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More and more tall, slender multistory buildings have been 
designed and built in the last decade. For steel buildings in 
particular, the present architectural trend is toward the use 
of light panels with large glass areas. This trend requires 
the structural steel tube not only to resist all lateral loads 
to limit the drift to some acceptable values, but also to 
prevent racking of the glass panels. 

The analysis of tall steel tubes to account for all the lat­
eral loads has been well established in the litera­
ture.1'2'6'8 

Most available commercial computer programs, such as 
SAPIV, STRUDL II, NASTRAN, etc., are equipped to 
perform analysis of such systems both accurately and ef­
ficiently, but they are costly and time consuming. There­
fore, the tendency is to limit their use for the so-called final 
analysis only. 

One of the major problems remaining is how to conduct 
an efficient and accurate preliminary analysis and select 
almost optimum member sizes to be used in the final 
computer analysis. Considerable work has been devoted 
to this problem.4'5'7 

The important factors affecting the behavior of the tube 
are height-to-width ratio (the higher the ratio the more 
effective is the tube action), bay width, story height, set­
backs, shape and geometry of system, etc. Narrow bays are 
understood to give a better tube behavior. However, shear 
deformation of short beams reduces their bending efficiency, 
a fact which has been overlooked. The interaction of frame 
action, cantilever behavior and warping effects, although 
identified, has not been closely investigated. 
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This paper addresses itself to two problems. First, it 
presents a consistent and highly accurate approach for the 
analysis and for member proportioning of two- or three-
dimensional, rectangular (but symmetrical), tubular steel 
multistory frames subjected to gravity and lateral loads. The 
analysis as written here means the calculations of lateral 
displacements and member forces. The analysis is based 
on the assumption that the system is made up of two lin­
early independent systems, a frame and a cantilever, su­
perimposed over each other (see Fig. 1). The calculations 
of the frame were based on the slope deflection method, 
neglecting axial strains, but including shear deformations 
and assuming that all points of contraflexure occur at 
member midspans. 

The cantilever is assumed to be slender (i.e., no shear 
deformation) and is made up of the columns which resist 
loads by their axial stiffness only. The members used in this 
analysis are either W shapes or built-up I-sections. The 

(a) (b) (c) 

Lateral Tube Deflections Cantilever Deflections Frame Deflections 

Figure 1 

33 

SECOND QUARTER / 1981 



analysis is accurate within the limitations of the assump­
tions made. 

Second, the paper presents a complete study of the effect 
of shear deformations on the stiffness of beams and columns 
and, hence, the overall stiffness of the tube. The shear 
stiffness proved to be the most important factor in pro­
portioning the spandrel beams. The paper also provides a 
set of design and analysis charts which could be of a great 
value for preliminary member sizing. 

ANALYSIS 

Deflection Calculations—The lateral deflection of the 
tube at any floor i is given by: 

Atl = Acl + Afl (1) 

and 

Afl = Abl + Ashl (2) 

in which 

A , 

Ashi 

total lateral deflection at floor i 
cantilever lateral deflection at floor i 
frame lateral deflection at floor i 
bent lateral deflection at floor i 
lateral deflection due to shear leak at floor i 

Frame Deflections—The basic assumptions used in the 
analysis are that, at any floor, (1) shear force is constant and 
(2) bending moment diagrams are such that countraflexure 
points occur at midspan of both girders and columns. 
Consider Fig. 2. By using the slope deflection method or 
any other similar method, the bent lateral displacement 

»« v 

Fig. 2. Typical interior bent forces 

Afa , which is the relative displacement between end A and 
end B, is readily given by: 

VHX
2[ 1 . 1 

A* = • 
\2E XIK^ 2KL gi 

(3) 

where 

gi = Igi/Lgi 

KCi = Ici/Hi 

Hi = the story height 

and for all the bents in level z, 

W / , 2 / 1 
Ahi = 

\2E \LKgi ^Kc 
(4) 

This is essentially similar to the equation developed by 
Manney-Goldberg.3 

Now consider Fig. 3, which shows the lateral deflections 
of a deep beam due to shear only. The rotation at the center 
is given by: 

d (Ash) = _J_ (5) 
d x A'g G 

where A' is the effective shear area, and G is the modulus 
of shear rigidity. Integrating Eq. (5) yields: 

VL 
A<h = 

A'gG 
(6) 

which is the deflection of a beam of length L due to shear 
leak under constant shear force V. Applying Eq. (6) to the 
bent in Fig. 2, the following equation is readily given: 

= YM. ( 1 + l 

G \^A giLgt 2JA dHt 

where 

Ashr = (7) 

A'gi is the effective shear area of girder at level i 
A'd is the effective shear area of column at level i 

Hence, Eq. (2) can be rewritten as: 

¥ \2E 

1 

2 X 
(1 + Cc) + 

1 
2K. 

(1 + Cg) 
gl 

(8) 

Fig. 3. Lateral shear deformation in a deep beam 
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•ASSUIfED DISTRIBUTION 

COLUMN LINES 

Fig. 4. Exact vs. assumed distribution of bending moments 
and shear forces 

and for Poisson's ratio v = 0.25, 

Cr = 30 X 
A'clH? 

Q = 3 0 X "77 L 2 

Cantilever Deflections—Cantilever deflections can be 
calculated readily using the moment area method. The 
moment of inertia, I0 , of the cantilever is variable along the 
height of the structure, but at any level z, I0i = !jAclr

2
l, 

where lQ{ is the moment of inertia of the cantilever at level 
i, Aci is the column area at level z, and 77 is the distance of 
the column from the centroid of the cantilever. 

Force Calculations—After the prescribed drift ratios are 
satisfied and all the stiffness requirements are met, a 
member force check is conducted. 

The forces of the system are calculated based on the same 
deflection models and no additional assumptions are 
made: 

1. The cantilever analysis gives the axial forces on the 
column only and they vary linearly across the floor. 

2. The frame analysis gives the bending moments and 
shear forces for both the beams and columns (see Fig. 
2). These forces are essentially average values, although 
the sum of these forces at any level i satisfies equilibri­
um. There is a slight redistribution (see Fig. 4). 

3. This force analysis ignores the effect of shear lag and the 
relative upward movement between the beams and 
columns. However, for all practical purposes, the results 
are adequate, as can be seen from the examples pre­
sented later in this paper. 

Shear Leak Effect—The effect of shear deformations on 
the stiffness of the spandrel beam or column is termed here 
as the "shear leak effect." 

Spandrel Beam—Shear leak term from Eq. (8): 

Q = 30 X — tSL. 

gi^gi 

For a built-up I-section, both Igi and A'gi are constant and 
dependent. 

For a fixed cross section, Cc —> 0 when Lgi —
> <»; hence, 

no reduction in stiffness due to shear. On the other hand, 
when Lgi -

> 0, the shear leak term blows up and the 
structure's lateral deflections —* °°. 

If Lg is kept constant and the ratio of A'gl to A is varied 
from 0.3 to 0.5, the shear leak term exhibits a gentle slope 
and stays almost horizontal, indicating that is the optimum 
range. 

NUMERICAL EXAMPLES 

The following examples examine the behavior of the 
frame-tube building, using the method outlined previously. 
The results are then compared with the exact analysis 
performed by the computer program, SAP-IV. For pre­
liminary analysis purposes, the contribution of the 
"flange-frame" in resisting the lateral loading can be ap­
proximated by the method outlined in Ref. 7. The effect of 
the flange-frame is considered in Example 2. 
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Table 1. Section Properties for Example 1 

Level 

60-56 

55-51 

50-46 

45-41 

40-36 

35-31 

30-26 

Beam 

W30X116 

W36X135 

W36X135 

W36X182 

W36X230 

W36X260 

W36X300 

Typical Column 

W30X99 

W30X116 

W36X135 

W36X160 

W36X194 

W36X230 

W36X260 

Corner Column 

W30X99 1 

W36X135 1 

W36X182 | 

W36X260 1 

W36X280 1 

BU24 X 42 

(*/=lVi,'«, = !) 

BU24 X 42 

Level 

1 25-21 

20-16 

15-11 

10-6 

5-1 

Beam 

W36X300 

BU16X42 
(tf = 2V2,tw = \V2) 

BU16X42 
(// = 2V2 ,^ = 1V2) 

BU16X42 
(;/ = 3V2 ,^ = l3/4) 

BU16X42 
(;/ = 3V2 ,^ = l3/4) 

Typical Column 

W36X300 

BU16X42 

BU16X42 

BU16X42 
(^ = 3V4,^ = l3/4) 

BU16X42 

Corner Column 

BU24X42X2V4 

BU24 X 42 
(tf = 2\tw = \V2) 

BU24 X 42 
0y = 3 , ^ = l3/4) 

BU24 X 42 
(*/ = 3V2, tw = 2) 

BU24 X 42 
(t/ = 3V2, tw = 2) 

Note: BU indicates built-up section. 

Example 1—A 60-story steel frame-tube building with a 
height-to-width ratio of 5.0 is considered. The building 
geometry is shown in Fig. 5. The building is considered 
fixed at the base and is analyzed for a lateral load of 20 psf 
on the long face of the building. Lateral resistance is con­
sidered to be offered by the two "web-frames" only. A 
preliminary sizing of the columns is obtained from gravity 

consideration; with these sizes, the deflection due to the 
cantilever action is calculated using the moment-area or 
another similar method. In this case, the tip deflection is 
found to be 10.3 in. In order to limit the total building drift 
to within H/S00 = 18.0 in., the required stiffness of the 
spandrel beams is then calculated from Eq. (1). These 
properties are listed in Table 1. A computer analysis is then 

10.0 

DEFLECTION INCHES 

ToTTT 
MOMENT xlO F t - K i p s 

Fig. 6. Comparison of deflections (Example 7) 
Fig. 7. Comparison of bending moments in beam/column 

(Example 1) 
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Fig. 8. Comparison of column axial forces (Example 7) 

performed with this set of properties. A comparison of the 
deflection results is plotted in Fig. 6. The components of 
deflection from Eq. (1) are summarized as follows: 

Cantilever deflection (Ac) =10.3 in. 

Bending deflection (A&) = 4.9 in. 

Shear leak deflection (A^) = 2.9 in. 

The total deflection, as calculated from Eq. (1) is 18.1 in. 
It can be seen that cantilever deflection accounts for 57% 
of the total deflection. The deflection from the exact analysis 
is found to be 19.1 in. Hence, Eq. (1) gives an accuracy of 
95% of the exact analysis. The summation of the column/ 
beam moments at every five floor levels from the exact 
analysis as obtained from the method is plotted in Fig. 7. 

The results compare favorably within 5% of the exact 
analysis, except at the first and the topmost five stories, 
which gives an accuracy of approximately 85% of the exact 
analysis. 

Figure 8 shows a comparison of the column axial stresses 
with the results from the exact analysis. A large discrepancy 
can be seen in the first level and the topmost level. 

Example 2—A frame-tube steel building with the same 
building geometry as Example 1 is analyzed. The major 
difference is the height of the building, which in this case, 
is only 24 stories high, giving a height-to-width ratio of 2.0. 
An average wind load of 200 kips is applied at every level. 
The effect of the flange-frame is considered in this case; two 
columns in the flange-frame are added to the corner column 
when computing the deflection due to column axial de-

5 . 0 

DEFLECTION INCHES 

1 0 . 0 

Fig. 9. Comparison of deflections (Example 2) 
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formation. In addition, beams and columns consist of only 
W36 sections. The result of deflection from Eq. (1) is as 
follows: 

Cantilever deflection = 1.0 in. 
Bending deflection = 4.2 in. 

Shear leak deflection = 2.3 in. 
Total deflection = 7.4 in. 

Cantilever deflection in this case accounts for 14% of the 
total deflection. The results from the exact analysis show 
a deflection of 7.5 in. (see Fig. 9). 

Similar comparisons are made for the bending moments 
in the beam and column. The results are plotted in Fig. 10. 
A comparison of the column axial stresses is shown in Fig. 
11. 

DESIGN AID FOR MEMBER SELECTION 

Due to the relatively thin web area of an I-section, the effect 
of shear deformation greatly reduces its ability to control 
lateral deflection in a frame-tube structure. Equation (8) 
can be rewritten as: 

MOMENT xlO FT.-KIPS 

Fig. 10. Comparison of bending moments in beam/column 
(Example 2) A , = 

\2E 
(9) 
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Fig. 11. Comparison of column axial stresses (Example 2) 
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16500 + 

7500 + 

SPAN LENGTH, FT. 

Fig. 12. Effective moment ofinertia (W36x300) 

where 

Ieff.c = IcAl + Cc) 

hff,g = igA\ + cg) 
The term Ieg , effective moment of inertia, can be considered 
as the equivalent moment of inertia of a member when 
bending and shear deformation subjected to lateral loading 
are both considered. The variation of lejf of a W36x300 with 

respect to its length is shown in Fig. 12. It can be seen from 
the curve that with a member length of 10 ft, Iejj = 9,152 
in.4, which is only 45% of its moment of inertia. However, 
when the member length is increased to 30 ft, then Iejj = 
17,900 in.4, which is 88% of its moment of inertia. In a 
frame-tube steel structure, its member lengths, beam spans 
and column heights usually vary from 10 ft to 20 ft. It is 
apparent from the above illustration that the effect of shear 

SPAN LENGTH, FT 

Fig. 13. Effective moment of inertia (W14x730 to W14x257) 
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.5 IOOO + 

SPAN LENGTH, FT 

Fig. 14. Effective moment of inertia {W14x233 to W14X22) 

deformation has a significant influence on the bending 
stiffness of an I-section. In order to assist a designer in 
selecting an adequate section for stiffness, the effective 
moments of inertias for the most frequently used sec­
tions—Wl 4, W27, W30, W33 and W36—for member 
lengths between 10 ft and 25 ft, are plotted in Figs. 13 
through 18. 

Apart from the readily available rolled W shapes, one has 
to resort to built-up I-shapes for additional strength or 
stiffness. Consider such a shape for deflection stiffness 
purposes. The objective here is to optimize the section to 
yield the maximum effective moment of inertia. The 
principal parameters which affect the solution are the width 
and depth of the section. If architectural or other physical 

27x114-

27x84 

SPAN LENGTH, FT 

Fig. 15. Effective moment of inertia (W27) 
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15 

SPAN LENGTH, FT 

—t—-
20 

Fig. 16. Effective moment ofinertia (W30) 

requirements dictate the geometry of the built-up I-section, 
then it is a matter of proportioning between bending and 
shear stiffness. Defining the web ratio, R, as the ratio of 
the effective shear area, A' (web area), to the total cross-
sectional area, A, then: R = A'/A 

Consider a built-up section with a given cross-sectional 
area, depth and width. The value of Iejj is a linear depen­
dent function of R, / and member length. The effect of 

varying web ratio, R, on the effective moment of inertia can 
be seen in Fig. 19. For a member length of 15 ft, with an 
R of 0.1, its effective moment of inertia is 14,000 in.4 At this 
value, the shear leak effect is dominant. Increasing ZifR 
to 0.5 will increase its effective moment of inertia up to the 
maximum optimum value. After this value, any increase 
in ratio R will actually reduce its moment of inertia without 
increasing its effective moment of inertia. A careful ex-

12000-

9000-

6000-

Tu 3000-

0 

33x241^_^— 

^ " " 33x221^_ 

^^^^^ ^^- " " 33x2£l__ 

^ S ^ ^ s ^ ^ ^ ^ ^ 33x152 

^ — ^ ^ , • ~~ 33v14j 

_^-—~^Z- ^ ^ n 8 

^ = = = ^ 

1 , 
15 20 

SPAN LENGTH, FT 

Fig. 17. Effective moment of inertia {W3 3) 
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SPAN LENGTH, FT 

Fig. 18. Effective moment of inertia (W36) 

amination of Fig. 19 further reveals that for a built-up 
section there is a considerable improvement in the effective 
moment of inertia when web ratio R is increased from 0.1 
to 0.3. However, when R goes beyond 0.4 or 0.5, the vari­
ation in its effective moment of inertia is comparably 

smaller. In the meantime, the increase in R undercuts the 
moment of inertia of the section by a considerable amount, 
possibly to the extent that it may be critical for strength 
requirement. To help a designer in selecting an optimum 
I-section in lateral stiffness design, a series of design curves, 

SPAN LELJGTH, FT 

Fig. 19. Effect of varying R for constant cross-sectional i 
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30000_L Area=160. inz 

Area=140. in 

Area=120 in 

Area=lOO in 

SPAN LENGTH, FT 

Fig. 20. Effective moment of inertia (built-up section 40 x 14) 

Figs. 20 through 27, is presented for the commonly used 
built-up sections. The sizes of the sections chosen are as 
follows: depth of section—40 in., 42 in., 44 in., 48 in.; width 
of section—14 in., 16 in. 

The span lengths vary from 10 ft to 20 ft. Each figure 
presents the maximum Iejj for cross-sectional areas of 100 
in.2,120 in.2,140 in.2 and 160 in.2. The proportion of the 

optimum section can be interpolated from the intersecting 
R curves. 

In order to assist a designer in selecting a member both 
for stiffness and strength requirements, the effective mo­
ments of inertia for web ratios of 0.4, 0.45 and 0.5 are 
plotted on the same set of figures for each cross-sectional 
area. Their moments of inertia are listed for reference. 

Area=160 in 

Area=140 in 

Area=120 in* 

Area=100 in 

SPAN LENGTH, FT 

Fig. 21. Effective moment of inertia (built-up section 42 x 14) 
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Optimum R 
R=0.50 
R=0.45 
R=0.40 

Area=160 in 

Area=140 in 

Area=120 in 

Area=100 in 

15 20 

SPAN LENGTH, FT 

Fig. 22. Effective moment of inertia {built-up section 44 x 14) 
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Fig. 23. Effective moment of inertia {built-up section 48 x 14) 
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Fig. 24. Effective moment of inertia {built-up section 40 x 16) 
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Fig. 25. Effective moment of inertia (built-up section 42 x 16) 
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Fig. 26. Effective moment of inertia (built-up section 44 x 16) 

Use of Charts—For example, assume a designer is to select 
an appropriate built-up section for a beam of 15-ft span and 
4-ft depth, with an effective moment of inertia of ap­
proximately 30,000 in.4 Use the strength and stiffness 
charts (Figs. 20 through 27) to determine the most eco­
nomical section. 

Stepl . 
Decide on the flange width. In this case say 14 in.; there­
fore, refer to Fig. 23. 
Step 2. 
Decide on the web ratio R. The choice is to be made from 
the four curves in this family of curves: R = 0.4, R = 0.45, 

Area=160 in 

Area=140 in 

^1 Area=120 in 

Area=100 in 

SPAN LENGTH, FT 

Fig. 27. Effective moment of inertia (built-up section 48 x 16) 
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R = 0.5 and the optimum R which is indicated by the solid 
curve. The optimum R is associated with the section which 
provides the maximum effective moment of inertia for the 
same cross-sectional area, but usually provides the least 
moment of inertia. 

For the optimum section: 

R = 0.574 

Ieff = 34,300 in.4 

/ = 52,462 in.4 

For R = 0.4: 

For Ieff = 32,000 in.4, 

7 = 59,312 in.4 

It can be seen that from a web ratio of 0.4 to the optimum 
web ratio of 0.574, a gain of 7% in effective moment of in­
ertia results in a loss of 12% in moment of inertia. Hence, 
a designer can interpolate from the set of stiffness and 
strength curves to get the most economical section that will 
satisfy his requirements. 

CONCLUSIONS 

1. An efficient method for preliminary analysis and 
member sizing of a tall steel tubular multi-story building 
is developed. 

2. The numerical examples demonstrated that the pre­
diction for the deflections is excellent. The calculated 
bending moments and shear forces, especially at the 
uppermost part of the tube did not match well with the 
exact analysis. However, it should be noted that con­
trolling the lateral deflection is probably the most im­
portant criterion in the preliminary stages of analysis 
and design. 

3. The significance of shear leak deformation is demon­
strated and the selection of an optimum W shape or 
built-up I-section is made available by the given strength 
and stiffness charts. 

4. The proposed method of analysis is mainly applicable 
for rectangular shapes, but it could be extended to more 
general tubular shapes. Problems involving parameters 
like shear lag, warping, etc. are currently being studied 
by the authors. 
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APPENDIX A. NOMENCLATURE 

A, A0 = Cross-sectional area and cross-sectional area 
of a cantilever, respectively 

Ac , Ag = Cross-sectional area of column and girder, 
respectively 

A' = Effective shear area 
A'cyA'g — Effective shear area of column and girder, 

respectively 
B = Flange width of a built-up I-section 
C = Shear stiffness factor 

Cc ,Cg = Shear stiffness factor of column and girder, 
respectively 

D = Depth of a built-up I-section 
E = Modulus of elasticity; 29,000 ksi for steel 
G = Torsional rigidity, ksi 

H, H{ = Total building height and bent height, re­
spectively 

/ , I0 = Moment of inertia of a section and of a can­
tilever, respectively 

Ic , Ig = Moment of inertia of column and girder, re­
spectively 

Ieff = Effective moment of inertia 
Lg ,LC = Span of a beam and of a column, respec­

tively 
Kc = Ic/Lc 

Kg = !g/Lg 

R = Ratio of effective shear area to total area 
r = Distance of a column line from center line of 

tube 
Ac{ = Lateral deflection due to cantilever action at 

z-th level 
Abi = Lateral deflection due to bending in frame at 

z-th level 
Ashi = Lateral deflection due to shear in frame at z-th 

level 
Afl = Ab[ + Ashl 

v = Poisson's ratio = 0.25 for steel 
An = Total lateral deflection of floor i 

V = Constant shear force 
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