | -0.3000 -030
21 1oo -04185 | -0.0815 | -0.5000 -0.50 <| 100 -02713 | -0.0287 | -0.3000 -0.30
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TABLE 1

a=0.3% b=07{
f} r\ ¥
g §
M M\‘j M
2-— 4
RegizonI Region II
| M~[flange shear
T =1
M. 1] L]
I
b i maxM,  giope of curve influenced by
Mf=?.M=0,7M M, . A 0 where A =9/§_'.(_
/ - maxM, b EC.
! (MngP.,- Ms
\M M +M : l\’/l flange Blwebshe‘a| hf/l
e T ! 2l "M ' M-9M-03M
i kL

I~

Flange web shear T,, T; are determined from M, and M, respectively. Web shear is determined from M, only.

These torsional shears must be combined with the shears resulting from plane bending.

M, is determined, as above, from the symmetry of loading.

M, max., shown above, is determined from the following Tables.

My =M, -M;

Shears:

Primary torsional shear stress,

Tp =Gf¢' =

Mp t
K

where t is the thickness of the flange or web

Secondary torsional shear stress, T, = M _M_S_

4 Cw

where b is the width of flange
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TABLE 1 (continued)

¢ =0 $:=0

Mw=0 m M:O
A A T S N N O O O O N O A N A M |
#

—F
mafo
Y

$=0 ¢c0
M=0 m M:=0
LTI [ []
AN b a P
m n
I
[

M )
Lt maxM,!

max?, maxd,max’, max7
maxa,

max M, = % [)% _tanh Azl] , yields max 7,

maxM, = maxM,-maxM, , yields max T,

i .
maxM =M |1 - ———|, yields max d,
" )\z{ coshx%} y

M, for any value of z:

M =Mm||-sinhAz +sinhAZ’
"X sinhA

CASE 2

max Mf- ';_3 [Zc +b]

maxM,= [M _ cosh A (a +b) - cosh )\a} ields T
P2 sinh Al Y maxT

M, =maxM, -~ maxM, , yields max combination of shear stresses

maxM =M [I- coshAa :I yields max 6
YR coshX§ ’ w

M, for any value of z :

Region I, M= M | |_coshAa-sinhAz'+coshAG- sinh A z
YR sinh A7

1
Region I,M =M coshx(a +b> —coshAd | sinhAz
"R SinhAZ J

For maxM,, , occurring in Region IT,let z=X=q +h_:‘.f
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TABLE 1 (continued)

¢:0 ¢=o
M,-0 ) M0
(T I I
A T
g

bl
P Mw
_mm@mﬁmwmm__
maxM,, T
max Tp max G,
max T, maxo,,
¢ =0 ¢ =0
M:=0 Mz0
m
[T I T T T I T I TITTITI ]
) hin
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CASE 3

maxM, = 1.9 (2¢-q)
' 22(

maxM, = M A(a—ﬂz)- coshM- coshxb], ield -
P T[ 27 Snh yields max 7,

maxM, = maxM, - maxM, , yieldsmax 7
maxM,, = Amf®

A
a=.

a=.10]0=.20(a=.30/a=.4 0OJa=60]0=.70]a=80]a=90

M 3= 09|%=.16[%=23|X=.29(X=34|%=.38[x=.43[=47|X=49

1.0
20
30
40
5.0

004
004
004
003
003

015
ol4
ol2
010

.009

.030
.026
022
ols8
015

.047
.039
.031

025
.020

.065
.052
.040
032
.024

080
064
048
036
027

.094
.074

.055
.040

.030

.105
.082
.060
043
032

NN

086
063
045
.033

M,, for any value of z:

M_=m (|- sinhAz' + coshAb sinhAz |\ Regionl
" 7( sinhAg

CASE 4

maxM= maxM;

2
.m 2k-()\f) coshAl- (l "‘k) yields max7,
maxM, ‘X[ 22l © smbAf |’ ’

M =M [_ cosh')\g-)\gl-l-k)] , yields max7;
sin

maxM,, = -EA% , yields max 6,

>

M,, for any value of z:

M=l |_sinh)\z+<|+k)slnh)\z'}
VN sinh Az

9)*

AL -tanh A 2hanh A/
Y ( %

where k=hl M -tanhAf{
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TABLE 1 (continued)

$=0 ¢ -0
M,=0 M0

.m
JITITITTIITTITTITITE CASE S5

®n

max M, = E‘ég

max MP= mf 030+ cosh 0.2)\9- cosh O.B)\p yields max %
4 sinh”\T

maxM, =maxM, ,yields max 7

AL )
maxM=M | 1-__ 2 ields maxa,
N [ fanhAZZ}’y v

M,, for any valueof z -

. o A
M,=Mm |_(|_k)smh)\z +sinhAZ' [ where k= 1-_"2
t S 25 58 TR 305 oo N 2 -ﬁ[ sinhA tanh)\_z_
maxM,. B>~ T T maxM,.,
Ty N
max7, max7, max?, max7
maxa, max g,
max o, maxo,
$ =0 M,=0
M0 m  M=0
glllllllllLLl'llllllll CASE 6
2 maxM, = m{
maxM, : maxM, = pm{
Y4 0.5 1.0 1.5 20 3.0 40 | 50

X 10000 |07719 |06344]05371 |0.4256 |03667 |0.3290
D | .0374 | .1145 | .1872| 2466 | .3420| 4200 .4845

max M, = maxM, -maxM, , yields max 75

M, =M |-(|+/\f ihA!?) , yields max o
X T Xé[ cos:;f ’ o

M,, for any value of z -

M =M |1+)\]sinhAz- (IMPsinhAQ)coshAz ]
voN coshAf J
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TABLE 1 (continued)

o
M‘io CASE 7
A 7 M maxM, =M
maxM, =M [I—

- ] ,yields max7,
cos

maxM; = maxM,— maxM, ,yields max 7

? maxM,, = —_':‘4_ (tanh )\f), yields max g,

maxM,
BB M, for any value of z:

M = M|_sinhAz'
" "A| coshAl

max G, max7,
maxo,, max 7
@ = M,.=0
M,.=8 A M, =0
\ CASE 8
a Kj b
maxM, =M
I i maxM, M, =DM, x=a//
a=08 a =06 a=04 a=0.2
glr|2(3la|5]1]|2]|3|4|5|1|2]3 5(1]2

4
X |.75/.64[56|51|.48(.55.46|43.43.40(.36(32(.29(.29\27|.19..17 |.
D |22/.48/.64,74|.82|.12 .31 |.46/.58|6906/.17 |.29/.40/50.0206|.

axM, = maxM, , yields max 7;

maxM,, -% [_sinh/\o + tanh A/ (cosh)\o - l) } , yields max o,

M, for any value of z:

Region 1, M, = ,hxﬁ_ -coshAf sinh/\cz;:;‘g;osh)\o- I) sinhA2'

Region I, M = (cosh)\o —l) sinhAZ' m

coshA/? A
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TABLE 1 (continued)

$ =0 $ =0
M2 fh M0 CASE 9  For Quick Method see Table 3
sy D or Quick Method see Table
7 mafo= -7
1 il
=Mm|b sinhAb iel
maxM, M[Y_WJ ,yields max 7,
maxM, = maxM, -~ M, , yields max 7

= M sinhAb i i
maxM,, = Sinh A7 sinhAa , yields max g,

M, for any value of z :

4 M
mox—rh-_-M ‘

I S — ! = M sinh Ab g;
maxM.. 4 w@@w Region I, M, Tm sinh Az
max7?, max 7T
max &, Region II,M_ =M sinh A a ginp),
maxg, " N sinh AP
$ =0 ¢ =0
M, =0 ,\ Mp:o
- 2 CASE 10 (when a<b), See Table 3 for Short Method.
a M\f b
2 M, =M+ M
. = . S ( b +k)coshA hA
. _m[Ab+k-k, (sinhAb +k)coshAz-k, cos z']
moxM, =AM, M, M[ Y sinh AZ
A | a=05048,%20.25/0=0.30,%£0.18 | a=0.10£, X£0.10
1.0 0.015 0.014 0.003
maxM. | | 2.0 0.057 0.051 0.012
1130 0.114 0.105 0.026
4.0 0.176 0.167 0.040
5.0 0.235 0.229 0.064
maxM, = M (sinhAb +ko) - k.ﬂcosh)\k
A
maxM,, = % k, sinh

M,, for any value of z :

Region1, M= M (sinhAb +k;) sinhAz_+k, sinhAz'
sinhA{

M k.sinhAz + (sinhAa +k,) sinhAz'
RegionIl, M, = <PRAT

max7, max7; sinh\a +sinhAb | (a b _sinhAa- smhAb) chnh)«f.
maxo, K, sinh A { “sinhA{
maxo,, ' 2tanh)\% 0- %fanh)\%
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TABLE 1 (continued)

' T
M.=0 hd
) A\ W CASE 11
Y K
a b Regionl M,=M Ab-k _sinhAb coshhz -k cosh)z'
2 Y4 sinh A g
1 I . .
Regionll M,=M -Aa+k _ sinhAa +k coshrz'
¢ P Tt T sinhad

maxM, = AM , whena 2 b maxM, occurs at hinge support.
when a < b maxM, occurs at fixed support.

Region | Region I

0|a=.20(a=.30|a=.40(a=50 |a=70 |a=90
8|X=.15|Xx=.19|x=.21|X=1.0{X=10 {x= 1.0
1.0 .0112].0176{.0242|-.0296/-.0350|-0195
2.0 |0140|.0397(.0638{.0790|-.1 025/-.1230{-0702
3.0 |0296|.0809|.1258|.1525|-.1875/-2299|-.1 365| (A
4.0 10492(.1274|.1922|.2273|-.2602-337 3|-.2058
5.0 |O717|.1781|.2573|.2945|-.3209-.4138(-2718

Af la=
X =

axM,
I . <
M maxM_= SihAb - k coshA? when a £ b,occurs at fixed support.

mtﬂ,&TT ST S T sinhAg

max 7, max7, maxM, = SinhAb coshAa -k coshAb when a > b, occurs at load M.

maxo, sinhA{

maxo,

maxM,, = .';gk

M,, for any value of z :
Region I, M_= M sinhAb-sinhAz +k sinhAz'
TN sinhAZ

Region H, M,,= M i"'?\;i‘_:r‘;[‘r sinhA z'

k - AbsinhAf -Alsinh Ab
sinhA{ ~A¥coshA
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TABLE 2—SHORT METHOD

TYPE 2 CONSTRUCTION

Values for max MP and maxM,_, uniform torsional moment m

m
N I N N N A0 N S S

i )
i |
maxM; @%%Eﬁah “%@@g
maxM,

maxM,= O,m{

AN | 05 1.0 1.5 2.0 2.5 3 4 5 6
D, |0.0102/0.0379/0.0765|0.1192|0.1607|0.1983{0.2590/0.3027|0.3342
D, |0.1220[0.1132[0.1011/0.0880/0.0753|0.0639|0.0459|0.0338|0.0252

Values for max M,, , concentrated torsional moment M

0.25 I -
| 4+
0?’/, T a
A nN
“ “\:
0.20 N v, .l
M
— | Y |
/A/ - ] "o I ‘
f » - mﬁg%%@ﬁww
0.15 Y4 = max M,,
/ // ] 39
A1 A | maxM,= D,M2
A~ 20,
0.10 Ll -
o /’ |1 0
A 5
///// -—— 6.0
7= 11
0.05 ///’ 8.0
.0 7
(o)
ol 0.2 0.3 0.4 0.5
a/k
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TABLE 3

INFLUENCE LINES FOR M., f(A£), SHORT METHOD

P

/m
I

I I
ZM\‘
? 2
1O _ Al A
> 025 — 0.00522
0.9 />/ - 050| — 0.02074
A1/ ST 1.00| — o.08197
08— - B
AV =~ 2.0 0.31304
ANNY
o7 \6 ——— + 30 | — 065718
[ / 9 S 40 | — 107462
06 A o™ —— s 50 | — 153392
Hy L= = \Q 6.0 2.01492
— . a— .
05 Il / R 3 N
I /AA = L TN 8.0 | — 3.00268
&
04 [y Vv il ™ - 100 | — 4.00045
”/f/, pa 307 e A NAR 160 | — 7.0
03 NN VaVa | £ ~ RN
: 1 TRERR 320 | — 15.0
/ /( 2.0 =] — ] ~ \\\\ & NN
oWV AA | AT | TR IR0k 1200 | — 190
WA AT | NN NN
oA A | L2 — RNAN N
n /B | [ loso SRR NNS
— 0.25 — N — —_—
0 o.l 0.2 03 04 05 06 07 08 09
2 /7
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TABLE 4

Structural Wnax Cy Sw N Structural Wnax Cyp S A
Section in.? in.6 in.4 in.7! Section in.2 in.s in.4 in.71
36 WF 300 | 145.9 372,500 2,553 0.008284 18 W& 60 | 33.17 3,591 108.3 0.01556

280 | 144.9 340,700 2,351 0.007843 55 | 32.93 3,175 96.40 | 0.01451

260 | 144.0 306,000 2,125 0.007387 50 | 32.68 2,794 85.48 | 0.01343

245 | 143.3 281,800 1,967 0.007034 45 32.45 2,374 7316 0.01237

230 | 142.6 258,400 1,812 0.006695 16 WF 96 | 44.53 12,240 274.9 0.01425

194 | 106.7 108,900 1,021 0.009050 8g | 44.18 10,820 245.0 0.01332

182 | 106.1 99,980 942.8 0.008594 78 | 33.15 5,167 155.9 0.01936

170 | 105.4 91,310 866.2 0.008133 71 | 32.82 4,548 138.6 0.01800

160 | 104.9 83,250 793 .4 0.007756 64 | 32.48 3,957 121.8 0.01662

150 | 104.5 75,340 721.3 0.007379 16 W= 58 | 32.19 3,463 107.6 0.01542

135 | 103.8 61,710 594.6 0.006877 50 | 27.62 2,101 76.04 | 0.01700
33WF 240 | 127.3 223,000 1,752 0.008106 45 | 27.38 1,825 66.68 | 0.01563
220 126.4 198,000 1,567 0.007567 40 27.12 1,576 58 12 0.01423

200 | 125.4 173,700 1,385 0.007011 36 | 26.96 1,302 48.29 0.01318

152 93.81 66,670 710.8 0.008613 14 WF 426 | 65.35 | 144,200 2,206 0.03001

141 | 93.29 | 59,420 637.0 | 0.008112 398 | 64.15 | 129,400 | 2,017 0.02875

130 | 92.78 | 51,730 557.5 0.007623 370 | 62.94 | 115,700 | 1,838 0.02745

118 92.22 43,380 470.4 0.007144 342 | 61.75 | 102,700 1,663 0.02606
30WF 210 | 109.8 148,100 1,349 0.008788 314 | 60.50 90,460 1,495 0.02459
190 | 108.8 129,500 1,190 0.008114 287 | 59.35 79,270 1,336 0.02308

172 | 107.9 113,100 1,048 0.007502 264 | 58.34 70,470 1,208 0.02175

132 77.29 39,240 507.8 0.009972 246 | 57.55 63,830 1,109 0.02065

124 76.88 35,830 466.0 0.009480 237 | 57.16 60,590 1,060 0.02008

116 76.52 32,150 420.1 0.009010 228 56.77 57,530 1,013 0.01951

108 76 .17 28,160 369.7 0.008570 219 | 56.36 54,400 965.1 0.01891

99 75.74 24,180 319.3 0.008104 211 | 56.04 51,700 922.6 0.01838

27WF 177 92.01 87,620 952.4 0.009600 202 | 55.63 48,830 877.9 0.01777
160 91.17 76,720 841.5 0.008858 193 | 55.23 45,940 331.8 0.01714

145 90.44 67,600 747.5 0.008204 184 | 54.82 43,230 788.6 0.01652

114 66.33 25,670 387.0 0.010720 176 | 54.49 40,650 746.0 0.01593

102 65.73 22,050 335.5 0.009809 167 | 54.10 37,990 702.2 0.01527

94 65.34 19,470 297.9 0.009199 158 | 53.69 35,510 661.3 0.01461

84 64.89 16,050 247 .3 0.008495 150 | 53.34 33,200 622.3 0.01399

24 WF 160 83.08 67,890 817.1 0.009813 142 | 53.04 30,900 582.6 0.01338
145 82.40 59,250 719.1 0.009057 320 | 61.48 88,130 1,433 0.02497

130 81.73 50,650 619.8 0.008293 136 | 50.44 | 26,570 526.9 0.01403

120 70.65 34,370 486.5 0.009792 127 | 50.03 | 24,460 489.0 0.01326

110 70.16 30,810 439.2 0.009140 119 | 49.67 | 22,600 455.0 0.01256

100 69.68 27,190 390.2 0.008474 111 | 49.33 | 20,710 419.8 0.01183

94 53.05 13,860 261.3 0.01227 103 | 48.96 | 18,940 386.8 0.01109

84 52.55 11,880 226.0 0.01121 95 | 48.62 | 17,150 352.7 0.01035
76 52.18 10,210 195.6 0.01034 87 | 48.26 15,490 320.9 0.009584

68 51.81 8,436 162.8 0.009525 84 | 40.28 | 10,120 251.2 0.01297

21 W 142 | 66.86 39,640 592.9 0.01180 78 | 40.03 9,202 229.9 0.01216
127 | 66.14 34,410 520.2 0.01081 74 | 33.76 5,992 177.5 0.01576

112 | 65.44 29,090 444 .5 0.009771 68 | 33.49 5,390 160.9 0.01467

96 | 45.65 11,030 241.7 0.01541 14 WF 61 | 33.17 4,716 142.2 0.01337

82 | 44.96 8,923 198.5 0.01364 53 | 26.77 2,534 94 .67 ¢.01710

73 | 42.51 6,878 161.8 0.01330 48 | 26.54 2,236 84 25 0.01572

68 | 42.27 6,239 147.6 0.01259 43 | 26.30 1,948 74 G7 0.01434

62 | 41.97 5,453 129.9 0.01170 38 | 23.05 1,231 53 .42 0.01592

55 | 41.65 4,471 107.3 0.01074 34 | 22.86 1,065 46.60 0.01447
18 WF 114 | 51.74 19,360 374.3 0.01376 30 | 22.69 884.7 39.00 0.01304
105 | 51.32 17,340 337.8 0.01289 12 W 190 | 40.05 | 23,520 587.3 0.02851

96 | 50.90 15,380 302.1 0.01201 161 | 38.78 | 18,640 580.8 0.02530

85 | 38.47 7,460 193.9 0.01718 133 | 37.54 | 14,360 382.5 0.02187

77 | 38.07 6,588 173.1 0.01592 120 | 37.00 | 12,440 336.1 0.02014

70 37.73 5,783 153.3 0.01475 106 | 36.37 | 10,630 292.4 0.01825

64 | 37.44 5,143 137.4 0.01375 99 | 36.05 9,727 269.8 0.01724

92 | 35.75 8,864 248.0 0.01624
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TABLE 4 (continued)

Structural Wnax C, Sy A
Section in.2 in.s in.t in. 1
12 WF 85 35.42 8,059 227.5 0.01520
79 35.16 7,329 208.4 0.01429
72 34 .85 6,542 187.7 0.01321
65 34 .54 5,784 167.5 0.01211
58 28.91 3,577 123.7 0.01502
53 28.71 3,165 110.2 0.01389
50 23.32 1,877 80.49 0.01915
45 23.09 1,646 71.30 0.01755
40 22.85 1,437 62.88 | 0.01593
36 19.20 805.2 41.94 0.02027
31 18.96 663.6 34.99 0.01798
27 18.79 549.5 29.25 0.01615
10 WF 112 26.38 6,031 228.6 0.03116
100 25.87 5,159 199.5 0.02863
89 25.38 4,405 173.5 0.02616
77 24 .86 3,645 146.6 0.02334
72 24 .64 3,327 135.0 0.02208
66 24 .36 2,994 122.9 0.02058
60 24.10 2,664 110.5 0.01904
54 23.82 2,345 98.42 0.01742
49 23.61 2,073 87.81 0.01602
45 19.06 1,200 62.98 0.02192
10 W 39 18.80 994.0 52.88 0.01942
33 18.55 791.0 42.65 0.01691
29 14.09 356.0 25.26 0.02550
25 13.90 292 .4 21.04 0.02263
21 13.74 220.1 16.02 0.01987
8 W= 67 16.71 1,440 86.15 | 0.03699
58 16.32 1,180 72.30 0.03311
48 15.86 929.9 58.63 0.02857
40 15.53 724 .8 56.67 0.02453
35 15.30 618.0 40.38 0.02198
31 15.13 528.9 34.95 0.01984
28 12.42 311.4 25.07 0.02575
24 12.24 258.3 21.11 0.02266
20 10.22 126.6 12.39 | 0.02813
17 10.10 98.1 9.724 | 0.02515
16 B 31 21.27 713 .4 33.54 0.91610
26 21.04 537.9 25.56 0.01412
14B 26 16.92 389.0 22.99 | 0.01905
22 16.73 300.9 17.99 0.01680
12B 22 11.98 159.4 13.32 0.02676
19 11.84 127.0 10.73 0.02390
16. 11.73 95.0 8.102 | 0.02196
10 B 19 9.905 100.9 10.19 0.03003
17 9.815 82.1 8.370 | 0.02748
15 9.731 65.4 6.721 | 0.02556

Structural Winax Cyp Sy A
Section in.? in.8 in.4 in.71
8B 15 7.835 49.9 6.375 | 0.03321
13 7.746 39.0 5.040 | 0.03059
6B 16 5.890 36.7 6.234 | 0.04882
12 5.721 23.4 4.104 | 0.03948
6 W 25 8.989 149.3 16.62 | 0.03485
20 8.776 113.3 12.92 | 0.02893
15.5 | 8.597 79.5 9.250 | 0.02390
5W 18.5 5.904 49.0 8.307 | 0.04840
16 5.800 40.3 6.960 | 0.04315
12B 14 11.60 76.2 6.571 | 0.01960
10B 11.5 | 9.545 46.5 4.879 | 0.02107
8B 10 7.581 29.3 3.866 | 0.02463
6B 8.5 5.551 14.9 2.685 | 0.03058
5M 18.9 | 5.729 45.6 7.963 | 0.05229
4 M 13 3.571 12 .4 3.487 | 0.07372
241 120 46.07 10,640 231.0 0.02136
105.9 [ 45.08 10,010 222.0 0.01939
100 41.90 6,108 145.8 0.02200
90 41.19 5,823 141.4 0.01974
79.9 [40.45 5,544 137.0 0.01789
201 95 34.35 4,339 126.3 0.02778
85 33.65 4,094 121.7 0.02480
75 30.69 2,633 85.77 0.02602
65.4 130.02 2,473 82.39 0.02289
181 70 27.05 1,710 63.21 0.03146
54.7 125.96 1,526 58.78 0.02398
151 50 20.27 779.5 38.45 0.03274
42.9 119.77 727 1 36.78 0.02797
121 50 15.53 479 .7 30.89 0.04967
40.8 |14.89 426.2 28.63 0.03948
35 14 .54 313.7 21.57 0.03628
31.8 |14.32 300.6 20.99 0.03312
101 35 11.75 176.6 15.03 0.05596
25.4 111.08 150.1 13.56 0.03813
81 23 7.899 58.6 7.426 | 0.06228
18.4 | 7.575 52.2 6.901 | 0.04831
71 20 6.377 32.6 5.113 | 0.07715
15.3 | 6.046 28.1 4.658 | 0.05585
61 17.25| 5.028 17 .1 3.402 | 0.09957
12.5 | 4.696 14 .1 3.019 | 0.06591

51 14.75| 3.837 8.3 2.164 | 0.1379
10.0 | 3.506 6.4 1.847 | 0.08025

41 9.5 | 2.591 2.9 1.134 | 0.1346
7.7 | 2.465 2.5 1.039 | 0.1027

31 7.5 1 1.719 1.0 0.5971] 0.2093
5.7 1 1.59 0.8 0.5242] 0.1410
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TABLE 4 (continued)

Structural e wy, w, C, Sy Y
Section in. in.2 in.2 in.6 in.4 in, 7!
18 L 58.0 0.6617 8.753 —24 .48 1,012 41 .34 0.03307

51.9 0.7618 9.186 —23.62 931.2 39.42 0.02904
45.8 0.8707 9.697 —22.68 847.8 37.39 0.02555
42.7 0.9293 9.988 —22.17 804.8 36.30 0.02406
15 [ 50.0 0.4739 5.840 —17.50 391.5 22.37 0.04968
40.0 0.6418 6.339 —16.33 327.8 20.08 0.03935
33.9 0.7581 6.739 —15.51 287.8 18.55 0.03476
12 £ 30.0 0.4982 4.231 —11.96 116 .6 9.752 0.05125
25.0 0.6120 4.529 —11.32 101.3 8.942 0.04270
20.7 0.7239 4.862 —10.69 87.35 8.169 0.03764
10 C 30.0 0.2762 2.853 —9.564 60.49 6.325 0.08815
25.0 0.3897 3.043 —9.042 52.12 5.765 0.06956
20.0 0.5167 3.297 —8.454 43.69 5.169 0.05413
15.3 0.6575 3.634 —7.796 35.40 4.542 0.04468
9 [ 20.0 0.4122 2.661 —7.350 30.16 4.104 0.07154
15.0 0.5604 2.945 —6.732 23.99 3.564 0.05434
13.4 0.6183 3.074 —6.489 21.82 3.364 0.05081
s [ 18.75 0.3406 2.161 —6.176 19.16 3.103 0.09204
13.75 0.4974 2.406 —5.600 14.85 2.652 0.06588
11.5 0.5785 2.555 —5.300 12.84 2.423 0.05873
7 L 14.75 0.3523 1.810 —4.823 10.03 2.081 0.09926
12.25 0.4392 1.923 —4.546 8.58 1.888 0.08118
9.8 0.5370 2.074 —4.231 7.11 1.682 0.06923
6 C13.0 0.3001 1.421 —3.805 5.48 1.442 0.1296
10.5 0.3954 1.516 —3.548 4.54 1.282 0.1012
8.2 0.4984 1.645 —3.267 3.67 1.123 0.08400
5C 9.0 0.3492 1.157 —2.665 2.23 0.8378 0.1344
6.7 0.4613 1.261 —2.414 1.71 0.7111 0.1059
4 7.25 0.3163 0.8480 —1.867 0.92 0.4978 0.1831
5.4 0.4194 0.9099 —1.688 0.69 0.4137 0.1409
3C 6.0 0.2445 0.5480 —1.241 0.33 0.2731 ; 0.2991
5.0 0.3274 0.5938 —1.135 0.28 0.2472 ‘ 0.2406
4.1 0.3931 0.6238 0.23 0.2188 : 0.2057

—1.052
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