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The torsional strength and stiffness of steel structures might 
seem to many to be a rather forbidding topic, but it can be 
quite simple for a wide variety of common steel structures 
such as bridges, towers, laced structural members, hy
draulic gates and others. In undergraduate courses in 
Strength of Materials, all engineering students learn the 
derivation and use of the torsion formulas as applied to 
circular shafts. Some may learn that in a thin-walled tube 
of any cross section the shearing force per unit of length 
around the periphery of a cross section is a constant and is 
equal to the torsional moment divided by twice the area 
enclosed within the cross section. That is about as far as 
most undergraduate students go with the torsion problem. 
However, that same simple thin-walled tube formula, v = 
M/2A0, is applied to box girders and it also can be applied 
to many trussed structures, or to structures containing both 
plates and truss forms. 

Consider a trussed box as shown in Fig. 1. With the front 
face open, that is, without being braced, the box offers no 
effective resistance to the twisting shown. Let the amount 
of twist be measured by the angle, 0, as seen in the top view. 
Other displacements can then be determined in terms of 0 
and the overall dimensions of the box by going through 
steps CD through (Kj), as indicated on the figure. The angle 
0 is measured in radians and is small enough so that, 
without significant error, the sin 0 and the tan 0 can be set 
equal to 0 and the cos 0 can be taken as unity. 

Let the twisting forces, P, which form torsional moments 
My = Pa with respect to the F-axis and Mx = Pb with 
respect to the X-axis, be resisted by the shearing forces Vx 

and Vy acting on the edges of the front face, as shown. 
These shearing forces may be supplied by a diagonal 
member, by some other truss form in the front face, or by 
a plate. 

For moment equilibrium with respect to the Z-axis, 

Vya -Vxb = 0 (1) 
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Also, since the total force system is in equilibrium, the work 
done during the displacement shown must be equal to 
zero. 

P(0a) - Vx(4>c) - Vy(4)a/b)c = 0 (2) 

Dividing the equation by 0 and substituting the value of 
Vy from Eq. (1), 

My-2Vxc = 0 (3) 

If the shearing force per unit of length along the top and 
bottom edges is designated vx , so that vxa = Vx , and this 

Front. S i d e ' 

Fig. 1. Twisted rectangular box 
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Hinge line. 

Fig. 2. Shearing forces on any cross section perpendicular to 
the Y-axis. (A diagonal member is added to the front face to 

indicate how shearing resistance in that face might be 
provided) 
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Fig. 3. Schematic of lock-gate leaf showing sleeve nuts used in 
prestressing 

value of Vx is substituted into Eq. (3) and the equation is 
then solved for vx , 

vx = My/2ac = My/2A0 (4) 

From Eq. (1), Vy/b = Vx/a3 so that vy = vx. 
If a plane perpendicular to the F-axis is passed through 

the box and the portion of the box below the plane is con
sidered as a free body, as in Fig. 2, equilibrium in the X-
direction requires a unit shear in the back face equal to vx. 
Moment equilibrium about the F-axis and equilibrium in 
the Z-direction require a unit shear, vz , in the side panels, 
which is equal to vx. Thus, around the periphery of the 
cross section there is a unit shearing force of 

vx — vz = My/lac = Pa/2ac — P/2c 

from which the total shearing forces shown are determined. 
A diagonal member has been added to the front face to resist 
the shear. The vertical components of the forces in the di
agonal members and in the vertical members can be com
puted from simple statics. 

There is no external moment applied with respect to the 
Z-axis. On a cross section perpendicular to the Z-axis, the 
shearing forces produce equal and opposite couples whose 
sum is zero, as in the front view of Fig. 1. 

Any of the faces of the box could be some other truss form 
or a plate and the formula would still apply. If two diago
nals are used in a panel and the diagonals are slender, so 
that they cannot resist compression, they may be prestressed 
so they will resist compressive forces up to the amount of 
the prestress. This is done routinely on lock gates. Stress 
under maximum loads is the same as it would be without 
prestress, but rigidity is greatly increased. 

In the discussion so far, no account has been taken of the 
torsional or warping resistance of the various components 
of the structure. However, unless these components have 
a thickness which is unusually large, their contribution to 
overall torsional strength and stiffness is not significant. 

Fig. 4. Some structural types to which v = M/2A0 \ 
applicable 
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Even in the case of lock gates, which are massive structures 
with heavy members, the leaves twist noticeably out of 
plumb under just their own weight without the diagonal 
members in place and adjusted. This same analysis has 
been applied successfully to lock gates for the past forty 
years, but the formula used looks different. The thin-walled 
tube formula can, however, be extracted from the lock-gate 
formula. A schematic drawing of a lock-gate leaf is shown 
in Fig. 3. 

It can be shown that the formula, v = M/2A0 , can be 
applied to any closed box-like structure regardless of the 
shape of the cross section. Thus, it can be applied to the 
torsional analysis and design of triangular-section trusses 
(Fig. 4a), to trussed troughs (Fig. 4b), to trussed girders 
(Fig. 4c), to towers (Fig. 4d), or even to tainter gates (Fig. 
4e). 

It is important to remember that all faces or surfaces of 
any box or tube, including the ends, must be closed; that is, 
the faces must consist of plates, truss forms, or rigid frames. 
This is equally true of tubes usually thought to be tor-

Fig. 5. Schematics of op en-end rectangular and circular tubes, 
indicating flexibility under applied torsional couples 

Fig. 6. Torsional stiffening of beam by addition of side plates 

sionally strong and rigid, such as those of Fig. 5. Either the 
tube must be thick enough (compared with other dimen
sions of the cross section) so that the shape of the cross 
section is maintained, or the cross sections at all load points 
must be braced. Except at load points the cross bracing is 
unstressed, but at occasional intermediate points cross 
bracing would seem desirable for stability. 

It used to be thought that W sections or I sections could 
be made torsionally stiff by forming tubes out of them with 
side plates, particularly at the ends, as illustrated in Fig. 
6. The side plates do add some torsional resistance to the 
members, but only the amount of the warping or torsional 
resistance of the side plates themselves, and this is not very 
much, as Morris Ojalvo points out. As he shows, however, 
torsional stiffness will be increased significantly by closing 
both ends of each tube thus formed with end plates welded 
in place. 

Another example is provided by the small box truss il
lustrated in Fig. 7, which was tested in the laboratory at 
Ohio University. Two ordinary open-web steel joists placed 
three feet apart formed the sides. Cross bracing and diag
onal bracing between the top chords divided the truss into 
five panels, each 4 ft long. For the first test, there was no 
horizontal diagonal bracing between the bottom flanges. 
Two 2-kip loads were applied above one joist, as shown. 
The loaded joist deflected a predictable amount with the 
middle cross sections rotating, as shown in Fig. 8a. The 
unloaded joist did not deflect vertically at all, and there was 
no significant resistance to twisting of the individual joists 
and resulting lateral displacement of their lower chords, 
Fig. 8b. 

For the second test, 5/s-in. rods were added as diagonal 
cross bracing between the bottom chords (just as the hori
zontal bracing at the top-chord level) and the pair of 2-kip 
loads was applied again. The formerly-open bottom face 
of the box now resisted the horizontal displacements of Fig. 
8b and the whole structure became torsionally stiff. The 

Fig. 7. Laboratory model of box truss 
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Fig. 8. Horizontal displacement of lower chords (no diagonal 
bracing in plane of lower chords) 
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Fig. 9. Shear distribution (bottom chords braced) 

loaded joist deflected only % as much as it did in the first 
test, and the unloaded joist carried V4 of the load. 

To explain this different behavior, consider Fig. 7. Be
tween the load points and the supports, the vertical shear 
in the structure is 2 kips or P. Wi th no lower-chord diag
onal bracing, the loaded joist carries all of this load with 
little or no stress in other parts of the structure. 

With the bottom of the box closed by diagonal bracing, 
the load can be resolved into a vertical component, P , acting 
through the shear center, and a moment, P i / 2 , Fig. 9a. The 
centric component, P , is supported equally by both joists, 
Fig. 9b. T h e moment component is resisted by a unit 
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Fig. 10. Resultant shear distribution (bottom chords braced) 
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l x D = 2 (u)x (SL/AE) 

Fig. 11. Two-story tower with eccentric load 

shearing force of (Pb/2)/(2A0) = P/Ad around the pe
riphery of the cross section, Fig. 9c. This unit shearing force 
multiplied by the length of the sides of the cross section gives 
shearing forces which, when added to the shears produced 
by the vertical load component, produce the results shown 
in Fig. 10, indicating that the unloaded joist has in it a 
vertical shear of 0.25P with the loaded-joist shear being 
0.75P. 

One may be puzzled by the fact that the unloaded joist 
carries one-fourth of the load, although the reaction under 
it at the end is zero. However, it is not difficult to trace the 
forces through the members of the structure to see that such 
is indeed the case, as equilibrium of the whole structure 
requires. 

Thus far it has been assumed that the various surfaces 
or truss panels which form a box structure offer only neg
ligible resistance to warping. The single box unit of Fig. 
1 resists torsional loads only because all six faces resist 
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l x D = 2 ( u ) x ( S L / A E ) + 2 ( v u a ) x ( v b / t G ) 

Figure 12 

shear. The structure is statically determinate, and it would 
be unstable if even one face were open. 

Now consider the tower of Fig. 11a. The bottom face of 
the tower, defined by the four points of support, not only 
resists a change of shape in its own plane, but it resists 
warping as well. Hence, an extra component of resistance 
to the load has been added, and the structure is stable even 
though the top face of the tower is open. Also, the structure 
is statically determinate, but any load is resisted solely by 
that side of the tower in the plane of which it lies. Thus the 
torsion formula, v = M/2A0 , does not apply in this 
case. 

If the tower is made torsionally strong by adding a di
agonal in the top, Fig. l i b , the structure is also made 
statically indeterminate and the torsion formula, derived 
from Fig. 1 in which all faces warp freely, does not apply 
strictly to this case either. However, for a structure of two 
stories or more in height, the error in computed member 
forces is not more than a few percent. There would be 
nothing gained by applying the torsion formula to a one-
story structure. 

Actually, the thin-walled-tube formula applies strictly 
only to structures such as that of Fig. 1, in which all faces 
are closed (braced) and are free to warp. Such is the case 
for only a very few structures. Therefore, the formula does 
not apply strictly to box trusses, box girders, or any other 
structures having four points of support, or having a 
member running through the interior space of the box unit 

from one corner to the diagonally-opposite corner. Unless 
cross sections are free to warp, the thin-walled-tube formula 
does not even apply strictly to all thin-walled tubes. 
However, the error in using the formula to compute the 
load-carrying capacity of the usual structure is not more 
than a few percent. 

Probably the easiest way in which to compute the dis
placement produced by a set of loads on a structure is to 
determine the work done by a unit virtual force as the set 
of loads is applied. The virtual force should be applied at 
the point and in the direction of the desired displacement. 
The work done by the unit virtual force as the set of real 
loads is applied is 1 X Z), in which D is the desired dis
placement. The work done by the unit force is also equal 
to u X SL/AE for all of the members in which u is the 
member force produced by the virtual load and S is the 
member force produced by the set of real loads. From the 
equation 1 X D = 2w X (SL/AE), the value of D can be 
found. 

If one or more of the surfaces of the box or tube is a plate, 
either flat or curved, and the shear per unit of length is vu 

for the unit load and v for the set of real loads, the work 
done on the plate by the virtual force as the set of real loads 
is applied (see Fig. 12), is vua X vb/tG3 and this must be 
added to the work done on the members. Thus, 

1 X D = 2u X SL/AE + 2vua X vb/tG (5) 

in which a and b are the width and length of the developed 
plate, t is its thickness, and G is the shearing modulus. 

If the angle of twist, </>, of a section of the structure is 
desired, a unit virtual moment is applied at the section. The 
work done by this moment as the real loads are applied is 
a measure of the rotation caused by the real loads. 

1 X (/) = 2 « X SL/AE + Xvua X vb/tG (6) 

In this equation, u is the member force produced by the unit 
virtual moment and vu = ^AQ is the unit shear force caused 
by the virtual moment. In both Eqs. (5) and (6) the prod
ucts, u X S and vu X v, are positive if the forces are in the 
same direction and negative if they are in opposite direc
tions. If all faces are plates, the first term on the right-hand 
side of Eq. (6) is zero and the second term becomes the one 
used in determining the angle of twist of box girders. 
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