Calculator Program for Determining Properties of Built-up or Composite Members

STEPHEN R. GOSSETT

The advent of programmable calculators has increased the productivity of structural engineers considerably. Presented herein is a calculator program (written for the Hewlett-Packard HP-41C, utilizing its unique alpha-numeric capability) which eliminates the time-consuming calculations involved in determining the section properties of (a) built-up steel members or (b) composite sections. The program requires 314 program lines and 24 storage registers for execution. This article presents a brief description of the program, a printout of the program listing (Fig. 1), and a flowchart (Fig. 2). It also includes appropriate examples utilizing the HP 82143A printer.

BUILT-UP STEEL MEMBERS

In industrial structures, it is often desirable to increase a steel beam's load-carrying capacity, usually because of some change in the function served by the structure. This is typically accomplished by field welding either a cover plate, a WT section, or a wide-flange shape to the bottom of the existing beam (the top flange is usually not accessible because of equipment or floor slabs). Because the resulting section is unsymmetric, the structural engineer is faced with several minutes of calculations to determine the section moduli for the top and bottom fibers of the section in order to check stresses. In addition, the engineer may need to try several different sections before he finds one that will work. This program will do these calculations in seconds and will output location of the neutral axis, moment of inertia, and section moduli for the combined built-up section. Knowing the shear on the beam, it will also aid in the selection of the intermittent welds for welding the pieces of steel together. The only limitation is that the existing beam must be a symmetrical section (i.e., usually a wide-flange). The reinforcing piece can be either a wide-flange, a WT, or a plate. Once the existing beam properties are entered, any

Stephen R. Gossett is Civil Engineer, Tennessee Eastman Company, Kingsport, Tennessee. number of trials can be made. Once the desired combinati is found, one can go on to the weld sizing portion of t program.

COMPOSITE DESIGN

On pages 2-96 thru 2-109 of the 8th Edition of the AI Manual of Steel Construction, a table is presented whi gives the transformed section modulus for selected wid flange beams acting compositely with concrete slabs. T table is somewhat limited, as noted on p. 2-98, in that (3000 psi concrete is required, (b) the effective slab flang width is assumed to be $16t + b_f$, (c) it is set up for only $4\frac{1}{2}$, 5, $5\frac{1}{2}$, and 6-in. slabs, and (d) it is for selected ste beams. Therefore, interpolation is required for situatio not included in the table. Also, the designer still has to ha calculate the transformed moment of inertia if live lo deflections are to be checked. This program is good for a symmetrical steel member, any grade of normal weig concrete, and any slab thickness. It checks all three quirements noted in Sect. 1.11.1 of the AISC Specificati for determining effective flange-width of the slab. It a outputs location of the neutral axis and the transform moment of inertia. In addition, it outputs the number $\frac{3}{4}$ -in. diameter studs required on either side of the point of maximum moment to develop full composite action the assumed simply supported and uniformly load composite member.

EXAMPLE 1: BUILT-UP SECTION

- Given: Due to a proposed increase in load, an existi W16x36 ($S_x = 56.5 \text{ in.}^3$) is to be unloaded and reinforto carry a moment of 135 kip-ft and a shear of 27 ki Therefore, the built-up section must have a sect modulus (top and bottom fibers) of $(135 \times 12)/22 = 7$ in.³ Find a WT section that will give the required sect modulus and size the intermittent weld.
- Solution: See Fig. 3 for an actual printout of the progr input and output.

Discussion: A WT4x9 was tried first, but its section modulus for the top fiber was only 70.36 in.³ < 73.6 in.³ A WT5x11 was successfully tried next; it was found that $\frac{1}{4}$ -in. welds, $\frac{13}{4}$ in. long, spaced at 12 in. (or $\frac{1}{4}$ -in. welds, $\frac{11}{4}$ in. long, spaced at 9 in.) along both sides of the WT stem would be sufficient to carry the shear load.

EXAMPLE 2: COMPOSITE DESIGN

Given: Determine the section properties of a W18x46 spanning 24 ft, using a 5-in. concrete slab ($f'_c = 5000$ psi) with an 8-ft beam spacing. Also, determine the number of $\frac{3}{4}$ -in. studs required on either side of the point of maximum moment to develop full composite action. Solution: See Fig. 3 for the printout of the input and output.

PROGRAM NOMENCLATURE

- A = total area of built-up or composite section
- Ac = actual area of effective concrete flange as defined in AISC Specification Sect. 1.11.1
- As = area of steel beam in composite section
- AY = sum of first moments of areas of built-up section relative to top, or of composite section relative to bottom
- A-1 = cross-sectional area of existing symmetrical section
- A-2 = cross-sectional area of added wide-flange or WT
- be = effective composite member width
- bf = steel beam flange width
- D-1 = overall depth of existing symmetrical section
- D-2 = overall depth of added wide-flange or WT
- Ec = elastic modulus for concrete = 57,000/f'c psi

- E_s = elastic modulus for steel = 29,000,000 psi
- f'c = concrete compressive strength
- fy = steel beam yield stress, assumed as 36,000 psi
- *IT* = total moment of inertia of built-up or composite section
- *IX*-1 = moment of inertia of existing symmetrical steel section
- *IX-2* = moment of inertia of added wide-flange or WT
 - L = composite member span length
 - Q = first moment of added section area shear load about built-up section neutral axis
 - $q = \text{maximum allowable shear load for } \frac{3}{4}\text{-in.}$ diameter stud connector with no reductions = 11,500 lb
 - s = beam spacing
 - ST = section modulus of transformed composite section relative to top
- STR = section modulus of transformed composite section relative to bottom
- S-BOT = section modulus of built-up section with respect to top
- S-TOP = section modulus of built-up section with respect to bottom
 - t = composite slab thickness
 - V = design shear load
 - *Vh* = horizontal shear to be resisted between point of maximum positive moment and point of zero moment
 - Y = centroidal distance of WT relative to top of flange
- *YBAR* = centroidal distance of built-up section relative to top, or of composite section relative to bottom

				265 GTA 16	262 GTO 9 5
MI+LBL "CON SEC"	57 CTA 25	105 *	157 PSF	218 RCi 22	263 "THE END"
02 "IX-1=?"	54 "D-9±?"	196 12	158 R.1 02	211 "S TOP="	264 AVIEK
03 PROMPT	; PPOMPT	197 *	159 RCL 85	212 ARCI X	265 STOP
94 STO 01	STO ii	1 8 8 ST0 17	16A +	213 AVIEW	266 + I Bi 1 I I
85 "A-1=?"	7 "Y=?"	109 -BM SPACING	161 STO 88	214 STOP	267 RCL 22
N6 PROMPT	2 PRAMPT	116 PROMPT	167 "Z9="	215 RCL 14	268 "STR="
07 STO 02	S STA DA	111-12	183 ARCL X	216 RCL 15	269 ARCL X
08 °D−1=?"	.R CTA R4	112 *	164 AVIEW	217 /	270 AVIEW
09 PROMPI	AJ +I RI RR	113 RCL 17	165 PSE	2/8 "S BOT="	271 STOP
10 STO 12	√2 "WINTH=?"	114 X <td>166 RCI 13</td> <td>2:9 ARCL X</td> <td>272 RCL 14</td>	166 RCI 13	2:9 ARCL X	272 RCL 14
11 2	53 PROMPT	115 X(=Y?	167 RCL 08	220 AVIEW	273 RCL 15
12 /	64 ST0 17	116 STS 17	168 /	221 STOP	274 /
13 STO 03	65 "THICKNES=?"	117 "8F=?"	169 STO 09	222 "TRY AGRIN?"	275 "ST="
14 + 151 07	66 PROMPT	118 PRGMPT	170 °YBAR=°	223 PROMPT	276 ARCL λ
15 "COM ACTION?"	67 STO 11	119 RCL 11	171 ARCL X	224 X=0?	277 AVIEW
16 PR80-7	68 2	128-16	172 AVIEW	225 GTO 06	278 STOP
17 870 28	69 /	121 *	173 PSE	226 RCL 16	279 RCL 23
18 X=87	70 STO 26	122 ÷	174 RCL 03	227 RCL 05	280 RCL 11
17 GTC 03	71+1R A9	123 RCL 17	175 -	228 *	281 *
20+LBL 05	72 RCL 11	124 X(X)	176 X12	229 310 18	282 RCL 24
21 "WIDE FL?"	73 3	125 X<=Y^	177 RCL 02	230 *0="	283 *
22 PROMPT	74 Y t X	128 570 17	178 ×	231 ARCL X	284 .85
23 X=8?	75 RCL 17	127 RCL 17	179 STO 10	232 AVIEW	285 *
24 GTO 81	76 *	128 STC 23	180 RCL 12	233 \$709	286 2
25 TEE?'	77 12	129 "be="	181 RCL 11	234 "¥=?"	287 /
26 PROMPT	78 /	130 ARCL X	182 +	235 PROMPT	288 1000
27 X=0?	75 STO 84	131 AVIEN	183 RCL 09	236 *	289 /
28 GTO 82	88 RCL 17	132 PSE	184 -	237 RGL 14	290 STO 21
29 "FLATE?"	81 RCL 11	133 RCL 16	185 STO 15	238 /	291 RCL 82
30 PROMPT	82 ×	134 *	186 RCL 06	239 STO 19	292 18
31 X=0?	83 STO 0 5	135 \$70 17	187 -	240+LBL 05	293 *
32 GTO 83	84 GTO 04	136 GTO 09	188 STC 16	241 "SIZE WELD=?	294 RCL 21
33•L6L 01	85+LBL 08	137+LBL 04	189 Xt2	242 PROMPT	295 X<>Y
34 "IX-2=?"	86 "SLAB THICK?"	1 38 RCL 02	190 RCL 05	243.707	296 X>Y?+
35 PROMPI	87 PROMPT	139 RCL 03	191 *	244 *	297 GTO 11
36 ST0 04	88 STO 11	140 *	192 RCL 10	245-21	298 11.5
37 °A-2=?"	89-2	141 STO 07	193 ÷	246 *	299 /
US PROMEN	98 /	142 RCL 03	194 RCL 01	247 178	300 "NO STUDS="
39 STO <i>0</i> 5	91 STO 06	143-2	195 +	248 RCL 19	301 ARCL X
40 "D-2=?"	92 "FC=? PSI"	144 *	196 RCL 04	249 *	302 AYIEW
41 PROMPT	93 PROMPT	145 RCL 11	197 +	250 "SPACING=?"	303 STOP
42 STO 11	94 STO 15	146 RCL 06	198 STO 14	251 PROMPT	304 GTO 12
43-2	95 STO 24	147 -	199 "17="	252 *	305+LBL 11
44 /	96 SQRT	148 +	200 ARCL X	253 2	306 RCL 21
45 STO 06	97 57000	149 RCL 85	201 AVIEW	254 /	307 11.5
46 GTO 04	98 *	156 *	202 TONE 9	255 "REQ LTH="	308 /
47+LBL 02	99 2 90 00000	151 RCL 07	203 STOP	256 ARCL X	309 "NO STUDS="
48 "IX-2=?"	106 /	152 +	204 RCL 09	257 AVIEW	310 ARCL X
49 PROMPT	101 STC 16	153 510 13	205 /	258 STÚP	311 AVIEW
50 STC 04	102 "SPAN=? FT	154 "∑RY="	206 STO 22	259 "TRY AGAIN?"	312 STOP
51 "A-2=?"	103 PROMPT	155 ARCL X	207 RCL 20	260 PROMPT	313 + LBL 12
52 PROMPT	104.25	156 AVIEW	208 X=0?	261 X=8?	314 .END.

Fig. 1. Program listing

Fig. 2. Flowchart

Fig. 2 (cont'd). Flowchart

Example 1

Example 2

	XEG "COM	SEC"					XEQ "COM	SEC "
IX-1=?						IX-1=?		
	448.00	RUN		3.24	RUN		712.00	RUN
Ĥ-1=?		*** 1*	b-2=?	5 005		H-I=?	(7 50	60.0
D_1-7	10.50	KUN	V= 7	5.080	KUK	N-(=?	13.30	KUN
D-1-:	15.86	PIN	1-:	1 07	Q IIN	D 1-:	18.06	RUN
COM ACTION?	,		Σ ΑΥ =148.45	110:	91 W C C	COM ACTION	?	
••••	1.00	RUN	ΣA=13.84				0.00	RUN
WIDE FL?			YBAR=10.73			SLAB THICK	2	
	1.00	RUN	IT=808.95				5.00	RUN
TEE?	a	6 101			RUN	FC=7 PS1	<u>aaa aa</u>	6 111
tV_0_0	5.66	KUN	\$ 107=75.42		n'ill	SPON±7 FT	,000.00	KUP
1872-:	2 41	Drik/	C BAT-76 (4		RUN	ornn=. r :	24.00	RUN
ĝ-2z2	0171	NON	0.001717.10	:	RHN	BM SPACING	?	
	2.63	RUN	TRY AGRIN?				8.80	Run
D-2=?				1.00	RUN	8F=?		
	4.07	RUK	@=29.64				6.06	RUN
Y=?		-			RUN	D0=72.00 20V-1 150	6.ā	
	.834	KUN	월 드 [2	<u>an aa</u>	-	281-17136.0 Va=47 87	50	
2H)=109.20 V0=17 97			C775 UE+ 3-9	27.00	KUN	YRAR=18.11		
YBAR=18.15			VICE MC10-:	.25	RUN	17=2,229.5	9	
IT=714.13			SPACING=?					RUN
		RUN		12.00	RUN	STR=123.)1		
S TOP=78.38	2		kEù LTh=1.6	8		/ /-		RUN
		RUN			RUN	51=430.43		6 145
5 60(Fib.02	•	Oith-	iKY HGRIN/	5 23	5 I I I	NA CTHRC=2	: 13	RUH
TRY DESTNO		NUI?	S176 WELD±2	5.00	KUD	NO 31003-2	1110	
int numini.	0.08	Ruk	VICE MEED".	.25	RIN			
WIDE FL?			SPRCING=?					
	1.00	RUN		9.80	RUK			
7EE ?		7.	REQ LTH=1.2	ĉ				
-U 515	0.00	KUN	70% 0007%		RUN			
18-2=(2 00	0 .15	IKT HURIN?	: 96	DILL			
0-9±9	0.00	NGU)	THE END	1.00	KUN			
11 b			القائلية بمرورو					

Fig. 3. Printout of input and output, Examples 1 and 2