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Imagine there are two geometrically identical rolled beams 
sitting side by side, one having a yield strength, Fy, equal 
to 36 ksi and the other having Fy equal to 50 ksi. Imagine 
further that the flange and web proportions are such that 
the Fy = 36 ksi beam exactly satisfies the American Insti
tute of Steel Construction (AISC) Specification1 Part 2 
slenderness (width-to-thickness) requirements for plastic 
design. Under these rules, the Fy = 50 ksi beam would be 
excluded from plastic design. 

The interesting possibility of pretending that the Fy = 
50 ksi beam has an effective yield strength of only 36 ksi 
was suggested during the development of the Autostress 
Design method.2 The thesis put forth was that the web and 
compression flange could each be considered to have an 
effective yield strength, Fywe and Fyje, that could be em
ployed in the computation of an effective negative plastic 
moment, Mpne. For a compact shape under the AISC Part 
2 rules, Mpne = Mpn, where Mpn is the full plastic moment 
in negative bending; for a shape noncompact by these rules, 
it could be conceived that Mpne < Mpn. In no case could 
Mpne exceed Mpn. A distinction is made here between the 
plastic moments in negative and positive bending because 
they are only equal for special cases, such as a rolled beam; 
for a section with dissimilar flanges or a composite flange, 
these moments are generally unequal. 

To demonstrate that this hypothesis was suitable for 
design use, the Fy = 50 ksi beam would have to possess at 
least as much inelastic-rotation capacity when measured 
at Mpne as the compact Fy = 36 ksi beam possesses at Mpn. 
(In this example, Mpne of the Fy = 50 ksi beam would be 
about equal to Mpn of the Fy = 36 ksi beam.) The results 
of 49 tests in the literature showed2 that this was generally 
true—only one of these beams had a slightly lower (7% less) 
capacity. As shown in Appendix A of Ref. 3, the required 
inelastic rotation of a beam increases with Fy. Therefore, 
because the equations to be given for the effective plastic 
moment were derived for Fy = 50 ksi, they should not be 
used for steels with Fy > 50 ksi without additional study; 
the equations are valid for Fy < 50 ksi. 
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Thus, the effective plastic moment is suggested as an 
extension of the present AISC Part 2 plastic design rules. 
Mpne is merely substituted for Mpn. The use of Mpne does 
not preclude the use of any beam geometry and, further
more, permits existing structures to be rated with plastic-
design methods, even though their beam geometry does not 
meet the present AISC Part 2 slenderness requirements. 
This paper presents the equations for computing Mpne, two 
numerical examples, and a discussion of optimum pro
portions. 

EQUATIONS FOR Mpne 

Figure 1 defines the geometry of a section that may be 
homogeneous, hybrid, or composite. The section is assumed 
to be in negative bending corresponding to the condition 
near the interior support of a continuous beam. The plastic 
neutral axis is computed at Mpn. According to the AISC 
Part 2 rules, the compression flange is considered compact 
for a yield strength of 50 ksi if the flange slenderness, b//2tf: 

is equal to or smaller than 7.0. For other yield strengths, 
the requirement is approximately 

bf/2tf < 7.0y/50/Fyf = 49.5/V/s •yf (1) 

where Fyj equals the specified minimum yield strength oi 
the compression-flange material in ksi. Rather than limit 
the maximum value of the flange slenderness according tc 
the specified minimum yield strength, we define an effective 
(reduced) yield strength of the flange material, Fyfe, ac-
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Fig. 1. Cross section 
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cording to the actual compression-flange slenderness, so 
that 

Fyfe = 9800(^/^)2 < Fyf (2) 

Because AISC gives web slenderness ratios only for 
symmetrical sections, a few adjustments are needed to ac
count for the shift of the neutral axis in composite and 
unsymmetrical sections. We define the effective web slen
derness at the full plastic moment of the composite section 
as 2dwcp/twy where dwcp is defined in Fig. 1; for a sym
metrical shape, 2dwcp = dw. The AISC web requirement 
is based on the overall depth of the section rather than the 
web depth. The actual depth of the web between the 
flanges, dw, is about 95% of the overall depth, d, for most 
rolled beams. Thus, with d = dw/0.95) the AISC re
quirement can be restated as 

Table 1. Slenderness Values 

2dwcp/tw < 0 .95 (412 /Vi>) (3) 

In a manner similar to the flanges, we replace the specified 
yield strength of the web material, Fyw, by the effective 
yield strength of the web, Fywei to obtain 

Fywe = ?>8,300(tw/dwcp)
2 < Fyf (4) 

The upper limit of Fy/e and of Fywe is Fyf, because flange 
and web buckling are controlled primarily by flange strain 
rather than the web yield strain. Finally, we normalize both 
Fyfe and Fywe with respect to the actual flange yield stress 
and obtain the reduction factors Rf = Fyfe/Fyf and Rw = 
FyWe/Fyf for the flanges and web. 

The negative plastic moment, Mpn, of the section is the 
sum of the contribution of the flanges including the rebars, 
Mpnfy and the web, Mpnw, so that 

Mpn =Mpnf+Mpnw (5) 

The effective plastic moment, Mpne, is then obtained by 
multiplying the components of Mpn by their respective 
reduction factors 

Mpne = RfMpnf + RwMpnw (6) 

It is suggested that Mpne be used instead of Mpn in con
ventional plastic design. 

Equations (2) and (4) were derived from the AISC Part 
2 slenderness limits. However, other limits could have been 
selected. For example, suggested Canadian limits4 would 
only change the constants in Eqs. (2) and (4) to 11,700 and 
46,200; the procedure for computing Mpne would not 
change. 

TWO NUMERICAL EXAMPLES 

Mpne will be computed for two composite rolled beam 
sections (Fyf = Fyw = Fy) with varying amounts of longi
tudinal rebar area, Arsy ranging from 0 to 8 in.2, and for Fy 

= 36 and 50 ksi. The rebar area is assumed to have a yield 
strength of 60 ksi and to be located 5 in. above the beam. 
The rolled beam fillets are neglected for simplicity. The two 
rolled beam sections considered—a W30xl32 and a 
W36xl35—are within 2% of having the same area. How-

AISC Part 2 limit: 
Fy = 36 ksi 
Fy = 50 ksi 

W30xl32 
W36xl35 

Web 
d/tw 

68.7 
58.3 

49.3 
59.2 

Compression Flange 
b//2tf 

8.5 
7.0 

5.27 
7.56 

ever, the W30xl32 is a relatively stocky section, and the 
W36xl35 is a relatively slender section. 

In Table 1 the shapes are compared with the AISC Part 
2 (Sect. 2.7) slenderness limits for zero axial load. These 
limits do not directly address a nonsymmetrical section, 
such as a rolled beam composite with rebars. However, by 
applying those limits, the W30xl32 would be acceptable 
for both yield strengths, whereas the W36xl35 would be 
acceptable only for the 36 ksi yield strength. 

Mnp and Mpne are plotted in Figs. 2 and 3 for the two 
shapes at both yield strengths; the yield strength is indicated 
parenthetically. For the W30xl32, Fyfe = 88.1 ksi, and 
because Fy = 36 and 50 ksi, the flanges are fully effective 
for both yield strengths. The web is also fully effective for 
both yield strengths at low values of .he rebar area, Ars. 
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Fig. 2. Moment vs Rebar Area for W30x132 

10 

13 

FIRST QUARTER / 1982 



3000 

2500 

2000 h 

.- 1500 
UJ 

O 

lOOOh 

5 0 0 h 

"1 
MDn (50) 

- F v w e <36 ksi 

-NONCOMPOSITE 
(A r s=0) 

W36xl35 
Fyfe = 42.8 ksi 

0 2 4 6 8 10 
REBAR AREA, A r s , in.2 
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Thus, the Mp and Mpe curves are coincident for low values 
of Ars. When Fywe becomes less than Fy (as Ars and, con
comitantly, Dwcp increase), the Mpe curve shows little or 
no increase with increasing Ars because the increased rebar 
force is offset by both the reduced distance to the neutral 
axis and the reduced Fywe caused by an increased Dwcp. 

For the more slender W36xl35, the curves for Fy — 36 
ksi are similar to those for the W30xl32. The compression 
flange is fully effective and the web is fully effective for low 
values of Ars. However, for Fy = 50 ksi, the noncomposite 
shape (Ars = 0) has an Mpne below Mpn because Fywe = 
47.8 ksi and Fy/e = 42.8 ksi. As Ars increases, Mpne in
creases slightly as before. In fact, for other than small values 
of Ars , Mpne of the W30xl32 is larger than that of the 
W36xl35, both at Fy = 50 ksi. In other words, for Fy = 
50 ksi, the shallower W30xl32 is generally (except for small 
values of Ars) a superior plastic-design composite section 
compared with the deeper W36xl35 when the effective 
plastic moment concept is used. 

the flange width and thickness. When this condition is 
satisfied, it will usually be beneficial to move some material 
from the web to the flanges. The optimum Mpne is reached 
when the incremental increase in flange moment is bal
anced by the decrease in web moment. 

This can be illustrated by considering a noncomposite 
rolled beam of yield strength Fy that has Fyje = Fy. For 
simplicity the moment arm between the flanges is assumed 
to be dw. The effective plastic moment is then 

Mpne = bftfdwFy + twdw
2Fywe/4 (7) 

Letting a = dw/tw , from Eq. (4), with dwcp = dw/2y 

a = 391.4/ VF^e (8) 

Letting the cross-sectional area A = Ibjtj + dwtw , we can 
substitute into Eq. (7) to obtain 

Mpne = AdJFy/2 - dw*Fy/2a + 391.42rf„,3/4a3 

(9) 

Considering all values on the right side of Eq. (9) to be 
constant except a, we can determine the optimum value of 
a, a0pt , by setting the first derivative equal to zero. 

dMt &*- = dw*Fy/(2a2) - 3(391.4)24,3/4a4 (10) 
da 

Letting OLp be the value of a when the web is fully effective, 
ap = ?>9\A/y/~Fy from Eq. (8). We can then solve for a 
as aopt from Eq. (10). 

(ID aopt = 1.225<Xfr 

Thus, the optimum Mpne for this section occurs when the 
web depth/thickness ratio is 22.5% above the ratio that 
makes the web fully effective, or stated differently, when 
22.5% of the web material is moved to the flanges. 

CONCLUSIONS 

The effective-plastic-moment approach does not exclude 
any shapes from plastic design; additionally,* it permits 
plastic-design methods to be employed in the rating of ex
isting members. For plastic design, the most efficient dis
tribution of material occurs when the effective flange yield 
strength is not below the actual compression flange yield 
strength. Furthermore, for a symmetrical section of a given 
depth, the effective plastic moment is optimum when 22.5% 
of the web area is moved from the web to the flanges, 
starting from a web area that makes the web fully effective. 
The effective-plastic-moment approach is applicable to 
sections that are symmetric, unsymmetric, hybrid, and 
composite in negative bending. 

OPTIMUM CROSS SECTION FOR M, 'pne 
For a given amount of material and depth of section, the 
optimum material distribution to maximize Mpne is ob
tained by first proportioning the compression flange such 
that Fyfe = Fyj. This is best achieved by reproportioning 

NOMENCLATURE 

A = Cross-sectional area 
Ars = Longitudinal rebar area 

b/ = Compression flange width 
d = Overall depth of steel section 
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dw 

dwep 
Fy 
Fyf 

Fyfe 
1 ywe 

Mpn 

Mpne 

Mpn} 

LVipnw 

Rf 
Rw 

if 
tw 

= Depth of web 
= Depth of web in compression at Mp 

= Actual yield strength 
= Actual yield strength of compression flange 
= Effective yield strength of compression flange 
= Effective yield strength of web 
= Full negative plastic moment 
= Effective negative plastic moment 
= Contribution to Mpn of the flanges 
= Contribution to Mpn of the web 
= Reduction factor for flanges 
= Reduction factor for web 
= Thickness of compression flange 
= Web thickness 
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DISCLAIMER 

The material in this paper is intended for general infor
mation only. Any use of this material in relation to any 
specific application should be based on independent ex
amination and verification of its availability for such use, 
and a determination of suitability for the application by 
professionally qualified personnel. No license under any 
United States Steel Corporation patents or other propri
etary interest is implied by the publication of this paper. 
Those making use of or relying upon the material assume 
all risks and liability, arising from such use or reliance. 

REFERENCES 

1. Specification for the Design, Fabrication, and Erection of 
Structural Steel for Buildings November 1978, American 
Institute of Steel Construction, Chicago. 

2. Haaijer, G.,P. S. Carskaddan, andM. A. Grubb Autostress 
Design of Steel Bridges ASCE Reprint 80-519, Oct. 
1980. 

3. Grubb, M. A. and P. S. Carskaddan Autostress Design of 
Highway Bridges, Phase 3: Moment-Rotation Requirements 
(AISI Project 188) May 14, 1981, available from the 
American Iron and Steel Institute, Washington, DC. 

4. Dawe, J. L. Local Buckling of W Shapes Used as Columns, 
Beams, and Beam Columns PhD Dissertation, University 
of Alberta, Edmonton, Alberta, Canada, 1980. 

15 

FIRST QUARTER / 1982 


